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ABSTRACT

Background and aims: Increased delay discounting is associated with obesity and binge eating disorder
(BED). Although BED and obesity frequently co-occur, the neural mechanisms underlying delay dis-
counting in these conditions remain poorly understood. Methods: Thirtyfive women with obesity,
including 10 participants with obesity and BED and 31 controls completed a monetary delay dis-
counting task during functional magnetic resonance imaging. Results: We identified that increased
discounting rates were associated with decreased activity in the left anterior insula in participants with
obesity compared to controls when choosing immediate rewards over delayed rewards (Ppwg < 0.05).
An exploratory analysis comparing the BED subsample to the other groups did not detect significant
differences. Discussion and conclusions: Our findings suggest decreased activity in the anterior insula
may underlie heightened delay discounting in individuals with obesity, contributing the probability of
choosing immediate rewards over delayed rewards based on emotional states. Future studies including
larger, more diverse samples are required to confirm these effects.
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INTRODUCTION

Delay discounting is a cognitive process describing how
individuals value a reward to a lesser extent the farther into
the future it is received; thereby devaluing delayed rewards
as a function of time. Delay discounting differs substantially
among individuals (Lempert, Steinglass, Pinto, Kable, &
Simpson, 2019), and high delay discounting is understood to
reflect an inability to resist immediate reward over positive
prospective outcomes. Steeper individual discounting rates
(i.e., a preference for sooner, smaller reward) are associated
with multiple clinical conditions characterized by deficits in
impulse control (e.g., addictive disorders or gambling dis-
order) (Leeman & Potenza, 2012; Steward, Mestre-Bach,
Fernandez-Aranda, et al., 2017; Steward et al., 2017).

In a manner similar to monetary reward, studies have
suggested that individuals with obesity assign a higher value
to the receipt of immediate food reward, even when satiated
(Appelhans et al., 2011). Accordingly, delay discounting has
been proposed as a potential psychological factor contrib-
uting to obesity (Amlung, Petker, Jackson, Balodis, &
Mackillop, 2016; Appelhans et al., 2011), as the choices of
individuals with obesity might be swayed by a stronger
preference for immediate rewards (ie., unhealthy foods)
over larger future rewards (i.e., improved health). Compared
to healthy-weight controls, women with obesity tend to
exhibit steeper discount patterns (Weller, Cook, Avsar, &
Cox, 2008). Likewise, studies have demonstrated high dis-
counting rates to be positively associated with body mass
index (BMI) (Jarmolowicz et al., 2014; Tang, Chrzanowski-
Smith, Hutchinson, Kee, & Hunter, 2019) and overeating
(Appelhans et al., 2011). Steeper discount patterns could
hamper efforts by individuals with obesity to reach a healthy
weight as the tendency to choose immediate rewards is often
incompatible with sustained dietary control and changes in
eating habits (Maxwell, Gardiner, & Loxton, 2020).

Delay discounting tasks performed during functional
magnetic resonance imaging (fMRI) have provided insights
into the neurobiological mechanisms underlying impulsive
choices (Figner et al, 2010; Smith et al.,, 2016; Steward,
Miranda-Olivos, Soriano-Mas, & Fernandez-Aranda, 2019)
Multiple neural systems are believed to be involved in delay
discounting, including those implicated in assigning value
(the ventral striatum and ventromedial prefrontal cortex
(vmPFC)), prospection (the posterior cingulate, precuneus,
medial temporal lobe, and dorsomedial prefrontal cortex
(dmPFC)), and executive control (anterior cingulate cortex
(ACC) and dorsolateral prefrontal cortex (dIPFC)) (Lempert
et al.,, 2019; Marco-Pallarés, Mohammadi, Samii, & Miinte,
2010; McClure, Laibson, Loewenstein, & Cohen, 2004).
Moreover, activity in the insula is believed to influence the
probability of selecting smaller, sooner rewards over larger,

delayed rewards based on affective states (Volkow & Baler,
2015). Studies in healthy controls have found a bias to
choose smaller immediate rewards over delayed reward to be
associated with increased activity in the striatum, insula, and
vmPFC (Koffarnus et al., 2017; Wittmann, Lovero, Lane, &
Paulus, 2010)" whereas increased activity, in the dIPFC and
parietal regions, is associated with choosing larger delayed
rewards (McClure et al., 2004; Wittmann, Leland, & Paulus,
2007)

