
ORIGINAL RESEARCH
published: 19 March 2021

doi: 10.3389/fragi.2021.648567

Frontiers in Aging | www.frontiersin.org 1 March 2021 | Volume 2 | Article 648567

Edited by:

Peter Sykora,

Georgetown University, United States

Reviewed by:

Magdalena Misiak,

Howard University, United States

Cristal M. Hill,

Pennington Biomedical Research

Center, United States

*Correspondence:

Lydia Giménez-Llort

Lidia.Gimenez@uab.cat

Specialty section:

This article was submitted to

Interventions in Aging,

a section of the journal

Frontiers in Aging

Received: 31 December 2020

Accepted: 23 February 2021

Published: 19 March 2021

Citation:

Castillo-Mariqueo L and

Giménez-Llort L (2021) Translational

Modeling of Psychomotor Function in

Normal and AD-Pathological Aging

With Special Concerns on the Effects

of Social Isolation.

Front. Aging 2:648567.

doi: 10.3389/fragi.2021.648567

Translational Modeling of
Psychomotor Function in Normal and
AD-Pathological Aging With Special
Concerns on the Effects of Social
Isolation
Lidia Castillo-Mariqueo 1,2 and Lydia Giménez-Llort 1,2*

1 Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain, 2Department of Psychiatry and Forensic

Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain

One year after the start of the COVID-19 pandemic, its secondary impacts can be

globally observed. Some of them result from physical distancing and severe social

contact restrictions by policies still imposed to stop the fast spread of new variants

of this infectious disease. People with Alzheimer’s disease (AD) and other dementias

can also be significantly affected by the reduction of their activity programs, the loss

of partners, and social isolation. Searching for the closest translational scenario, the

increasedmortality rates in male 3xTg-ADmicemodeling advanced stages of the disease

can provide a scenario of “naturalistic isolation.” Our most recent work has shown its

impact worsening AD-cognitive and emotional profiles, AD-brain asymmetry, and eliciting

hyperactivity and bizarre behaviors. Here, we further investigated the psychomotor

function through six different psychomotor analysis in a set of 13-month-old 3xTg-AD

mice and their non-transgenic counterparts with normal aging. The subgroup of male

3xTg-AD mice that lost their partners lived alone for the last 2–3 months after 10

months of social life. AD’s functional limitations were shown as increased physical frailty

phenotype, poor or deficient psychomotor performance, including bizarre behavior, in

variables involving information processing and decision-making (exploratory activity and

spontaneous gait), that worsened with isolation. Paradoxical muscular strength and

better motor performance (endurance and learning) was shown in variables related to

physical work and found enhanced by isolation, in agreement with the hyperactivity and

the appearance of bizarre behaviors previously reported. Despite the isolation, a delayed

appearance of motor deficits related to physical resistance and tolerance to exercise

was found in the 3xTg-AD mice, probably because of the interplay of hyperactivity and

mortality/survivor bias. The translation of these results to the clinical setting offers a guide

to generate flexible and personalized rehabilitation strategies adaptable to the restrictions

of the COVID-19 pandemic.
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INTRODUCTION

The COVID-19 pandemic is causing high morbidity and
dramatic mortality worldwide. Unfortunately, it has also put
pressure on healthcare systems and altered our lifestyles, leading
to many worrisome secondary impacts (Brown et al., 2020).
Severe measures to curb its spread have been adopted and are
still implemented in the newwaves, restricting physical and social
contact between people, with the elderly population being among
the most affected (El Haj et al., 2020). Consequently, preventive
strategies and therapeutical interventions for older people,
such as promoting social activities, physical and environmental
stimulation critical for those with dementia, have been kept to a
minimum (Canevelli et al., 2020).

Physical activity is essential to control symptoms and risk
factors for many diseases (Warburton and Bredin, 2017). The
closures of gyms, swimming pools, and exercise clubs, in addition
to laws limiting access to outdoor space and free movement,
have inevitably reduced opportunities to exercise or play sports.
Decreased physical activity levels in many people may increase
other unhealthy lifestyles, but it is also triggering a worsening
of the clinical symptoms of diseases, such as Alzheimer’s disease
(Lautenschlager et al., 2008; Abate et al., 2020; Lara et al.,
2020). Exercise is essential to reduce sarcopenia, falls, and fall-
related injuries in healthy older adults. Also, the cognitive,
cardiorespiratory, and musculoskeletal benefits will be directly
affected by the cessation of its performance (Palmer et al.,
2020). The closure of day centers has left those whose fragility
requires permanent rehabilitation programs at home. Therefore,
unprofessional home care may not be enough to meet complex
diseases’ needs and demands (Wang et al., 2020).

