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Abstract 

The coronavirus disease 2019 (COVID-19) pandemic has been as unprecedented as 

unexpected, affecting more than 105 million people worldwide as of February 8th, 2020 

and causing more than 2.3 million deaths according the World Health Organization. Not 

only affecting the lungs and provoking acute respiratory distress, severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) is able to infect multiple cell types including 

cardiac and vascular cells. Hence a significant proportion of infected patients develop 

cardiac events such as arrhythmias and heart failure. Patients with cardiovascular 

comorbidities are at highest risk of cardiac death. To face the pandemic and limit its 

burden, health authorities have launched several fast track calls for research projects 

aiming to develop rapid strategies to combat the disease, as well as longer-term projects 

to prepare for the future. Biomarkers have the possibility to aid in clinical decision 

making and tailoring healthcare in order to improve patient quality of life. The biomarker 

potential of circulating RNAs has been recognized in several disease conditions, 

including cardiovascular disease. RNA biomarkers may be useful in the current COVID-

19 situation. The discovery, validation and marketing of novel biomarkers, including 

RNA biomarkers, require multi-centre studies by large and interdisciplinary collaborative 

networks, involving both the academia and the industry. Here, members of the EU-

CardioRNA COST Action CA17129 summarize the current knowledge about the strain 

that COVID-19 places on the cardiovascular system and discuss how RNA biomarkers 

can aid to limit this burden. They present the benefits and challenges of the discovery of 

novel RNA biomarkers, the need for networking efforts and the added value of artificial 

intelligence to achieve reliable advances. 

 

Keywords: biomarkers; artificial intelligence; RNAs; genomics. 
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Introduction: SARS-CoV-2 in 2020  

The effect of the coronavirus disease 2019 (COVID-19) pandemic on the cardiovascular 

system is alarming. More research focusing on the collateral damage associated with 

COVID-19 infection is needed. COVID-19 causes pneumonia with multi-organ disease. 

Infection can be asymptomatic or may cause a wide spectrum of symptoms, from mild 

upper respiratory tract infection to life-threatening sepsis with generalized endothelial 

damage, inflammation and thrombosis. COVID-19 first emerged in December 2019 in 

Wuhan, China, and as of February 8th 2020 has affected people in more than 200 

countries, with more than 105 million identified cases and with over 2.3 million 

confirmed deaths (WHO Coronavirus Disease Dashboard). It is clear that one of the 

causes for the significant differences in the severity of symptoms and mortality may 

derive from patient susceptibility to infection. Moreover, a significant proportion of 

COVID-19 survivors suffer cardiovascular damage. As such, there is a clinical need for 

novel biomarkers which would aid in the identification of patients at risk of suffering a 

severe form of the disease or that may identify those patients prone to develop collateral 

damage in the vascular, cardiac and cerebrovascular systems that may jeopardize their 

future wellbeing. We need to investigate and innovate to detain the next pandemic wave 

of COVID-related cardiovascular disease. 

To face the pandemic and limit its medical, -social and economic burden, health 

authorities have launched several Fast Track calls for research projects aiming to develop 

rapid strategies to combat the disease, as well as longer-term projects to learn and draw 

lessons from the current pandemic and prepare for the future 1. 

A myriad of potential biomarkers of COVID-19, for both diagnostic and prognostic 

purposes, have been highlighted in an extremely high number of published articles within 

the few months following the beginning of the pandemic. Although it is difficult to 

identify from all these reports the most relevant biomarkers with serious translational 

potential, artificial intelligence approaches could constitute a key component of such 

endeavours. Cardiovascular and blood RNA markers, coupled with artificial intelligence 

methods, represent a still poorly explored yet rich reservoir of novel biomarkers with 

some potential to aid in personalizing healthcare of COVID-19 patients. Recent single-

cell RNA sequencing experiments support this assumption 2. 
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Epidemiology of SARS-CoV-2 and cardiovascular disease 

SARS-CoV-2 infection affects mostly the ageing population with pre-existing 

cardiovascular diseases, such as coronary artery diseases, heart failure or respiratory 

failure of any origin. Moreover, individuals with pre-existing risk factors for 

cardiovascular disease or with co-morbidities affecting the cardiovascular system, are at 

high-risk for worse clinical outcome during the infection 3. Frequent involvement of 

cardiovascular comorbidities is detected in patients with SARS-CoV-2 infection and up 

to 33% of hospitalized patients with a COVID-19 positive test have cardiac injury 4 

evidenced by elevated cardiac troponin I and troponin T levels. These patients are prone 

to develop acute heart failure and have a high (up to 44.4% reported) burden of 

arrhythmias 5-8. Patients with SARS-CoV-2 infection and acute cardiac injury have a 

substantially higher rate of in-hospital mortality (up to 71.2%), as compared with the 

mortality of patients with SARS-CoV-2 infection and no evidence of cardiac injury 3, 7. 

Patients with pre-existing heart failure and SARS-CoV-2 infection have a two-fold higher 

risk of 30-day mortality as compared to patients without pre-exiting heart failure and 

SARS-CoV-2 infection, independently of the category of heart failure (reduced, mid-

range, or preserved ejection fraction) 9. Multi-organ failure due to hypoxia caused by 

respiratory failure, acute kidney injury, electrolyte disturbances, systemic inflammation 

and cytokine storm contribute to the cardiac injury in patients with SARS-CoV-2. The 

cytokine storm seems to contribute to a large extent to cardiac and vascular events. 

However, there are reports asking for a more concise definition of the cytokine storm and 

its real impact in the pathogenesis of the infection 10-12. Altered coagulation may lead to 

thrombotic complications including microthrombosis, microvascular damage, and 

generalized thromboembolic disorder. Recent empirical drugs against OVID-19 such as 

chloroquine, antiviral or anti-rheumatic drugs, monoclonal antibodies or antibiotics may 

also aggravate cardiovascular symptoms by prolonging QT interval leading to 

arrhythmias, or resulting in drug-induced cardiomyopathies or cardiotoxicity 4. Since 

SARS-CoV-2 has a strong affinity for the angiotensin-converting enzyme 2 (ACE2) cell 

receptor, it was plausible to assume that antihypertensive treatment with ACE inhibitors 

or angiotensin receptor blockers (ARBs) might aggravate the disease. To date, however, 

no clinical evidence can confirm this assumption, thus ACE inhibitor and ARB treatments 

continue to be administered to SARS-CoV-2 positive patients 13, 14. The lockdown 

regulations and subsequent closure of out-patient clinics has led to major re-
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organizational efforts of the management of patients with cardiovascular disease.  A 

paradoxical decrease of documented acute myocardial infarction has also been observed, 

which could be attributed to the lack of preventive control of patients with chest pain, and 

the self-quarantining of the patients fearing from the risk of nosocomial infection 15. 

Pathophysiology of SARS-CoV-2 infection phases; effects on the heart 

SARS-CoV-2, a member of the family of coronaviruses, is an enveloped, positive-sense, 

single-stranded RNA virus that is able to infect various host species 16. Among the viral–

encoded proteins, the SARS-CoV-2 spike (S) transmembrane glycoprotein protrudes 

from the viral surface and is essential for target cell binding and infection. ACE2 has been 

identified as the SARS-CoV-2 receptor 17-20 and ACE2 is highly expressed in the lung, 

heart, ileum, kidney and bladder 21. The majority of adaptive immune cells that invade 

the infected lung tissue consist of T cells, since a proportional decrease in circulating T 

cells has been observed in COVID-19 patients. IL-8 and IL-6, recognized chemo-

attractants for T cells and neutrophils, are produced by SARS-CoV-2-compromised lung 

epithelial cells (Figure 1a) 22. As neutrophils function in adaptive immunity but can also 

provoke further damage to the lung, these cells are regarded as double-edged swords in 

the context of COVID-19 23. Circulating monocytes are attracted from the circulation by 

granulocyte macrophage colony stimulating factor that is produced by local T cells in 

infected tissue. In addition, elevated CD14+CD16+ inflammatory monocytes producing 

high levels of IL-6 are found in COVID-19 patients, suggesting that also monocytes 

actively contribute to the systemic inflammatory response. Finally, thrombosis and 

pulmonary embolism are commonly observed in severely-ill COVID-19 patients (Figure 

1b), likely indicating the presence of significant endothelial injury and microvascular 

permeability, which may further exacerbate viral invasion.   
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Figure 1. Disease mechanisms of SARS-CoV-2 infection. 
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The symptoms of COVID-19 patients are heterogeneous, ranging from minimal 

symptoms to significant hypoxia with acute respiratory distress, shock, coagulation 

dysfunction, and multi-organ involvement, including acute kidney injury, 

encephalopathy, myocardial injury and heart failure. Indeed, epidemiological, clinical 

and biological evidence shows a clear cardiac involvement in COVID-19 patients, due to 

direct myocardial infection and injury and/or to indirect mechanisms, linked to the 

underlying pathophysiology of the disease 24. 

