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Engineering self-organized criticality in living cells
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Nuria Conde 1,2✉ & Ricard Solé 1,2,6✉

Complex dynamical fluctuations, from intracellular noise, brain dynamics or computer traffic

display bursting dynamics consistent with a critical state between order and disorder. Living

close to the critical point has adaptive advantages and it has been conjectured that evolution

could select these critical states. Is this the case of living cells? A system can poise itself close

to the critical point by means of the so-called self-organized criticality (SOC). In this paper we

present an engineered gene network displaying SOC behaviour. This is achieved by exploiting

the saturation of the proteolytic degradation machinery in E. coli cells by means of a negative

feedback loop that reduces congestion. Our critical motif is built from a two-gene circuit,

where SOC can be successfully implemented. The potential implications for both cellular

dynamics and behaviour are discussed.
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In order to adapt to environmental challenges, biological sys-
tems exhibit a diverse array of response mechanisms grounded
in sensors and actuators as well as in information-processing

units. Adaptive responses require dynamical features that com-
bine low energetic costs along with fast changes to efficiently
respond to environmental changes. Flocks of birds and fish
schools widely fluctuate in time but rapidly reorganize when a
perturbation (such as the presence of a predator) occurs. Within
cells, the noise was early identified as playing multiple roles
affecting cell fate, population heterogeneity, signal amplification
or response to stress1–3. Noise is both an inevitable outcome of
stochastic molecular interactions and an essential ingredient in
decision making4.

It has been shown that many complex systems seem to be
poised close to so-called critical points separating ordered from
disordered states5–8. In a nutshell, both living and non-living
systems organize at the boundary separating regular (predictable)
from random (disordered) behaviours. At this point, complex
dynamics with scale-invariant properties emerge9,10. If s defines
the total activity in one given event, such as number of firing
neurons11–14, gene expression15–18, number of active ants in a
colony19,20, critical epidemic bursts21 or the size of traffic
jams22–24, the resulting distribution P(s) is a fat-tailed one, fol-
lowing a power-law of the form P(s) ~ s−γ, with a scaling expo-
nent γ usually located within the interval 2 ≤ γ ≤ 38,25.

Critical points can be reached by fine-tuning a given control
(or bifurcation) parameter. This parameter (such as density of
particles, temperature or reaction rate) directly influences the
system’s state, as described by the order parameter S (system’s
activity, for example). One way to criticality based on tuning key
parameters is well illustrated by enzymatic queueing processes in
Ref. 26. These authors used the framework of queueing theory
(QTH) to study the dynamics of different proteins (the customers
in QTH) that are processed by a downstream set of enzymes that
play the role of servers. They consider the native E. coli protease
complexes (ClpXP) which are a limited resource that can only
process (degrade) a limited number of incoming proteins. In
Fig. 1a we provide a basic diagram considering a protein σ being
expressed at some given rate η (our control parameter). If the rate
of protein production is low (queues are short), degradation is
efficient since the proteases can process all incoming σ units (free
phase). If production is too high, a long queue of molecules
waiting to be processed will be present (congested phase). The
two regimes are separated by a narrow parameter domain
(Fig. 1b; see also Supplementary Fig. 2) where an optimal balance
is reached, along with broad fluctuations in concentrations26.
However, they do not follow power laws27 but exponential-tailed
forms PðsÞ � expð�s=scÞ, see Supplementary Fig. 2b–f, with sc
rapidly increasing as we approach criticality28. Here scaling is
found to occur instead in the distribution of latencies, i. e. the
time required from the production to the final processing of each
particle23.

The critical point is a rather unique one. How can these sys-
tems poise themselves into critical states without fine-tuning? An
alternative mechanism to reach criticality is provided by self-
organized criticality (SOC)29–31. In this case, control and order
parameters interact in such a way that the system spontaneously
self-organizes into a critical state32,33. The canonical example of
SOC is the critical sandpile (Fig. 1c). By slowly adding grains of
sand to the pile (at a rate η), its slope θ increases. In the begin-
ning, only a few grains will fall down but the number s of grains
in an avalanche rapidly grows as the angle of repose θc is
approached. Once we have θ= θc, the interaction between θ and
sand avalanches (the order parameter) will keep the system at
criticality31. This is summarized in Fig. 1d where the nature of the

feedback between control and order parameters is sketched.
However, the concept and its implementation have been con-
troversial and even sandpiles have been found to achieve criti-
cality only under very slow driving and when some microscopic
properties are properly tuned8,34–36. In this paper, we introduce
these minimal conditions of SOC dynamics in living cells by
engineering the interaction between order and control parameters
in a simple two-gene network design. Given the consensus that
the presence of this feedback loop is a pre-condition for SOC, the
approach taken here requires locating the SOC motif in the right
parameter space (not only a given point) where the scale-free
behaviour will be the robust outcome. As shown below, the SOC
motif effectively allows driving the system into a bursting dyna-
mical state where gene expression levels (our queue size dis-
tributions) follow power laws.

