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Dendritic cells (DCs) are the most potent antigen-presenting cells, unique to initiate and
coordinate the adaptive immune response. In pigs, conventional DCs (cDCs),
plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) have been described
in blood and tissues. Different pathogens, such as viruses, could infect these cells, and in
some cases, compromise their response. The understanding of the interaction between
DCs and viruses is critical to comprehend viral immunopathological responses. Porcine
reproductive and respiratory syndrome virus (PRRSV) is the most important respiratory
pathogen in the global pig population. Different reports support the notion that PRRSV
modulates pig immune response in addition to their genetic and antigenic variability. The
interaction of PRRSV with DCs is a mostly unexplored area with conflicting results and lots
of uncertainties. Among the scarce certainties, cDCs and pDCs are refractory to PRRSV
infection in contrast to moDCs. Additionally, response of DCs to PRRSV can be different
depending on the type of DCs and maybe is related to the virulence of the viral isolate. The
precise impact of this virus-DC interaction upon the development of the specific immune
response is not fully elucidated. The present review briefly summarizes and discusses the
previous studies on the interaction of in vitro derived bone marrow (bm)- and moDCs, and
in vivo isolated cDCs, pDCs, and moDCs with PRRSV1 and 2.
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INTRODUCTION

Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases
affecting the swine industry worldwide. It causes reproductive failure in sows and respiratory
distress, growth reduction, and high mortality in young pigs (1). Economically, it is important for
the affected farms; for example, losses associated with the disease were estimated at 644 million USD
annually for US farms (2). The etiological agents of PRRS are two enveloped positive-sense RNA
viruses designated as porcine reproductive and respiratory syndrome virus (PRRSV) 1 and 2. Both
PRRSV viruses belong to the family Arteriviridae, genus Betaarterivirus (3). PRRSV genome is about
15 kb in length containing at least ten open reading frames (ORFs) flanked by two untranslated
org July 2021 | Volume 12 | Article 7121091
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regions at 5’ and 3’ ends. The ORFs1a and 1b encompass about
80% of the viral genome and encode two polyproteins that are
cleaved into 14 non-structural proteins (nsp1-nsp14). ORF2a,
ORF2b, ORFs 3 - 7, and ORF5a genes encode eight structural
proteins: GP2, E, GP3, GP4, GP5, M, N, and ORF5a protein,
respectively (4).

Non-structural proteins are essential for viral replication, are
recognized by the immune system, and have been involved in
regulating of the immune response (5). Structural proteins have
been implicated in the modulation of host innate immune
response and the induction of antigen-specific B- and T-cell
responses [Reviewed by Loving et al. (6)]. After infection, pigs
rapidly develop antibodies, but those early antibodies are devoid
of neutralizing capacities. Antibodies with neutralizing activity
appear later, usually after the fourth week of infection (7). These
antibodies are mainly directed against GP2, GP3, GP4, and GP5,
proteins interacting with CD163 (GP2-GP4) and porcine
sialoadhesin (Siglec-1, GP5) which are the main receptors
mediating PRRSV entry into the target cells (8). The induction
of PRRSV-specific IFN-g-secreting cells (IFN-g-SC) also occurs
relatively late in the course of the infection (7, 9) which is
considered an indicator of the development of cell-mediated
immunity. It has been proved that both structural and non-
structural viral proteins induce IFN-g-SC (10–12).

The delayed development of neutralizing antibodies and late
production of cell-mediated responses result in prolonged
viremia and persistence of the virus in lymphoid tissues for
several weeks. Different hypotheses have been proposed to
explain this unusual immune response, many of them
suggesting that the interaction of the virus with dendritic cells
may be the main cause. This review discusses the response and
modulatory effects of PRRVS on monocyte- (mo-), bone-
marrow- (bm) derived DCs, conventional DCs (cDCs), and
plasmacytoid DCs (pDCs).
DENDRITIC CELLS

