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Abstract

Biocrusts (topsoil communities formed by mosses, lichens, bacteria, fungi, algae, and

cyanobacteria) are a key biotic component of dryland ecosystems. Whilst climate

patterns control the distribution of biocrusts in drylands worldwide, terrain and soil

attributes can influence biocrust distribution at landscape scale. Multi-source

unmanned aerial vehicle (UAV) imagery was used to map and study biocrust ecology

in a typical dryland ecosystem in central Spain. Red, green and blue (RGB) imagery

was processed using structure-from-motion techniques to map terrain attributes

related to microclimate and terrain stability. Multispectral imagery was used to pro-

duce accurate maps (accuracy > 80%) of dryland ecosystem components (vegetation,

bare soil and biocrust composition). Finally, thermal infrared (TIR) and multispectral

imagery was used to calculate the apparent thermal inertia (ATI) of soil and to evalu-

ate how ATI was related to soil moisture (r2 = 0.83). The relationship between soil

properties and UAV-derived variables was first evaluated at the field plot level. Then,

the maps obtained were used to explore the relationship between biocrusts and ter-

rain attributes at ecosystem level through a redundancy analysis. The most significant

variables that explain biocrust distribution are: ATI (34.4% of variance, F = 130.75;

p < 0.001), Elevation (25.8%, F = 97.6; p < 0.001), and potential solar incoming radia-

tion (PSIR) (52.9%, F = 200.1; p < 0.001). Differences were found between areas

dominated by lichens and mosses. Lichen-dominated biocrusts were associated with

areas with high slopes and low values of ATI, with soil characterized by a higher

amount of soluble salts, and lower amount of organic carbon, total phosphorus (Ptot)

and total nitrogen (Ntot). Biocrust-forming mosses dominated lower and moister

areas, characterized by gentler slopes and higher values of ATI with soils with higher

contents of organic carbon, Ptot and Ntot. This study shows the potential to use UAVs

to improve our understanding of drylands and to evaluate the control that the terrain

has on biocrust distribution.

Twitter: Multi-source UAV imagery was used to study biocrust distribution in a typical dryland ecosystem in central Spain and how it is affected by terrain and soil properties.
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1 | INTRODUCTION

Drylands constitute one of the largest biomes on Earth, covering

�47% of the terrestrial surface (Koutroulis, 2019). In these

environments, topography determines the redistribution of scarce

precipitation, controls water content and the availability of soil nutri-

ents and organic matter affected by runoff (e.g., Aguiar & Sala, 1999;

Manzoni et al., 2006; Puigdefábregas & Sánchez, 1996;

Puigdefábregas et al., 1999; Puigdefábregas, 2005). This modifies not

only vegetation distribution, but also the allocation of components

that appear in plant interspaces, such as biocrust communities

(Rodríguez-Caballero et al., 2019). Biocrusts are a combination of top-

soil communities including mosses, lichens, liverworts, bacteria, fungi,

algae and cyanobacteria. They play an important role in nutrient

cycling (Elbert et al., 2012; Weber et al., 2015), soil carbon (C) fluxes

(Castillo-Monroy et al., 2011; Tucker et al., 2019) and runoff/runon

dynamics (Chamizo et al., 2012a; Faist et al., 2017; Rodríguez-

Caballero et al., 2015), playing a key role in dryland ecosystems’ ser-

vice maintenance (Rodríguez-Caballero, Escribano, et al., 2017a;

Rodríguez-Caballero, Paul, et al., 2017b). The effect that these

communities have on dryland surfaces depends on the dominant and

developmental stage of the crust (Belnap & Lange, 2013;

Concostrina-Zubiri et al., 2013; Faist et al., 2017; Tucker et al., 2019).

For example, biocrusts can increase water availability for plants by

augmenting water retention in topsoil (Eldridge et al., 2020) and

reducing soil evaporation (e.g., Adessi et al., 2018; Chamizo

et al., 2016). They can also modify the erosion rate (Gao et al., 2020),

which affects sediment accumulation, C and nutrient content in soils

(e.g., Chamizo et al., 2017) and surface roughness (e.g., Rodríguez-

Caballero et al., 2015; Wang et al., 2017). For this reason, mapping

the spatial patterns of different biocrust-dominated surfaces and their

extent is important to understand their role in the ecosystem.

The heterogeneous, mixed structure of dryland ecosystems is a

challenge for biocrust mapping using remotely-sensed imagery (Smith

et al., 2019). Previous studies have used unmanned aerial vehicles

(UAVs) to investigate dryland vegetation (e.g., Cunliffe et al., 2016;

Sankey et al., 2018; Milling et al., 2018), proving that this is an achiev-

able task. However, remote sensing of biocrusts has traditionally been

relegated to other platforms, such as airborne (e.g., Weber

et al., 2008; Rodríguez-Caballero et al., 2014) and satellite sensors

(e.g., Panigada et al., 2019). Only recently the potential of red, green

and blue (RGB) imagery acquired from UAVs to identify dryland

biocrusts has been explored (Havrilla et al., 2020; Jung et al., 2020;

Sevgi et al., 2020). As biocrusts are difficult to distinguish from the

background due to their small size and similar optical properties to

vegetation and soil (Weber & Hill, 2016; Smith et al., 2019), UAVs

integrated with multispectral cameras could greatly improve their

identification. Multispectral sensors, in fact, usually have at least one

spectral band in the red region at �660–680 nm, that corresponds to

the chlorophyll-a absorption feature which is present in all

chlorophytic biocrusts (Weber & Hill, 2016). Several authors

(e.g., Blanco-Sacristán et al., 2019; Panigada et al., 2019; Rodríguez-

Caballero, Escribano, et al., 2017a; Rodríguez-Caballero, Paul,

et al., 2017b; Román et al., 2019) have exploited the subtle differ-

ences in this absorption features for biocrust identification using the

continuum removal (CR) algorithm (Clark & Roush, 1984). This allows

for the normalization of reflectance to a common baseline, which

enables the analysis of individual absorption features.

UAVs have been commonly used to obtain digital surface models

(DSMs) from RGB imagery using digital photogrammetry, from which

digital terrain models (DTMs) of a very fine spatial resolution can be

derived. This information can be used to calculate topography-related

variables (Westoby et al., 2012). Detailed DTMs allow reseachers to

apply hydrological models and therefore to study the impact of

changing terrain properties on a landscape’s hydrology (e.g., Lucieer

et al., 2014). Thus, using these models it is possible to study the

components of hydrological systems, such as surface and subsurface

flows, which are key to understanding nutrient and sediment trans-

port in the landscape (Stieglitz et al., 2003). However, site-specific

relationships between soil physical properties and topography

generate deviations from larger-scale climate patterns, which favours

the formation of a heterogeneous community assembly (Rossi

et al., 2014). In this context, as soil physical properties are a significant

control on biocrust distribution in drylands (Bowker et al., 2016;

Rodríguez-Caballero et al., 2019), it is important to explore the link

between DTM-derived variables and soil properties. However, not all

physical soil properties can be evaluated through DTMs. Key variables

for biocrust development, such as soil moisture, need additional data

sources in order to be estimated.

The knowledge of soil moisture distribution at a high spatio-

temporal resolution plays an important role in the understanding of

ecological and hydrological processes at the basin scale. Soil moisture

plays a key role in surface water flow by controlling transport

processes in the soil–plant–atmosphere system (Campbell &

Norman, 1988). However, estimation of the soil moisture involves in

situ measurements by standard point-based techniques

(e.g., thermogravimetric method or time domain reflectometry) and

requires interpolation techniques to obtain spatially explicit

information. Different methods have been applied to analyse the spa-

tial distribution of soil moisture based on thermal inertia, a physical

property of the surfaces, which determines resistance to temperature

change under seasonal and diurnal heating (Price, 1985; Short &

Stuart, 1982). The dynamics of soil thermal properties and water

content have also been analysed using proximal sensing (Krzeminska

et al., 2012; Nearing et al., 2012; Negm et al., 2017). In arid and

semi-arid environments, the spatial distribution of soil surface water

content in bare soils has been evaluated from high resolution visible/

near-infrared (VIS/NIR) and thermal infrared (TIR) airborne and satel-

lite data (Van Doninck et al., 2011) through the computation of the

apparent thermal inertia (ATI). However, the coupling between ATI

and soil moisture is not straightforward in heterogeneous surfaces

since ATI might be directly related to soil moisture only in
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homogeneous areas with a single land cover type, with limitations

observed for vegetated surfaces (Maltese et al., 2013; Van Doninck

et al., 2011). For these reasons, the synergistic use of TIR and multi-

spectral cameras on board UAVs allows the derivation of high spatial

resolution maps of ATI, with the possibility to mask the vegetation

component, helping to decipher the problem of mixed surfaces.