Neuroimaging studies have shown biases to immediate
rewards in obesity to be associated with altered activity in
prefrontal and parietal regions (Kishinevsky et al., 2012;
Stoeckel, Murdaugh, Cox, Cook, & Weller, 2013). Activity in
these regions contributes to the inhibition of impulses and
the planning future of actions by weighing possible long-
term consequences (Chen, Papies, & Barsalou, 2016). In the
context of delay discounting, higher functional activity in the
prefrontal cortex (PFC) and lower discounting rates have
been associated with achieving (Kishinevsky et al., 2012;
Weygandt et al., 2013) and maintaining weight loss (Wey-
gandt et al, 2015). For instance, lower discounting rates
associated with stronger activity in the dIPFC can predict,
before a dietary intervention, successful weight loss at 12
weeks (Weygandt et al., 2013) and one-year following
treatment (Weygandt et al, 2015). Relatedly, discounting
rates have been observed to decrease after bariatric surgery
in patients with morbid obesity (Budria et al., 2012). These
studies demonstrate neural activity during decision-making
can be a prognostic factor in dietary success and maintaining
weight loss (Kishinevsky et al., 2012; Weygandt et al., 2013,
2015).

Binge eating disorder (BED) is characterized by distressful
and frequent episodes of excessive food intake accompanied
by a sense of loss of control (American Psychiatric Associa-
tion, 2013). Although not all patients with BED have obesity,
lack of control over food intake and increased binge frequency
contribute to an 87% prevalence of obesity in individuals
with BED (Villarejo et al., 2012). Some researchers support a
framework wherein patients with BED represent a subgroup
within a heterogeneous obesity phenotype (Hege et al., 2015;
Jiménez-Murcia et al,, 2019; Schag, Schonleber, Teufel, Zipfel,
& Giel, 2013). In pattern akin to behavioral addictions and
substance abuse (Minhas et al., 2021; Steward, Mestre-Bach,
Fernandez-Aranda, et al., 2017), studies have also identified an
association between higher discount rates and symptom-
atology in individuals with obesity and BED (Kekic et al., 2020;
Manwaring, Green, Myerson, Strube, & Wilfley, 2011).
Women with BED and obesity have been found to present
steeper discounting rates to food reward, compared to women
with obesity without BED (non-BED) (Manwaring et al,
2011) and to monetary rewards, compared to control partic-
ipants (Bartholdy et al., 2017; Steward, Mestre-Bach, Vintro-
Alcaraz, et al,, 2017). Moreover, theoretical models in obesity
based on hedonic hunger and delay discounting have been
designed to classify BED or non-BED according to individuals’
scores (Manasse et al., 2015). In this study, high discounting
rates and worse inhibitory control were associated with an
increased probability of belonging to the BED group.
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While no study to date has examined delay discounting
in individuals with BED using fMRI, there is evidence to
suggest that individuals with BED present distinct neural
activation patterns during tasks involving inhibitory control
in comparison to individuals with obesity without BED. For
example, Balodis et al. (2013) found that individuals with
BED presented diminished activity in the vmPFC, inferior
frontal gyrus (IFG), and insula during incongruent trials on
the Stroop task when compared to non-BED and controls.
Voon (2015) suggests impulsive behaviors in individuals
with BED are associated with greater cognitive impairment
compared to those with non-BED obesity. In particular,
impulsive behavior in BED is associated with greater
behavioral inflexibility, compulsivity, and psychopathology
compared to non-BED obesity (Voon, 2015).

In the study at hand, we examined monetary delay dis-
counting during fMRI in women with obesity compared to
controls. First, we aimed to investigate whether there were
differences in neural activity associated with discounting
rates between all participants with obesity and a control
group. Second, in an exploratory sub-analysis, activation
patterns during delay discounting in participants with BED
were compared to participants with obesity and controls. We
also sought to explore if differences in neural activity were
associated with impulsive traits and eating disorder severity.

Based on prior literature, we hypothesized participants
with obesity as a whole (OB-all) would exhibit higher dis-
counting rates than controls and that this would be associ-
ated with reduced activation in the PFC, insula, and parietal
regions, as well as increased activity in brain regions
involved reward processing. Moreover, we hypothesized that
BED participants would exhibit a differential activation
pattern to non-BED participants with obesity during delay
discounting. Considering the lack of fMRI studies in BED
and the limited sample size of our BED group in this study,
we have chosen not to further specify our hypotheses for this
exploratory analysis.