Results
Two-gene SOC motif model: deterministic and stochastic
dynamics. The importance of the queueing dynamics in the
enzymatic processing is illustrated by the E. coli stress response to
starvation, which is triggered by an excess of mistranslated pro-
teins. Stress can cause a significant increase in the concentration
of aberrant proteins, which must be degraded. When such an
overload occurs, the concentration of the sigma factor (the master
stress regulator) builds up, eventually triggering the stress
response37. Recent theoretical work also suggests that queueing
could be adaptive in parallel enzymatic networks when the input
flux of substrates is balanced by the maximum processing capa-
city of the network38. Here we go a step further and show how a
simple SOC circuit can be actually engineered in vivo.

Our goal in this work is to define the basic design principle to
build a genetic sandpile system that captures the feedback
structure shown in Fig. 1e and generates bursting, fat-tailed
avalanches of activity. First of all, consider the simple, two-gene
network circuit shown in Fig. 1e. Two proteins σ1 and σ2 resulting
from their expression will be used as the building blocks for the
order and control parameters, respectively, thus implementing a
SOC feedback loop (Fig. 1f). The aim is to exploit the topology of
the gene-gene interaction in such a way that the system can detect
the degree of congestion of the ClpXP system by using σ2 as a
sensor of the σ1 levels. Our control protein σ2 can form dimers, i.
e. σ2+ σ2→ σ2σ2 and these dimeric forms act as inhibitors (see
Methods, Eqs. (1–3)). If congestion occurs, the abundance of σ2
increases and its negative feedback effects also do so. A standard
Hill function will be used to model the dimers as transcriptional
repressors. The construction of our circuit involves two steps: (a)
engineering the critical motif and (b) adjusting the protein
production levels. This might seem contradictory with the self-
organized description of SOC, but an example of why this is
required is given by rice piles34 which exhibit SOC for some given
grain aspect ratios.

Along with the topology of the SOC motif, separation of scales
is known to be a characteristic of SOC33. While the control
parameter has slow dynamics (the angle of the sandpile) the
system’s response (the avalanche time scale) is fast. In our model,
two additional parameters are used to favour the presence of
criticality. These are the promoter efficiency for σ2, labelled η2;
and an extra inhibition acting on the repressor σ2σ2 indicated as μ
in Fig. 1e. We need to remember that degradation (and other
dissipative events) affects σ2 and thus a minimal concentration of
this sensor is needed in order to effectively detect congested
states. On the other hand, in order to experimentally validate our
model, we need to tune the strength of the feedback (required to
trigger a rapid decay of the intracellular concentration of σ1). By
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tuning these two parameters, we include both the non-SOC
design based on queueing as a special case26 (see Section I in the
SM) and a mechanism to achieve the SOC state.

In Fig. 2 we summarize the behaviour of the two-gene system
(Fig. 1e; see Methods and Section II in the SM for mathematical
details) using both deterministic (Section II.A, SM) and stochastic
(Section II.B, SM) dynamics. A unique stable equilibrium (σeq=
(σ1,eq, σ2,eq), indicated with a solid black circle in the (σ1, σ2) phase
portraits of Fig. 2) is found, with a characteristic structure of the
orbits in the phase space, as shown in Fig. 2a for the unregulated
domain (here η2= 10−3). As the expression rate η2 of the control
parameter increases close to η2 ~ 10−2, it is easy to see the
presence of slow-fast dynamics in the distinct structure of the
vector fields consistently with the SOC requirement of time scale
separation. Here the critical motif allows for large fluctuations in
σ1 to occur (Fig. 2b) as shown by the compression of the
trajectories in the phase portrait close to the fixed point, to be
compared with the more homogeneous flow displayed in Fig. 2a
for η= 10−3. The analysis of this system shows that, once close to
the equilibrium point, small changes in the control σ2 trigger
marked population spikes in σ1 (see Supplementary figure 4).

