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Observation of second sound in a rapidly varying 
temperature field in Ge
Albert Beardo1, Miquel López-Suárez2,3, Luis Alberto Pérez2, Lluc Sendra1, Maria Isabel Alonso2, 
Claudio Melis3, Javier Bafaluy1, Juan Camacho1, Luciano Colombo3, Riccardo Rurali2, 
Francesc Xavier Alvarez1, Juan Sebastián Reparaz2*

Second sound is known as the thermal transport regime where heat is carried by temperature waves. Its experi-
mental observation was previously restricted to a small number of materials, usually in rather narrow temperature 
windows. We show that it is possible to overcome these limitations by driving the system with a rapidly varying 
temperature field. High-frequency second sound is demonstrated in bulk natural Ge between 7 K and room tem-
perature by studying the phase lag of the thermal response under a harmonic high-frequency external thermal 
excitation and addressing the relaxation time and the propagation velocity of the heat waves. These results pro-
vide a route to investigate the potential of wave-like heat transport in almost any material, opening opportunities 
to control heat through its oscillatory nature.

INTRODUCTION
The study of heat transport beyond Fourier’s regime has attracted 
renewed interest in recent years. Great efforts have been performed 
to unravel the physical properties of thermal waves, as well as the 
experimental conditions that are necessary for their observation. 
Applications based on such concepts have been envisioned and dis-
cussed extensively already in many recent publications (1–4). The 
spatiotemporal propagation of the temperature field in the form of 
waves is known as “second sound,” a term that was adopted in anal-
ogy to “first sound” (or simply “sound,” i.e., mechanical lattice 
vibrations). As pointed out in (5), first sound and second sound are 
described by a similar equation where the variables have a different 
physical meaning, i.e., pressure and temperature, respectively.

The simplest differential equation that describes wave-like heat 
transport from a mesoscopic perspective is the hyperbolic heat 
equation (HHE) according to Maxwell, Cattaneo, and Vernotte

    τ  ss      ∂   2 T ─ 
∂ t   2 

   +   ∂T ─ ∂t   − α ∇   2 T =   1 ─ ρ C  p     (  S(r, t ) +  τ  ss     
∂S (  r, t )   ─ ∂t   )     (1)

where  is the thermal diffusivity, ss is the thermal relaxation 
time,  is the mass density, Cp is the specific heat, and  S(r,t)  is an 
external power heat source. In our context, the system is in  local 
equilibrium, and it is well characterized by a local temperature T 
(see discussion in section S8). The previous equation describes the 
propagation of a temperature wave with a damping term given by 
∂T/∂t and a propagation velocity   υ  ss   =  √ 

_
  /    ss     . The solutions of this 

equation lead to different heat transport regimes, depending on the 
temporal and spatial length scales under investigation. The key to 
unlock the different regimes is the magnitude of the first term on 
the left-hand side of Eq. 1, thermal inertial term; i.e., if ss or ∂2T/∂t2 
is sufficiently large, the spatiotemporal distribution of temperature 
field will exhibit wave-like behavior.

Second sound in solids was first experimentally observed in solid 
He (6); later in NaF (7), Bi (8), and SrTiO3 (9); and most recently in 
highly oriented pyrolytic graphite (10). Several theoretical works 
have also recently addressed its occurrence in low-dimensional 
systems (11–13). In all these experimental observations of second 
sound, the dominance of momentum conserving phonon scattering 
(Normal processes) with respect to resistive phonon scattering 
(Umklapp processes) was found to be the key mechanism leading to 
its observation. Second sound was observed almost exclusively in 
the very low temperature regime (T < 5 K), with the exception of a 
recent example (10) at higher temperatures (125 K) for samples 
with low resistive phonon scattering.

