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Proteins bearing prion-like domains (PrLDs) are essential players in stress granules (SG)
assembly. Analysis of data on heat stress-induced recruitment of yeast PrLDs to SG
suggests that this propensity might be connected with three defined protein biophysical
features: aggregation propensity, net charge, and the presence of free cysteines. These
three properties can be read directly in the PrLDs sequences, and their combination allows
to predict protein recruitment to SG under heat stress. On this basis, we implemented
SGnn, an online predictor of SG recruitment that exploits a feed-forward neural network for
high accuracy classification of the assembly behavior of PrLDs. The simplicity and
precision of our strategy should allow its implementation to identify heat stress-
induced SG-forming proteins in complete proteomes.
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INTRODUCTION

Biomolecular condensates are a group of diverse membraneless organelles formed by the association
of proteins that undergo liquid to liquid or liquid to solid phase transitions in the cellular milieu
(Banani et al., 2017; Woodruff et al., 2018; Shiina, 2019). Stress granules (SG) are a subclass of
biological condensates which form in response to different cellular stresses and disassemble when the
stress is released, in a dynamic and highly regulated process involving liquid-liquid phase separation
(LLPS) reactions (Protter and Parker, 2016; Mahboubi and Stochaj, 2017). They are constituted by
selected proteins and mRNAs stalled in translation initiation (Protter and Parker, 2016). A
significant fraction of these proteins contains prion-like domains (PrLDs), which are key
regulators of phase transitions (Boeynaems et al., 2018). PrLDs are low complexity and
intrinsically disordered protein regions with a compositional bias resembling that of the prion
domains (PrDs) of yeast prions, which also experiment phase transitions from initially soluble to
aggregated states (King et al., 2012; Wickner et al., 2015).

In a recent work, Ross and coworkers studied the recruitment of a set of Saccharomyces cerevisiae
PrLDs into SG when the cells were heat-stressed (Boncella et al., 2020). They demonstrated that the
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PrLDs recruited to these granules differed in composition from
those that did not show stress-dependent assembly. Positive
PrLDs showed enrichment in hydrophobic residues (WFILV),
charged residues (HEKR), and cysteine. These compositional
biases were surprising since they do not fit with the properties
that make these sequences prion-like (Alberti et al., 2009; Toombs
et al., 2012; Sabate et al., 2015). Classical yeast PrDs are generally
enriched in Q/N residues and depleted in hydrophobic and
charged residues. These compositional differences were used to
create an algorithm to identify PrLDs that would assemble into
stress foci in response to heat shock. This tool allowed them to
manipulate the recruitment of preexisting PrLDs and the de novo
design of synthetic PrLDs with a selected response to heat stress
(Boncella et al., 2020).

We noticed that Phe and Trp, but not Tyr, were
overrepresented in positive PrLDs. This observation was
unexpected because Tyr is the only enriched aromatic amino
acid in the sequence of PrLDs (Sabate et al., 2015), and it had been
proven to be a fundamental driver of LLPS by establishing
multivalent cation-π interactions with arginine residues (Wang
et al., 2018; Murthy et al., 2019), a role that Phe cannot replace
(Wang et al., 2018; Batlle et al., 2020). Besides, synthetic PrLDs
revealed that aromatic residues were dispensable for the assembly
of SG, since aliphatic ones could replace them. The secondary role
played by aromatic residues in these reactions, especially in the
case of Tyr, suggests that a mechanism alternative to LLPS might
be behind the observed PrLDs intracellular assembly upon heat
stress. An extensive proteomic analysis performed by Wallace
and coworkers in S. cerevisiae suggested that a reversible
aggregation mechanism controls the formation of SG, acting
as a cellular adaptation to thermal stress (Wallace et al., 2015).
From our perspective, it was tempting to speculate that such an
aggregation-based mechanism might be responsible, at least in
part, for the stress-induced assembly reported by Ross and
coworkers, justifying the insensitivity of the process to
aromatic to aliphatic mutations and the bias towards classical
aliphatic aggregation-prone residues, which are otherwise
strongly underrepresented in PrLDs (Alberti et al., 2009;
Sabate et al., 2015). Under this premise, we tried to dissect the
particular biophysical features behind the heat stress-induced
assembly of PrLDs into SG, and we developed SGnn, a neural
network-based prediction method able to discriminate PrLDs
assembly by evaluating their aggregation propensity, net charge,
and disulfide bonding potential. The SGnn web server is freely
available for academic users at http://sgnn.ppmclab.com.