The objective of this study was to evaluate the effect of terrain

attributes in the distribution of dryland ecosystem components’ using

multisensor UAV-based imagery by( i) mapping dryland constituents

(i.e., vegetation, biocrusts, and bare soil) through multispectral imag-

ery; (ii) estimating terrain attributes from structure-from-motion (SfM)

techniques applied to RGB imagery and evaluating their relation with

soil properties; (iii) estimating soil moisture using maps of ATI derived

from TIR imagery; (iv) evaluating through a multivariate statistical

approach how terrain attributes and soil moisture affect biocrust

distribution in the study area.

2 | MATERIALS AND METHODS

2.1 | Study area

This study was conducted in a typical dryland ecosystem at the

Aranjuez Experimental Station, located in central Spain (40�020 N,

3�320 W; 590 m above sea level, Figure 1) (Ladr�on de Guevara

et al., 2018). The climate in this area is semi-arid Mediterranean, with

a mean annual temperature of 15�C and mean annual rainfall of

349 mm. The soil is classified as Gypsiric Leptosol (IUSS Working

Group WRB, 2006). The vascular vegetation cover in this area is

< 40% and is dominated by Macrochloa tenacissima tussocks and, in a

lesser amount, small shrubs such as Helianthemum squamatum and

Gypsophila struthium. On the surface area that is not covered by

vascular vegetation, a rich biocrust community dominated by lichens

develops, including Diploschistes diacapsis, Squamarina lentigera and

F I GU R E 1 (a) Location of the study area in Aranjuez, central Spain; (b) study Area A and Zones 1 and 2; (c) study Area B and Zones 3 and
4. Black squares represent the ground control points (GCPs) used for the generation of the digital terrain model (DTM) and the orthomosaics and
black circles are the ground validation points (GVPs) used to carry out an independent validation of the generated models [Color figure can be
viewed at wileyonlinelibrary.com]
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Psora decipiens among others. A moss-dominated crust also develops,

with species such as Pleurochaete squarrosa and Tortula revolvens.

Cyanobacteria genera, such as Microcoleus, Tolypothrix and Nostoc can

also be found in the area (Cano-Díaz et al., 2018). Refer to Maestre

et al. (2013) for a complete list of species of the visible biocrusts in

the study area. We worked in two different areas within the study site

(Figure 1b): Area A, which covers an extension of 5.4 ha and is further

sub-divided in two zones (Zones 1 and 2). Zone 1 with a moderate

slope and a dominant west exposure and Zone 2 with a smaller slope

and a dominant east exposure. And Area B, which covers 1.2 ha and is

also sub-divided in two zones (Zones 3 and 4). Zone 3 presents an

abrupt hill, mainly exposed to the south and Zone 4 a minor slope

exposed to the north.

2.2 | Field campaign

In March 2018 a field campaign took place to characterize the biocrust,

vascular vegetation cover and soils. We collected soil moisture samples

and characterized the biocrust and vascular vegetation of the study

area as described in Section 2.2.1. RGB, multispectral and TIR UAV-

based imagery was concurrently acquired to map the study area, derive

terrain attributes and evaluate soil moisture. A general workflow with

the main actions of this study is represented in Figure 2.

2.2.1 | Biocrust characterization and soil sampling

On 21 March 2018, we established 23 2 � 2 m2 observational field

plots within the two areas. Within each plot the relative abundance of

each type of surface component (biocrust, bare soil and vegetation)

was visually assessed and the species composition of biocrust and

vascular vegetation was characterized. Pictures were also taken with

a camera mounted on a tripod at 1 m height. Three representative soil

sub-samples were taken in each plot from 0 to 10 cm depth (after

removing the litter layer) and pooled to one sample, which represen-

ted the average soil characteristics of the plot. The samples were

chemically and physically analysed in the laboratory applying standard

techniques (Colombo & Miano, 2015). The samples were dried and

sieved (2 mm mesh) and analysed to determine the percentage of

soluble salts (SolSal), total phosphorus (Ptot), percentage of organic

carbon (OrgCarb) and total nitrogen (Ntot). Soil moisture was

measured in the field at 0–10 cm depth at three representative

locations within each plot using a FieldScout TDR-100 soil moisture

meter (Spectrum Technologies, Fort Worth, TX, USA).

2.2.2 | Unmanned aerial vehicle (UAV) flights

The UAV flights (Table 1) were conducted using an eBee SQ

(senseFly, Cheseaux-sur-Lausanne, Switzerland) fixed-wing UAV oper-

ated by the company 3D Scanner (Zaragoza, Spain), on 22 March

2018 under clear-sky conditions. These flights were conducted at the

end of the rainy season in the study area because biocrusts are more

colourful when are well hydrated by the rain. When colourful they are

easier to map and differentiate using spectral information. In

Supporting Information Figure S1, the daily precipitation as well as

the minimum and maximum temperatures registered in the study area

during 2018 are reported. Three different spectral cameras, i.e., S.O.

D.A (senseFly), Parrot Sequoia (Parrot SA, Paris, France) and ther-

moMAP (senseFly) were flown to acquire RGB, multispectral and TIR

images, respectively. Two sets of TIR imagery were acquired: the first

before the sunrise, and the second at noon. During this second flight

multispectral imagery was simultaneously acquired. A third flight,

conducted immediately after the previous one, was performed to

acquire RGB images on the site.

F I GU R E 2 Workflow with the main processes carried out in this study. UAV, unmanned aerial vehicle; TIR, thermal infrared; RGB, red, green

and blue; SVM, support vector machine; ATI, apparent thermal inertia; DTM, digital terrain model; RDA, redundancy analysis
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All flights followed a single grid flight geometry at constant

height, with flight lines parallel to the slope and with the cameras in

nadir-view position. Flights were done at average flight speeds

between 10 and 12 m/s. Lateral and longitudinal overlaps of at least

75% and 70%, respectively, were achieved between the RGB images,

with an average distance of 22 m between the flight lines and 20 m

between images. Lateral and longitudinal overlaps of at least 85% and

70%, respectively, were obtained between the multispectral images,

with a distance of 12 m between the flight lines and 24 m between

images. Lateral and longitudinal overlaps of at least 80% and 95%,

respectively, were achieved between the TIR images, with a distance

of 16 m between the flight lines and 3 m between images. The multi-

spectral Parrot Sequoia camera is a compact bundle of four cameras

with complementary metal-oxide-semiconductor sensors, each one

equipped with an individual narrow-band filter (Assmann et al., 2018).

This results in a multi-band image composed of four bands: Green

(550 � 40 nm), Red (660 � 40 nm), Red Edge (735 � 10 nm) and NIR

(790 � 10 nm). The Red Edge band is located in the spectral region

characterized by the rapid change in vegetation reflectance between

red absorption due to pigment content and NIR reflectance due to the

leaf structure. A white reference Micasense® panel was measured

with the Sequoia camera immediately before and directly after the

drone survey to calibrate the images.