A condition for the experimental detection of second sound, 
based on these experimental observations (6–10), was found to be 
N < exp < R; i.e., the typical experimental observation times (exp) 
must be larger than normal phonon scattering times (N) to allow 
momentum redistribution but smaller than resistive phonon scat-
tering times (R) to avoid decay of the phonon wave packet into the 
phonon equilibrium distribution. The theoretical foundations of 
second sound were set in the 1960s by M. Chester, R. J. Hardy, 
C. P. Enz, and co-workers (5, 14, 15), who predicted the existence of 
“drifting” second sound, i.e., a type of wave-like heat transport that 
is triggered by the dominance of normal phonon scattering events. 
This type of second sound was experimentally confirmed in (6–10). 
Furthermore, the existence of a “driftless” or “high-frequency” type, 
as well as “other types” of second sound, was also envisioned. In this 
case, the dominance of normal scattering events is not a necessary 
condition for the existence of wave-like heat transport, but the key 
requirement is instead the slow decay of the energy flux, as predict-
ed by different solutions to the Boltzmann transport equation (5). 
These different flavors of second sound are all contemplated in the 
mesoscopic HHE (Eq. 1), because different microscopic mecha-
nisms can lead to the propagation of thermal waves.

We show that it is possible to observe a type of high-frequency 
second sound in natural bulk Ge by driving the system out of equi-
librium with a rapidly varying temperature field. Our concept is 
based on taking advantage of the second-order time derivative in 
the HHE, Eq. 1, in a frequency-domain experiment. As the driving 
frequency increases toward the hundreds of megahertz range, the 
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relative weight of this term with respect to the damping term 
(first-order time derivative) increases proportionally to the fre-
quency upon a harmonic excitation, hence making the observation 
of wave-like heat propagation possible. We show that this approach 
is robust enough to expose second sound independently, to a cer-
tain extent, of the phonon scattering rates of the studied material, as 
well as of temperature. Although heat transport in Ge is dominated 
by resistive phonon scattering processes, which partly originate 
from its large isotopic diversity, we show that it is still possible to 
observe second sound in the high-frequency limit.

RESULTS AND DISCUSSION
Our experiments are based on a frequency-domain optical reflec-
tance pump-and-probe approach based on two lasers with different 
wavelengths (pump = 405 nm and probe = 532 nm) focused onto the 
surface of a Ge sample to a spot size with radius Rspot ≈ 5.5 m. The 
studied samples are pieces of a substrate of natural Ge. Further de-
tails are provided in the Supplementary Materials (section S1). The 
pump laser (thermal excitation) is modulated between 30 kHz and 
200 MHz with a sinusoidal power output waveform, leading to a 
dynamic modulation of the optical reflectivity of the surface of the 
sample, which is also well described by a harmonic waveform. A 
frequency-dependent phase lag gradually develops, defined as a 
phase difference between the harmonic thermal excitation,  S(r,t) , 
and the response of the sample,  T(r,t)  (sections S2 and S7), which 
can be modeled using Eq. 1 in the present experimental conditions. 
The choice of Ge as a candidate for the observation of second sound 
is not arbitrary, and it is mostly based on the large optical absorp-
tion coefficient of this material for the wavelengths used in this ex-
periment. The optical penetration depth of the pump and probe 
lasers is 405nm = 15 nm and 532nm = 17 nm, respectively (section 
S3). These particular conditions make Ge an ideal material for this 
study, because the small penetration depth of both lasers ensures 
that the measured phase lag is local and, thus, accurately describes 
the oscillations of the thermal waves. The penetration depth of the 
pump and probe lasers should be compared with the thermal wave-
length υss/f. At room temperature and the highest excitation fre-
quency considered, υss/f = 840 nm, thus considerably larger than the 
optical penetration depth. We note that wave-like effects are not ob-
served in the presence of a metallic transducer (section S9), because 
the thermal interface between the transducer and the Ge substrate, 
as well as the transducer itself, dominates the system response in the 
frequency range where wave-like effects are expected.

In the present experiments, the changes R of the optical reflec-
tivity upon the pump laser excitation are driven by the lattice tempera-
ture variation, hereafter referred to as T, and by the modulation 
n of the carrier concentration in the conduction band. The result-
ing R at the energy corresponding to the probe wavelength is pro-
vided by the first-order expansion R = (∂R/∂T)T + (∂R/∂n)n 
(16). Interestingly enough, the contribution provided by the varia-
tion of the carrier concentration is expected to dominate the way 
the reflectivity is affected in experiments, like the present ones, in-
volving pulsed laser sources, i.e., for high electronic excitation den-
sities (17, 18). However, in our excitation conditions, the electronic 
contribution to the optical reflectivity can be neglected; hence, the 
optical reflectivity is dominated by the temperature of the lattice 
(T) for all excitation frequencies. We demonstrate this by studying 
the relative magnitude of (∂R/∂T)T and (∂R/∂n)n. In particular, 