DCs are professional antigen-presenting cells. They sense the
presence of invading antigens, then migrate to the lymph nodes,
particularly the T cell-rich zones, to trigger naïve lymphocytes
into distinct classes of effector cells, finally initiate the T cell-
mediated immunity (13, 14). There are mainly two types of DCs:
plasmacytoid DCs (pDCs) and myeloid conventional or classical
DCs (cDCs). cDCs are further divided into two subtypes or
subsets: cDC1 and cDC2 (15). pDCs are responsible for
producing interferon-alpha (IFN-a) in response to viral
infections, but are less efficient at T-cell priming than cDCs
(16). In contrast, cDCs are the most professional antigen-
presenting cells. The cDC1 subset is thought to drive naïve T
cells into Th1 cells and cross-present antigens to CD8 T cells (17).
The cDC2 subtype stimulates CD4 T cells to promote Th2 and
Th17 cells (18, 19).

The cDC1 and cDC2 subtypes have been characterized in several
species, including swine (20). Using common markers shared by
humans, macaques, and mice, Guilliams et al. (21) identified the
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cDC1 subtype as XCR1hiCADM1hiCD172alowIRF8hiIRF4lo, and the
cDC2 subtype as XCR1-CD172ahiIRF8loIRF4hi (21). In swine,
significant contributions have been made in the last years,
allowing identifying cDCs, and the cDC1 and cDC2 subtypes
from blood (22, 23), lymph nodes (24, 25), skin (26), and lung
(27). In all these reports, cDC1 and cDC2 have been characterized,
although in some cases the labeling strategy was different. These
differences will not be further discussed in this review.

Monocytes may capture antigens, present them in the
histocompatibility complex and differentiate into the so-called
moDCs in peripheral non-lymphoid organs, particularly under
inflammatory conditions (28). In vivo generated moDCs may
possess the cross-presentation ability and are able to transfer
antigens to DCs present in lymph nodes, thus being important in
developing an immune response to pathogens [see (28) for a
review on the role of moDC]. It is worth mentioning that moDCs
were increased in lungs of PRRSV-infected animals (29). moDCs
and bmDCs have been extensively used in in vitro studies as well
to analyze the interaction between PRRSV and DCs. Most of
those reports used a similar strategy consisting of culturing
monocytes or bone-marrow cells with GM-CSF with or
without the addition of IL-4 to differentiate DCs. These
protocols will neither be discussed, and only specific
annotations will be done if necessary.
MONOCYTE- AND BONE MARROW-
DERIVED DCs RESPONSE TO PRRSV

For many years, the difficulty for having ex vivo cDC or for
deriving them from precursors render moDCs and bmDCs a
useful method to evaluate the response of DCs to PRRSV. Both
moDCs and bmDCs are heterogeneous cell populations that
include subsets susceptible to infection and replication, allowing
to evaluate the effects of infection and co-infection with other
pathogens. Most studies indicated that both PRRSV1 and 2 could
enter and replicate in moDCs (30–34) and bmDCs (35) with one
study indicating lower susceptibility of moDCs than bmDCs
(36). The viral yield after infection may differ in bmDCs and
moDCs (37) and not all strains would have the same replication
rates in moDCs as those obtained in monocyte-derived
macrophages (38). These differences could be explained by the
low proportion of CD163pos (and to a less extent by the low
expression of Siglec-1/CD169 in moDCs) or participation of
other receptors (38).

One of the main focuses when studying the interaction of
PRRSV with moDCs and bmDCs is the cytokine patterns after
exposure to PRRSV. IL-10 is a potent anti-inflammatory
cytokine with a broad range of effects on the immune response
against viral infections. It is produced by a variety of cells,
including DCs. It has been reported that pathogens inducing
IL-10 at early phases of the immune response could compromise
the resolution of infection, and in some cases, lead to persistent
infection or promote maintenance of persistent infection (39).