METHODS

Participants

Sixtysix adult women (18-56 years of age) were included in
the present study. Thirtyfive individuals belonged to the OB-
all group defined as having a BMI over 30. Within the OB-
all group, 10 women had BED and 25 women did not have
BED (non-BED). All women in the BED group met the
Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) criteria for BED following a standardized struc-
tured interview conducted by clinical psychologists and
psychiatrists. The BED and the non-BED groups were
recruited from the Eating Disorders Unit and the Endocri-
nology and Nutrition Unit, respectively, at Bellvitge Uni-
versity Hospital in Barcelona, Spain. Participants in the non-
BED group were patients seeking treatment for obesity and
were required to a psychiatric screening in order to be
considered a candidate for bariatric surgery. The BED and

the non-BED groups were compared to 31 female controls
(BMI = 18-24.99), recruited via advertisements from the
same University Hospital catchment area.

All participants underwent the Mini-International
Neuropsychiatric Interview (M.IN.L) to assess the presence
of a psychiatric disorder. In the case of controls, exclusion
criteria were a lifetime history of an eating disorder, based
on DSM-5 diagnostic criteria, having had obesity, and cur-
rent diagnosis of psychiatric disorder. The study exclusion
criteria for all participants were being male, the presence of
an organic mental disorder or an intellectual disability, being
pregnant or currently breastfeeding, and any contraindica-
tion for magnetic resonance imaging (MRI) scanning.

Procedures

Participants underwent assessments over two separate ses-
sions. The first session consisted of collecting clinical and
anthropometric measures (outside-scanner measures), while
the MRI scanning was conducted at a second session.

Measures

Body composition. Initially, the participant height was
measured by a stadiometer without wearing shoes. Then,
this information was introduced in a leg-to-leg body
composition analyzer using a Tanita BC-420MA (Tanita
BC-420MA, Tanita Corp. Tokyo, Japan) to collect body
composition variables and to obtain BMI. This instrument is
a validated, non-invasive bioelectrical impedance analyzer
that estimates body composition, considering age and sex.

Eating Disorders Inventory-2 (EDI-2). Eating disorder
symptomatology was assessed via a validated Spanish
version of the EDI-2 (Garner, Olmstead, & Polivy, 1983).
This is a self-report instrument to screen symptomatology
related to eating disorders on a six-point Likert scale. It
consists of 91 items and provides scores on 11 subscales:
drive for thinness, body dissatisfaction, bulimia, ineffec-
tiveness, perfectionism, interpersonal distrust, interoceptive
awareness, maturity fears, asceticism, impulse regulation,
and social insecurity. The sum of all subscales provides an
eating disorder measure, which is considered a global scale
of eating disorder severity. The internal consistency for the
scale estimated through Cronbach’s alpha was excellent
(a = 0.96).

Impulsivity measure (UPPS-P). This 59-item questionnaire
is a multi-dimensional assessment of impulsivity using five
distinct personality traits related to impulsive behavior.
Specifically, it measures lack of perseverance, lack of pre-
meditation, sensation seeking, negative urgency, and positive
urgency. It contemplates acts or incidents that occurred
during the last 6 months, scoring on a Likert scale of 1-5.
The current study used the Spanish validation of the UPPS-
P, which has demonstrated good reliability and validity
(Verdejo-Garcia, Lozano, Moya, Alcdzar, & Pérez-Garcia,
2010). Internal consistency was between good (a = 0.82 for
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lack of premeditation) to excellent (« = 0.92 for positive
urgency).

MRI delay discounting paradigm. The items for our delay
discounting task were initially designed by Kirby, Petry, and
Bickel (1999) This questionnaire consists of 27 items eval-
uating intertemporal decision-making, and participant
choice between two amounts of hypothetical monetary
reward (e.g., between €55 “NOW” or €81 in 30 days). Each
trial, considering its temporal gap and two rewards, is
computed to provide a specific discounting rate (k). Thus,
the 27 discount rates derived from each item delineate a
hyperbolic function rating from 0 to 0.25. A higher k in-
dicates a greater devaluing of future rewards and a tendency
to select smaller, immediate rewards.