In keeping with a direct effect on heart function of SARS-CoV-2 (Figure 1c), its receptor 

ACE2 is expressed by cardiomyocytes, fibroblasts, endothelial cells, pericytes, 

macrophages and the epicardial fat 21. Moreover, ACE2 levels are increased in failing 

hearts and its high expression in arterial vascular cells of fibrotic lungs may facilitate the 

bloodstream spreading of SARS-CoV-2 25. Cardiomyocytes derived from human induced 

pluripotent stem cells can be infected efficiently by SARS-CoV-2 26, 27. The SARS‐CoV‐

2 genome has been identified in endomyocardial biopsies of patients with suspected 

myocarditis 28. However, while cardiomyocyte damage was present, no viral particles 

were detected in cardiomyocytes and endothelium, suggesting that the particles were due 

to infected macrophage migration. Thus, direct myocardial infection may not be the main 

mechanism of myocardial damage explaining the frequently observed troponin increases. 

The release of inflammatory cytokines (Figure 1c), a hallmark of severe COVID-19, can 

also lead to a form of myocarditis resembling Takotsubo syndrome 29. Moreover, the pro-

thrombotic state of COVID‐19 patients, associated to D‐dimers increase, may lead to 

microvascular dysfunction, coronary thrombosis or embolism (Figure 1b) 30. Along with 

the pro-coagulant profile of patients with COVID-19 31, other forms of stress may 

facilitate cardiomyopathy occurrence, such as hypoxemia caused by respiratory 

dysfunction, endothelial dysfunction leading to small arterial obliteration 28, and the 

increased metabolic demands (Figure 1d). 

 

Treatments: what is available, what is needed 

Remdesivir 

Remdesivir is the first medicinal product for human use for the treatment of COVID-19 

which was granted a conditional marketing authorization of the European Parliament and 
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of the Council 32. It is a nucleotide analogue with a broad-spectrum antiviral activity. The 

European Medicines Agency, specifically the Committee for Medicinal Products for 

Human Use, has granted a conditional marketing authorization to Veklury (remdesivir) 

for the treatment of COVID-19 in adults and adolescents with pneumonia who require 

supplemental oxygen (O2) 33. The recommendation of remdesivir is mainly based on the 

results of the Adaptive COVID-19 Treatment Trial (ACTT)-1 sponsored by the US 

National Institute of Allergy and Infectious Diseases, and supporting data from other 

studies on remdesivir 33, 34. According to the ACTT-1 study, patients in the remdesivir 

group had a shorter time to recovery than patients in the placebo group (median 10 vs.15 

days) 35. Kaplan–Meier estimates of mortality at day 29 were 11.4% in the remdesivir 

group and 15.2% in the placebo group (hazard ratio 0.73; 95% CI 0.52 - 1.03) 35. The 

Food and Drug Administration (FDA) issued an emergency use authorization 36. The use 

of remdesivir has shown shortening of recovery time in severe patients with O2 saturation 

≤ 94%, and cases requiring supplemental O2, mechanical ventilation, or extracorporeal 

membrane oxygenation 37, 38. It is recommended to start the treatment on day 1 with 200 

mg infusion, followed by 100 mg infusion daily for at least 4 days and maximum 9 days 

33. According to the WHO SOLIDARITY trial (results in preprint), death rate ratios for 

remdesivir are RR=0.95 (95% CI 0.81-1.11, p=0.50) 39. Comparative results from other 

studies are shown in Table 1. Overall, remdesivir, while improving time to recovery in 

patients with mild symptoms in ACTT1 trial, fails to improve mortality. 

 

Table 1. Comparison of 28-day mortality of patients with SARS-CoV-2 treated with 

remdesivir, dexamethasone, hydroxycholoroquine, lopinavir, and interferon with/without 

O2 from the SOLIDARITY39, ACTT-135, and RECOVERY40 trials. 
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Remdesivir* - SOLIDARITY trial. Day 0: 200 mg; Day: 1-9: 100 mg i.v.; 

Remdesivir** - ACTT. Day 1: 200 mg Day 2-10: 100 mg compared to placebo; 

Dexamethasone *** - RECOVERY 6 mg oral/i.v. for up to 10 days; 

Hydroxychloroquine **** - SOLIDARITY trial. Hydroxychloroquine sulphate a 200mg 

tbl at Hour 0, four tablets; Hour 6, four tablets; Hour 12, begin two tablets twice daily for 

10 days; 

Lopinavir ***** - SOLIDARITY trial. Lopinavir a 200 mg+ ritonavir 50 mg 2x 2 tablets 

for 14 days; 

Interferon ****** - SOLIDARITY trial. Three doses over six days of 44 μg subcutaneous 

Interferon-ß1a. 

 

Dexamethasone 

According to the RECOVERY trial results, in the dexamethasone group, the incidence of 

death was lower than in the usual care group among patients receiving invasive 

Drug 28-day 

mortality 

No O2 Low/hi-O2 Ventilation 

Remdesivir* 

(N=2743) 

301/2743 

(12.5%) 

 

11/661 

(2.0%) 

192/1828 

(12.2%) 
98/254 

(43.0%) 

Control 

(N=2708) 

303/2708 

(12.7%) 

13/664 

(2.1%) 

219/1811 

(13.8%) 
71/233 

(37.8%) 

Remdesivir** 

(N=541) 

59/541 

(10.9%) 

3/75 (4.1%) 28/327 

(8.6%) 
28/131 

(21.9%) 
Placebo 

(N=521) 

77/521 

(14.8%) 

3/63 (4.8%) 45/301 

(15.0%) 
29/154 

(19.3%) 

Dexamethasone*** 

(N=2104) 

482/2104 

(22.9%) 

89/501 

(17.8%) 

298/1279 

(23.3%) 
95/324 

(29.3%) 
Usual care 

(N=4321) 

1110/4321 

(25.7%) 

145/1034 

(14.0%) 

682/2604 

(26.2%) 
283/683 

(41.4%) 

Hydroxychloroquine**** 104/947 

(10.2%) 

69/862 

(7.4%) 

35/85 (39.2%) 

Control 84/906 (8.9%) 57/824 

(6.6%) 

27/82 (32.3%) 

Lopinavir***** 148/1399 

(9.7%) 

113/1287 

(8.1%) 

35/112 (28.1%) 

Control 146/1372 

(10.3%) 

111/1258 

(8.7%) 

35/114 (28.7%) 

Interferon-ß1a ****** 243/2050 

(12.9%) 

188/1911 

(10.9%) 

55/139 (42.4%) 

Control 216/2050 

(11.0%) 

176/1920 

(9.5%) 

40/130 (33.8%) 
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mechanical ventilation (29.3% vs. 41.4%) and among those receiving O2 without invasive 

mechanical ventilation (23.3% vs. 26.2%) but not among those who were not receiving 

respiratory support at randomization (17.8% vs. 14.0%) 40. Based on these results, 6 mg 

of dexamethasone is recommended once daily for up to 10 days in COVID-19 patients 

on mechanical ventilation or who require supplemental O2 but who are not on mechanical 

ventilation 38, 41. 