METHODS

Evaluation of the molecular determinants
responsible for PrLDs recruitment to SG
The set of 69 natural and synthetic prion-like domains described
by Ross and coworkers in Saccharomyces cerevisiae was analyzed
using AGGRESCAN (Conchillo-Sole et al., 2007) and CamSol
Intrinsic (Sormanni et al., 2015) algorithms to evaluate protein
aggregation propensities. The Henderson-Hasselbalch equation
was employed to calculate the net charge per residue (NCPR).

Cysteine content was computed by evaluating the frequency of
this residue in the sequences.

Dataset Description
Following the original article, natural, synthetic, and redesigned
PrLDs were clustered according to their tendency to assemble
into stress foci after 30 min of heat shock at 46°C in three datasets:
1) PrLDs that formed foci in ≥60% of cells (n � 32) were
considered positive, 2) negative were those PrLDs assembled
in less than a 25% of the cells (n � 32) and 3) PrLDs that
range from a 26 to a 59% (n � 5) were classified as intermediate. A
two-tailed Mann-Whitney test was used to compare the average
scores for positive and negative datasets (Table 1).

Performance Analysis
The precision of the different predictive methods was evaluated
using a ROC analysis, in which the true-positive rate is plotted
against the false-positive rate for the in vivo obtained positive and
negative datasets.

Binary classification performance was evaluated attending to
their sensitivity, specificity, precision, accuracy, F1 Score and
Matthews Correlation Coefficient (MCC) as follows: Sensitivity
� TP/(TP + FN); Specificity � TN/(TN + FP); Precision � TP/(TP
+ FP); Accuracy � (TP + TN)/(TP + TN + FP + FN); F1 Score �
TP/(TP +½(FP + FN)) andMCC � (TP*TN - FP*FN)/[(TP + FP)
(TP + FN) (TN + FP) (TN + FN)]1/2. TP, TN, FP and FN
correspond to true positives, true negatives, false positives and
false negatives, respectively.

Training of the Feed-Forward Neural
Network (FFNN) for the Binary
Classification of PrLDs
To develop a predictive strategy based on the distinct properties
observed in vivo PrLDs recruited to SG, we trained an FFNN to
anticipate PrLDs behavior based on their aggregation propensity,
NCPR, and cysteine percentage. For the training, we randomly
segregated 50% of the PrLDs from the positive and negative
datasets (16 positives and 16 negatives PrLDs). AGGRESCAN
aggregation propensity, NCPR, and cysteine percentage were
calculated as described above. The FFNN was created using
version 0.3.5 of the neurolab Python package and consists of a
multilayer-perceptron network with three inputs, nine neurons in
the input layer, six neurons in the hidden layer, and one in the
output layer. Optimization was performed using the gdx algorithm
(gradient descent with momentum and adaptative learning rate
backpropagation), which combines adaptative learning rate with
momentum training. Once trained, FFNN performance was tested
against the remaining 16 positive, and 16 negative sequences and
its discriminatory potential was evaluated. To exclude potential
biases associated with the random configuration of the datasets, we
repeated the training and testing with diverse randomizations that
resulted in very similar overall classifications.

SGnn Implementation
For each input PrLD sequence, SGnn calculates AGGRESCAN
aggregation propensity, NCPR, and Cysteine percentage.
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AGGRESCAN “Na4vSS” scores include positive and
negative values; therefore, these were normalized between
the most and least aggregation-prone natural PrLD
(Supplementary Table S1) to feed the neural network only
with positive aggregation propensity-values. Finally, the
obtained numerical results are fed to the FFNN, which
establishes a binary outcome.

SGnn Web Server
SGnn web server is platform-independent and has been tested in
modern browsers. Its interface was built in a combination of
HTML, CSS, and JavaScript. SGnn uses the Django 3.0
framework working with Python 3.7.5. SGnn back-end script
was written in Python. The web server includes detailed

documentation and a pre-loaded example of positive and
negative PrLDs. The output figure is generated using the
matplotlib library (Hunter, 2007).