The fMRI delay discounting task used in this study was
adapted from prior work by Marco-Pallares et al. (2010), and
it was implemented using Presentation (Version 18.3, build
03.11.16, Neurobehavioral Systems, Albany, USA, www.
neurobs.com). This task contained 4 runs with 27 trials
included in each run. The total duration of each trial was 11
seconds beginning with the presentation of a cross fixation for
5 seconds to minimize carry-over effects, followed by the task
block for 6 seconds. During the initial 3 seconds of the block,
monetary choices were presented, and participants were
required to give their responses during the final 3 seconds.
Participants provided responses on an MRI-compatible but-
ton-box (Lumina 3G Controller, Cedrus Corporation), and
the task was displayed via an angled mirror system using an
MRI-compatible LCD screen (BOLD-screen 32, Cambridge
Research Systems) located at the end of the scanner bore.

Individual discounting rates (k) were calculated by
identifying the switch-point of preference. In other words,
the point when individuals change their preferences and
begin to select delayed rewards over immediate rewards.
Due to the hyperbolic distribution of discount parameter
(Kirby & Marakovi¢, 1996), individual means were obtained
by calculating the geometric mean across runs between tri-
als, where the switch-point took place, and which produced
choices consistent with individuals’ k. In order to work with
a linear distribution of individuals’ k rates, these were
transformed using natural logarithmic (In) transformation.
Thus, In(k) values range from —9 to 0 with 0 representing
higher k rates, and —9 representing lower k rates.

Data analysis

Imaging data acquisition, preprocessing, and analy-
sis. MRI data were obtained using a 3.0 Tesla MRI scan-
ner (Intera, Philips Medical Systems, Eindhoven, Best,
Netherlands) equipped with a 32-channel phased-array head
coil. For the delay discounting task, 151 volumes per run
were obtained with following parameters: repetition time of
2,000 ms, echo time of 25 ms, and a pulse angle of 90% in a
24-cm field of view (FOV); and an 80 X 80 pixel matrix
delivering voxel sizes of 3 X 3 X 3 mm with no gap and 40
interleaved slices, parallel to the anterior-posterior
commissure line. Each run had a duration of 4.95 min. A

high-resolution T1-weighted anatomical scan was also ac-
quired to facilitate registration of the EPI data into standard
space. A three-dimensional fast-spoiled gradient, an inver-
sion-recovery sequence with 233 contiguous slices (repeti-
tion time, 10.43 ms; echo time, 4.8 ms; flip angle, 8°) in a 24-
cm field of view with a 320 X 320 pixel matrix and isotropic
voxel size of 0.75 X 0.75 X 0.75 mm, was used.

JMRI preprocessing. All images were preprocessed using
BrainWavelet Toolbox, which allows for the removal of
high- and low-frequency artifacts from a time series by
denoising the synchronized signal transients induced by
head motion. The realigned functional sequences were co-
registered to each participant’s anatomical scan, which had
been previously co-registered and normalized to the SPM-
T1 template. Further preprocessing took place using a
pipeline in the CONN toolbox (version 19b, Massachusetts
Institute of Technology, Cambridge, USA, http://www.nitrc.
org/projects/conn) running on MATLAB R2019b. For each
participant, preprocessing of functional data underwent the
following steps: (1) motion correction, (2) slice-time
correction, (3) ART-based identification of outlier scans for
scrubbing, (4) spatial normalization applying the anatomical
normalization parameters, which were then re-sliced to a
2mm isotropic resolution in Montreal Neurological Institute
(MNI) space, and (5) smoothing using a Gaussian filter with
an 8 mm full width at half maximum (FWHM) kernel.

Next, denoising was applied to remove residual move-
ment and physiological noise. Blood oxygen level-dependent
(BOLD) time series were regressed against the six head
motion parameters obtained from realignment and physio-
logical noise deriving from white matter, cerebrospinal fluid
(CSF), and global (BOLD) time-series were included as
confounding factors. Last, temporal frequencies below 0.008
Hz or above 0.09 Hz were removed from the BOLD signal in
order to remove additional artifacts.

First-level analyses. First-level (single subject) maps were
estimated using statistical parametric mapping software
(SPM 12, Welcome Department of Imaging Neuroscience,
London, England; www.filion.uclac.uk/spm). A general
linear model (GLM) was performed comparing the hemo-
dynamic response during the 6 seconds of NOW and LATER
choice blocks, across 4 runs. First-level activation was
computed for each individual on NOW > LATER trials by
convolving the time course of activation with the canonical
hemodynamic response function (HRF). Heart rate fre-
quency recorded during the fMRI paradigm was introduced
as an individual regressor of hemodynamic response. The
BOLD signal at each voxel was convolved using the SPM12
canonical HRF and a 128 s high-pass filter was applied.