Chloroquine or hydroxychloroquine, lopinavir-ritonavir 

Although chloroquine or hydroxychloroquine were one of the medications which 

appeared to show great potential at the beginning of COVID-19 pandemic, their use has 

been stopped due to lack of efficacy. Numerous companies donated these medications for 

treating COVID-19 patients,however, the FDA revoked the emergency use authorization 

for this drug. Furthermore, the combined use of hydroxychloroquine and azithromycin is 

not recommended because of the potential adverse reactions. Lopinavir/ritonavir also did 

not demonstrate benefit in patients with COVID-19. As reported in Table 1, the interim 

WHO SOLIDARITY trial results indicate that remdesivir, hydroxychloroquine, lopinavir 

and interferon treatments had little or no effect on hospitalized COVID-19 patients, as 

indicated by overall mortality, initiation of ventilation and duration of hospital stay 39. 

Immunomodulatory medications 

Several medications used in modulating the immune response, such as interleukin-1 

(anakinra) or interleukin-6 (sarilumab, siltuximab, tocilizumab) inhibitors are being used 

off-label and are being investigated. These medications have been proposed to suppress 

the cytokine storm 42.  

Convalescent plasma 

The convalescent plasma containing antibodies against SARS-CoV-2 virus collected 

from recovered COVID-19 patients is also being widely investigated. A randomised 

clinical trial with convalescent plasma therapy did not show any statistically significant 

improvement in clinical status or death rate 43. However, this trial provided valuable 

information on the potential benefits of convalescent plasma, which may be useful in 

combination with antiviral drugs. According to some preliminary research, early 

administration of high dose intravenous immunoglobulin therapy may improve the 

prognosis of critically ill patients 44. On August 23, 2020 FDA issued an emergency use 
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authorization for convalescent plasma for the treatment of COVID-19 in hospitalized 

patients 45. 

Markers of disease evolution: what is available, what is needed 

As the world faces the COVID-19 pandemic, markers enabling to predict the 

development of severe symptoms after SARS-CoV-2 infection are highly needed. 

Presence of cardiovascular risk factors (particularly arterial hypertension, diabetes 

mellitus and aging) and previous cardiovascular diseases reportedly expose to an 

unfavourable progression of COVID-19 46. As such, they can already provide an initial 

and rudimental model to risk stratify patients.  

Mortality rate after COVID-19 is associated with elevation in the “classic” cardiac 

damage biomarkers, such as troponin T (TnT) and/or BNP/NT-proBNP 3, 47. In line with 

that, COVID-19 patients who do not have significantly increased TnT levels show a lower 

mortality compared to patients without cardiovascular disease 5, 48. This suggests that TnT 

and BNP/NT-proBNP concentration should be closely followed in patients with COVID-

19 both for diagnostic (cardiac involvement) and prognostic purposes. Elevations of D-

Dimers have also been associated with poor outcome 49. The addition of other biomarkers 

such as the inflammatory cytokine IL6 and lymphocyte count will be also helpful to 

determine the individual risk of a patient. 

 

Omics-based approaches recently discovered interesting metabolites in plasma of patients 

with COVID-19. Using both targeted and untargeted tandem mass spectrometry to profile 

the plasma lipidome and metabolome of COVID-19 patients with various degrees of 

severity and healthy controls, a panel of 10 plasma metabolites was found to distinguish 

COVID-19 patients from healthy controls with an area under the receiver-operating 

characteristic curve (AUC) of 0.975 50. 

Biomarkers that might be useful in indicating progression from mild to severe multi-

organ complication in COVID-19 patients are summarized in Tables 2 and 3, which have 

been inspired in part by two important review articles and meta-analyses 51, 52. A myriad 

of recent publications have reported associations between classical and emerging 

biomarkers and COVID-19 prognosis. Yet, only meta-analyses enrolling more than 200 

patients are included in Tables 2 and 3. Among inflammatory and cardiac injury markers, 

decreased number of white blood cells, lymphopenia and thrombocytopenia and 
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increased CRP, D-dimers, procalcitonin (PCT), lactate dehydrogenase (LDH), aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), IL-6, cardiac troponin and CK-

MB are associated with poor outcomes of COVID-19 patients, indicating their potential 

to aid in risk stratification and prediction of severe and fatal outcomes (Tables 2 and 3). 
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Table 2. Laboratory markers associated with poor outcomes after SARS-CoV-2 infection.  

Sample 

size 

WBC Lymphocyt

es 

Platelets D-dimer CRP PCT IL-6 AST ALT 

Ref

. 

 
↑

↓ 

OR 

[95% 

CI] 

↑

↓ 

OR 

[95% 

CI] 

↑

↓ 

OR [95% 

CI] 

↑

↓ 

OR [95% 

CI] 

↑

↓ 

OR [95% 

CI] 

↑

↓ 

OR 

[95% 

CI] 

↑

↓ 

OR 

[95% 

CI] 

↑

↓ 

OR 

[95% 

CI] 

↑

↓ 

OR [95% CI] 

3962 - - - - - - - - ↑ - ↑ - ↑ - - - - - 53 

10491 - - ↓ 3.33 

[2.51-

4.41] 

↓ 2.36 [1.64-

3.40] 

↑ 3.39 

[2.66-

4.33] 

↑ 4.37 [3.37-

5.68] 

↑ 6.33 

[4.24-

9.45] 

- - ↑ 2.75 

[2.30-

3.29] 

↑ 1.7 [11.32-

2.20] 51 

1955 ↓ - ↓ - ↓ - ↑ - ↑ - ↑ - - - ↑ - ↑ - 54 

4662 ↓ - ↓ 4.5 [3.3-

6.0] 

↓ - ↑ - ↑ 3.00 [2.1-

4.4] 

↑ - ↑ 53.1% 

[36.0/70.

0%] 

↑ - ↑ - 
55 

 

- 

↓ 0.93 

[0.46-

1.86] 

↓ 1.66 

[1.26-

2.20] 

↓ 0.88 [0.26-

2.95] 

↑ 1.50 

[0.89-

2.56] 

↑ 1.41 [1.17-

1.70] 

↑ 2.94 

[2.09-

4.15] 

- - ↑ 2.27 

[1.76-

2.94] 

↑ 1.60 [1.34-

1.90] 56 

6320 ↓ 1.75 

[1.21-

2.54] 

↓ 0.30[0.1

9-0.47] 

↓ 0.56 [0.42-

0.74] 

↑ 3.97[2.62

-6.02] 

↑ 6.36 [3.22-

12.5] 

↑ 4.76 

[2.48-

9.14] 

↑ 2.10 

[1.02-

4.32] 

- - - - 
57 

- ↓ - ↓ - ↓ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - 58 

91621 ↓ - ↓ - ↓ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - 59 

3027 ↓ 0.30 

[0.17-

0.51] 

- - - - ↑ 43.24 

[9.92-

188-.49] 

- - ↑ 43.24 

[9.92-

188.49] 

- - ↑ 4.00 

[2.46-

6.52] 

- - 
60 

51225 ↓ 2.75 

[2.02-

3.9] 

↓ -0.6 (-

2.55--

1.38) 

↓ -36.06 (-

49.24;-

22.77) 

↑ 3.22 

[2.84-

3.61] 

↑ 68.31 

[53.11-

83.50] 

↑ 0.52 

[0.42-

0.62] 

↑ 43.64 

[30.92-

56.35] 

↑ 17.41 

[13.99-

20.83] 

↑ 2.18 [0.09-

4.28] 61 
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4631 - - - - - - - - - - - - ↑ RR 0.54 

[0.27-

0.81] 

- - - - 
62 

5626 - - - - - - ↑ 1.4 [-

2.04-(-

0.77)] 

↑ 64.03 [-

68.88-(-

59.19)] 

- - - - - - - - 
63 

Legend: ALT – alanine aminotransferase; AST – aspartate aminotransferase; CRP – C reactive protein; IL-6 – interleukin 6; MA – meta-

analysis; OR – odds ratio; PCT – procalcitonin; WBC – white blood cells; ↑ - increased; ↓ - decreased. The hyphen means not studied. Poor 

outcomes include in-hospital admission, intensive care unit admission, oxygen saturation <90%, severe disease, utilisation of invasive 

mechanical ventilation, and mortality. Adapted from 51, 52. 
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Table 3. Cardiac injury biomarkers associated with poor outcomes in COVID-19 patients. 