2.2.3 | Ground data

Reflectance factors were collected in the field to calibrate and validate

the spectral data acquired from the UAV sensors using an ASD

FieldSpec® FR3 field spectroradiometer (Analytical Spectral Devices,

Longmont, CO, USA) which features a spectral range from 350 nm to

2500 nm, an optical resolution of 1 nm and a nominal field of view of

25�. Two types of reference targets were measured during the flight

campaign: white and black 2 � 2 m2 targets made of polyvinyl chloride

(PVC)-coated canvas material (Odyssey trademark material;

Kayospruce Ltd, Fareham, UK) assumed to be lambertian surfaces, and

selected homogeneous plots from the main biocrust communities in

the study site. These measurements covered homogeneous surfaces

of at least 30 cm in diameter. Before each target measurement, the

downwelling solar radiance was measured on a calibrated 99% reflec-

tive Spectralon® panel (Labsphere Inc., Sutton, NH, USA) to optimize

the instrument parameters and calculate the reflectance factors. Eight

to ten spectra were taken on each target and were averaged to obtain

the final spectrum for each target. These ground spectral measure-

ments were acquired around solar noon, contemporaneously to the

multispectral images collected by the Parrot Sequoia camera (UAV

flight 2). Their exact location was registered using a differential global

navigation satellite system (dGNSS) including one Topcon HiPer Pro

antennas and one Topcon GPR-1 (Topcon, Tokyo, Japan). The spectra

of all ground measurements were resampled to the Sequoia spectral

resolution using the response function of the sensor (Fawcett et al.,

2020). These spectra were used to apply an empirical line correction

(Smith & Milton, 1999) to the multispectral images to guarantee the

radiometric quality in the final reflectance orthomosaics.

Simultaneous to the drone flights, the coordinates of 10 reference

targets were taken in each area using the dGNSS. The targets were

deployed in clear areas as black and white grids printed on thick paper

sheets (297 mm � 420 mm). To optimize the geometric accuracy of

the UAV-derived products in both planimetry (XY direction) and

altimetry (Z direction), the targets were evenly distributed across the

whole study area of each zone, since the target distribution might

affect later model generation accuracy (Gindraux et al., 2017;

Martínez-Carricondo et al., 2018) (Figure 1). In each area, six of the

targets were used as ground control points (GCPs) for the generation

of the orthophoto and DTM, while the remaining four were used as

ground validation points (GVPs). Giving that the size of Area A and

Area B were around 5.4 ha and 1.2 ha, respectively, the density of

targets in the study site (111 and 600 GCP/km2 for Areas A and B,

respectively) was enough to guarantee high accuracy in the derived

digital models (Gindraux et al., 2017; Martínez-Carricondo

et al., 2018). We used a rapid-static measurement technique and the

coordinates were corrected during post-processing (Hofmann-

Wellenhof et al., 2007). One of the two GNSS devices was used as

master and the other as rover. The master station was placed in a

clear flat area for a cumulative time of 5 h and was used as a static

reference point. The rover was used to measure the centre point of

each GCP and GVP, with the rover keept over the point for at least

2 min, taking a measurement every second with at least six satellites

in the field of view of the receiver, according to the protocol proposed

by Hegarty and Chatre (2008). The master and rover data were post-

processed using Topcon Tools software (Topcon Positioning Systems,

Inc.). The dGNSS system used during the surveys has a horizontal

precision of 3 mm + 0.5 ppm and a vertical precision of 5 mm

+ 0.5 ppm according to the Topcon HiPer Pro specification data.

T AB L E 1 Technical information of the unmanned aerial vehicle (UAV) flights using the thermoMAP, Parrot Sequoia and S.O.D.A. sensors over
the Areas A and B

Flight Sensor

Area

flown

Start time

(UTC)

Approximate

duration (min)

Number of

images collected

Average altitude above

ground level (m)

Average ground

sampling distance (cm)

1 thermoMAP A 06:13 13 2397 69 13.09

2 thermoMAP B 06:28 5 660 84 15.00

3 Sequoia A 11:45 19 297 82 7.74

4 Sequoia B 12:06 9 115 90 8.48

5 thermoMAP A 11:52 13 2211 69 13.09

6 thermoMAP B 12:06 5 597 84 15.00

7 S.O.D.A. A 13:17 19 361 66 1.55

8 S.O.D.A. B 13:06 9 135 76 1.79
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2.3 | Unmanned aerial vehicle (UAV) data
processing

2.3.1 | Red, green and blue (RGB) images:
Orthophoto, digital terrain model (DTM) and terrain
attributes

RGB images acquired over Areas A and B of the study site by the

S.O.D.A. camera were processed into orthophotos and grid-based

DSMs following a SfM workflow (Lucieer et al., 2014; Westoby

et al., 2012) in Agisoft PhotoScan v.1.4 (Agisoft, St. Petersburg,

Russia). A detailed description of the SfM algorithms used in Agisoft

PhotoScan can be found in Verhoeven (2011). The images captured

during the flights were aligned using an image feature recognition

algorithm similar to Lowe’s (2004) scale-invariant feature transform

method, which automatically detects and matches unique image

feature characteristics that are stable under variations in view per-

spective and illumination across input photographs. This alignment

results in a sparse three-dimensional (3D) point cloud, which is used

to create a dense point cloud by an iterative bundle adjustment algo-

rithm. In turn this recreates its 3D geometry and camera positions

from a sequence of two-dimensional images acquired from multiple

viewpoints (Ullman, 1983). The onboard navigation sensors allowed

the camera positions and 3D point cloud to be automatically

georeferenced within the precision of the instrument. The GCPs were

then manually identified on the images, and their dGNSS coordinates

were imported to optimize the spatial accuracy and improve the

geometry of the 3D point cloud. A multi-view stereo image matching

algorithm was applied to the point clouds to increase the density of

the point cloud and to convert them into the orthomosaics of each

area. The GVPs were also identified in the images and they were only

used for the model accuracy assessment in post-processing and not

for their creation. The geometric accuracy of the models was assessed

by calculating the root mean square error (RMSE), the mean error and

standard deviation of error of the GCPs and the GVPs.

To generate free-of-vegetation DTMs, the points belonging to

vegetation were removed from the point cloud (Figure 3) using the

CANUPO plug-in (Brodu & Lague, 2012) in CloudCompare. For each

area, two-point clouds representing each class (i.e., vegetation and

bare soil) were manually segmented from the point cloud. These sub-

clouds were used for training the classifier, computing a dimensional-

ity descriptor on the original point cloud with a regular ramp of scale

values (i.e., sampled from 0.1 to 1 with steps of 0.1). The classifier was

applied to the point cloud (using selected core points) classifying and

removing vegetation points. Finally, isolated points were removed by

using the noise filter tool (i.e., specifying a radius of 0.3 m and a rela-

tive error) and the DTMs were exported from CloudCompare with a

resolution of 10 cm, interpolating empty cells with average values.

Free-of-vegetation DTMs were smoothed in ArcMap by applying an

average filter with the Focal statistics tool by considering a circular

window of 1 m diameter. This filter was applied to minimize potential

errors that can occur with the removing vegetation procedure.

Besides elevation, the slope of each cell was also calculated from

the filtered DTM, applying the nine parameter second-order

polynomial method (Zevenbergen & Thorne, 1987) within the Slope

function in QGIS v.2.18.12. The aspect was derived using the Aspect

function in QGIS v.2.18.12. The Northernness (i.e. the exposure of

each cell of the DTM to the North) was calculated as the cosine of

each cell of the aspect model. Since this variable ranges from �1 to

1, +1 was added to each pixel value to avoid problems in later

calculations.

The contributing catchment area (CCA) of each pixel of the DTMs

was modelled using the TauDEM toolbox (Tarboton, 1997; Tesfa

et al., 2011) in ArcMap v.10.5. For this, the pits were first removed

from the DTM and the D-Infinity Contributing Area function was used

to calculate it. The D-Infinity algorithm (Tarboton, 1997) calculates

the flow direction using the steepest downwards slope on the eight

triangular facets formed in a 3 � 3 pixel window centred on the grid

cell of interest. The topographic wetness index (TWI; Beven &

Kirkby, 1979), which quantifies the topographic control on hydrologi-

cal processes, was calculated for each cell according to Equation 1:

TWI¼ ln
A

tanβ

� �
ð1Þ

where A is the upstream area for each pixel and β is the slope in

degrees.