Second-level analyses. First-level contrast images were then
carried forward to a group-level random effects analysis,
using a summary statistics approach (i.e, ANOVA). First,
between-group comparisons (OB-all vs. controls or BED vs.
non-BED vs. controls) examined differences in neural acti-
vation during NOW > LATER associated with discounting
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rates. Discounting rates represented by In(k) were included as
main variable of interest to explore brain activations during
NOW > LATER trials. Given the significant differences be-
tween groups, age was introduced as a confounding variable.
As a first step, a two-sample t-test was carried out comparing
activation between participants in the OB-all group and the
control group. Next, in order to investigate the distinctive
brain activity within the obesity groups (BED and non-BED)
in comparison to the control group, a one-way ANOVA was
performed between these three groups. Significance thresh-
olding from all derived differences in activation was set to
satisfy a family-wise error (FWE) rate correction of Prwg <
0.05 (spatial cluster extent) as well as, a threshold of P < 0.001
as recommended by Woo, Krishnan, and Wager (2014) and
Eklund, Nichols, and Knutsson (2016).

In order to explore the association between significant
brain-derived differences between groups from the delay
discounting task and clinical measures, derived peak acti-
vation eigenvalues from regions displaying significant dif-
ferences were extracted.

Statistical analyses of non-imaging data. Statistical ana-
lyses of clinical measures and brain-derived eigenvalues were
conducted with SPSS 23 (IBM Corp; Armonk, NY). One-
way ANOVA was employed for the global comparison of
study variables between groups including post hoc pairwise
comparisons via Scheffé’s procedure. Effect sizes for mean
differences were measured using Cohen’s d coefficient (|d| >
0.2 was considered low-poor, |d| > 0.5 mild-moderate, and
|d| > 0.8 high-large) (Kelley & Preacher, 2012). The Finner
method was also used to control Type-I error due to mul-
tiple comparisons (this method is included in FWE stepwise
procedures) (Finner, 1993).

Associations within-groups were examined using Pear-
son’s parametric correlations (R). Due to the strong associa-
tion for these parameters between significance test and sample
size (low correlations estimated within large samples tend to
provide significant results, whereas high correlations within
low samples tend to provide non-significant values), the R-
coefficients were interpreted attending to effect sizes (|R| >
0.24 was considered mild-moderate and |R| > 0.37 high-large;
these thresholds corresponds to Cohen’s-d of 0.20, 0.50, and
0.80 respectively) (Rosnow & Rosenthal, 1996).

Ethics

The study procedures were carried out in accordance with
the Declaration of Helsinki. The Clinical Research Ethics
Committee of Bellvitge University Hospital (PR146/14)
approved the study. Written informed consent was obtained
from all participants before taking part in the study.

RESULTS

Delay discounting and behavioral results

Table 1 summarizes sociodemographic, anthropometric in-
formation, and psychological measures in the three groups.

|d]
0.22
0.11
0.59"
0.35
1.21
0.27
0.66'
0.27
0.60"
1.04

non-BED
vs BED

p
0.652
0.727
0.150
0.424

0.001"
0.567
0.150
0.567
0.150

0.021*

Control vs BED
|d]
0.921
1.06'
5.44%
0.14
2.66'
0.44
1.00
0.721
0.41
1.46'

p
0.028"
0.015"
0.001%

0.651
0.001"
0.201
0.010"
0.047"
0.155
0.001"

|d]|
0.69
0.87"
4.00"
0.62"
1.377
0.21
0.40
0.53"
0.24
0.47

Control vs
non-BED

p
0.027*
0.006"
0.001"
0.049"
0.001"

0.493
0.185
0.096
0.493
0.142

p
0.011"
0.002"
0.000"

0.109
0.000"
0.394
0.015"
0.053
0.146
0.000"

F
86
6.73
140.26
2.30
33.89
0.95
4.49
3.08
1.99
36

4.16
14
13.47
4

8.