we take advantage of the fact that for bulk Ge, ∂R/∂T ≈ 0 at T = 
220 K for 532 nm of probe wavelength (see section S3), whereas 
∂R/∂n is expected to be almost independent of temperature between 
220 K and room temperature. Furthermore, ∂R/∂T exhibits a sign 
inversion at this temperature, which is reflected in a change of the 
phase lag by an angle of . Figure 1A displays the temperature 
dependence of R/R, as well as the phase lag for low (30 kHz) and 
high (100 MHz) modulation frequencies, and for a constant pump 
power of ≈10 mW. The reflectivity signal exhibits a minimum (19) 
around ≈220 K, followed by a slow signal recovery at lower tem-
peratures. In the lower temperature range (T < 100 K), the lattice 
and electronic contributions to the phase lag have opposite signs. 
Hence, the measured phase lag at high frequency in this range can-
not be explained with the electronic contribution to the optical re-
flectivity. On the other hand, the phase lag is shifted by  at ≈220 K 
(140°→−40°). The optical reflectivity extracted from ellipsometry 
experiments corresponding to T = 1 K is also shown for relative 
comparison. A similar behavior is observed independently of the 
excitation frequency, which resembles the ellipsometry data for which 
n = 0. From the reflectivity signal ratio between the minimum 
observed in Fig. 1A and the value of the reflectivity at room tem-
perature, we can estimate an upper boundary for (1/R)[∂R/∂n] ≈ −2 × 
10−29 m3, assuming that the residual signal at ≈220 K has a pure-
ly electronic origin. The inset of Fig. 1A displays calculations of the 
electronic (solving the electron recombination diffusion equation) 
and lattice (solving HHE) contributions to the optical reflectivity as 
a function of frequency (section S3). Whereas the lattice contribu-
tion to the optical reflectivity is at least 20-fold larger than the elec-
tronic component at the higher frequencies, for lower frequencies, 
this ratio is substantially increased.

Figure 1B displays the experimental phase lag as a function of 
frequency between 30 kHz and 200 MHz at room temperature. The 
complex thermal response of the specimen was, at first, computed 
numerically within Fourier’s model, solving the parabolic approxi-
mation to the three-dimensional (3D) HHE (diffusive case), which 
is obtained when the first term of Eq. 1 can be neglected. In the 
range between 30 kHz and 1 MHz, the agreement between Fourier’s 
solution and the experimental data is excellent, although deviations 
are already observed around 1 MHz. Above 30 MHz, the difference 
between the experimental phase lag and Fourier’s predictions is 
evident. For the higher-frequency range, the experimental data show 
that the phase lag (absolute value) decreases with increasing fre-
quency. This trend cannot even be qualitatively reproduced by 
Fourier’s model, which predicts that as frequency increases, the 
phase lag approaches −/4 and even lower values (see section S7 
and fig. S7-3). The full 3D solution of the HHE based on the finite- 
element method (FEM) was used to fit the experimental data 
through the entire frequency range, and it is shown in Fig. 1B. A 
detailed description of the fitting procedure is presented in section 
S7. We obtained    ss  

exp   = 500 ps and exp = 3 × 10−5 m2/s, thus leading 
to a propagation velocity   υ ss  

exp  = 250  m/s, all at room temperature. 
These experimental observations are in qualitative agreement with 
the computational experiments (see schematic illustration in Fig. 1C) 
by nonequilibrium molecular dynamics (NEMD) and are shown in 
the inset of Fig. 1B (see also section S5 and fig. S5-1). Although a 
quantitative agreement cannot be expected because of differences 
between the experimental and the computational setups (reduced 
size of the sample and purely 1D heat flux in NEMD), the NEMD 
results show a notable similarity with the experimental results, with 
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the phase lag initially decreasing, hitting a minimum, and then re-
covering. These results are of particular interest because, within the 
NEMD approach, no assumption is made regarding the heat trans-
port regime. Thus, the numerical experiments are an independent 
confirmation of the appearance of second sound in the high-frequency 
limit. The observed large reduction of the phase lag with respect to 
the Fourier prediction (see Fig. 1B) indicates the emergence of a 
more efficient heat transport mechanism as compared to diffusion 
at high frequencies. Ballistic behavior of phonons (20–22) cannot 
be invoked to rationalize the experimentally observed dependence 
of the phase lag with frequency. As discussed previously in (21), a 
reduction of the thermal conductivity at high frequency would lead 
to an increase in the phase lag (see fig. S7-4), rather than a decrease 
(absolute value), as we observe. Conversely, the observed frequency- 
dependent phase lag is well reproduced by the HHE, i.e., consider-
ing the contribution of wave-like heat transport.