Larger values for η2 (Fig. 2c) do not exhibit such a time scales
separation. The analytic and numerical investigation of the
eigenvalues of the fixed point to study its stability properties
reveal the presence of a maximum in the ratio of imaginary to real
parts (See Supplementary Fig. 7), indicating a remarkable change
in the vector field of the phase portrait when η2 ~ 10−2 (given our
set of fixed parameters indicated in Fig. 2).

To see how these nonlinear flows behave under the presence of
intrinsic noise, a stochastic numerical implementation of the two-
gene circuit has been carried out using the Gillespie method39. In
Fig. 2d the coefficient of variation CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ21i � hσ1i2

p
=hσ1i of

the generated time series is displayed against η2 for three values of
μ. This coefficient provides a statistical estimate of the variance of
the fluctuations and a well-defined maximum is observed when
η2 ~ 10−2. In Fig. 2e we have overlapped several stochastic
realisations with the vector field close to the maximum CV (for
η2= 10−2). The density plot reveals that the stochastic system
visits very frequently the fixed point σeq (orange-red colours in
Fig. 2e), but also wanders far away in the lower part of the phase
portrait, where the vector field is faster and pushes the stochastic
paths far away from the equilibrium point, then returning it back

Fig. 1 Paths to intracellular criticality. Tunable critical dynamics can be found in simple genetic circuits (a) where a given gene (here coding for GFP-Iva) is
constitutively expressed into a protein σ that decays and is also actively degraded by the cell proteolytic machinery (ClpXP). By tuning expression rate η
(d), a critical rate ηc is found to separate a phase of efficient degradation from another involving congestion. In (b) the thick line indicates that few proteins
are found for η < ηc (the proteolytic machinery efficiently degrades it) while it accumulates on the right side, due to congestion (light green; ClpXP fails to
degrade all the incoming proteins). An alternative, non-externally tuned path is self-organised criticality (SOC), provided by the sandpile (c, adapted from
@ricard_sole Oct. 2017). As grains of sand are slowly added at a rate η, the angle of the pile θ grows and only small avalanches will be observed. However,
as the critical (maximum) θc is reached, avalanches of all sizes take place, reducing θ. The feedback between the order parameter (S) and the control
parameter (θ) is summarised in (d). To facilitate the conditions enabling SOC, a two-gene circuit with negative feedback (e) allows mapping the sandpile
feedback diagram (f). Here, both proteins compete for ClpXP (higher levels of σ1 also implies high values of σ2) and repression feedback is mediated by
σ2σ2 (the Lac repressor dimer) with σ1 and σ2 acting as order and control parameters, respectively. Protein models generated using Pymol Software.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24695-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4415 | https://doi.org/10.1038/s41467-021-24695-4 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


to the deterministic equilibrium. In Fig. 2f the resulting
distribution is displayed. Specifically, if P(σ1) indicates the
probability distribution of σ1 expression levels (activity), the
cumulative distribution is defined as P> ðσ1Þ ¼

R σ1
0 PðσÞ dPðσÞ

and helps smoothing the random noise exhibited by P(σ1). If the
original distribution follows a scaling Pðσ1Þ � σ�γ

1 , the cumulative
one gives P> ðσ1Þ � σ�γþ1

1 . The stochastic model gives a value of
γ ~ 3 (Fig. 2f) estimated from the average of five different runs.
The time series associated with this parameter combination is
shown in the inset, revealing a characteristic bursting dynamics
typical of the SOC state, to be compared with the smooth, single-
scale behaviour of the unregulated dynamics setting μ= 0
(Fig. 2h–i) (see also Supplementary Figure 2).

The distinct nature of the SOC motif action is captured by
looking at the dynamics of the effective driving term (Eq. (3) in
Methods) that we label as η̂1 (Eq. (S.17), SM), as summarized in
Fig. 2g (see also SM). We can appreciate how this dynamic
driving behaves by computing the probability (labeled as Pðη̂1Þ) of
finding the system at some given driving value η̂1. This
distribution is peaked close to the free-congested transition (see
also Supplementary Figures 10–11 where parameters η1,2 are
tuned to check the robustness of the identified SOC behaviour to
these parameters). However, there are no true phases now: the

system bounces back and forth between fluid and congested states
as it tends to get close to criticality (see also Section II.A.3, SM).
By exploiting the SOC motif, which allows reducing the rate of σ1
production, the Poissonian dynamics of the original, non-
regulated queueing dynamics is transformed into a bursting
signal with fat-tailed statistics.