Sample size LDH CK Creatinine Troponin I 

 

CK-MB 

Ref.  
↑↓ OR 

[95% CI]c 

↑

↓ 

OR 

[95% CI]c 

↑

↓ 

OR 

[95% CI]c 

↑↓ SMD 

[95%CI] 

↑

↓ 

SMD [95%CI] 

- ↑ 6.7 [2.4-18.9] - - - - ↑ 0.71 [0.42;1.00] ↑ 0.68 [0.48;0.87] 56 

6320 ↑ 2.03 [1.42-2.90] ↑ 
 

↑ 
     

51 

491 - - - - - - ↑ - - - 58 

91621 ↑ - ↑ - ↑ - ↑ 16% [11-22] - - 59 

3027 ↑ - ↑ - ↑ - ↑ 43.24 [9.92-188.49] - - 60 

51225 ↑ 8.86 [2.72-28.89] - - ↑ 5.30 [2.19-12.83] ↑ 0.02 [0.02;0.02] - - 61 

4631 ↑ 180.26 [131.02-229.51] - - ↑ 21.72 [16.72-26.71] ↑ 0.74 [0.19-1.30] - - 62 

5626 ↑ RR 2.20 [1.55-31.12] ↑ RR 1.89 

[1.50-2.61] 

- - ↑ -1.55 [-2.23;-0.88] ↑ -4.75 [13.31;3.82] 63 

341 - - - - - - ↑ 25.6 [6.8-44.5] - - 64 

3118 - - - - - - ↑ 21.15 [10.19-43.94] - - 65 

4189 - - - - - - ↑ 0.53 [0.30-0.75] ↑ 0.62 [0.28-0.97] 66 

982 - - - - - - ↑ HR 2.48 [1.50-4.11] - - 67 

Legend: CK-MB – creatinine kinase -MB; HR – hazard ratio; LDH – lactate dehydrogenase; OR – odds ratio; RR – risk ratio; SMD – 

standardized mean difference; ↑ - increased; ↓ - decreased. Poor outcomes include in-hospital admission, intensive care unit admission, oxygen 

saturation <90%, severe disease, utilisation of invasive mechanical ventilation, and mortality. The hyphen means not studied. Adapted from 51, 52. 
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The role of the cardiovascular expression/activity of the putative SARS-CoV-2 receptor 

ACE2 as well as of the use of renin-angiotensin-aldosterone system (RAAS) inhibitors 

in SARS-CoV-2 susceptibility and COVID-19 disease severity have been a matter of 

debate 68-71. However, the clear recommendation is to continue the administering of 

RAAS inhibitors or blockers in SARS-CoV-2 positive patients with underlying 

cardiovascular disease. Elevated angiotensin II levels have been found to correlate with 

lung injury and viral load, suggesting that administration of angiotensin 1-7 and 

angiotensin 1-9 may help in restoration of normal functioning of renin-angiotensin system 

by antagonizing the effect of abnormally increased angiotensin II 72. 

Circulating RNAs represent a rich source of biomarkers with clinical utility due to their 

biological relevance, dynamic regulation in response to onset and progression of disease, 

tissue-specificity, and accessibility for non-invasive analysis using biofluids (“liquid 

biopsies”). Especially for diseases with diverse symptoms and complications such as 

COVID19, RNA biomarkers could provide important decision support. RNAs have 

shown some potential as cardiovascular disease biomarkers and may help in predicting 

unexpected cardiovascular events in COVID-19 patients. Although some clinical trials 

on miRNAs in COVID-19 have been started or are even completed (9 trials registered in 

clinicaltrials.gov database as of Nov 2020), none of them have been specifically designed 

to identify (mi)RNA predictors of cardiovascular outcome of COVID-19 patients. Table 

4 gathers the currently available studies reporting regulations of non-coding RNAs 

(ncRNAs) in patients infected with SARS-CoV-2. Predicted messenger RNA targets as 

well as their proposed role in COVID-19 are also included in this table. 
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Table 4. Potential ncRNA biomarkers of COVID-19. 

ncRNA Sample size 
Type of 

sample 
Regulation 

Number of 

predicted 

target 

genes 

Experimentally 

validated target 

genes in any 

disease 

Experimentally 

validated target 

genes in COVID-19 

patient samples 

Proposed role in COVID-19 Reference  

miR-16-2-3p 

14 Blood 

↑ 

71 FGFR2, PDPK1 - - 

73 

miR-6501-5p 88 - - - 

miR-618 11 

MTDH, TLR-4, 

ATP6V1E1, 

HAT1, MCTS1, 

TGF-β2 

TLR-4, HAT1, TGF-

β2 

TLR4 regulates inflammation; 

HAT1: mitochondrial function, 

cellular senescence, and telomere 

attrition; 

TGF-β2 induces expression of furin in 

HBE cells 

miR-183-5p 

↓ 

220 PTEN, PIK3CA PTEN 
Regulator of SARS-CoV-2 ACE2-

TMPRSS2-Furin-DPP4 axis 

miR-627-5p 25 

CDK6, SOX-2, 

LINC00958, lnc-

UCA1  

- - 

miR-144-3p 80 
PTEN, APP, 

FoxO1 

FOXO1 

PTEN 

FOXO1 regulates cell death 

downstream of several signaling 

pathways including CDK1, 

PKB/AKT1 and STK4/MST1 

PTEN signalling is increased after 

SARS-CoV-2 infection 



MS # CVR-2020-1482-R2 
 

19 
 

lncRNA DANCR 

563 
Lung tissue 

and blood 

↓ - 

miR-496/mTOR 

axis; miR-335-

5p/miR-1972 and 

ROCK1 axis  

mTOR 
Regulator of Akt/mTOR/HIF-1 

signaling pathway 

74 

lncRNA NEAT1 ↑ - 
miR-129-

5p/KLK7 axis;  
RUNX3, SPI1 

RUNX3 regulates DANCR and is 

related to inflammatory reaction in the 

lung; 

SPI1 controls DANCR expression in 

the brain and in epithelial cells 

miR-21-5p 

↑ 

139 TGFBI, MAPK1 DANCR, NEAT1 

DANCR and NEAT1 can block 

inflammation via interacting with 

other ncRNAs, sponging miRNAs, or 

affecting TFs (e.g. STAT3) 

miR-22-3p 162 
WRNIP1, 

HMGB1 
HMGB1 

Exogenous HMGB1 induces the 

expression of SARS-CoV-2 entry 

receptor ACE2 

miR-335-5p 63 
Rb1, CARF, 

SGK3 
- - 

miR -19a-3p 241 

UBAP2L, 

PSG10P, 

IL1RAP 

- - 

miR-1207-5p 18 Lung tissue ↑ 147 CSF1 CSF1 

Enhances macrophage recruitment and 

activation and its overexpression may 

contribute to acute inflammation 

75  
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miR-21-5p 

Discovery: 

33 

Validation: 

65 

Serum 

↑ 41 

RASGRP1, 

BCL2, 

SMARCA4, 

SPRY2, 

DUSP10, 

TIMP3, SOX5, 

MTAP, RECK, 

PIAS3, 

TGFBR2, PTEN, 

E2F1, LRRFIP1, 

TPM1, NFIB, 

APAF1, BTG2, 

PDCD4, RHOB, 

ANP32A, 

SERPINB5, 

BMPR2, DAXX, 

TP63, MSH2, 

MSH6, ISCU, 

EIF4A2, 

ANKRD46, 

CDK2AP1, 

PPARA, 

FASLG, 

SMAD7, 

SERPINI1, 

DDAH1, HPGD, 

MYD88, IRAK1, 

VHL, GDF5, 

IL12A, CASC2, 

DNM1L 

TIMP3 

PTEN 

SARS-CoV-2 reduces TIMP3 mRNA 

expression in alveolar epithelial cells, 

that likely promotes greater ADAM17 

activity in COVID-19 patients. 