Alzheimer’s disease is a complex neurodegenerative disease
that leads not only to hallmark cognitive impairment but also
to psychomotor dysfunction (O’Leary et al., 2020). Thus, it
is one of the leading causes of disability and dependency
among older people worldwide. Due to their cognitive and
functional deficits, AD patients are vulnerable during crises,
especially during the COVID-19 pandemic, and confinement
seems to affect neuropsychiatric symptoms in AD patients
with low baseline cognitive function (Boutoleau-Bretonnière
et al., 2020). It can be overwhelming for those affected and
for their caregivers and families, with very high pressure on
the direct and indirect healthcare costs (Wang et al., 2020).
In the current scenario, people with AD are a particularly
vulnerable population due to their complex cognitive and
psychomotor dysfunction (Verlinden et al., 2014). Memory
problems enhance their difficulties in understanding what is
happening (Lara et al., 2020; Wang et al., 2020). This pandemic
further exacerbates their vulnerability due to morbidity and
mortality from the virus and the pandemic’s indirect effects on
the health system and support networks on which they depend
(Brown et al., 2020). Some studies have reported alterations
and exacerbation of cognitive and behavioral symptoms related
to confinement and its effects on AD. Worsening of cognitive
symptoms, particularly of memory and orientation abilities, the
appearance of alterations, such as agitation-aggression, apathy,
and depression, the most practical manifestations, have been

detected (Boutoleau-Bretonnière et al., 2020; El Haj et al., 2020;
Palmer et al., 2020).

Therefore, despite the main clinical characteristic of
Alzheimer’s disease is cognitive decline and impairment, motor
disorders, such as bradykinesia, extrapyramidal stiffness, and
gait disturbances are also significant. They will also be affected by
the limitations and restrictions dictated to contain and prevent
the COVID-19 pandemic (Abate et al., 2020). More excellent
knowledge of these psychomotor dysfunctions will contribute
to improving the actions to intervene on these deficiencies and
impediments that restrict the independence and autonomy of
people and their environment.

Like what happens in patients with AD, different mouse
models mimic psychomotor deficiencies on a translational
level. These deficiencies indicate disease progression when they
increase in severity (Buchman and Bennett, 2011; Wagner
et al., 2019), making them an essential phenotype for the
study of AD progression (O’Leary et al., 2018). The 3xTg-AD
model (Oddo et al., 2003) has been widely studied for the
impact of Aβ and tau at different study levels, from synaptic
plasticity to behavior (España et al., 2010). It mimics various
AD symptoms in a temporal and neuroanatomical pattern
similar to that observed in humans (Belfiore et al., 2019). After
12 months, a neuropathological profile corresponding to the
disease’s advanced stages can be observed (Oddo et al., 2003;
Belfiore et al., 2019). Thus, this model has made it possible to
carry out numerous basic research studies to know the factors
related to the progression of the disease as well as preclinical
investigations that seek to verify the effect of preventive and
therapeutic therapies (Martini et al., 2018).

Therefore, the current study aimed to explore the
psychomotor performance of 13-month-old male NTg and
3xTg-AD mice corresponding to normal aging and advanced
stages of Alzheimer’s disease. We have used a battery to evaluate
six different psychomotor functions: spontaneous gait analysis,
muscle strength, motor performance, the physical phenotype of
frailty. Also, we assessed the impact of isolation in a subgroup of
male 3xTg-AD mice that lost their partners and, after 10 months
of social life, lived alone for the last 2–3 months.

MATERIALS AND METHODS

Animals
A total of forty-six homozygous 3xTg-AD (n = 31) and non-
transgenic (NTg, n = 15) male mice of 13 months of age in a
C57BL/6J background (after embryo transfer and backcrossing of
at least 10 generations) established at the Universitat Autònoma
de Barcelona (Baeta-Corral and Giménez-Llort, 2014) were used
in this study. The 3xTg-AD mice harboring transgenes were
genetically modified at the University of California at Irvine,
as previously described (Oddo et al., 2003). Animals were kept
in groups of 3–4 mice per cage (Macrolon, 35 × 35 × 25 cm)
filled with 5 cm of clean wood cuttings (Ecopure, Chips6, Date
Sand, UK; uniform cross-sectional wood granules with 2.8–
1.0mm chip size) and nesting materials (Kleenex, Art: 08834060,
21 × 20 cm, White). In the current work, 7 of the 31 3xTg-
AD mice had lost their cage mates and lived alone in their
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cage for 2–3 months. In all cases, standard home cages covered
with a metal grid allow the perception of olfactory and auditory
stimuli from the rest of the colony. All animals were kept under
standard laboratory conditions of food and water ad lib, 20 ±

2◦C, 12 h light cycle: dark with lights on at 8:00 a.m. and 50–60%
relative humidity.