Engineering a synthetic SOC circuit in E. coli. The theoretical
and computational modelling predicts that the SOC feedback
loop defined above (Fig. 1e–f) will display bursting dynamics with
fat-tailed activity distributions associated with the σ1 protein
(order parameter). If the expression level (η2) of the control
protein σ2 is large enough, its concentration will act as a con-
gestion sensor and will repress σ1, following the SOC motif
design. Otherwise, the system will lack the feedback loop. Here we
show how can we engineer the genes circuit incorporating some
parameters that allow including the non-SOC phase transition as
described above including intracellular queueing processes as a
special case. Since the time scale of expression changes can not be
captured at the single-cell level because we may need long time
series and cells replicate in short times, no individual time series
can be gathered. Instead, the collective response of the system will
be analyzed to detect the presence of a SOC state. The underlying

Fig. 2 Nonlinear dynamics of the two-gene critical motif. (a–c) Orbits for Eqs. (1–2) in the (σ1, σ2) space with η2= 10−3 (a), η2= 10−2 (b), and η2= 0.056
(c), setting η1= 10−2, δ1,2= 5 × 10−2, δc C= 10−2, K= θ= 10−3. The nullclines are plotted in red (dσ1/dt= 0) and blue (dσ2/dt= 0). The colour of the
arrows of the vector field corresponds to their module (blue: small; red: large). The background colour shows the arrival times to the attractor (shorter
times in yellow; longer times in violet). The stochastic dynamics of the model reveals a maximum in the CV when η2 ~ 10−2, as shown in panel (d) where
the colours stand for μ= 0.5 (blue), μ= 1.0 (orange) and μ= 1.5 (green). The relative location of the deterministic flows is indicated by dashed lines. Three
different values of the coupling parameter μ are used to show the robust nature of the maximum of CV, where the SOC motif has been tuned to generate
fat-tailed behaviour, as shown in panel (e), where the hot map is overlapped to the phase space, showing a larger density close to the deterministic
attractor as well as the fat-tailed scaling behaviour (f) with P> ðσ1Þ � σ�2

1 which gives γ ~ 3 for P(σ1). Here five distributions are shown for 5 independent
runs along with their average (dark line). (g) Transition between free and congested phases (green curve, in linear-log scale), computed using the same
parameter values as in (e) and (f), and located at η1≈ 0.02. The solid black line with dots shows how the value of the σ1 inhibition function, here labelled as
η̂ðtÞ, is tuned by the system itself driving it close to the transition value (see also Supplementary Figures 9–11). Here P(η1) is the probability of η̂ðtÞ to take
different values of η1. By contrast, the flows and hot maps for the non-SOC circuit close to the queuing theory transition (h) have a Gaussian pattern (i)
with exponential tails as shown by the straight lines in the linear-log insets (here η2= 10−2 and μ= 0). The distributions are depicted with the violin plots
in panel (j) for the indicated parameter values.
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assumption is thus that we have a colony-level sampling of the
dynamical states and the critical dynamics is assessed by looking
at the distribution of cell states and the resulting aggregated
statistics (assuming ergodicity).

The explicit experimental design of our SOC circuit imple-
mentation is outlined in Fig. 3a–b. The order parameter is

encoded by the green fluorescent protein (GFP), and the control
parameter acting as the congestion sensor, by the LacI repressor
protein, the relative expression of which will be estimated by
means of the expression of the red fluorescent protein (RFP). In
both cases, we use the unstable variants GFP-lva and RFP-lva,
respectively. The construct expresses GFP under the pLacI
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promoter (η1) while the LacI repressor and RFP reporter protein
are under the pBAD promoter, with nonleaky tight regulation and
high-level expression inducible by Arabinose (η2)40–42. All three
proteins of the circuit are tagged with lva sequence to be
degradable by the ClpXP proteolytic complex.

ClpXP is responsible for degrading proteins carrying the SsrA
or YbaQ degron sequences, reducing the half-life of a tagged
protein from hours to minutes. In an exponentially growing E.
coli culture (Optical Density (OD) OD660 from 0–2), the
endogenous levels of ClpX and ClpP are constant and involve
around 100 ClpXP molecules, which can degrade at least 105

molecules of GFPssrA per cell per replication cycle. However, due
to the limited number of ClpXP protease complexes, the
degrading capacity of ssrA-tagged proteins can be easily saturated
by the overproduction of a synthetic tagged protein43–45.