The length slope factor (LSF; Renard et al., 1997), an indicator of

the potential sediment transport or erosion risk under specific slope

conditions, was calculated according to Equation 2:

LSF¼ nþ1ð Þ� A
22:13

� �n

� sinβ
0:0896

� �m

ð2Þ

where LSF is the length slope factor, A the CCA, β the slope gradient

and n and m are constant parameters set to 0.4 and 1.3, respectively.

The potential solar incoming radiation (PSIR) was calculated using

the vegetation filtered DTMs of each area and the geometric solar

radiation model implemented in ArcGIS Solar Analyst tool by assum-

ing a uniform clear sky condition with a constant transmissivity of 0.5

(Fu & Rich, 1999) and a diffuse radiation proportion of 0.3. The map

of the whole year PSIR (Wh/m2/yr) was used in this study as an indi-

cator of the potential evapotranspiration (Monteith & Szeicz, 1962).

2.3.2 | Multispectral Parrot Sequoia images

The multispectral images were processed in Pix4DMapper (Pix4D

S.A., Lausanne, Switzerland) to obtain the final reflectance for each

spectral band of the image. First, the calibration coefficient K for con-

verting measured pseudo-radiance R to reflectance was derived for

each band as in Equation 3:

K¼ ρref
Rref

ð3Þ

where ρref is the known reflectance of the panel for the Sequoia band

and Rref represents the measured pseudo-radiance averaged over the

pixels of the reference panel. Values for ρref were provided by

the manufacturer. The digital number (P) of each pixel were converted

to pseudo-radiance in arbitrary units R according to Equation 4:

R¼ f2
P-B

AγεþC
ð4Þ
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where γ is the ISO number, ε is the exposure time in seconds, f is the

f-number and A, B and C are camera-specific calibration coefficients

which model the non-linear behaviour of the sensor (Fawcett

et al., 2020).

Finally, the reflectance per pixel (ρ) of the scene was derived as in

Equation 5:

ρ¼KR ð5Þ

To correct the reflectance measured by the multispectral sensor,

the empirical line method (Smith & Milton, 1999) was applied. This

method was based on an empirical relationship between the drone

reflectance and ground reflectance of the reference targets (i.e., black

and white reference panels) collected with the ASD Field

Spectroradiometer in the field.

The white panel saturated on the Sequoia images, therefore

homogeneous biocrust targets were used as bright targets instead.

The linear equation obtained for each multispectral band was applied

to obtain the final reflectance of the multispectral images.

An orthomosaic was built from the multispectral images covering

the study area with an original spatial resolution of 7.74 cm and

8.48 cm in Areas A and B, respectively, further resampled to

10 cm/pixel. The geometric accuracy of the orthomosaic was assessed

by calculating the RMSE, the mean error and standard deviation error

of the GCPs and the GVPs.

The CR algorithm was computed on the geometrically and

radiometrically corrected multispectral orthomosaic. This method

normalizes the reflectance spectrum to a common baseline at

specified wavelengths and allows the comparison of absorption

features in the spectra that are produced by target components, for

example pigments for vegetation covers. This is achieved by approxi-

mating the continuum between local spectral maxima through

straight-line segments; a value of 1 is assigned to the local maxima,

and a value between 0 and 1 is obtained in correspondence of the

absorption features. Interpolating the reflectance between 550 nm

(Green band) and 735 nm (Red Edge band) as the continuum baseline.

Although this algorithm is more typically applied to hyperspectral

data, it has already been used in multispectral imagery to map

drylands (Panigada et al., 2019) and vegetation parameters (Chauhan

et al., 2020). The absorption feature related to chlorophyll-a was

computed at 660 nm by extracting the value of the CR in the red band

(CRred). The CRred was used to improve later classification of

the images.

Seven different surface covers were identified in the study site

during the field surveys (Figure 4): bare soil (Soil), bright lichens

(BL; patches of Squamarina spp., Diploschistes spp., Buellia spp.), bright

lichens with moss (BLM; Squamarina spp., Diploschistes spp., Buellia

spp. and Tortula revolvens [Zone 1] or Syntrichia ruralis [Zone 2]), moss

(Moss; Tortula revolvens [Zone 1] and Syntrichia ruralis [Zone 2]),

Fulgensia spp. and moss (Fulg; Fulgensia spp. and Tortula revolvens

[Zone 3] or Pleurochaete squarrosa [Zone 4]), green vegetation

(GreenVeg; green tussocks of Macrochloa tenacissima) and dry vegeta-

tion (DryVeg; dry individuals of Helianthemum squamatum, Gypsophila

struthium and Macrochloa tenacissima). These surface covers were

used as reference for the digital classification of the multispectral

orthomosaic.

At least 15 polygons (around 100 pixels) per class were selected

on each orthomosaic to train the support vector machine (SVM)

algorithm used in the classification. These training areas were

selected using ancillary information such as field notes, global

positioning system (GPS) points and high resolution RGB

orthomosaics. The four bands of the multispectral images were used

as input in the SVM.

SVM is a statistical learning based supervised classification

method (Cortes & Vapnik, 1995; Vapnik, 2005). It uses training

samples of the target categories and separates them using a decision

surface called the ‘hyperplane’, which maximizes the margin between

each category. The support vectors are the closest training samples to

this hyperplane, and are the ones used by the algorithm. In this study,

a radial basis kernel function was used. The SVM was used to classify

the images and derive thematic maps with the spatial distribution of

the main land covers in the two areas. CRred was used to improve the

discrimination of some categories with similar spectral behaviour such

as DryVeg and Moss, but different pigment absorption. Pixels classi-

fied as DryVeg with CRred values lower than 0.75 were assigned to

Moss and pixels of BL with CRred values of 1 were assigned to Soil.

F I GU R E 3 Example of vegetation classification derived from the point cloud used to derive the vegetation free digital terrain model (DTM) in
Area A of the study site. Left: Red, green and blue (RGB) true colour composite with vegetation and bare soil areas. Right: Classification of
vegetation (red) and bare soil (blue) [Color figure can be viewed at wileyonlinelibrary.com]
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These thresholds were defined from the CRred mean and standard

deviation values calculated in correspondence with the training

polygons of soil, DryVeg and Moss classes.

The classification accuracy was assessed through confusion matri-

ces (Story & Congalton, 1986). In the confusion matrix the ground

truth data (i.e., columns) are compared to the classified data

(i.e., rows). The major diagonal represents the agreement between

these two data sets, and the overall accuracy (OA) of the classification

is calculated by dividing the sum of the entries of this diagonal by the

total number of samples taken. In addition, the Kappa coefficient

(κ, Cohen, 1960) was calculated to asses the classification accuracy.

The accuracy of the classification over Area A and Area B was

assessed with two validation datasets, each consisting in 10 polygons

of nine pixels for each class (90 pixels per class). Polygons were manu-

ally defined using ancillary information such as field pictures, field

notes, GPS points and high-resolution RGB orthomosaics.

2.3.3 | Thermal imagery and apparent thermal
inertia (ATI) calculation

TIR images acquired by the thermoMAP camera were calibrated

during the flight using an integrated shutter for in-flight radiometric

calibration. This shutter automatically closes after every picture is

captured and self-calibrates by comparing the grey level of each pho-

tograph with the temperature measured by the built-in temperature

sensor of the camera. The raw images were converted using Pix4D

software (Pix4D) to temperature in Celsius degrees according to

Equation 6:

T¼0:01R�100 ð6Þ

where T is the absolute temperature in Celsius degrees and R is the

radiometric value of thermoMap thermal images. The emissivity of

field sampled biocrusts and soils was measured in the laboratory and

found to be close to 1 for both targets (see Supporting Information,

Table S1) in the range of the thermoMAP (8.5–13.5 μm). Since the

aim of using these images in this study was to measure properties

related to biocrusts, emissivity was therefore neglected and thus not

included in this calculation.

Two orthomosaics (one captured before sunrise and one at noon)

of each target area with a spatial resolution of 15 cm were generated

using Pix4Dmapper (Pix4D). The geometric accuracy of these TIR

orthomosaics was assessed by calculating the RMSE, the mean error

and standard deviation of error of the GCPs and the GVPs.