 

PTEN signalling is increased after 

SARS-CoV-2 infection 76 

miR-155-5p ↑ 70 

MEIS1, TAB2, 

MECP2, SOCS1, 

MLH1, INPP5D, 

SMAD5, 

HIVEP2, 

ZNF652, 

TAB2 

SOCS1 

TP53INP1 

FADD 

 

TAB2 is associated with vascular 

inflammation  

SOCS1 is a key checkpoint regulator 

of the immune system 
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BACH1, APC, 

SMAD1, 

SDCBP, 

MYO10, 

CLDN1, 

CEBPB, RHOA, 

AGTR1, 

RNF123, 

TP53INP1, 

IKBKE, 

KDM3A, SPI1, 

FOXO3, 

RUNX2, JUN, 

ETS1, CYR61, 

SMAD2, MYB, 

SKI, CKAP5, 

SOX6, CSF1R, 

FADD, NOS3, 

MYLK, PSIP1, 

ANXA2, HBP1, 

NFKB1, E2F2, 

PIK3R1, 

MMP16, MYC, 

SEL1L, DOCK1, 

RAD51, MXI1 

TP53INP1 induced cell death by an 

autophagy- and caspase-dependent 

mechanism 

The FADD/caspase-8 axis regulates 

TNF-α and IFN-γ co-treatment-

induced inflammatory cell death 

independent of intrinsic apoptosis in 

macrophages 

miR-208a-3p ↑ 3 
CDKN1A, 

MED13, ETS1 
-  

miR-499-5p ↑ 43 
FOXO4, 

PDCD4, ETS1 
FOXO4 

Down-regulated upon SARS-CoV-2 

infection, associated with cellular 

signaling 
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Legend: CSF1 - colony stimulating factor 1; DANCR - anti‐differentiation lncRNA; FADD – Fas associated via death domain; FOXO4 - forkhead 

box O4; FOXO1 - forkhead box O1; HAT1 - Histone acetyltransferase 1; HMGB1 - high-mobility group protein 1; lncRNA – long noncoding 

RNA; mTOR - Mechanistic Target Of Rapamycin Kinase; ncRNAs – non-coding RNAs; NEAT1 - nuclear paraspeckle assembly transcript 1; 

PTEN - Phosphatase And Tensin Homolog; RUNX3 - RUNX family transcription factor 3; SOCS1 – suppressor of cytokine signaling 1; SPI1 - 

Spi-1 proto-oncogene; TAB2 – TGF-beta activated kinase 1 (MAP3K7) binding protein 2; TGF-β2 - Transforming Growth Factor Beta 2; TIMP3 

- TIMP metallopeptidase inhibitor 3; TLR-4 - Toll Like Receptor 4; TP53INP1 – tumor protein p53 inducible nuclear protein 1; 

↑ - upregulated;↓ - downregulated. Predicted miRNA-target interactions were performed using miRWalk 3.0, miRDB 6.0 and miRTarBase 8.0 

databases. Experimentally validated target genes in any disease (mostly cancer) were obtained from miRTarBase 8.0. Experimentally validated 

target genes in COVID 19 and their proposed roles were obtained through literature search. The authors apologize for the many references that 

could not be added to this table due to space restrictions. 
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Given the disproportionate impact of COVID-19 in ethnic minorities, it is essential to 

clarify if biomarkers are of use in such populations and if so how they could be ad-hoc 

adapted. Not only cardiac but also endothelial biomarkers deserve attention 77. Gender-

medicine considerations for COVID-19 cardiovascular risk stratification are also of 

paramount importance. Women appear to be better protected, as men display  higher 

mortality rates (ranging from 60 to 75 %) 78. Should this be due to a protective effect of 

oestrogens, perimenopausal and postmenopausal women without hormonal replacement 

therapy could be considered at higher risk of cardiovascular death following COVID-19. 

Preclinical evidence suggests that sex may influence the expression of the ACE2 receptor 

78. Hence, the examination of sex differences should be an integral part of COVID-19 

directed research projects. This is especially crucial as sex-specific RNA biomarkers may 

help in tailoring future healthcare. 

 

Networking and coordination efforts for multinational multi-center 

studies on cardiovascular RNA markers 

For a global pandemic of this kind, worldwide efforts are needed to understand the 

infectious agent, to develop diagnostic tools, treatments and also to monitor the well-

being of those infected with SARS-CoV-2 in the following years. For robust development 

of biomarkers or treatments, their effectivity must be validated in numerous cohorts, 

internationally in different demographics and on a large scale.  

Addressing the increasing challenges posed by communicable diseases thus calls for 

multidisciplinary and multi-centre international cooperation to link available data, tools 

and expertise, which will otherwise only be sub-optimally exploited at regional or 

national levels. A truly integrated approach coordinating and facilitating the access to and 

sharing of biological resources, data, advanced technological facilities and expertise, 

within a common research roadmap, is needed to exploit the full potential of the various 

resources. As COVID-19 incidence and clinical outcomes have been shown to be greatly 

influenced by many biological and environmental factors, the need to integrate data 

across the various settings worldwide is critical to increase the precision of analyses and 

to deliver meaningful results.  
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Through the EU-CardioRNA COST Action 79, in April 2020, a call was placed to 

assemble a taskforce of clinicians and translational scientists working with COVID-19 

patients to join forces in an international effort. This was communicated internally within 

the Action network as well as externally on the Action website and professional (social) 

media (https://cardiorna.eu/news/cost-actions-unite-efforts-in-the-fight-against-covid-

19/) 80. In total, 38 institutions and 22 countries responded to the call. Members of the 

taskforce have access to COVID-19 patient clinical data, blood samples and other 

biospecimen and/or expertise in analysis of biomarkers in liquid biopsies.  

With the clear elevated risk of COVID-19 in aged individuals and patients with 

cardiovascular disease, the task force aims to monitor (re-) hospitalization rates, mortality 

rates from cardiovascular disease in those with exposure to SARS-CoV-2, as well as to 

identify RNA biomarkers reflecting cardiovascular health 81. We encourage medical 

professionals in the taskforce to perform functional follow-up of COVID-19 infection 

including echocardiography or cardiovascular magnetic resonance imaging, where 

possible. Using the numerous and extensive patient databases across multiple centres 

involved, epidemiological analyses and clinical statistics will be performed to identify 

differential risk of COVID-19 infection and response as well as cardiovascular effects 

according to comorbidities and patient characteristics. This is especially important to 

identify individuals most at risk in the event of long-term presence of the SARS-CoV-2 

in the population, as well as to further understand the mechanism of infection and 

morbidity.  

Regulatory RNAs are emerging as stable reliable circulating molecular indicators of 

cardiovascular health 82. With expertise in regulatory RNA biomarkers detectable in 

peripheral blood samples, the EU-CardioRNA taskforce will analyse these RNAs and 

overlay with clinical information in search of biomarkers for cardiovascular outcomes of 

COVID-19 infection. Such a study and the translation of the results into clinical 

application would not be feasible without the integration of complementary expertise and 

resources from the various actors (cardiology and infectious disease, biomarkers, RNA, 

cardiovascular research, clinical studies, bio banking, artificial intelligence, data 

management, biostatistics, bioinformatics, technology transfer, etc.).  

 

Technical challenges and requirements in the RNA-study 

https://cardiorna.eu/news/cost-actions-unite-efforts-in-the-fight-against-covid-19/
https://cardiorna.eu/news/cost-actions-unite-efforts-in-the-fight-against-covid-19/
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The quantitative analysis of RNAs in biological samples faces several technical 

challenges that must be overcome in order to generate robust and reproducible results. 

Specifically, the analysis of circulating RNAs is complicated by a variety of pre-

analytical settings that impact the analysis as well as the analytical challenge to deal with 

very low RNA concentrations. 

To date, whole blood, serum and plasma are the most widely explored liquid matrices for 

circulating RNA analysis. Analysis of whole blood can be biased by red blood cells and 

platelets, which are a rich source of small RNAs despite being anucleate 83. Thus, 

protocols for specific depletion of certain types of RNAs have been developed for whole 

blood that improve sensitivity for other types of RNAs 84. Serum and plasma as the liquid 

components of blood can behave quite differently due to the release of RNAs during 

platelet activation and blood coagulation after which serum is collected 85. Therefore, 

results for RNA biomarker analysis are oftentimes not comparable between serum and 

plasma 86. In addition, contamination of serum or plasma with cellular RNA derived from 

red blood cells due to haemolysis 87, 88, or platelets due to variable pre-analytical 

processing 89, can confound the analysis and lead to false-positive or false-negative results 

90. 