RESULTS

Computational Analysis of the Molecular
Determinants Driving Prion-Like Domains
Assembly
We explored different physicochemical features that might
potentially contribute to the intracellular heat-induced
assembly of yeast PrLDs.

TABLE 1 |Mean values for aggregation, NCPR, and cysteine percentage box-plots in positive, intermediate, and negative datasets represented in Figure 1 p-values for the
differences between the positive and negative PrLDs subsets are shown.

Dataset Aggregation NCPR (x100) Cysteine (%)

AGGRESCAN CamSol Intrinsic

Positives -17.175 1.245 3.09 1.5
Intermediate -30.84 1.645 1.35 0.28
Negative -42.112 2.017 -0.795 0.184

p-value <0.0001a <0.0001a 0.2921 0.0002a

ap-values < 0.001 were considered to be statistically significant.

FIGURE 1 | Analysis of the molecular determinants involved in prion-like domains (PrLDs) recruitment to stress granules (SG). Box-plots depicting different
properties of assembling and non-assembling PrLDs in the complete dataset: protein aggregation using (A) AGGRESCAN and (B) CamSol Intrinsic predictors, (C) the
net charge per residue, and (D) the cysteine percentage.
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In globular proteins, hydrophobic residues are usually protected
from the solvent in the inner core, and their exposure by unfolding
is connected to protein aggregation (Kelly, 1998). PrLDs have a
disordered nature, and therefore hydrophobic residues in their
sequences are necessarily exposed and ready to establish contacts
with other lipophilic amino acids, which may ultimately result in
protein aggregation. The unexpected enrichment in hydrophobic
residues in positive PrLDs in the above-described dataset
immediately suggested that, in line with previous observations
(Wallace et al., 2015), protein aggregation might be, somehow,
behind heat-induced stress granule formation. We addressed the
role of the sequence aggregation propensity using two algorithms
based on different prediction principles: AGGRESCAN and
Camsol intrinsic (Figures 1A,B; Supplementary Table S1).
Both programs predicted the positive PrLDs in the dataset to be
significantly more aggregation-prone than negative PrLDs
(Table 1), thus suggesting a relationship between the assembly
of PrLDs into SGs and their aggregation tendency.

Ross and coworkers identified enrichment in ionizable residues
in positive PrLDs, suggesting that charges may play a role in the
assembly of SG. The charge of PrLDs might influence this reaction
in two different ways: 1) First, heterotypic electrostatic protein-
protein interactions have been described as drivers of LLPS (Mitrea
and Kriwacki, 2016) and 2) positively charged residues are
fundamental for the interaction with the negatively charged
RNA recruited into these stress foci (Law et al., 2006). We
analyzed if the net charge per residue (NCPR) of PrLDs might
somehow influence its ability to form SG (Figure 1C;
Supplementary Table S1). On average, recruited PrLDs tend to
be positively charged, whereas PrLDs from the negative dataset are
slightly anionic (Table 1). Anionic and cationic residues contribute
equally to intermolecular electrostatic interactions. Thus, the
higher prevalence of cationic residues in positive PrLDs likely
results from their specific ability to interact with RNA molecules.
The differences in NCPR between positive and negative PrLDs
were evident but not statistically significant, likely because whereas
negatively charged residues cannot contribute to nucleic acid
binding, they are necessary for ionic protein-protein interactions.

Cysteine was found to be enriched in the set of positive PrLDs
(Boncella et al., 2020). Again, this observation was surprising
because this residue is known to be strongly underrepresented in
PrLDs sequences (Alberti et al., 2009; Toombs et al., 2012; Sabate
et al., 2015). Since heat stress has been directly associated with the
accumulation of reactive oxygen species (Flanagan et al., 1998), it
seems plausible to speculate that the oxidation of Cys thiol groups
in PrLDs can be relevant for the assembly of SG. This reaction has
already been described as a trigger of TDP-43 recruitment to SG
(Liu-Yesucevitz et al., 2010; Cohen et al., 2012; Dewey et al.,
2012). Either the formation of covalent links (Cumming et al.,
2004), that would stabilize protein-protein interactions in SG, or
the oxidation of cysteine to sulfenic or sulfonic acids (Hamann
et al., 2002), modifications reported to accelerate protein
aggregation (Marinelli et al., 2018), may be possible
explanations for Cys overrepresentation in PrLDs recruited to
SG. Our analysis (Figure 1D) indicates that the enrichment in
Cys of positive PrLDs, relative to their negative counterparts, is,
indeed, statistically significant (Table 1).