Land surface temperature differences and albedo were used in

the definition of the concept of apparent thermal inertia to assess the

space variability of soil water content (Negm et al., 2017; Verstraeten

et al., 2006). We applied the apparent thermal inertia (ATI; in K�1),

which is an approximation of thermal inertia and is derived directly

from multi-spectral remote sensing imagery (Mitra & Majumdar, 2004;

Van Doninck et al., 2011) according to Equation 7:

ATI¼C
1�α

ΔT
ð7Þ

where ΔT is the amplitude of the diurnal temperature range calculated

as the difference between the maximum and the minimum daily sur-

face temperature, α is the surface spectral albedo and C is the solar

F I GU R E 4 Orthomosaic of Area B and details of the classes used to classify the multispectral images. BL, bright lichens; BLM, bright lichens and
moss; Fulg, Fulgensia spp. and moss; GreenVeg, green vegetation; DryVeg, dry vegetation [Color figure can be viewed at wileyonlinelibrary.com]

BLANCO-SACRIST�AN ET AL. 2473

http://wileyonlinelibrary.com


correction factor that changes over space and time to normalize for

solar flux variations with latitude and solar declination changes

between seasons. The ΔT was calculated as the difference between

the surface temperature of the orthomosaic captured at noon and the

one captured before the sunrise. The value of C was calculated and

had a value of 1.19. We approximated the albedo as in Equation 8:

α¼ ρGREENþρREDþρREGþρNIR
4

ð8Þ

where ρGREEN, ρRED, ρREG and ρNIR are the reflectance values in

the Green, Red, Red Edge and NIR bands, respectively. Multispectral

bands were calibrated so that the brightness map can reasonably be

considered to be a proxy of the broadband visible albedo. The

correlation between thermal inertia and soil moisture, observed in the

literature (Minacapilli et al., 2009), was here tested through a linear

regression model between the mean ATI value extracted from

orthomosaics and the mean soil moisture measured on each plot

during the field campaign by traditional TDR methods. The average

value of ATI on each 2 � 2 m2 plot was obtained in QGIS v.2.18.12

by averaging the ATI values of the corresponding polygons.

Vegetation pixels were excluded from our analysis. The high-

spatial resolution of TIR and multispectral images allowed us to use

the classification of the multispectral images to create a

vegetation-free mask that was applied to the ATI orthomosaics.

2.4 | Statistical analysis

To evaluate if there were statistically significant differences between

the four study zones, a post hoc Dunn’s test followed by a Kruskal–

Wallis test was performed, using the dunnTest function from the FSA

package (Ogle et al., 2021) in R. To analyse the effect of the terrain

attributes in relation to the spatial distribution of soil properties mea-

sured in the sampling plots, the correlation ratio (Pearson, 1926) was

calculated between the terrain attributes obtained from the RGB

images and the ATI and the soil characteristics retrieved from ground

measurements. The average value of the terrain attributes on each

plot was obtained in QGIS v.2.18.12 by averaging the terrain attribute

values of the corresponding polygons, excluding vegetation pixels.

The correlation ratio was calculated as in Equation 9. It can assume

values in the interval (0,1), and gives an indication of how much the

data variance (in our case the soil property) is explained by the terrain

factors; a high correlation ratio (close to 1) means that the factor

explains most of the data variance. The weighted variance of the

category means divided by the variance of all the samples. In our case

the values of each terrain attribute (category) were divided in three

classes standardized using their maximum and minimum values

(i.e. low, medium, high):

η2 ¼
σ2y

σ2y
, where σ2y ¼

P
xnx y

x
�y

� �2

P
xnx

andσ2y ¼
P

x,inx yxi�y
� �2
n

ð9Þ

where yxi is the single soil property observation, x indicates the terrain

attribute category, and i indicates an observation. If nx is the number

of observations in the x terrain category, y
x
is the mean of the cate-

gory x and y is the mean of the whole population.

The relationship between the different biocrust covers and the

terrain variables in the whole study area was evaluated through a

redundancy analysis (RDA) performed using the vegan R package

(Oksanen et al., 2017) v.2.4. To test the significance of the

selected variables in the RDA, permutation tests (N = 999) were

performed using the marginal effect of the terms in the anova.cca

function.

The CCA variable was removed from the analysis since it was

used to calculate TWI and LSF. Based on this, a set of seven terrain

attributes were considered in the analysis: (i) PSIR as an indicator of

the potential evapotranspiration (Monteith & Szeicz, 1962) and as a

proxy of thermal microclimate (Durham et al., 2018; Suggitt

et al., 2018); (ii) LSF as an index of surface stability (Renard et al.,

1997); (iii) TWI as an index of the topographic control on hydrological

processes (Sörensen et al., 2006); (iv) elevation; (v) Slope gradient, as

it has implications for dryland components distribution not

captured by other variables (Rodríguez-Caballero et al., 2019);

(vi) Northernness, as indicator of facing of the slope and (vii) ATI, as a

proxy of soil moisture. The vegetation (combination of DryVeg and

GreenVeg) and soil fractional covers were also included as variables in

this analysis. The dataset used in this analysis was obtained through a

random sampling of 1147 points in the study area, with a minimum

distance of 3 m between them to avoid spatial autocorrelation. This

distance was calculated through a semi-variogram analysis (Curran,

1988). A circle of 3 m was drawn around each point to extract the

terrain attributes and the fractional cover of the different components

(i.e., soil, vegetation and different biocrust compositions). Several

models with all combinations of variables were computed to identify

the best-fitting RDA model based on maximum adjusted r2, but

avoiding multicollinearity. This was estimated by the variance inflation

factor (VIF), which was calculated through the vif.cca function of

vegan R package. Variables with a VIF higher than 10 were excluded

from the analysis.

3 | RESULTS

3.1 | Unmanned aerial vehicle (UAV) imagery
geometric accuracy

The geometric accuracy of the products generated from the UAV

imagery was assessed based on the RMSE, mean and standard

deviation of the GCPs used for model generation and the GVPs

used for the assessment of model accuracy. A summary of the

statistics is reported in Table 2. The total RMSE computed on the

GVPs was lower than 3.2 cm for both RGB models, about 22 cm

for the multispectral images and lower than 25 cm for the TIR

images. The mean error over the whole study area was lower than

1 cm in the RGB models. For the multispectral and the TIR images,

the mean error was always lower than 2 cm, in many cases lower

than 1 cm. Focusing on the RGB survey used to derive the DSMs,

DTMs and terrain attributes, the mean vertical error and

standard deviation were very low. This suggests that the

generated models and terrain attribute maps were not affected by

systematic error.
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3.2 | Classification of the multispectral
orthomosaics and evaluation of the classification
accuracy

Mean reflectances and standard deviations of the training classes

used for the classification procedure are shown in Figure 5(a).

Classes dominated by lichens had higher reflectance, with BL the

highest reflectance class among them. Classes dominated by mosses

had the lowest reflectance among biocrusts, only DryVeg

reflectance was lower. The spectra CR shown in Figure 5(b) high-

lights the absorption due to chlorophyll at �660 nm. Moss was the

biocrust class with the highest absorption at �660 nm due to

chlorophyll (i.e., lowest CRred value), while GreenVeg was the class

showing the highest absorption of all the evaluated classes. While

similar in the spectral shape, DryVeg and Moss presented

differences in their CRred and reflectance values. The red absorption

feature was present in all classes but Soil, and allowed to better

differentiate it from biocrust classes. These subtle differences

allowed an improvement in the classification carried out by the

SVM, which slightly confused these two classes, by using thresholds

in the CRred.