The frequency window where second sound is expected can be 
estimated comparing the thermal penetration depth of the diffusive 
and wave-like regimes. Figure 1D displays the penetration depth, 
HHE, calculated using the exact solution of the HHE (see section 
S7), as well as the diffusive and wave-like limits,     diff   =  √ 

_
  / (f )    

and     ss   = 2  √ 
_

     ss     , respectively. A critical frequency fc is obtained 
when diff = ss, thus providing an estimation of the frequency for 
which the diffusive and wave-like contributions to heat transport 
are similar. The temperature dependence of ss, υss, and fc was stud-
ied between room temperature and 7 K, and it is shown in Fig. 2A 
(full set in section S2). As temperature decreases, the ratio between 
the penetration depth of the wave-like and diffusive contributions is 
    ss   /    diff   =  √ 

_
 4f    ss  (T)   , which implies that lower temperatures fa-

vor the spatial propagation of the thermal waves because larger ss is 

expected and indeed experimentally observed for lower tempera-
tures. Wave-like effects are already present below fc, as can be ob-
served comparing the experimental data with the corresponding fits 
using the HHE to the Fourier predictions, as shown in Fig. 2A. The 
onset frequency can be estimated as f > 0.1fc, corresponding to a 
phase lag difference between the experimental data and the Fourier 
solution >5°. The onset of wave-like effects is also evidenced by the 
deviations between diff and HHE as shown in Fig. 1D. The mini-
mum observed on the phase lag curves and the position of the crit-
ical frequency fc relative to the frequency of the minimum originate 
from the relation between , ss, and Rspot (see discussion in section 
S7). The frequency-dependent phase lag in Fig. 2A was fitted at 
each temperature using the HHE, as described for the room tem-
perature case, and the results for    ss  

exp   and   υ ss  
exp   are shown in Fig. 2B 

and table S2. We note that the accuracy of the fits reduces for lower 
temperatures due to the frequency-dependent temperature rise in-
duced by the pump laser.

To understand the origin of these observations, we have devel-
oped a rather simple model (see derivation in section S6) based on 
the expansion of the perturbed phonon distribution function (23), 
i.e., the intermediate state assumed by the nonequilibrium distribu-
tion before it decays to the equilibrium one by means of dissipative 
resistive processes, as:   f  λ   =  f  λ  eq  +  𝛃  λ   ∙ q +  𝛄  λ   ∙ (∂ q / ∂ t) , where   f   

eq   is 
the equilibrium phonon distribution function,  q  is the heat flux,   𝛃  λ    
and   𝛄  λ    are mode-dependent functions to be determined, t is the 
temporal coordinate, and  denotes each phonon mode. We note 
that the case with   𝛄  λ   = 0  leads to the same propagation velocity for 
second sound as in (5) (section S6). In our case, however, the pres-
ence of rapidly varying temperatures leads to rapidly varying  q , sug-
gesting that the expansion of the perturbed phonon distribution 

Fig. 1. Optical reflectivity, experimental and simulated phase lag versus frequency, and thermal penetration depth for a Ge sample. (A) The top panel displays 
the optical reflectivity change as a function of temperature for 30 kHz (red) and 100 MHz (blue). The black dots were obtained from ellipsometry measurements to a 
temperature rise of 1 K (full symbols→dR/dT < 0, open symbols→dR/dT > 0). The bottom panel displays the phase lag of the signal with respect to the pump excitation. 
The phase lag is directly obtained from the measurements and must be corrected by ±180° to normalize it to the [0;±45°] as in (B). The inset displays calculations accounting 
for the thermal and electronic contributions to the reflectivity at 300 K. (B) The experimental phase lag as a function of the pump excitation frequency is shown in black 
open symbols. The inset displays numerical experiments using NEMD. In dashed red line, we display the prediction based on Fourier’s law. The solutions based on the 
3D HHE are shown in a black line with a resulting fitted ss = 500 ps. (C) Schematic illustration of the geometry used for the NEMD numerical experiments. (D) Frequency- 
dependent thermal penetration depth calculated using the solution of the HHE (ʌHHE), the diffusive case (ʌdiff), and the penetration depth (ʌss) obtained in the high- 
frequency limit.
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function in terms of  ∂q/∂t  is a reasonable assumption. The previous 
ansatz for f was then introduced into the linearized Boltzmann 
transport equation (BTE) to find the solution for   𝛃  λ    and   𝛄  λ   . It can 
be shown that within this framework, it is possible to derive the 
HHE, with a corresponding explicit expression for ss, in terms of 
individual phonon relaxation times () as shown in section S6