The non-induced circuit depicted in Fig. 3a is thus a particular
instance of our more complex motif (Fig. 3b) that would
correspond in our case to the presence of endogenous LacI, with
the GFP-lva expression being repressed. The presence of
Arabinose leads to a strong expression of the repressor LacI-lva
(our control parameter) and the reporter protein RFP-lva. Only
when high levels of the -lva tagged proteins are reached, and the
degradation machinery is saturated, there is enough LacI-lva to
repress the production of GFP-lva. The repression loop is
consistently removed when the production of GFP-lva (our order
parameter) is reduced enough as for desaturate the ClpXP
protease that can degrade the repressor again. The addition of
Isopropyl β-d-1-thiogalactopyranoside (IPTG), as indicated by a
negative input to the repression feedback (see Fig. 3b), switches
on our SOC circuit and allows to control the level of GFP-lva
expression. High levels of IPTG will lead to an overproduction of
GFP-lva and the subsequent ClpXP complex congestion, thus
reproducing the limit case that would correspond to the standard
phase transition of the queueing process26 (Fig. 1a–b).

The SOC motif is contained in a single, high-copy plasmid to
ensure a maximal concentration of the vector while maintaining
the parity of the two parts of the circuit (Fig. 3a–b). The construct
was transformed in the XL1-Blue E. coli strain. Further details of
the cloning process and sequences can be found in Section III,
SM. Also, this design allows easy tuning to obtain parameters
involving SOC, in terms of the strength of the promoter (i. e.
pBAD) and by adjusting the efficiency of the repressor (in our
case, IPTG for LacI, see Section III, SM). To perform the
experiments, a single colony was inoculated in a volume of 4 ml,
and grown at 37 ∘C until the exponential phase was reached with
an OD660 around 0.6. This homogeneous fresh culture was then
used to inoculate all the conditions used in the experimental
design. Each combination was inoculated with 1 μl of the starter
culture to a final volume of 4 ml. Cells were grown for about 10 h
at 37 ∘C, until reaching an approximate OD660 of 0.8–1. The

output of each condition was then analysed using both
Fluorescence-Activated Cell Sorting (FACS) and fluorescence
microscopy (Fig. 3c–d).

The results from the FACS are displayed in Fig. 3d, where a
4 × 4 array of different combinations of IPTG and Arabinose
concentrations define our parameter space by means of dot plots.
The range of concentrations shown here is 0 ≤mM [IPTG] ≤ 1,
0 ≤mM [Ara] ≤ 100. As described above, these small molecules
allow to explore a parameter space where we can move from a
decoupling between the two genes to full-fledged repression
feedback required for criticality to occur. The different cell
population responses to the tuning of both IPTG and Ara reveal
the relative impact of each on the SOC motif. The target for a
SOC state implies two requirements: (i) the expression of large
enough levels of the control parameter to effectively perform its
feedback; and (ii) a GFP expression characterised by bursts but
displaying a low average activity. In the non-induced state,
without arabinose (left column), increasing levels of IPTG
concentration promote a standard transition from the free to
the congested phase (bottom and at the two top panels,
respectively). As IPTG grows, we effectively weaken the strength
of the repression loop until a critical point is reached allowing
congestion to rise. This is observed from the displacement of the
density dot plots from low to high levels of GFP. Notice that here
distributions appear peaked, as expected from the single-scale
theoretical prediction for queueing processes.

In order to generate bursting patterns, Arabinose concentra-
tion needs to be increased. To achieve this, we move in the other
dimension (horizontal direction in Fig. 3d) of our parameter
space, where the control molecule gets more common (cells emit
in the red channel) but cannot always effectively act as a
repressor. This clearly is a time point picture shot of a bacterial
population that exhibits the fluctuating GFP levels characteristics
of the SOC state. We emphasize that the distributions in the SOC
zone (grey rectangle in Fig. 3d) are well delineated in the
parameter space explored experimentally. Outside this region, the
SOC loop for larger IPTG and Ara concentrations seems to be
still effective (bursting dynamics is expected to occur here too).
An example of SOC behavior is shown in the fluorescence
microscope image of Fig. 3c, where some bacteria do not have the
ClpXP saturated (and thus do not display fluorescence), many are
near the critical state of ClpXP saturation with lower levels of
effective LacI-lva to repress the GFP, and exhibiting a wide range
of GFP-lva concentrations (bacteria in yellow) and few bacteria
have enough LacI-lva to degrade the GFP (bright only in red).