The SVM classification generated land cover maps of the two

target areas in the study site (Figure 6). The SVM classifications

were improved using the CRred thresholds on the Soil and DryVeg

classes. Final accuracies are reported in Table S2, OAs higher than

80% in most cases were achieved in both areas, with κ equal to 0.8

and 0.93 in areas A and B, respectively. Only BLM in Area A had an

OA below 80%. As shown in the confusion matrices (Table S2), BL

T AB L E 2 Root mean square error (RMSE), mean error (ME) and standard deviation of error (STDEV) for red, green and blue (RGB),
multispectral and thermal infrared (TIR) imagery and both ground control point (GCP) and ground validation point (GVP)

GCP GCP GCP GVP GVP GVP

Area Imagery RMSE XY (cm) RMSE Z (cm) Total RMSE (cm) RMSE XY (cm) RMSE Z (cm) Total RMSE (cm)

A RGB 2.17 4.2 4.7 2.2 2.3 3.2

B 1.58 1.3 2.1 1.9 1.3 2.4

A Multispectral 18.8 21.8 22.4 19.4 13.7 21.8

B 11.1 17.1 18.2 13.7 21.4 22.3

A TIR 21.2 23.4 24.7 23.1 22.4 24.5

B 16.6 17.3 19.8 16.8 15.9 19.9

MEjSTDEV X (cm) MEjSTDEV Y (cm) MEjSTDEV Z (cm) MEjSTDEV X (cm) MEjSTDEV Y (cm) MEjSTDEV Z (cm)

A RGB 0.09j 0.49 0.02j 0.91 0.25j 1.40 0.09j 0.51 0.01j 0.49 0.17j 0.95
B 0.08j 0.16 0.01j 0.13 0.03j 0.41 � 0.1j 0.41 0.01j 0.13 �0.04j 0.47
A Multispectral 0.83j 4.28 0.15j 4.72 1.2j 6.7 �1.27j 8.45 �0.25j 2.89 �1.8j 2.27
B �0.6j 1.1 0.2j 1.7 �0.3j 3.5 0.9j 2.6 �0.3j 2.5 0.4j 6.1
A TIR 0.93j 4.82 0.16j 5.32 1.32j 5.62 1.01j 5.25 0.15j 5.09 1.31j 5.57
B �0.89j 1.7 0.26j 1.77 �0.3j 2.03 �0.91j 1.72 0.24j 1.63 0.33j 2.04

F I GU R E 5 Mean reflectance and standard deviation spectra (a) and mean continuum removed (CR) and standard deviation spectra (b) of the
vegetation, biocrust and soil classes used as training for the support vector machine (SVM) classification. DryVeg, dry vegetation; GreenVeg,
green vegetation; BLM, bright lichens with moss; Fulg, Fulgensia spp. with moss [Color figure can be viewed at wileyonlinelibrary.com]
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and GreenVeg were the most accurately classified covers in this

area, while there was 10% of Moss misclassified as BLM. There was

some confusion between Moss and DryVeg, with 10% of Moss

misclassified as DryVeg in Area A, and between BLM and Soil, with

14% of BLM classified as Soil. In both areas, the most dominant

class was DryVeg, while the least ones were the classes with lichens

and mosses mixed (i.e., BLM and Fulg in Area A and Area B,

respectively; Table 3).

3.3 | Thermal data and soil moisture

The soil moisture values measured in the 23 field plots were similar to

that of the winter long-term soil moisture of this area (Lafuente

et al., 2018), confirming that the moisture status we captured with the

drone flight was representative of the winter rainy season. ATI values

correlated well with the soil moisture (r2 = 0.83; Figure 7), indicating

that ATI is a good estimator of soil moisture, even when soils are cov-

ered by biocrusts. ATI was then used as a proxy of soil moisture for

vegetation-free areas in the subsequent analysis.

3.4 | Analysis of soil properties

Soils in the study area are Gypsiric Leptosols and are characterized by

the very high content of SalSol, reaching values higher than 90% in

some of the plots, and the low presence of OrgCarb (Table 4). Soil

samples showed similar low nutrient contents in all plots, reaching

F I GU R E 6 Support vector machine classifications (top) of the multispectral images (bottom), represented as false-colour composite (near
infrared [NIR], green and red bands), in the six principal surface components. Bare soil, patches of bare soil; Bright lichens, patches of Squamarina
spp., Diploschistes spp., Buellia spp.; Bright lichens with moss, patches of Squamarina spp., Diploschistes spp., Buellia spp. and moss; Moss, Tortula
revolvens, and/or Syntrichia ruralis and/or Pleurochaete squarrosa; Fulg, Fulgensia spp. and moss; Dry vegetation, dry individuals of Helianthemum
squamatum, Gypsophila struthium and Macrochloa tenacissima; Green vegetation, green tussocks of Macrochloa tenacissima. Left: study Area A;
right: study Area B [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 3 Fractional cover of each class in the study areas as resulted from the classification of the multispectral images

Surface cover (%)

Soil DryVeg GreenVeg BL BLM Fulg Moss

Area A 4.01 59.88 10.23 1.32 10.21 — 14.32

Area B 8.94 43.11 8.03 0.86 — 14.84 24.19

Note: — indicates class not present. Soil, bare soil; DryVeg, dry vegetation; GreenVeg, green vegetation; BL, bright lichens; BLM, bright lichens and moss;

Fulg, Fulgensia spp. and moss; Moss, moss.
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values of Ptot of 0% and values of Ntot close to 0% in some of them.

Moisture presented high variability among the plots, with mean values

around 14%.

3.5 | Statistical analysis

3.5.1 | Relationship between terrain attributes and
soils at plot level

Terrain attributes in the field plots were found to vary across the four

zones sampled (Figure 8). The elevation presented similar values in

Zones 1 and 2 (Area A) and in Zones 3 and 4 (Area B). The slope was

higher in Zone 3, reaching values of 35% of slope gradient. As

expected, LSF presented similar patterns as slope. The TWI presented

values around 3.5 with values not statistically different in the four

zones. PSIR showed an opposite pattern compared to Northernness,

with higher values in Zones 1 and 3, which are mainly exposed to

southwest and south, respectively, indicating higher evapotranspira-

tion. PSIR presented lower values in Zone 2 mainly exposed to the

east and minimum values in Zone 4, mainly exposed to the north.

Similar to Northernness, ATI, that is, soil moisture, presented the

highest values in Zone 4 and lower values in Zone 1, evidencing that

the soil moisture is related to the aspect.

Among the terrain attributes investigated, Northernness, ATI and

PSIR are the ones that explained most of the variance of the soil prop-

erties (Table 5). Soils more exposed to north and characterized by

higher ATI show a lower content of SolSal and higher content of

OrgCarb, Ptot and Ntot. Soils characterized by higher values of PSIR

show an opposite trend, with higher content of SolSal and lower

content of OrgCarb, Ptot and Ntot. The variance of soil properties is

similarly explained by Northernness, ATI and PSIR with values of η2

close to 0.4 when related to SalSol, OrgCarb, Ptot and Ntot, with

slightly higher values of η2 driven by PSIR.

3.5.2 | Relationships between topography,
biocrusts and vegetation distribution at landscape level

The best fitted RDA model excluded Northernness and Slope variables,

which showed multicollinearity, with VIF values around 20. The RDA

results indicated that terrain variables significantly explained variation in

the biocrust distribution in our study area (39.8% of the total inertia;

F = 92.5; p < 0.001). The first two RDA-axes accounted for 34.0% of

the variation for biocrust data (Figure 9). The most significant variables

were: ATI (F = 115.2; p < 0.001), Elevation (F = 100.8; p < 0.001),

Northernness (F = 32.0; p > 0.001) and Veg (F = 29.7; p < 0.001)

(Table S3). For those variables, differences were found between areas

dominated by lichens and mosses. Lichen-dominated biocrusts

appeared on the left side of the first axis, which was characterized by

low values of vegetation presence and ATI (i.e., low moisture) and high

values of LSF, which indicates high potential soil erosion, from a topo-

graphic point of view and high values of PSIR and Elevation. As

evidenced in Table 5, low ATI and high PSIR values are related to high

SolSal content and low OrgCarb, Ptot and Ntot. Among lichen-dominated

biocrusts, Fulg class development was mostly driven by the gradient of

elevation, BL was controlled by high LSF and BLM was driven by low

ATI and low elevation. Conversely, the distribution of mosses typical of

shaded areas (i.e., Pleurochaete squarrosa and Syntrichia ruralis) appeared

on the left side of the first axis, where vegetation presence and soil

moisture (high ATI values) were higher and soil was richer in OrgCarb,

Ptot and Ntot. Nevertheless, Tortula revolvens develops in soils with simi-

lar characteristics to those where lichens dominate, characterized by

low elevation and low ATI and vegetation presence.