Production of IL-10 by PRRSV-infected DCs remains
controversial. Some authors reported significant production
July 2021 | Volume 12 | Article 712109
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after infection of moDCs (31, 32, 40) or bmDCs (35, 41, 42),
while others reported either a non-significant induction of this
cytokine (30, 43) or that IL-10 production was strain-dependent
(44, 45). In other cases, IL-10 was produced only when moDCs
were co-infected with PRRSV and other agents such as PCV2 but
not by PRRSV alone (46). These studies suggest that IL-10
production may depend on several factors including, but
maybe not limited to, the maturation stage of DCs and the
PRRSV strain used. Also, it could be enhanced by coinfection or
superinfection with other pathogens. In vivo production of IL-10
has been more consistently reported, suggesting that in addition
to DCs, other cells, such as macrophages, in the lung or lymphoid
tissues, could be important sources of this cytokine during
PRRSV infection (47). Liu et al. (36) proposed that IL-10
production was predominant in PRRSV-infected moDCs,
suppressing the production of Th1 cytokines, such as IL-12,
and finally regulating the polarization of Th1/Th2.

It has been reported that several pathogens can induce T
regulatory cells (Tregs) [reviewed by Maizels and Smith (48)].
Tregs are important sources of regulatory cytokines (IL-10 or
TGF-b) which can suppress or delay naïve T-cell priming and
proliferation, (49) thus impairing the protective responses. Two
main types of Tregs, natural (n) and induced (i), have been
recognized (50). nTregs arise in the thymus, while iTregs arise in
the periphery following CD4+ T-cell activation in the presence of
TGF-b or upon stimulation with IL-2 or exposure to some
pathogens (50).

It has been suggested that moDCs infected by PRRSV were
able to induce the development of Tregs with suppressive activity
in vitro (51, 52) and in vivo in the blood (52), lymphoid tissues
(53), and lung (54). When the mononuclear cells isolated from
blood and lung were restimulated ex vivo with PRRSV, TGF-b
and IL-10 were produced, suggesting that Tregs might play an
essential role in PRRSV immunopathogenesis. These Tregs seem
to be induced mainly by PRRSV2 since studies using PRRSV1
failed to demonstrate the development of Tregs (33). The higher
virulence of PRRSV2 isolates has been used to explain these
differences (33). Other groups using moDCs infected with
PRRSV1 or PRRV2 did not observe induction or proliferation
of Tregs (55). Moreover, Bordet et al. (29) did not observe IL-10
or TGF-b induced by highly virulent PRRSV1.3 Lena although
Tregs were not assessed (29). Also, Li and Mateu (56) did not
observe a significant proliferation of Tregs induced by in vitro
derived allogeneic PRRSV1-stimulated cDCs (56). Given the
diversity of PRRSV, further studies are required to determine
whether PRRSV1 differed from PRRSV2 in inducing Tregs.
Interestingly, heat-inactivated PRRSV or pre-treated DCs with
IFN-a reduced the expansion of Tregs, indicating that viral
replication is probably necessary for Treg induction (51).

The viral nucleocapsid protein (N) was presumed to be an
inducer of Tregs as transfection of moDCs with the N protein
induced an increase of Tregs and a comparable level of IL-10 in
PBMCs as the live virus-stimulated moDCs (57). Moreover,
neutralization of IL-10 in the cultures of transfected moDCs
reduced the number of Tregs, reinforcing the notion that IL-10
induction by N was responsible for the observed effect (58).
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However, in other models such as the co-infection with PCV2,
the predominant regulatory cytokine was TGF-b although its
level could not be correlated with the number of Tregs (46).

The discussion above suggests that PRRSV2 can induce Tregs
through moDCs-mediated antigen presentation, but it remains
unknown whether bona fide DCs could also induce Tregs since
they are not susceptible (discussed below). It is also unclear how
Tregs contribute to the immunopathogenesis of PRRSV, or if they
only represent a homeostatic response to inflammatory events.

In addition to the induction of Tregs, Nedumpun et al.
showed that PRRSV-infected moDCs induced the expression
and production of IL-1Ra, which is a natural suppressor of the
inflammatory response (59, 60). Chen et al. (61) demonstrated
that the viral N protein and nsp10 enhanced the production of
CD83, an inhibitor of DC-mediated T-cell proliferation (62), via
activation of NF-KB and Sp1 signaling pathways (61).