Currently, only few studies have attempted to address sources of bias for other types of 

liquid biopsies. For example, in case of urine it is known that donor-dependent differences 

in volume based on hydration status result in highly variable RNA concentrations that 

require normalization prior to analysis using for example urinary creatinine levels 91. 

In biofluids, RNAs are associated with two main types of RNA carriers, which facilitate 

transport and protect their RNA cargo from degradation: protein complexes and 

extracellular vesicles (EVs). At least in terms of small RNAs, it is known that the majority 

of extracellular RNAs in plasma or conditioned media is associated with protein 

complexes92, 93. This means that total RNA isolation and analysis from these matrices 

mainly reflects the protein-associated RNA fraction, and that the separate analysis of 

RNAs that are selectively released via EVs can reveal different results 94. It is important 

to note that RNA analysis in EVs is anything but trivial and requires careful optimization 

of EV isolation and characterization and reporting according to the MISEV standard 

developed by the International Society of Extracellular Vesicles 95. 
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The analysis of RNA integrity and abundance obtained by RNA isolation is hampered by 

low concentrations. Thus, either highly sensitive methods using RNA specific dyes 

should be used and internal process controls such as spike-in oligonucleotides (“spike-

ins”) can be useful to monitor RNA recovery and analytical variability and to normalize 

RNA expression data in biofluids in the absence of robust endogenous RNA references. 

Analytical methods for circulating RNA quantification must also be highly sensitive to 

cope with low concentrations. Reverse-transcription quantitative PCR (RT-qPCR) is a 

gold-standard technology for this purpose. However, low throughput and high cost for 

using RT-qPCR in genome-wide RNA biomarker discovery have restricted its use to 

targeted analyses for biomarker validation. This limitation resulted in the uptake of next-

generation sequencing (NGS) for untargeted RNA biomarker discovery. Since early on it 

was observed that the abundance and stability of small RNAs in biofluids was 

surprisingly high, small RNA sequencing was rapidly adopted for biomarker 

identification in liquid biopsies 96. 

The challenges for using small RNA NGS for circulating RNA analysis are 1) the 

extended PCR pre-amplification that is need to obtain sufficient input material but is 

potentially resulting in PCR duplicates, 2) adapter-ligation bias leading to over- and 

under-representation of certain RNAs in the library, and 3) the relative quantification that 

restricts the main use to cross-sectional comparisons between selected groups. To 

overcome these challenges, unique molecular indices can be included in the adapter 

sequences to identify and remove PCR duplicates prior to data analysis 97. Second, 

sophisticated adapter-design such as randomized ends or single ligation protocols have 

been shown to reduce the ligation-bias and reduce adapter-dimers 98, 99.. Finally, the 

addition of spike-in calibrators with randomized ends and optimized concentration ranges 

can be used to normalize small RNA NGS data and achieve absolute quantification that 

is less sensitive towards changes in the (small) RNA composition of a sample 100. 

Recently, also the application of total RNA sequencing for RNA biomarkers discovery in 

liquid biopsies has advanced to explore the full spectrum of RNAs. A stranded total RNA 

sequencing kit appeared to be sufficiently robust, accurate and precise to quantify 

thousands of genes in platelet-rich and platelet-free plasma, urine, and conditioned 

medium as well as EVs isolated from these matrices 101. EVs from platelet-free plasma 

showed a large percentage (>80%) of short reads that were too short to be aligned. This 
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was not observed for total RNA from platelet-free plasma and platelet-rich plasma, and 

total RNA as well as EV-RNA from urine and conditioned medium. This might suggest 

that RNA released from cells via EVs into the blood stream might be fragmented 

endogenously. In terms of gene-biotypes, protein coding genes made up the majority 

(>70%) of reads for all matrices except platelet-rich plasma, followed by pseudogenes, 

long noncoding RNAs (lncRNAs), and miscellaneous RNAs 101. 

Overall, the planning of ideal RNA biomarker study should in the first step consciously 

decide which biological matrix and RNA carrier are most relevant and practical, secondly, 

implement standardized protocols for sample collection and sample quality control at the 

study sites, and thirdly, take advantage of a well-characterized, fit-for-purpose validated, 

NGS protocol for genome-wide total RNA and small RNA quantification in low RNA 

input samples. 

 

Data handling and integration 

Data infrastructure that curates, integrates and analyses clinical and experimental data 

from several COVID-19 cohorts is pivotal to make harmonized data available to research 

network members in order to unravel cardiovascular RNA markers of SARS-CoV-2 

infection. Systematic collection, and application of standards play an important role in 

managing and handling cohort data and its meta-data efficiently. They facilitate FAIR 

(Findable, Accessible, Interoperable and Reusable) use of the data, which provides a solid 

foundation for systematically discovering, retrieving, understanding, integrating, 

disseminating, exchanging, reusing the data and reproducing research results and 

outcome.  

Making data findable, including provisions for metadata 

In order to make the data discoverable, the following rules should be ensured: 

● Data sets need to be assigned a unique identifier within the project. The data 

management team ensures that the identifier is globally unique. 

● Accompanying metadata such as the study protocol, experimental parameters etc. 

should be provided. This will make it possible for members of research networks 

to fully grasp the experimental setup and data content. 
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● Project should follow standards defined for the different data domains, e.g. the 

clinical data interchange standards consortium (CDISC) standards for collecting 

clinical and non-clinical data, or the minimum information about a microarray 

experiment (MIAME) for microarray experiments. An extensive list of 

recommended standards is defined in the eTRIKS - Standards Starter Pack 

Standards Guideline 102. 

● The metadata of datasets should be collected by using the templates developed by 

ongoing efforts such as IMI-FAIRplus, COVID-19 Research Data Alliance 

working groups. The metadata should be published in a searchable registry or 

data-catalogue (e.g. IMI FAIRplus catalogue 103) to enable findability of datasets. 

Making data accessible 

Data should be made available to broader audience in accordance with the access model 

that will be defined by participant informed consent, and ethics/institutional review board 

approvals. This should include descriptions and data formats and in compliance with legal 

obligations, in particular the General Data Protection Regulation (GDPR). Data security 

is of paramount importance for protection of personally identifiable information. 

Making data interoperable  

Harmonization of data and metadata by applying standard ontologies, controlled 

terminologies, and state-of-the-art data models is pivotal for interoperability of the data 

that will facilitate cross-study analysis. Clinical and phenotype data should be 

standardised by using state-of-the-art standards such as the CDISC standards: Study Data 

Tabulation Model (SDTM), Clinical Data Acquisition Standards Harmonization 

(CDASH), and Analysis Data Model (ADaM). All clinical datasets from various cohorts 

should be mapped to International Severe Acute Respiratory and emerging Infection 

Consortium (ISARIC) COVID-19 eCRF 104. In addition, application of controlled 

terminologies and ontologies described in the eTRIKS Standards Starter Pack including 

ICD-11, MedDRA, WTO ATC codes, Human Phenotype Ontology (HPO), LOINC etc., 

is important to standardise and harmonise contents/values of clinical variables.  

Omics or molecular data and associated metadata from both single-cell and bulk samples 

should be standardised using ISA (Investigation, Study and Assay) framework 105 and 

corresponding minimum information guidelines (MIGs) such as MIAME format for 
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transcriptome data, MIGS-MIMS (minimum information about a genome/metagenome 

sequence), and MINSEQE (minimum information about a high-throughput NucLeo 

Pharmatide sequencing experiment) for both genome and transcriptome data. Study data 

tabulation model implementation guide (SDTMIG) pharmacogenomics/genetics (PGx) 

standards are useful to represent the genetic biomarkers including genetic variation, 

genotyping and RNA expression data. To represent molecular entities within omics data, 

it is important to use identifiers from standard databases such as ENSEMBL gene, NCBI 

gene, ENSEMBL transcript for messenger RNA, UniProt for proteins, NCDB dbSNP for 

SNPs, GO for gene ontology and KEGG (Kyoto Encyclopedia of Genes and 

Genomes)/Ingenuity for pathways. Molecular data, for example, the transcriptome of the 

bio-samples and each transcript are mapped to ENSEMBL transcript identifier (one of 

the stable and persistent identifiers). The corresponding genes, proteins are mapped to 

EMSEMBL genes, NCBI genes, UniProt identifiers and involved biological processes, 

cellular components, molecular functions using GO and KEGG identifiers. These stable 

identifiers provide cross-references to other biological databases and thus facilitate the 

interoperability of the molecular (-OMICS) data. 