4 | DISCUSSION

Previous studies have evaluated the effect of the terrain on biocrust

spatial distribution (Durham et al., 2018; Rodríguez-Caballero

F I GU R E 7 Linear regression between apparent thermal inertia
(ATI) and soil moisture in the 23 field plots used in this study. Shaded
areas represent �95% symmetrical confidence interval [Color figure
can be viewed at wileyonlinelibrary.com]

T AB L E 4 Soil attributes retrieved from the 23 2 � 2 m2 plots sampled in the field

Soil attribute Mean Maximum Minimum Standard deviation

Moisture (%) 14.3 22.6 4.44 5.3

SolSal (%) 81 96 19 15.02

OrgCarb (kg/m2) 0.92 3.96 0.14 0.74

Ptot (%) 0.6 7.26 0 1.44

Ntot (%) 0.08 0.37 0.01 0.07

Note: SolSal, soluble salts; OrgCarb, organic carbon; Ptot, total phosphorus; Ntot, total nitrogen.
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et al., 2019). We have extended this to provided a reproducible frame-

work based only on drone remotely-sensed information; integrating

RGB, multispectral and TIR imagery to evaluate how terrain attributes

drive biocrust distribution. In this study, the fine spatial resolution of

UAV-based multispectral imagery allowed us to produce very accurate

maps of dryland biocrusts, with a higher degree of detail compared to

the ones produced in previous studies using airborne and satellite

imagery (e.g., Panigada et al., 2019; Rodríguez-Caballero et al., 2014;

Weber et al., 2008). The high accuracy reached in discriminating

between typical semi-arid environmental components (i.e., vascular

vegetation, biocrust with different composition and soils) reinforces

the ability of the SVM algorithm to distinguish between similar

spectral classes (Plaza et al., 2009) and of the CR algorithm’s ability to

improve identification of biocrusts (e.g., Blanco-Sacristán et al., 2019;

Panigada et al., 2019; Román et al., 2019). Although differences in the

absorption feature caused by chlorophyll at �660 nm between bio-

crusts and bare soils are subtle (Weber & Hill, 2016), we showed that

they can be detected with multispectral data. CRred allowed us to

F I GU R E 8 Box plots of the terrain attributes for the different aspects of the plots deployed in the field. The different lowercase letters
indicate statistically significant differences between aspects (post hoc Dunn’s test following a Kruskal–Wallis test). 1, 2, 3 and 4 indicate the zones
of the study area, which are mainly exposed to west, east, south and north, respectively. LSF, length slope factor; TWI, topographic wetness
index; PSIR, potential solar incoming radiation; ATI, apparent thermal inertia [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 5 Descriptive statistics (i.e., mean and standard deviation) of soil properties grouped in terciles of terrain attributes

L M H η2

North

SolSal 86.50 � 4.74 68.60 �4.94 62.50 �29.21 0.43

OrgCarb 1.24 � 0.57 1.39 �0.62 3.27 �2.49 0.35

Ptot 112.72 � 30.51 167.01 �65.05 219.50 � 151.14 0.31

Ntot 0.06 � 0.03 0.07 �0.05 0.17 � 0.13 0.35

ATI

SolSal 86.09 � 3.80 83.30 � 12.02 56.00 � 32.04 0.42

OrgCarb 1.18 � 0.49 1.19 �0.53 3.30 � 3.04 0.32

Ptot 112.81 � 28.91 119.00 � 48.69 251.66 � 167.50 0.37

Ntot 0.06 � 0.02 0.06 � 0.03 0.18 � 0.15 0.35

PSIR

SolSal 56.00 � 30.04 78.25 � 12.31 86.31 �4.67 0.45

OrgCarb 3.30 � 3.04 1.28 � 0.38 1.25 �0.61 0.35

Ptot 251.66 � 167.50 125.00 � 68.01 116.43 � 27.38 0.37

Ntot 0.18 � 0.15 0.06 � 0.03 0.06 � 0.03 0.36

Note: North, northernness; ATI, apparent thermal inertia, PSIR, potential solar incoming radiation. L, low; M, medium; H, high. Correlation ratio (η2) among

soil variables and topography variables is also reported. Only variables with η2 higher than 0.3 are represented. SolSal, soluble salts (%); OrgCarb, organic

carbon (km/m2); Ptot, total phosphorus (%); Ntot, total nitrogen (%)
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improve the classification results by exploiting the differences

between the biocrust classes.

It should be noted that UAV data collection took place during the

wet season, when the water content in biocrusts is high and pigments

are metabolically active (Weber & Hill, 2016). This enhances the dif-

ferences in the spectral properties of biocrusts and improves their

identification (Blanco-Sacristán et al., 2019). While the classifications

from the multispectral images allowed mapping of the different envi-

ronmental components of the study area, the values of ATI derived

from TIR imagery correlated very highly with the soil moisture mea-

sured in the field. We demonstrated that the correlation between ATI

and soil moisture is also maintained when biocrust cover is present.

To our knowledge, these are the first maps of ATI derived from UAV

in drylands with presence of biocrust cover. Previous studies have

used hyperspectral thermal sensors to discriminate different types of

biocrusts from bare sand based on emissivity values and to character-

ize biocrusts’ maturity (Rozenstein & Karnieli, 2015). In this study the

ATI maps derived from TIR imagery were used to estimate how

the soil moisture affects biocrust type and distribution, but ATI maps

could also be used to better understand water distribution in drylands,

especially when there is controversy about the final role of biocrust

covers on soil water balance due to their influence on several hydro-

logical processes and soil properties with antagonist effects (Chamizo

et al., 2016). We found that topographic characteristics can partially

explain the soil moisture gradient estimated by ATI (ATI and PSIR are

inversely correlated with r2 = 0.46). This moisture gradient promotes

a diversification of ecological niches that also explains the distribution

pattern of biocrust communities. However, long-term studies are still

necessary to better understand the dynamics of soil moisture and the

feedback effects on biocrust cover, and to try to decouple the

biocrust effect on water from the water effect on biocrusts, which are

strongly interrelated. ATI could be a useful variable to expand our

knowledge in this direction.

The UAV RGB images were used to produce fine DTMs from

which terrain attributes were derived and utilized to evaluate their

impact on soil properties. The mean error of these DTMs was lower

than 1 cm, which is comparable to previous studies applying SfM

techniques for topography reconstruction (Bakker & Lane, 2017;

Smith & Vericat, 2015). These results, together with the rough and

steep topography of the study areas, suggest that these models were

not affected by systematic error. We found that PSIR, ATI and

Northernness were the terrain attributes mostly related to soil proper-

ties. These attributes explained in similar magnitudes the distribution

of SolSal, OrgCarb, Ptot and Ntot. Increased shadows and higher soil

moisture, indicated by low PSIR and high ATI, are related to a higher

content of soil nutrients, as shown in plots located in Zones 2 and

4, predominantly east- and north-facing plots, respectively. Increased

shadows and soil moisture control the survival and activity of microor-

ganisms (Borken & Matzner, 2009; Drenovsky et al., 2004) and lead to

better nutrient cycling and higher activity of microbial communities

(e.g., Xue et al., 2018). This increased moisture favours not only the

preservation of OrgCarb and its association with other mineral com-

ponents (Plaza et al., 2013), but also the presence of vegetation and

moss-dominated biocrusts on the most humid slopes. Conversely,

plots from Zones 1 and 3 presented the highest PSIR, which deter-

mines the lower content of nutrients (lower microbial activity-lower

nutrients) and increased content of SolSal, which is observed in other

areas with high evapotranspiration rates (Rodríguez-Caballero

et al., 2019).