3.13
38.14

6

5

7

7.6

BED; n = 10
39.70
12.60
38.98
-4.72
107.10
25.60
22.80
27.30
35.80

Table 1. Sample description
25.10

Obesity group (n = 35)
Mean

S
10.13
33
7.2
1.02
32.71
5.05
4.77
6.20
4.77
6.29

37.56
12.96
42.48
-4.29
63.88
23.52
22.04
24.68
21.24
28.50

non-BED; n = 25
Mean

SD
12.64
1.92
1.99

97
18.08
5.42

17
7.54
90

Control group
(n = 31)
6.34

Mean
29.65
15.35
21.24
-4.90
27.58
22.42
20.03
28.35
22.77
25.55

Note: non-BED: obesity without binge eating disorder. BED: binge eating disorder.

* Values correspond to the In(k).

*Bold: significant comparison.
T Effect size in the moderate (|d|>0.50) to high range (|d|>0.80).

Education (years)

Discount rates (k)*

EDI-2: Total score

UPPS-P: lack of premeditation
UPPS-P: lack of perseverance
UPPS-P: sensation seeking
UPPS-P: positive urgency
UPPS-P: negative urgency

Age (years-old)
BMI (kg/m2)
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Fig. 1. The left panel depicts the identified increased activation in the left anterior insula associated with discount rates in the control group
in comparison to the obesity group (OB-all) during NOW > LATER. Color bar represents t-values. Results are displayed at family-wise error
(FWE) probability (Prwg < 0.05), (P < 0.001), cluster-extent. The right panel depicts individual participant activation levels according to

group

As expected, BMI was significantly different between the
control group and clinical groups (P < 0.001). Likewise,
there were significant differences in age (P = 0.006) between
groups.

Concerning the behavioral delay discounting measure,
the three groups did not significantly differ in discounting
rates (P = 0.109; Table 1). However, a significance was
observed when comparing the non-BED and control groups
(P = 0.049: Table 1). As would be expected, the BED group
endorsed higher scores of eating disorder severity on the
EDI-2 compared to control group (P < 0.001) and the non-
BED group (P < 0.001). The BED group endorsed higher
levels in lack of perseverance (P = 0.010) and negative ur-
gency (P = 0.001) compared to controls on the UPPS-P.
Likewise, the BED group had higher negative urgency levels
(P = 0.021) compared to the non-BED group.

Imaging data

Group comparisons using independent sample t-tests during
NOW »>. LATER found that discounting rates were posi-
tively associated with decreased activation in the left anterior
insula extending laterally through the temporal cortex in the
OB-all group compared to the control group (Prwg = 0.029;
Fig. 1; Table 2).

Group comparisons using a one-way ANOVA during
NOW > LATER found no significant differences between
the BED and the non-BED group, or the BED and the
control group (Prwg > 0.05).

DISCUSSION

The present study investigated the neurobiological substrates
of delay discounting in obesity with and without BED. We
found a negative association between left anterior insula
activation during NOW > LATER and individual discount

Table 2. Second-level fMRI delay discounting task results

MNI Coordinates
(% 3 2) ke* ¢

Contrast NOW >

LATER Region

Controls<OB-all  Left anterior —50; 4; 10 232 4.87

insula

Note: OB-all: obesity group (non-BED and BED). A general linear
model (GLM) was performed comparing the hemodynamic
response during the 6 seconds of NOW and LATER choice blocks
of the delay discounting task, with NOW > LATER trials serving as
our primary contrast of interest. Results satisfied a family-wise
error (FWE) probability (Prwg < 0.05) and (P < 0.001) cluster-
extent threshold.

MNI: Montreal Neurological Institute.

* Cluster extent in voxels.