In addition to applying the state-of-the-art standards for clinical and omics data, 

application of standards in data management to guarantee data security, data privacy and 

compliance with GDPR and ethical guidelines are necessary. Given the sensitive nature 

of human data, the data and computing environment must be access controlled and 

in/output data flows should be encrypted, site restricted and equipped with two-factor 

authentication wherever needed. 

Increase data re-use (through clarifying licences) 

The long-term sustainability for the database, analysis portal and related outputs (results, 

tools, software modules and algorithms) should be planned in advance. For archiving, 

preservation and long-term usage of the data and software tools/algorithms, research 

network partners should have the capacity to provide long-term sustainability of 

translational research data through GDPR-compliant hosting and tools. The process 

should follow well-defined access criteria and data protection needs. We recommend to 

prepare a sustainability plan for defining the rules to fulfil the legal processes (including 

addressing the issue of institutional data access committee responsibility), governance 

and the economic viability of the database. 
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Data integration 

A robust and secure data management and analysis platform, for example through a 

software portal and database, is important for the collection and integration of harmonized 

clinical, healthcare (electronic health records) data and pre-processed omics (molecular) 

data, imaging data, and real-world sensor/mobile data, biobank sample data and metadata 

from various COVID-19 projects (Figure 2). 

 

 

Figure 2. A reference setup of data platform to support FAIR (Findable, Accessible, 

Interoperable, Reusable) data management. (a) Patient Recruitment sites will collect 

patient phenotype data (including clinical data defined in the defined in case report form) 

and sample metadata for the bio-materials collected. The phenotype data and sample 

metadata will be collected using the Electronic Data Capture (EDC) system hosted at the 

Data Management site. Bio samples will be transferred to (b) the Sample Management 

Site that handles the Biobanking service and provides treated samples to (c) the Data 

Production site. There, the molecular data will be measured. Metadata about the 

experiments as well as the molecular data will be managed first in the Lab Information 

Management System (LIMS) and further transferred to the (d) Data Management site. 

The Data Management site will be equipped with Identifier Service and Metadata 

Catalogue for data Findability (F), EDC system and data Integration System for data 

Accessibility (A), Data Curation platform and Ontology Service for data Interoperability 

(I) and Consent Management system as well as Access Management system for data 

Reusability (R). 
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.   

 

Such a data portal should also provide secure, easy and robust interface for the input and 

integration of new data from ongoing recruitment of cohort studies. Analytical tools from 

existing initiatives/packages such as I2B2 106, tranSMART 107, SmartR 108, EGA 

(European Genome-phenome Archive) 109, and eTRIKS platform 110 are very useful to 

perform integrated data analysis and hypothesis generation. In order to store, process and 

analyse imaging data, for example chest X-ray images from COVID-19 patients, a 

dedicated open source imaging informatics solution such as XNAT 111 should be 

integrated into the platform instead of only storing the images in a file system. Such a 

portal will enable researchers to perform cross-study comparisons, slice and dice the 

cohorts based on certain clinical features and run built-in workflows from the graphical 

user interface. An application programming interface to enable batch/programmatic 

interaction with the portal will provide structured and harmonized data to 

bioinformaticians, statisticians and data scientists working with large amounts of data.  

 

Data analysis, biostatistics, artificial intelligence 

After the data on RNA and clinical data are collected, secured, pre-processed and 

integrated, most informative biomarkers to predict major adverse cardiovascular events 

(MACE) and mortality of COVID-19 patients shall be identified. This identification can 

rely on biostatistical and machine-learning (ML) methods. Afterwards, ML should be 

utilized to build a classifier to predict MACE and mortality based on these biomarkers. 

For this approach to be used, RNA expression data accompanied by demographic and 

clinical data of patients are required, as well as information on MACE and mortality. To 

our knowledge, such data is not yet available – or has not yet been compiled from different 

patient cohorts – in a sufficient number of patients, allowing for application of ML 

methods. The dataset – once available – needs to be properly organized for analysis. It 

should be split into training, validation and test datasets. The training dataset is intended 

for biomarker discovery and model training, the validation dataset allows  model selection 

and hyperparameter optimization, and the test dataset is for final testing. If the available 

dataset does not contain data from a large number of patients, k-fold cross validation may 

be used to split the data. If the distribution of classes (with vs. without MACE, or dead 
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vs. alive) is imbalanced, resampling of the training data (either under-sampling the 

majority class or over-sampling the minority class) may be appropriate112, 113. 

 

Biomarker identification 

The most basic approach to identify predictive RNAs is differential expression analysis: 

RNAs that are significantly over- or under-expressed in patients who experienced a 

MACE or died, compared to those who did not, are potential biomarkers. Various 

statistical methods can be used for this 114. However, this approach is simplistic, mainly 

in that it does not take into account interactions between the RNAs, so it can only serve 

as the first step. Two more sophisticated approaches can be explored: Bayesian variable 

selection (BVS) and feature selection. 

Bayesian variable selection is a state-of-the-art statistical approach for selecting 

informative predictors such as RNA biomarkers 115. One first picks a class of models, 

such as linear or logistic regression models, to predict the end-point of interest (e.g. 

MACE or mortality) based on the predictors (RNA quantities). The goal is to select from 

this class of models those able to accurately predict end-points. To do so, prior probability 

distributions of their parameters need to be set first. The most appropriate strategies to do 

this is subject of ongoing research, but one of accepted automatic methods can certainly 

be used. We believe, though, that information on RNA’s biological function from the 

NONCODE database 116, or overlap with genomic loci related to cardiovascular disease, 

could yield more informative biomarkers. Based on the models’ prior probabilities and 

the collected data, one computes their posterior probability using the Bayes rule, where 

good models are the ones with a high posterior probability. Since the space of models is 

too large to search exhaustively, Monte-Carlo sampling is used, which can relatively 

quickly identify accurate models. 

Feature selection is an approach that selects informative features (RNA biomarkers) to be 

used to train ML models that predict the end-point of interest (MACE or mortality) 117. 

There are three main groups of feature-selection methods. Filter methods consider each 

feature in isolation and are similar to differential expression analysis, so they are rarely 

the best option. Embedded methods are a part of some ML algorithms. Their quality 

depends on the quality of the algorithm they are derived from, but they can take into 

account some interactions between features. Wrapper methods are the most complex ones 
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and are conceptually similar to BVS. They search the space of feature combinations, and 

evaluate each combination by training a model on it and checking the model’s accuracy. 

Since the space of feature combinations is again too large to search exhaustively, various 

types of greedy search are typically used.  The main advantage of simple approaches, 

such as differential expression analysis or filter feature selection, is the clear justification 

for the selection of each biomarker. The disadvantage is that they can provide redundant 

biomarkers or fail to identify RNAs having biomarker potential only when combined with 

others. The advantage of BVS and more advanced feature selection is that they provide 

sets of biomarkers that perform well in combination. The disadvantages are that they are 

somewhat opaque and computationally expensive. Wrapper methods appear to be the 

most flexible and potentially most powerful methods to identify predictive biomarkers. 

From the two approaches, we recommend Bayesian variable selection and feature 

selection, either the one that results in better risk-prediction models on the validation 

dataset, or the combination of both can be used. They can be combined in sequence (one 

making the first selection and the other refining it) or in parallel (by using the intersection 

or union of the biomarkers selected by the two approaches). The best approach depends 

on the dataset and the outcome to predict, and needs to be determined experimentally. 