     ss   =   
 ∑      ℏ           

2       
2    ∂  f    eq  _ ∂ T  
  ─  

 ∑      ℏ           
2          

∂  f   
eq  _ ∂ T  

    (2)

where ℏ is the Planck constant,  is the phonon energy, and  
is the phonon group velocity. We computed , , and  from the 
solution of the BTE based on density functional theory (DFT) 
interatomic force constants (IFCs) (section S4 and table S4). We 
restricted ourselves to the relaxation time approximation (RTA) 
after verifying that the full iterative BTE picture does not alter the 
prediction of the theory. Using the RTA has the additional benefit 
of providing a comparison on equal footing with previous theoreti-
cal descriptions (5) and allowing unambiguous definition of the re-
laxation times (24). We observe that the corrections to the RTA 
provided by a full iterative solution of the BTE are very small (with-
in 4% in the thermal conductivity) for Ge at temperatures as low as 
50 K (fig. S4-1). The resulting values were inserted into Eq. 2, which 
yielded    ss  

theo   and   υ ss  
theo  =  √ 
_

     theo  /   ss  
theo     as a function of temperature, 

as shown in Fig.  2B. The agreement of the predicted values with 
those obtained from the experiments is remarkable for T > 100 K, 
considering that the values of , , and  are evaluated within a 
fully ab initio scheme. We note that the model leading to Eq. 2 is 
expected to be valid for ∣T∣<< T, where ∣T∣ is the amplitude of 
the laser-induced thermal oscillations and T is the absolute tem-
perature as set by the cryostat. In our experiments, ∣T∣max < 20 K; 
thus, the observed deviations between the theoretical predictions 

and the measured values at very low temperatures are expected (see 
section S8 for details). We note that similar experiments (25, 26) 
were explained in terms of nonlocality as described by the Guyer- 
Krumhansl equation, which reduces to Eq. 1 in the absence of non-
local effects. The present experiments, however, are beyond the 
applicability of this equation because the heating region is much 
smaller than the nonlocal length (27). Future work should address 
the attenuation of nonlocal effects under the present conditions and 
its influence in the propagation of thermal waves.

The spatial dependence of the temperature field in the parabolic 
(diffusive) and the hyperbolic (wave-like) cases was simulated using 
FEMs in the direction perpendicular to the surface of the sample at 
an arbitrary time. Figure 2C displays the normalized temperature 
profiles for 15, 100, and 300 K at the highest experimental excitation 
frequency of ≈300 MHz (see fig. S7-5 for simulations of the tem-
perature field at fc). As expected, the wave-like behavior of the tem-
perature field exhibits a strong temperature dependence. The observed 
propagation depth, particularly at lower temperatures, is especially 
interesting if considering the possibility of high-frequency modu-
lated thermal interference. We think that the present approach 
could open interesting possibilities for the experimental observa-
tion of wave-like heat transport in other materials and lead to the 
development of strategies to control heat transport.