The variance in soil properties not explained by the terrain

attributes is probably explained by the presence of vegetation and

biocrust cover. Vegetation patches enhance the accumulation of

water and nutrient capture, which increase biological activity under

and close to their cover (e.g., Okin et al., 2015). In addition, vegetation

increases shadows which promotes microbial activity (e.g., Huang

et al., 2015; Xue et al., 2018) and thus soil nutrients content.

Macrochloa tenacissima in particular, the dominant species in the study

area, modifies stocks of soil carbon and organic matter (e.g. Gauquelin

et al., 1996; Kaouthar & Chaieb, 2009; Maestre et al., 2001). While its

effect on nirogen (N) content is less clear, some studies have found

F I GU R E 9 Redundancy analysis (RDA) of the
biocrust and vegetation cover with respect to
terrain attributes, soil and vegetation cover in the
four zones of the study area. The red arrows
indicate the increase along terrain attribute
gradients, while the black arrows indicate the
response variables (biocrust classes) and their
directions represent the explanatory relationships
with the axis. LSF, length slope factor; ATI,
apparent thermal inertia; TWI, topographic
wetness index; Veg, presence of vascular
vegetation; Soil, presence of bare soil; PSIR,
potential solar incoming radiation; BL, bright
lichens; BLM, bright lichens with moss; Fulg,
Fulgensia spp. with moss; TorRev, Tortula
revolvens; Moss, Pleurochaete squarrosa and
Syntrichia ruralis [Color figure can be viewed at
wileyonlinelibrary.com]
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negative effects on this parameter (Armas & Pugnaire, 2011) while

others have described positive effects (Castillo-Monroy et al., 2010)

when compared to non-vegetated surfaces.

Together with the effect of vegetation on soil properties,

biocrusts have been found to take up significant amounts of atmo-

spheric C and N by photosynthesis and N fixation (Elbert et al., 2012).

They are therefore an important pool and source of organic inputs

into the soil in drylands (Castillo-Monroy et al., 2011; Chamizo

et al., 2012b; Concostrina-Zubiri et al., 2013). Furthermore, biocrusts

strengthen soil structure by interacting with mineral particles and

forming aggregates (Belnap & Lange, 2013; Eldridge & Leys, 2003),

thus protecting soil from C loss. Biocrusts promote microbial

community growth where they appear and the increased shadows

created by vegetation increase this growth indirectly (Huang

et al., 2015). However, the role of biocrusts on soil nutrients content

depends on biocrust composition and patch-size distribution (e.g.,

Bowker et al., 2013; Delgado-Baquerizo et al., 2015; Sedia &

Ehrenfeld, 2006). For example, mosses have greater photosynthetic

capacity compared to other types of biocrust (Weber & Hill, 2016),

and thus can incorporate higher levels of C. In addition, positive rela-

tionships between N and the presence of mosses have already been

observed (Delgado-Baquerizo et al., 2016). This might partially explain

the increased soil nutrients content in the north- and east-facing plots

in the study area, where mosses appear to dominate plant

interspaces.

Variations in biocrust distribution and composition in dryland

biomes are primarily controlled by climatic differences (Bowker et al.,

2016). However, vegetation and terrain properties generate variations

from these climatic controls and modify the local distribution of nutri-

ents in dryland landscapes (e.g., Manzoni et al., 2006;

Puigdefábregas, 2005; Puigdefábregas & Sánchez, 1996). Thus, the

different sensitivity of biocrusts to the distribution of resources condi-

tions the composition of these ecosystems (Bowker et al., 2016; Dur-

ham et al., 2018; Rodríguez-Caballero et al., 2019). The RDA

conducted using data from 1147 points showed that Fulgensia spp.

presented a strong positive relationship with unstable zones (high

values of elevation and LSF). Fulgensia spp. has already been observed

in unstable terrains several times, highlighting the pioneering behav-

iour of this genus (Cant�on et al., 2020; Miralles et al., 2020;

Rodríguez-Caballero et al., 2013). Mosses, typically found in shaded

areas (i.e. Pleurochaete squarrosa and Syntrichia ruralis), dominated

areas with low PSIR, high ATI, and a high presence of vascular vegeta-

tion, where soils were richer in organic carbon and nutrients. A posi-

tive plant-biocrust relationship is common for bryophytes (Zhou

et al., 2020) and close correspondence with Macrochloa tenacissima

presence has already been observed (Martínez-Sánchez et al., 1994).

The RDA showed a lower explanatory power of the terrain

attributes regarding Tortula revolves, a moss that develops in arid

environments, and BLM class dominated by the association of

Diploschistes diacapsis and Squamarina lentigera (BLM). They appeared

in more stable zones (i.e., low values of elevation and LSF), as already

observed in geographic areas with similar characteristics (e.g., Ladr�on

de Guevara et al., 2018) that have high solar radiation and soils rich in

soluble salts. In particular, Squamarina lentigera can be physiologically

adapted to light-exposed environments, and requires high

temperatures for optimal photosynthesis while being well hydrated

(Lange et al., 1997). Nevertheless, Diploschistes diacapsis, the

dominant species of BL, was also found in areas with high LSF. This

species is very versatile and can adapt its physiology depending on

where it grows (Pintado et al., 2005). We observed that Diploschistes

diacapsis can develop directly on outcrop rocks with very few

millimetres of soil beneath them in areas where gypsum substrates

with fine soil texture favour stability, but where water availability is

scarse. In these areas with outcrop rock, high concentrations of gyp-

sum, soluble salts and higher solar radiation (i.e., high values of PSIR),

Diploschistes diacapsis is more adapted to establish than other lichens,

representing here the early stage of biocrust development.

We found instead mixed patches of lichens and moss (BLM)

(thought to be of the last stages of development) in the left axis of the

RDA plot, where water availability is still scarces but the terrain

presentes lower elevation and LSF and less concentrations of gypsum.

Moss-dominated biocrusts become dominant in areas with higher soil

moisture and north-facing areas, where soil and micro-environmental

conditions are less selective. In the Tabernas desert (southern Spain,

Almería; Rodríguez-Caballero et al., 2019), a nearby site with 220 mm

of mean annual rainfall, similar lichen-dominated biocrusts appear in

north-faced slopes (low evapotranspiration, low PSIR), while in our

study area they appear in south-facing slopes (high evapotranspira-

tion, high PSIR). Biocrust distribution in drylands might be more con-

strained by the effect of terrain attributes on local hydric availability,

rather than rainfall water inputs. For this reason, it is difficult to make

generalizations in the development of biocrusts’ communities and

developing monitoring methodologies that allow up-scaling local

relationships of biocrusts with the terrain is key for dryland ecology.

5 | CONCLUSIONS

The synergistic information obtained from RGB, multispectral and

thermal UAV imagery has allowed us to better understand the

complex factors influencing the distribution of dryland ecosystem

components. We produced accurate, high-resolution maps that can

help to up-scale the local effect of biocrust components on ecosystem

functioning by improving the accuracy of erosion and infiltration

modelling. These aspects of dryland ecology are key to understanding

the distinctive role that biocrust-dominated surfaces have on water

runoff and erosion depending on the predominant type of biocrust

(e.g., Rodríguez-Caballero et al., 2015; Wang et al., 2017). Producing

high-resolution maps will help to monitor these communities in space

and time, a key task to understand the compositional changes they

are already experiencing due to climate change (Escolar et al., 2012;

Ladr�on de Guevara et al., 2018).

Since field-based data collection has many drawbacks, mainly

related to time and costs (Palmer et al., 2002), exploiting UAV-based

methodologies will help to build standardized procedures in dryland

monitoring programmes, while providing very detailed information of

these environments. These are needed because drylands may be

characterized by different structural and functional organization and

present a wide spectrum of compositions, depending on local climate

and terrain properties. Our results have shown some discrepancies

compared to the traditional biocrust development models, in which

more advanced stages (i.e., mixed patches of lichens and moss) are

assumed to appear only in stable soils. Thus, we suggest integrating

more traditional approaches with new methodologies such as the one
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developed in this study, which can provide the very fine spatial resolu-

tion maps of dryland composition and terrain attributes needed for a

detailed description and monitoring of these complex and threatened

ecosystems.
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