Behavioral Assessment
Psychomotor behavior was measured in a behavioral battery
consisting of six consecutive steps: (1) Physical Frailty Phenotype,
(2) Spontaneous Gait Phenotype: Exploratory activity and
(3) Quantitative parameters of gait), (4) Muscular Strength:
Forelimb Grip Strength and muscular endurance—Hanger
test, (5) Motor performance: Learning, Physical Endurance,
and Coordination—Rotarod, and (6) Hindlimb clasping and
Geotaxis. Assessments were performed under dim white light
(20 lx) during the light cycle of the light cycle: dark (10 a.m.
to 1 p.m.). Behavioral evaluations were carried out in 3 days
and a counterbalanced manner by observing two independent
observers blind to the genotype. The tests were carried out during
the morning; 30min were assigned to habituate the animals
in the test room before starting the measurements. We made
the following distribution: Day 1—Physical frailty phenotype
(body weight, kyphosis, alopecia, etc.) and 2 h later, it was
done spontaneous gait analysis; Day 2—Muscle strength and
Motor performance; Day 3—Hindlimb clasping and geotaxis. All
procedures followed the Spanish legislation on “Protection of
animals used for experimental and other scientific purposes” and
the EU Directive (2010/63/EU) on this issue. The study complies
with the ARRIVE guidelines developed by the NC3Rs and aims
to reduce the number of animals used (Kilkenny et al., 2010).

Physical Frailty Phenotype
Physical signs of frailty were identified through a physical
phenotype that includes the following measurements: body
weight, body position, palpebral closure, piloerection, alopecia,
tail position, tremor, and kyphosis. These measurements were
made before the different tests that are described later. A score
of 0 was assigned for normal aspects or 1 for abnormal aspects.
Besides, a photographic record was taken of each animal to
demonstrate these physical aspects. Also, were measured geotaxis
and Hindlimb clasping. Geotaxis was measured using a 10 ×

12 cm grid; the time it took for the animal to reach the vertical
position from an inverted position at a 90◦ angle on the grid was
recorded in a single trial. Hindlimb clasping closure is a marker
of disease progression and severity in several neurodegeneration
models in mice. We have included the test described by Chou
et al. (2008) and illustrated by Guyenet et al. (2010), which
consists of holding the mouse by the tail near its base, observing
the hindlegs’ position for 10 s in three trials. If the hindlegs are
extended continuously outward, away from the abdomen, it is
scored with a 0, indicating normality. If one or both hindlegs are
retracted toward the abdomen for more than 5 s, a score of 1 and
2 are assigned, respectively. If its hind legs are fully retracted and
touching the abdomen for more than half the time, a score of 3 is
assigned, indicating greater severity. After each test, the animal is
given 30 s of rest.

Spontaneous Gait Phenotype
To assess spontaneous gait, the mice were placed in a 27.5 ×

9.5 cm transparent test box and observed during a total period
of 2 min.

Exploratory Activity
In trial 1, the latency to start the movement (taking as reference
the movement of the hind legs), the number of explorations
(visited corners), the latency and the number of rearing were
recorded. Bizarre behaviors were identified during the execution
of the walk and classified according to our previous work (Baeta-
Corral and Giménez-Llort, 2014). Figure 2C shows the path of
the circling trajectory of a representative animal. During the tests,
defecation and urination were also recorded.

Quantitative Parameters of Gait
Two 1-min trials were performed, and gait was recorded by
video recording from the undersurface (Cheng et al., 1997). The
KINOVEA 8.26 free software was used to identify the metacarpal
and metatarsal fore and hind legs and perform the analysis. The
quantitative parameters were those described by Wang et al.
(2017). A representative animal is illustrated in Figures 2A,B.

Muscular Strength: Forelimb Grip Strength and

Muscular Endurance—Hanger Test
The forelimbs’ muscular strength was measured using the hanger
test, which is based on a mouse’s tendency to grasp a grid or
bar instinctively when suspended by the tail. The three trials
of the test (1min ITT) allow discriminating grip strength and
muscular endurance, according to the suspension times used
(Giménez-Llort et al., 2002). In the first and second trials, grip
strength is assessed holding on the animal with its front legs
for 5 s at the height of 40 centimeters. In the third trial, the
animal is suspended for 60 s in a single attempt to assess muscular
endurance. A box with sawdust is placed under the animal to
protect it from a possible fall in both cases. The bar used is
graduated in 5-cm blocks to obtain the distance covered when
the animal moves through the bar; the latency and movement
distance are recorded.