The experiments with E. coli confirm SOC fluctuations of GFP-
lva, while the reporter of the control element (i. e. RFP-lva)
remains basically stable in terms of the concentration levels and
their dispersal. The experimental system successfully reproduces
another important feature of criticality, namely the presence of a

Fig. 3 Engineered gene circuit implementing the SOC motif in E. coli. Gene constructs considering non-induced (a) and induced (b) states. (c)
Overlapped bright field and fluorescence images of bacteria-induced with Ara (100mM) and IPTG (10 μM). Yellow bacteria express both GFP and RFP. d
Flow cytometry dot plots (green vs red channel) of E. coli cultures exposed to different concentrations of IPTG and Ara. In the non-induced circuit (a),
without Ara, the transition from noncongested proteolytic machinery phase (i.e. free phase, subcritical) to congested phase (supercritical) depends on the
tunable GFP-lva production. As IPTG increases, so do the de-repression of GFP expression, ClpXP is not able to degrade the excess of GFP and most cells
exhibit high green emission. When the circuit is induced (b), Ara triggers the expression of the LacI repressor and the RFP reporter, that are also degraded
by the ClpXP complex. The increase of tagged proteins to be degraded contributes to the congestion of ClpXP but also the LacI repression helps to de-
congest by reducing the tagged GFP expression. Hence, as Ara concentration is increased, a shift towards higher RFP levels along with dispersal and lower
levels of GFP values is observed. This defines the parameter space domain (grey window) where the feedback loop required for SOC is at work. For the
larger concentrations of IPTG and Ara, the SOC loop remains effective, at least within the limits of the experimentally explored parameter space. A SOC
state is obtained in the presence of high Ara concentration around the IPTG values close to the queueing transition. Most cells (Q3 + Q4≈ 80%) are
emitting in the red channel, but exhibit a broad range of green fluorescence levels, since this state is characterized by fluctuations associated with large
bursts of GFP expression (the heterogeneous GFP expression is apparent in the yellow cells of (c) and in the histogram of Fig. 4). Microscope images of
this experiment and FACS of more IPTG-Ara combinations are shown in Section III.D of SM and in the source data file.
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power-law in the dynamics of the order parameter σ1. From the
existence of a transition in the queueing process between the two
phases described above, we can conjecture that the SOC motif
should easily organize our gene network into this critical
boundary provided that the control of the dimer concentration
allows the loop to work properly. This is precisely what we found,
as shown in Fig. 4a, where we display the same set of Arabinose-
IPTG combinations shown in Fig. 3d. Here the statistics of
expression are shown in Fig. 4a using cumulative distributions.
The histograms of the non-induced E. coli colony with low
Arabinose but tuned using IPTG (left panels) reveals a single-
peak shape (a flat part followed by a rapid decay in the cumulative
plot). In general, as we increase the levels of both arabinose and
IPTG, the distribution of our order parameter becomes fat-tailed
once RFP levels become high, and well-defined power laws can be
observed for a wide range of parameters, as we would expect from
our SOC motif. By contrast with the standard critical points,
where marked differences are apparent in the distributions above
and below criticality, all the statistical patterns within our domain
of parameters where the SOC motif is effective display scaling
laws. The two SOC states highlighted in Fig. 3d are shown in
Fig. 4b–c (the insets are linear-log plots to highlight the different

behaviour of the two components of the SOC motif). A detailed
parameter exploration is provided in Supplementary Fig. 14–19.

Discussion
Self-organized criticality (SOC) has a seemingly paradoxical
nature: it involves steady states that are always on the edge of
instability. Are there intracellular processes poised close to critical
points? Traffic dynamics in other contexts suggests that optimal
flows occur close to criticality along with very broad
fluctuations22,23. Within cells, theoretical work suggests that
enzymatic networks might be poised to criticality when the
substrate input rate is balanced by the processing capacity of the
enzymatic network38 and that SOC states might pervade optimal
growth46,47. Such critical balance would be a source of adaptation.
In this paper, we have followed a constructive approach by
building a type of network motif implementing the logic of SOC
processes on a two-gene network by following the basic design
principle of linking order and control parameters33. As the
activity level (σ1) grows due to overloaded proteolytic machinery,
the competition for the ClpXP pool also increases the levels of the
control component σ2 that can dimerize to perform negative
feedback on the emission of σ1, thus effectively reducing activity.