MATERIALS AND METHODS
Samples
All samples were pieces cleaved from a 2-inch-diameter nominally 
undoped Ge wafer with (100) crystallographic orientation, high re-
sistivity (>40 ohm·cm), and etch pit density <3000/cm2. The wafer 
was purchased from International Wafer Service Inc. (USA). We 
have studied three different types of samples: (i) clean Ge (no native 
oxide), (ii) Ge + native oxide + 60 nm of Au, and (iii) a 60-nm-thick 

Fig. 2. Phase lag curves versus temperature, relaxation time, and velocity of second sound (theory and experiment), and simulated spatial propagation profiles 
for the diffusive and wave-like cases. (A) Phase lag versus frequency for the higher-frequency range as a function of temperature. We plot three points at 300, 100, and 
15 K with the corresponding fits to the data point using the 3D HHE. In dashed lines, we display the prediction based on Fourier’s law at each temperature. (B) The exper-
imental relaxation times (ss), as well as the propagation velocity (vss), are shown as a function of temperature. The dashed lines are guides to the eye. The full lines are the 
predictions based on the expansion of the perturbed phonon distribution function,  f =  f  λ  eq  +  𝛃  λ   ∙ q +  𝛄  λ   ∙ (∂ q / ∂ t ),  combined with DFT simulations as described in sec-
tions S6 and S4, respectively. (C) Finite-element simulations of the spatial distribution of the temperature field at a function of temperature in the direction perpendicular 
to the surface of the sample at the highest excitation frequency of ≈300 MHz for an arbitrary time. The parabolic and hyperbolic solutions are shown in dashed and full 
lines, respectively.
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Au transducer was evaporated onto the surface of a Ge piece similar 
to (i). Additional details on the etching and evaporation processes 
of the samples are given in section S1.

Amplified frequency-domain thermoreflectance
We developed a low-noise custom-built frequency-domain thermo-
reflectance setup to measure the thermal response of the samples. 
The thermal excitation was provided by a pump laser diode with a 
wavelength of 405 nm. The probe laser used was a continuous-wave 
(CW) laser of 532-nm wavelength and with a maximum output 
power of 100 mW. The output power was controlled with neutral 
density filters to ≈50 W (CW) for the probe and ≈20 mW (RMS) 
for the pump laser. A 30-mm achromatic lens was used to focus 
both Gaussian beams onto the same spot, whose size was measured 
using the knife-edge method to a 1/e2 radius of ≈5.5 m. A portion 
of the probe reflected light was sent to an avalanche photodiode 
detector. Two notch filters were inserted into the optical path with 
the purpose of individually blocking the laser components. First, 
the probe component was blocked, and the phase of the pump laser 
was measured using a high-frequency lock-in amplifier. After 
performing this phase calibration step, the notch filter mount was 
mechanically displaced to block the pump laser component, thus 
allowing us to measure the harmonic signal arising from the probe 
laser. An extended description of the experimental setup is given in 
section S2.

Finite-element modeling
The 3D electron diffusion-recombination equation is solved using 
FEMs with COMSOL Multiphysics to estimate the electronic con-
tribution to the photoreflectance signal (see section S3C). The 3D 
HHE is also solved using FEM to calculate the phase lag between the 
harmonic laser excitation and the temperature response of the sys-
tem (see section S7). The laser energy deposition is restricted to a 
region defined by the Gaussian function of the pump beam in the 
radial direction and an exponential decay in the cross-plane direc-
tion with the characteristic length of the optical penetration. The 
temperature oscillations correspond to a weighted average across 
the surface of the sample computed using the Gaussian function of 
the probe beam as the weight.

Ab initio calculations
The thermal conductivity and the heat flux relaxation time expres-
sions in terms of the velocities and the relaxation times of the pho-
non modes are obtained by solving the BTE (see derivation in 
section S6). The required microscopic properties are calculated 
within DFT using VASP code (28). The harmonic IFCs were calcu-
lated from finite differences in a 5 × 5 × 5 supercell, while we used a 
4 × 4 × 4 supercell for the anharmonic ones, limiting the interac-
tions to fourth neighbors. The inequivalent displacements needed 
to obtain the IFCs were obtained with the phonopy (29) and 
thirdorder.py (24) codes (more details can be found in section S4).

Nonequilibrium molecular dynamics
Computational experiments within NEMD used a 5 × 5 × 145 
supercell of the eight-atom cubic Ge conventional cell. The inter-
atomic interactions were described by a bond-order potential of the 
Tersoff type (30). All the NEMD simulations were performed using 
the LAMMPS code (31). The equations of motion were integrated 
with a time step of 1 fs, and temperature control was obtained by 

Nosé-Hoover thermostatting, while equations of motions have 
been integrated by the velocity-Verlet algorithm (more details can 
be found in section S5).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/27/eabg4677/DC1
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