Overall, our analysis suggested that the observed compositional
bias in SG-forming PrLDsmight stem from a combination of at least
three physicochemical: an increased sequential aggregation
propensity, the ability to establish electrostatic interactions, and
the possibility to form disulfide bonds. Aggregation propensity
seems to be a particularly important determinant of heat-induced
foci formation since AGGRESCAN alone discriminated reasonably
well positive and negatives PrLDs when analyzing the complete
dataset (n � 64), according to the derived ROC curve (AUC � 0.87),
approaching the performance of the tailor-made composition-based
approach (AUC � 0.96) (Figure 2).

Development and Implementation of SGnn,
a Machine Learning Strategy for Predicting
PrLDs Heat-Induced Recruitment to Stress
Granules
Based on the evidence that positive PrLD seemed to possess
distinct physicochemical features, we aimed to build up a novel
SG predictor.

To that end, we needed to define a relationship between the
three variables that would allow an accurate binary classification
between two states, corresponding to assembly-competent and
assembly-incompetent sequences. We could not assume linear
correlations exist nor develop tentative modeling equations from
scratch, which precluded the use of classical iterative analysis
relying on variables parametrization.

To bypass these limitations and exclude arbitrary
assumptions, we decided to use a supervised machine learning
approximation able to recreate non-linear models based on a
multi-layer perceptron FFNN. We randomly segregated the
experimentally characterized PrLDs (32 positive and 32
negative instances) in two datasets with an equal number of
positive and negative sequences. One dataset was used to train a
Feed-Forward Neural Network (FFNN) to project those three

FIGURE 2 | ROC curve analysis of the aggregation propensity as a
predictor of PrLDs assembly propensity. Performanceof aggregation propensity
and composition predictions of heat-induced PrLDs in vivo recruitment to SG as
described by Ross and coworkers (Boncella et al., 2020).
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input features into a binary classification of positive and negative
PrLDs. The second dataset was used to test the performance of the
FFNN. In the test dataset, 14 of the analyzed sequences were
classified as true positives, 16 as true negatives, and 2 as false

negatives, which resulted in an excellent performance as
evaluated by the sensitivity, specificity, F1 score, and Mathews
correlation coefficient (Table 2). Very similar results were
obtained using other random configurations of the training

TABLE 2 | Performances of the composition-based and SGnn approaches in predicting heat-induced PrLDs recruitment to SG.

Composition-based SGnn

Testing set Complete dataset

Specificity 0.97 1 0.97
Sensitivity 0.78 0.88 0.88
Accuracy 0.88 0.94 0.92
Precision 0.82 0.88 0.89
F1 Score 0.89 0.94 0.93
Matthews correlation coefficient 0.76 0.88 0.84

FIGURE3 | SGnnweb server interface. (A)Web input page. Users can input their sequences in the provided window or upload them in FASTA format. (B)Overview
of SGnn results page. On completion, SGnn will show the results in a table format and a figure summarizing the prediction. Alternatively, users can click the upper links to
retrieve them in JSON or ZIP format.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 7183015

Iglesias et al. Heat-Induced Stress Granules Prediction

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and testing sets (not shown). When we analyzed the complete
dataset of PrLDs, we obtained similar performances (Table 2;
Supplementary Table S1), outperforming those of the tailor-
made composition-based approach.

Based on our FFNN, we next aimed to build an online
computational tool to predict PrLDs recruitment to SG upon
heat stress, which we named SGnn. The algorithm computes
the AGGRESCAN aggregation propensity, NCPR, and cysteine
percentage of one or multiple input sequences and exploits our
FFNN to classify those PrLD sequences as positive or negative.
SGnn, which is available at http://sgnn.ppmclab.com is free for
academic users and does not require previous login. On the input
page, users can introduce one or multiple PrLD sequences in
FASTA format or upload them in a single file (Figure 3A).
Alternatively, users can pre-load example sequences to test
SGnn. After running SGnn, the AGGRESCAN score, NCPR,
cysteine percentage and FFNN prediction will be available on
the results page, as shown in Figure 3B. Users can retrieve the
results in a JavaScript Object Notation (JSON) formatted file or
download them as a compressed ZIP folder where all the project-
generated data is available.