Fig. 4 Statistics and power-law distributions for SOC from the experiments. a Cumulative (non-normalized) distributions P>(σ1,2) of GFP and RFP
fluorescence levels, here plotted using green and red lines, respectively, for the same set of conditions shown in Fig. 3d. The candidate combinations
leading to the SOC state (grey panels) are characterized by a broad range of GFP expression revealed by the tail associated with large bursts. In (b) and (c)
two cumulative histograms are shown for (10 μM IPTG, 50mM arabinose (Ara)) and (7.5 μM IPTG, 50mM Ara), respectively. Both distributions are close
to a scaling law P> ðσ1Þ � σ�2

1 thus leading to a scaling exponent γ ~ 3, consistent with the stochastic simulations. The insets display the comparison of the
raw histograms of the congested state (green dots (b)) and free-phase (blue dots,(c)), respectively and the SOC state (grey dots) corresponding to the
same IPTG conditions. Notice that, unlike the larger images, the x-axes of the insets are linear (so that exponential laws appear as straight lines).
Cumulative distributions are shown for fluorescence levels above 102.5 (Q2, Q3, Q4 from Fig. 3). All cumulative distributions have obtained from a constant
population size of 105 cells. Additional distributions with more detailed IPTG-Ara combinations are shown in Section III.D in the SM and source data are
provided as a Source Data file.
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Using the SOC motif architecture, it was possible to create a
separation of time scales driving to highly fluctuating, critical
dynamics. This work shows that this class of unstable attractors
can be engineered in living cells. Being at the critical state has
important consequences linked with optimality and might be
relevant for information-processing tasks. Several authors early
suggested that biological computation could occur close to phase
transitions19,48 and given the potential effects of a critical motif
on other cellular systems performing given tasks, our results
could give support to this conjecture at the cellular level. In this
context, Hasty and co-workers have shown that proper engi-
neering of the proteolytic machinery can be used to achieve
relevant functionalities, including tunable post-translational
coupling49 or in vivo drug delivery based on pulses of bacterial
lysis against colorectal tumours50,51. Our SOC motif could further
enhance some of these applications (wide fluctuations and rapid
responses to external signals). An obvious extension of the critical
motif could be a multicellular circuit able to trigger population-
level avalanches by exploiting the quorum sensing machinery.
Similarly, the fat-tailed behaviour could be wired to a diverse
range of functionalities, such as search paths with fat-tailed sta-
tistics where bursting dynamics have adaptive value52,53.

Critical states are known to be part of the cognitive equipment
of multicellular organisms, from the simple, non-neural placozoans
to neural systems and animal collectives54,55. The SOC motif might
be an efficient way of generating phenotypic diversity in a
microbial population and can be relevant to expand the space of
synthetic biology computational designs56 into collective
intelligence57. A missing point here is the lack of a time dimension
that could help confirming our results and further develop a the-
oretical framework. This can be achieved by constructing a similar
SOC motif within a eukaryotic cell, where the time scale of the
resulting time series would be smaller than the cell division cycle.
Finally, given the analogies between our system and critical traffic
in parallel computer networks, an extension of our approach could
involve a 3D spatially explicit system and the development of
statistical physics models of critical intracellular traffic.

Methods
Plasmids construction. Plasmid construction and DNA manipulations were
performed following standard cloning techniques. The LacI-lva (BBa_ C0012),
RFP-lva (BBa_ K1399001) and GFP-lva (BBa_ K082003) genes were amplified
from the parts registry collection (2016). The forward primers were synthesized to
contain the proper promoter and/or RBS sequences: the pBAD promoter and the
RBS30 for the LacI gene, RBS34 for RFP gene and pLacIQ promoter with RBS34 for
GFP gene. The PCR products pBad-RBS30-Lacil-lva and RBS3-RFP-lva were joined
together by assembly PCR, and cloned to pBluescript plasmid in the restriction
sites EcoRI and XbaI. The PCR product pLacIQ-RBS34-GFP-lva was cloned to a
Bluescript plasmid by SpeI and PstI. The resulting plasmids were joined together by
ScaI and the blund ends of Eco53kI and EcoRV. The clonings were realized in the
pBluescript II SK(+) plasmid backbone (ColE1 high copy number replication
origin). The sequence of primers is shown in the supplementary information (see
Section III.A and Figure 12 of Supplementary Materials).

Strains and growth conditions. Plasmid cloning and evaluation of the circuit
behaviour was performed in the E. coli XL1-Blue strain. All characterisation
experiments were done in lysogeny broth (LB) Lennox media (10 g/L Tryptone 5 g/
L Yeast Extract, 5 g/L NaCl) with a final ampicillin concentration of 125 μg/mL.
Single colonies were inoculated in 4 ml and grown at 37 ∘C with shaking (200 r.p.
m.) during 4 h, to reach an approximate OD660 of 0.6. One microliter of the culture
was re-inoculated in 4ml of fresh media, supplemented with ampicillin, and the
corresponding Arabinose and IPTG concentrations. The cultures were grown
overnight (10–14 h) at 37 ∘C with shaking. Once they were at OD660 of 0.8–1, were
used for fluorescence measures.