 

 

Cardiovascular/COVID-19 risk prediction 

After identifying the most informative RNA biomarkers, these – together with phenotype 

(demographic and clinical) data – are fed into ML algorithms to build risk-prediction 

models.  

Figure 3 depicts the workflow of biomarker identification and COVID-19 risk prediction. 

Details of data collection and data management are depicted in Figure 2. The workflow 

starts with the data collection and management. This is followed by biomarker 

identification using the training dataset (cf. section Biomarker identification) and 

machine learning model development with the validation dataset. Note that even though 

biomarker identification can be done independently of phenotype and clinical data, such 

data is often included in the prediction models. This enables one to analyse their capacity 
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to predict MACE and mortality alongside with the RNA biomarkers. Finally, the 

prediction model is thoroughly evaluated using the test dataset. 

 

Figure 3. Biomarker identification and COVID-19 risk prediction workflow. 

The most common ML algorithms that have been successfully applied to problems that 

use omics and clinical data include artificial neural networks (ANNs), support vector 

machines (SVMs) and ensemble methods such as random forest. 

ANNs have been designed to mimic human neural architecture. ANNs are able to 

effectively capture complex non-linear relationships in the data and are thus suitable for 

complex RNA data combined with clinical data. However, they are often computationally 

demanding, and compared to other algorithms they have many parameters that require 

tuning in order to optimize the prediction accuracy. Deep learning models are ANNs with 

multiple hidden layers. Many different deep neural network architectures exist 118. Figure 

4 depicts an example of an ANN, with input data using the phenotype (demographic and 

clinical) and molecular data (RNA biomarkers). ANN consists of interconnected neurons, 

arranged in input layer, one or more hidden layers and an output layer. During training of 

ANN, the model learns from the examples provided in the training set.  
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Figure 4. Architecture of an ANN. Input layer contains the collected patient phenotype 

(demographic and clinical) and molecular data (RNA biomarkers), followed by two input 

layers, and an output layer which in this case predicts mortality, but could also predict 

MACE or other clinical outcomes. 

 

SVM is another ML algorithm that is able to capture data non-linearity. SVM applies a 

kernel to map data into multidimensional space. A SVM model is a hyperplane that splits 

the classes in this multidimensional space in a way that minimizes the prediction error 

during data classification. The selection of the kernel function is crucial to the algorithm’s 

performance. Compared to ANNs, SVMs tend to be more resistant to overfitting (better 

handle noise in the training data) and require less memory.  

Ensemble methods are a popular approach that has been successfully applied to high-

dimensional biomedical datasets with small sample size. The idea behind ensemble 

methods is to combine several base classifiers that will produce better classification 

results than a single classifier. One of the most successful ensemble methods is random 

forest. Random forest uses a set of decision trees that form a forest. In order to avoid 

overfitting, each decision tree in the forest uses a random subset of samples from the 

training set, and a random subset of features. Classification is then performed based on 

the majority vote of the trees. For example, the FEELnc tool uses random forest for 

annotation of lncRNAs and achieves an AUC of 0.97 119. The lncLocator tool uses an 
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ensemble of support vector machine and random forest classifiers to predict lncRNA 

subcellular localization 120. 

Considering the recent success of deep learning, we believe this method to be worth 

investigating. Due to the many parameters in deep ANNs, it typically requires more data 

than other methods, hence it may become unsuitable for datasets limited in size. In this 

case, ensemble methods are likely to provide better results. To evaluate the performance 

of the classification methods, various measures such as classification accuracy, 

sensitivity, specificity and precision can be used 121. The AUC is a particularly suitable 

performance indicator, since it evaluates the performance of models over all possible 

trade-offs between type 1 and 2 errors. 

 

Translational aspects: development of diagnostics and therapy for 

COVID-19. 

The rapid spread, high mortality in some geographical areas, and the yet largely unknown 

long-term consequences of COVID-19 including cardiovascular pathologies all 

highlighted  the need to develop effective diagnostic and prognostic biomarkers and 

therapeutics against SARS-CoV-2. Basic research and development of novel biomarkers 

and therapeutics run in parallel on the basis of broad collaboration between key players 

of the biomedical field including industrial and academic partners, national governments 

and regulatory agencies as well as investors. Ongoing repositioning of existing drugs as 

well as development of novel drugs, vaccines and a variety of medical devices for 

prevention and treatment of COVID-19 have been at the front line of very recent research 

activities. 

Development of RNA diagnostics and therapeutics, especially small non-coding RNA 

compounds, attracted the attention of the pharmaceutical industry in the past few years 

that has been further accelerated by the rapid outbreak of COVID-19. Indeed, 

development of RNA molecules for diagnosis, prognosis, and treatment of SARS-CoV-

2 and other RNA viruses has been recently proposed 122, 123. Currently there are 9 ongoing 

or completed clinical trials when searching for miRNA and COVID-19 in the 

clinicaltrials.gov platform, showing the rapidly increasing activity of translational 

research in this field. Moreover, extracellular vesicles  ̶ as important players in the life 
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cycle of RNA viruses as well as cargo particles for non-coding RNAs  ̶ may provide 

opportunities for more sensitive diagnosis and targeted therapies for SARS-CoV-2 124, 125. 

Although there are currently no examples of molecular diagnostic assays based on 

cardiovascular RNA biomarkers of COVID-19 and utilizing digital PCR as a means to 

quantify circulating RNA transcripts, we believe that this technology holds great promise 

and may rapidly be applied to COVID-19 tests. 

Another aspect of the COVID-19 pandemic is the need for cardioprotective strategies to 

prevent the long term cardiovascular consequences of the disease. Yet, despite intensive 

efforts, the development of cardioprotective therapies has been unsuccessful in the last 3 

decades 126. Small non-coding RNAs fingerprints of COVID-19 itself and the different 

comorbidities and their co-medications that affect the infection may provide a useful tool 

to develop diagnostic and prognostic markers and to discover novel drug targets to 

prevent and treat COVID-19 and its cardiovascular consequences 127. Understanding the 

molecular interactions between SARS-CoV-2 and its host as well as the influence of 

cardiovascular risk factors, comorbidities, and medications on clinical outcomes may 

significantly speed up the lengthy process of development of diagnostics and therapeutics 

not only against COVID-19 but also other diseases 127-129. 

Conclusion and perspectives 

COVID-19 has brought about an unexpected and unprecedented historical period, 

worldwide. Despite the tremendous efforts and reactiveness of all stakeholders from the 

broad healthcare sector ─ clinicians, healthcare staff, researchers, funding bodies, and 

regulatory authorities ─, the burden of COVID-19 is enormous, both medically, socially 

as well as economically. 

The research field has been very reactive and multiple networks of experts and task forces 

have been formed to tackle the challenge of finding drugs and biomarkers of COVID-19. 

Building an effective coordination of large interdisciplinary networks involved in multi-

centre studies is key for success of biomarker projects. RNA biomarkers combined with 

artificial intelligence-based strategies will certainly help in building algorithms to aid in 

clinical decision making and personalization of healthcare through risk stratification of 

patients. Efficient academia-industry partnerships are essential to rapid marketing and 

clinical use of novel disease biomarkers. Novel tools based on systems biomedicine 
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concepts and artificial intelligence methods are needed to speed up the translational 

process and clinical application. 

While it is obvious that the cardiovascular burden associated with SARS-CoV-2 infection 

is alarming and deserves great attention during healthcare of COVID-19 patients, it is 

also important to keep in mind that more than a third of hospitalized COVID-19 patients 

present psychological distress and neurological manifestations such as headache, 

ischemic stroke, seizures, and other diverse encephalopathies 130. SARS-CoV-2 has been 

detected in the brain and cerebrospinal fluid 131, and is associated with encephalitis. 

Various neurological sequelae have been associated with the Spanish influenza pandemic 

and other coronaviruses 132. Therefore, a deeper knowledge of the host-pathogen 

interactions involving regulatory RNAs 82 in the brain-heart axis 133 may provide novel 

avenues for discovery of biomarkers and therapeutic pathways to improve healthcare and 

prepare for future pandemics.   
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