The effects of co-infection or super-infection on the
functionality of DCs have been evaluated with different in vitro
models. Concomitant infections frequently occur in the field and
PRRSV infection can have an impact on the response of DCs
against other pathogens of pigs. For example, exposure to
PRRSV impaired the capacity of bmDCs in ingesting
Streptococcus suis (S. suis) although the killing of phagocytized
bacteria was not affected. In the same study, PRRSV and S. suis
showed a synergistic interaction on the expression of chemokines
and pro-inflammatory cytokines (37). In another study,
coinfection of moDCs with PRRSV and PCV2 resulted in an
increased expression of PD-L1 (63), a molecule associated with
negative regulation of T-cell stimulation (64). However, this
effect was dependent on the PRRSV strain used. These
results suggested that moDCs co-infected with PRRSV and
PCV2 could suppress the immune response and favor PCAVD
pathogenesis (63).
RESPONSE OF CONVENTIONAL DCs
AGAINST PRRSV

One crucial question regarding PRRSV immunology is whether
PRRSV infects, replicates, and modulates the response of cDCs.
According to the in vitro models using moDCs and bmDCs, the
immunopathology of PRRSV is due, at least partially, to the
infection of DCs. However, the few studies published dealing
with bona fide cDCs isolated from pigs or used ex vivo showed a
different picture. For example, Loving et al. (65), analyzing lung
cDCs, concluded that PRRSV did not replicate in them (65).
Using a similar strategy, Proll et al. (66) reported that DCs were
susceptible to PRRSV1 infection and explained the discrepancy
of results as the type (PRRSV1 vs. PRRSV2) of virus used (66).
Another explanation is the approach to get the DCs in both
studies. The authors recovered DC by gradient centrifugation,
for which they had very heterogeneous populations that could
contain variable numbers of cDC and CD163pos cells in every
batch including macrophage-like cells.

Recently, other groups have evaluated the susceptibility of
bona fide cDCs to PRRSV infection, including PRRSV1,
July 2021 | Volume 12 | Article 712109
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PRRSV1.3, and PRRSV2. Resendiz et al. (67) described that
tracheal bona fide cDCs, specifically cDC1 and cDC2, were not
susceptible to PRRSV2 infection but could modulate the
expression of cytokines and TLRs. In that study, tracheal
explants were incubated with a PRRSV2 strain, and after 24 h
of culture, cells with the cDC1 and cCD2 phenotype were sorted.
The results showed that cDC1 produced a high level of IFN-a,
meanwhile, cDC2 produced IL-10 and up-regulated the
expression of TLR2 and TLR4. The authors proposed that
cDC1 and cDC2 actively participated in the immunopathology
of PRRSV infection (67). In parallel, Bordet et al. (29),
demonstrated that ex vivo lung cDCs were also refractory to
PRRSV1.1 and PRRSV1.3 (Lena strain) infection and that cDC1
and cDC2 had a differential response against PRRSV1.3. In the
same study, the authors showed that lung cDC1 from PRRSV 1.3
Lena strain infected animals expressed mRNA of IFN-a, IL-
12p35, IL-12p40, and TNF-a, while cDC2 expressed mRNA of
the regulatory TGF-b. In contrast, no cytokines were induced by
less virulent PRRSV1.1 strains Lelystad or FL13. To note, neither
Lena nor the less virulent PRRSV1.1 strains induced an increase
in the expression of the maturation markers MHC-I, MHC-II,
CD80/86, or CD40.

Recently, Li and Mateu (56), using in vitro derived cDCs, also
proved the non-susceptibility of cDC1 and cDC2. This work
further revealed that cDC1 and cDC2 remained immature upon
PRRSV inoculation concerning the expression of maturation
molecules, cytokine production, and the endocytosis/
phagocytosis capabilities. These results contrast with some
previous studies that showed cytokine production after
inoculation by PRRSV (29, 68). The differences might be
explained by different virus strains used.