Of note, SGnn was trained on top of pre-defined yeast PrLDs
and, accordingly, it is not intended to be used in full-length
proteins or regions that do not possess prion-like features. We
encourage users to pre-scan their dataset with dedicated software
that searches for sequence similarity to yeast prions such as
PLAAC, PrionScan, PAPA or PrionW in order to delimit the
proteins’ PrLDs (Toombs et al., 2012; Espinosa Angarica et al.,
2014; Lancaster et al., 2014; Zambrano et al., 2015). We also
recommend users to read the documentation page, where
practical instructions for the use of SGnn are provided.

DISCUSSION

Protein composition-based strategies have shown to be accurate
in predicting the assembly behavior of PrLDs in front of heat
stress (Boncella et al., 2020). However, composition alone is a
black box from which it is difficult to decipher the mechanistic
rules behind the observed phenomenon. The advantage of
decoding these properties is double as it: 1) allows for a
rationalization of the observations, i.e., PrLDs with very
soluble sequences would rarely form heat stress-induced SG,
and 2) facilitates redesign and de novo design ventures, as
illustrated by the higher performance of our approach in
forecasting the properties of synthetic PrLDs, even if they were
generated to fit the composition-based model of SG formation
(Supplementary Table S2).

Cation-π interactions between Tyr and Arg are considered
important contributors to the multivalent interactions driving LLPS
processes. In fact, in FUS family proteins, the number of Tyr and Arg
within the PrLDs is sufficient to anticipate their LLPS propensity
(Wang et al., 2018). In contrast, in the dataset of PrLDs recruited to SG
generated by Ross and coworkers, Tyr is underrepresented, and
aromatic to aliphatic substitutions do not interfere with SG
recruitment. In our opinion, this suggests that the observed PrLDs
intracellular assembly may be governed by physicochemical features

distinct from those conventionally associated with the LLPS of FUS-
related proteins. Our analysis suggest that an aggregation-related
mechanism might be a more appropriate descriptor of PrLDs
coacervation upon heat stress in yeast.

Our results indicated that three simple biophysical properties,
namely the aggregation propensity, the net charge, and the
cysteine content, might suffice to describe the heat-induced
assembly of PrLDs into SG. Driven by this evidence and using
in vivo derived data, we developed SGnn, a machine learning
strategy dedicated to evaluate the heat-induced assembly of
PrLDs in SG, which is freely available for academic users.
Protein aggregation depends on the presence of defined
aggregation-prone regions reactions that nucleate the self-
assembly and, ultimately, in the specific protein sequence. In
contrast, the NCPR and the Cys percentage are composition-
related terms. Thus, it seems that a combination of sequence- and
composition-dependent features provides the best prediction of
the propensity of a PrLD to be recruited into SG upon heat stress.
An observation similar to the one we reported previously for the
formation of pathogenic intracellular foci by PrLD-containing
proteins (Batlle et al., 2017; Iglesias et al., 2019).

SGnn is a new computational tool dedicated to the prediction of
PrLD recruitment to heat-induced SG, which as most algorithms
devoted to studying prion-like properties, has been developed using
yeast-derived data (Toombs et al., 2012; Lancaster et al., 2014; Sabate
et al., 2015; Zambrano et al., 2015). As for them, we expect SGnn
predictions to be transferable to other species, becoming a valuable
tool for the identification of SG forming prion-like proteins in large
protein datasets, including the characterization of the human heat
stress-induced granulome or the identification of proteins thatmight
coalesce into stress granules in fever episodes, both in the human
host and in pathogenic viral, bacterial, protozoic or fungal
proteomes. Yet, we must note that the use of SGnn requires the
previous identification and delimitation of PrLDs in the organism of
interest. The compositional traits of these domains might not
necessarily coincide in evolutionarily distant organisms, and
adapting PrLDs predictions to the proteome of interest is a
requirement to obtain context-relevant SGnn forecasts. For these
studies, the use of algorithms like PLAAC that consider the
proteome compositional background in their PrLDs predictions
(Lancaster et al., 2014) is advised. Overall, we envision SGnn as a
web server that might help to gather novel insights on the biology
and pathology of SG formation in eukaryotic cells.
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