rates in all participants with OB in comparison to controls.
Contrary to our hypotheses, our exploratory analysis in BED
patients did not identify differences in activation associated
with discount rates during NOW > LATER. This lack of
identified differences between groups is most likely due to a
lack of power and are discussed in the limitations section.
The insula is understood to play a modulatory role in
decision making by incorporating interoceptive and
emotional processes during the deliberation between NOW
vs LATER choices (Volkow & Baler, 2015). In healthy
controls, the anterior insula has been found to increase in
activation when choosing immediate reward over delayed
choices (Carter et al., 2010; Wittmann et al., 2010). Our
finding associating higher delay discounting with decreased
anterior insula activity suggests that individuals with obesity
may experience impairments in integrating interoceptive
signals with higher-level cognitive processing (Simmons
et al., 2013; Zaki, Davis, & Ochsner, 2012). Analogous results
have been found in individuals with obesity and poor sleep
quality (Martin et al,, 2015). This study found diminished
insula activity in individuals with obesity and poor sleep
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quality when making immediate and smaller monetary
choices compared to a baseline condition. Similarly, recent
research has identified decreased anterior insula activity
during risky decisions following a loss in participants with
obesity, which indicates that maladaptive signaling in the
insula may underpin alterations in weighing the costs and
benefits of decisions in obesity (Steward, Juaneda-Segui,
et al, 2019). Decreased modulation of putative executive
function regions has also been found in women with obesity
during difficult vs. easy trials of a delay discounting task
(Stoeckel et al., 2013), suggesting that dysfunctional in-
teractions between executive control and interceptive net-
works could contribute to excessive food intake (Steward,
Menchon, et al.,, 2017; Syan et al., 2019). This compulsive
eating pattern is associated with addictive-like eating
behavior in obesity and is often defined using symptoms
parallel to those of substance use disorders and behavioral
addictions (Kakoschke, Aarts, & Verdejo-Garcia, 2019;
Kekic et al., 2020). Likewise, addictive behaviors have been
robustly associated with steep discounting to delayed reward
(Volkow & Baler, 2015), suggesting the presence of over-
lapping brain systems mediating appetitive and addictive
behaviors (Volkow & Baler, 2015).

It is plausible that reduced insula activation may partly
underpin the emotionally driven impulsivity and decision-
making impairments that characterize emotional eating in OB
and BED (Steward & Berner, 2020). In the case of patients
with BED, a similar response to rewarding cues may manifest
in the form of compulsive eating (Kakoschke et al., 2019).
Food intake itself can become a source of distress as
entrenched eating habits conflict with goals to normalize
eating behaviors (Chao et al., 2016; Munsch, Meyer, Quartier,
& Wilhelm, 2012). It should be noted that the BED group also
showed higher negative urgency scores than the non-BED and
control groups. For individuals with BED, negative urgency is
often associated with excessive eating, which is used to alle-
viate negative emotions (Aloi et al., 2020; Lavender & Mitchell,
2015; Munsch et al., 2012). However, any inferences emerging
from these preliminary results must be interpreted with
caution given the limited sample size featured in this study. As
such, future studies with larger samples are required to
confirm this effect.

Last, in contrast to other studies, our results did not
identify significant behavioral differences when comparing
discounting rates between all participants with obesity and
controls and only a marginal significance was found when
comparing the non-BED group to controls. Our findings are
partly supported by a systematic review by McClelland et al.
(2016), which identified mixed results when comparing in-
dividuals with obesity to controls. While most studies
identified high discount rates in individuals with obesity
compared to controls, a relevant proportion of studies did
not report differences (McClelland et al., 2016). The authors
underscored the importance of examining whether the use
of hypothetical (vs. real) monetary rewards can influence
discounting rates. Similarly, food vs non-food rewards are
known to influence delay discounting in individuals with

obesity and BED and controls (Manwaring et al, 2011;
McClelland et al., 2016).

Although this study has its strengths, some limitations
should be considered when interpreting its results. First, our
sample does not fully represent the general population with
obesity as our participants were recruited from a hospital
setting and seeking treatment (i.e., bariatric surgery or
psychotherapy). Second, our study cannot make inferences
regarding causality due to its cross-sectional design. Third,
this study only recruited women and future studies should
aim to include larger and diverse samples, especially in pa-
tients with BED. It would be of interest to examine whether
higher discount rates are a risk factor for compulsive over-
eating and whether interventions targeted at orienting in-
dividuals with BED to increase the value of future rewards
could produce a meaningful decrease in binge eating be-
haviors (Juarascio, Manasse, Espel, Kerrigan, & Forman,
2015). Likewise, it would have been of interest to consider
hormonal factors (e.g., estrogens levels), which are known to
modulate reward response (Diekhof, 2015). Finally, our
sample size was limited and our failure to identify significant
differences between groups is likely due to a lack of statistical
power.

CONCLUSIONS

Our findings provide evidence of alterations in anterior
insula function in individuals with obesity and BED during
delay discounting. Future studies with larger samples and
using delay discounting paradigms may shed light as to why
a subset of individuals with obesity may be prone to binge
eating episodes. Likewise, it would be of interest for future
studies to integrate both general and food-specific tasks with
neuroimaging in order to further delineate the neural cir-
cuitry that contributes to BED (Berner et al., 2017).
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