Puebla-Clark et al. (68), in experimental PRRSV2 infection,
showed that at 5- and 7-days post-infection, tonsil cDCs were
negative for PRRSV as assessed by detection of PRRSV N protein.
Moreover, that study showed that at 5 days after infection cDCs
expressed IL-12 mRNA (68). Similar results were observed by
Parra-Sánchez et al. (69) with sorted splenic DCs infected with
PRRSV2; they showed production of IL-12 evaluated by ELISA
(69). In summary, the current studies support the notion that
cDCs are not susceptible to PRRSV infection but can differentially
respond to the virus. Probably, cDC1 showed a type 1 response
and cDC2 showed a type 2 pattern, but this needs to be confirmed
in further studies (Figure 1). Since the number of cDCs and the
ratio of cDC1/cDC2 vary between tissues, the immune response
launched in different tissues could be diversified and worth
further characterization.

To what extent exposure of cDCs to PRRSV can affect the
subsequent T-cell priming and proliferation? Preliminary results
by Parra-Sánchez et al. (69) showed that exposure to PRRSV2
did not affect the ability of cDCs to induce proliferation of CD3+

T cells, although co-culture with CD3+ T cells reduced the
production of IL-12 by cDCs (69). In contrast, CD163+ cells
co-cultured with CD3+ T cells in the presence of PRRSV did not
affect IL-12 production. It is worth mentioning that cDCs from
different tissues could respond differently. For example, blood
cDC expressed higher IL-10 levels in comparison to spleen cDCs
Frontiers in Immunology | www.frontiersin.org 4
(69). The number and the ratio of different types of cells could be
a reason for such differences. Taken together, cDCs are assumed
to poorly participate in launching the adaptive immune response
against PRRSV, which, however, remains to be confirmed by
further experiments. Interestingly, Li and Mateu (56) reported
that sensing of PRRSV by cDC was enhanced when infected cells
were used as a source of antigen and hypothesized that the
effective sensing of PRRSV by cDCs might not happen at the
early stage of infection (56).

It is worth mentioning that virulence of PRRSV strains and
interaction with DC seem to be related. Thus, while moderate
and low virulence strains might not activate cDCs, strains of
higher virulence, such as PRRSV1.3 Lena, induce a stronger Th1
polarization and strongly upregulate several inflammatory,
interferon, and apoptosis pathways compared with the less
virulent isolates (29, 70). Certainly, the accumulating evidence
suggests that this stronger regulation, particularly DCs, may play
a role in the immunopathology of those highly virulent strains.
PLASMACYTOID DENDRITIC CELLS
AGAINTS PRRSV

pDCs are highly specialized in producing large amounts of type I
IFN in response to viral infection. A consensus has been reached
that pDCs are not susceptible to PRRSV (71–73). But the
production of type I IFN against PRRSV remains controversial.
Calzada-Nova et al. (71) indicated that PRRSV did not induce
but inhibited IFN-a production in pDCs that were stimulated by
the TLR9 ligand. Later, Baumann et al. (72) evaluated different
PRRSV1 and PRRSV2 strains and demonstrated that pDCs
produced IFN-a in response to PRRSV and that only the
highly virulent PRRSV2 strain inhibited IFN-a production
(72). In this case, discrepancies were explained by different
approaches of separating pDCs.