Imaging of single-cell gene expression. The output of the SOC circuit was ana-
lyzed after 10 h of incubation at 37 ∘C with different combinations of inputs. Samples
were diluted in PBS and analyzed using flow cytometry (BD LSRFortessa; lasers:405-
488-561-633, detectors: FSC\SSC+ 14PTM, Facs Diva software 9). A total of 104 cells
were collected from each sample. Specific emission fluorescence channels for GFP
(FITC-H) and RFP (PE-H) were measured. A proper gate to subtract the debris

particles was set using forward and side scattering channels (see Supplementary Fig. 13).
For the FACS graphics, the GFP and RFP fluorescence of cells inside the gate were
plotted in adjacent axes. The cumulative distributions depict all bacteria with a FITC-H
expression above 102.5. All data were analysed and plotted using FlowJo (v7) software
and customized Phyton code. The regression line and slopes of the histograms were
calculated and ploted using Numpy 1.20.3, Matplotlib 3.4.2, Scipy 1.6.3, FlowCyto-
metryTools 0.5.1, Pandas 1.2.4, DiffEqJump v6.14.1 and Catalyst v6.12.1 For micro-
scopic images, the cells were harvested at the same time than the cytometry analysis and
pictures were collected with an inverted microscope Leica DMI6000 (Leica LASX
v3.3 software), using a 40x oil objective. Bright field, red and green fluorescent images
were taken and then merged using ImageJ 1.8.0_172.

Mathematical modelling. The mathematical model used here is a two-
dimensional system of nonlinear ordinary differential equations describing the
coupling between the order (σ1) and the control (σ2) parameters required to obtain
criticality:

dσ1
dt

¼ f ðσ2Þ � δ1 σ1 � σ1 Γðσ1; σ2Þ; ð1Þ

dσ2
dt

¼ η2 � δ2 σ2 � σ2 Γðσ1; σ2Þ; ð2Þ

where the following Hill function response58 is used:

f ðσ2Þ ¼
η1

θ þ μ2σ22
; ð3Þ

for the repression mediated by σ2σ2 dimers. The parameter μ∈ [0, 1] weights the
effect of IPTG on the strength of the negative control. When σ2 is small (the ClpXP
system is working far from congestion) we have a production rate f (σ2→ 0) ≈ η1/θ.
The inhibition function has a threshold value θ representing the concentration σ�2
at which the rate drops to half its maximum value i. e. f ðσ�2Þ ¼ η1=2θ. For larger
values, it rapidly decays to zero. The saturation function, namely

Γðσ1; σ2Þ ¼
δcC

K þ σ1 þ σ2
; ð4Þ

introduces the competition of both proteins for the proteolytic machinery. Here, as
well, the limit case when no congestion occurs (due to low concentrations of both
σ1 and σ2) gives a constant removal rate proportional to the concentration of
ClpXP units, i. e. Γ(0, 0)= δcC/K. The expression of σ1 gives the behaviour of the
GFP-lva, whereas σ2 stands for LacI-lva. Thus f(σ2) is the expression for the
response of pLac (the promoter controlling the expression of GFP) to the LacI
protein. In this function, η1 is defined as the production rate, θ the promoter
sensitivity, and finally, μ weights how effective is the repression of LacI (effec-
tiveness being altered by IPTG: the more IPTG the lower the μ value). The pro-
duction rate of LacI (σ2) is controlled by the pBAD promoter, which will trigger a
heavier production when there is Arabinose in the medium: the more Arabinose,
the higher the value of η2. Both proteins are diluted and degraded at rates δ1 and δ2
respectively. Finally, both proteins are degraded by the ClpXP system, which can be
saturated if there are enough proteins to be degraded. For this reason, there is a
sigmoid function, with degradation rate δc, C standing for ClpXP concentration
and sensitivity K. Notice that both proteins compete for the degradation
machinery, thus inhibiting each other (being added in the denominator). Stochastic
simulations of the previous deterministic model were also implemented using the
Gillespie method39 (see Section II.B, SM).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the authors. Nonetheless, the source data is available
in the open source repository OFS https://osf.io/h5cew/?view_only=33c12a4780954fcd
bd9f1c0986adfdc6 Source data are provided with this paper.

Code availability
The Code needed to do the analysis use the functions precoded in the indicated packages.
However, software and custom code used are available upon request.
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