Exposure of pDCs to PRRSV did not significantly inhibit the
natural capability of these cells to produce IFN-a except for some
PRRSV2 strains, including the highly pathogenic PRRSV2 that
emerged in China in 2006 and the highly virulent PRRSV1.3
Lena strain. When pDCs were exposed to infected macrophages,
the IFN-a production was higher than that obtained when using
cell-free virions (73), similar to what has been reported recently
for cDCs (56). Efficient sensing of infected macrophages by pDCs
required integrin-mediated intercellular contact and intact actin
filaments in the macrophages (73). The potential contribution of
IFN-a to the immunity and immunopathology of PRRSV
requires further in vivo studies.
DC VACCINOLOGY: A STRATEGY TO
CONTROL PRRSV

Modulation of DC response is a field of continuous exploration,
and TLR is a widely studied area (74). The effects of TLR3 and
TLR7 ligands were assessed, individually or in combination, for
July 2021 | Volume 12 | Article 712109
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their potential to improve the response of moDCs to an
inactivated PRRSV antigen (75). The results suggested that
Th1 and Th2 responses were enhanced by TLR3 and TLR7
activation via TRIF/MYD88-NF-kB signaling pathway and,
therefore, these types of ligands might be new vaccine
candidates (75). However, the lack of inclusion of groups
where moDCs were stimulated with TLR ligands alone makes
difficult to produce a definitive conclusion. In a study by Li and
Mateu (56) the authors showed that simultaneous addition of a
TLR7 ligand and PRRSV resulted in impaired response,
particularly in cytokine production. Therefore, the use of TLR7
ligand as the adjuvant of PRRSV vaccines should be
further examined.
Frontiers in Immunology | www.frontiersin.org 5
DC targeting is a promising approach to stimulate the
immune system in mice, humans, and animal species in the
veterinary field (76). Recently two works described this strategy
to modulate the immune response. Subramaniam et al. (77)
evaluated the targeting of three different receptors: DC-SIGN,
DEC205, and Langerin, using the ectodomain regions of
structural proteins of PRRSV (GP3, GP4, GP5, and M). The
authors concluded that this approach did not induce protective
immunity as viremia and lung lesions were not reduced in
treated groups (77). With a similar approach but using selected
peptides from structural and non-structural proteins of PRRSV,
Bustamante-Córdova et al. (78) obtained similar results. More
studies are needed to identify if this strategy is suitable for
FIGURE 1 | Effects of PRRVS on different types of DCs. PRRSV can infect and replicate on moDCs, bmDCs and macrophages, increasing the expression and
production of IL-10 while reducing IFN-a. In contrast, cDCs and pDCs are refractory to PRRSV infection but can respond with the production of cytokines, although the
response could be dependent on the strain and the type of DCs. The figure shows the common patterns for PRRSV2 or virulent PRRSV1.3 as reported in the literature.
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PRRSV in combination with the identification of more
immunogenic antigens, better immunization routes, and
adjuvant combinations.
CONCLUSIONS AND FURTHER
RESEARCH

The current knowledge about PRRSV and its interaction with
porcine DCs is still scarce, but some concepts are consolidating.
While bmDCs and moDCs may contain subsets of cells that
support PRRSV replication (probably because of the expression
of the viral receptor CD163), cDCs and pDCs seem not to be
susceptible. When the response of cDCs and pDCs was examined
against different strains, the results were controversial. Using
PRRSV2, cDC1 produced IL-12 and IFN-a, while cDC2
produced IL-10 and TGF-b. Using PRRSV1, low to moderate
virulence strains did not induce significant cytokine release in
either cDC1 or cDC2 while the highly virulent Lena strain
(PRRSV1.3.) induced IL-12-p40 expression in cDC1 and led to
a Th1 polarization. Moreover, the distribution of cDC1 and
cDC2 in blood, lung and lymphoid tissues is different, and,
accordingly, differences can be expected in those tissues. When
pDC were examined, only again, the highly virulent PRRSV2
Frontiers in Immunology | www.frontiersin.org 6
strain inhibited IFN-a release but less virulent strains induced
the release of this cytokine. Apart from the current observations,
some critical questions remain to be determined. How does the
interaction of the virus with DCs interfere with the development
of adaptive immune response? In detail, can cDCs and pDCs
efficiently capture, process and, present PRRSV antigens? What
is the mechanism and what are the receptors involved? Does the
exposure to the virus (either live or inactivated) affect the
antigen-presenting capabilities of DCs? Resolution of the role
of DCs during PRRSV infection would be critical to producing
an effective vaccine.
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