Motor Performance—Rotarod
To assess motor learning, coordination, and endurance training,
mice were evaluated on the constant, accelerated, and rocking
Rotarod mode (Ugo basile R©, Mouse RotaRod NG). The
apparatus consists of five 3 cm diameter cylinders, which are
suitably machined to provide grip. Six 25 cm diameter dividers
make for five lanes, each 5.7 cm wide, enable five mice to
be assessed on the rotor simultaneously. The height to fall is
16 cm. The mice were placed on the rod with their back to the
experimenter to measure motor learning, and the rod began
to accelerate until it reached 10 rpm. The necessary tests were
carried out so that each animal was kept at least 60s on the
rod with 1min of rest between each learning trial. To measure
the resistance of the animals, we used the protocol described by
Brown and Wong (2007) in which the mice are placed on the
rotating rod facing in the opposite direction to the movement of
the rod, with an acceleration of 0–48 rpm during a test of 6min
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maximum. The test includes six trials with a 1-min rest to start
each. A single test measured coordination in the device’s rocking
mode until reaching 20 rpm with 10 revs, and this mode allows
rotations in both directions of the rod. In all tasks, the latency
achieved by each animal was recorded.

Statistics
Statistical analyses were performed using SPSS 23.0 software.
Results were expressed as the mean ± standard error of
the mean (SEM) for each task and trial. The factors were
analyzed with ANOVA, MRA, Student’s t-test, and Chi-square
or Fisher’s exact test. The magnitude of the association was
measured with Bonferroni. Variables that did not have a normal
distribution were transformed using a square root to apply the
parametric statistical tests. In all cases, p < 0.05 was considered
statistically significant.

RESULTS

In the first place, we characterized the genotypic differences in
psychomotor performance of 13-month-oldmale 3xTg-ADmice,
an age mimicking advanced stages of the disease, compared to
age-matched NTg mice with normal aging. Table 1 summarizes
the main results obtained, where a clear difference between NTg
(n = 15) and 3xTg-AD (n = 31) mice stands out. To verify our
hypothesis that the 3xTg-AD mice that recently lost their home-
cage partners exhibited different psychomotor functions, the data
of 3xTg-AD mice was depicted in two subgroups, according to
their most recent housing conditions. Figures 1–6 also show
the impact of social isolation in the behavior and psychomotor.
We analyzed the genotype differences and the effect of isolation
according to frailty parameters (see Table 2 and Figure 1). Our
results showed that the 3xTg-AD/ISOmice subgroup (n= 7) had
a high motor performance in physical endurance and muscular
strength tests but low performance in exploratory activity and
spontaneous gait, considered basic daily life activities.

Physical Frailty Phenotype
In all groups, the animals had a low prevalence of signs of frailty
(Table 2). It must be pointed out that, at this middle age, the NTg
group presented overweight [F(2, 45) = 25.925, p = 0.000 (43 ±

1.8 g)], 33% (5/15) exhibited tremor in the anterior or posterior
limbs [X2 (df 2), p= 0.003] and the sign of hindlimb clasping with
a scale of mild andmoderate severity [F(2, 45) = 31.355, p= 0.000;
post-hoc: 3xTg-AD vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg
p = 0.000] (Figure 1A). No statistically significant differences
were found in the geotaxis, but a trend of transgenic animals
performing the test more quickly was noted [NTg = 16.5 ± 5.9;
3xTg-AD = 9.5 ± 2.5; 3xTg-AD/ISO = 7.0 ± 1.3] (Figure 1B).
Also, 57% (4/7) of 3xTg-AD/ISO animals presented alopecia in
some areas of their body [X2 (df 1), p= 0.042].

Spontaneous Gait Phenotype
The sequence of behavioral events developed in the gait test is
detailed in Figure 2; the gait analysis of representative animals
with normal and bizarre gaits are illustrated in Figure 3, whereas
quantitative gait indicators are depicted in Figure 4.

TABLE 1 | Genotype differences between 13-month-old male 3xTg-AD mice and

NTg mice in the assessment of psychomotor functions.

Genotype differences NTg mice n = 15

(Mean ± SEM)

3xTg-AD mice n

= 31 (Mean ±

SEM)

Statistics

Physical frailty

phenotype

(See Table 2 and Figure 1)

Spontaneous gait

Phenotype: exploratory

activity

(See Figures 3, 4)

Freezing (latency of

movement, s)

5.53 ± 2.38 23.23 ± 2.51 **

Rearing (latency, s) 25.61 ± 3.49 52.64 ± 2.69 ***

Vertical activity (n of counts) 3.80 ± 0.36 0.51 ± 0.16 ***

Horizontal activity (n of

counts)

10.26 ± 0.77 2.03 ± 0.55 ***

Quantitative parameters of gait

Stride length (cm) 4.88 ± 0.22 2.03 ± 0.39 ***

Variability of stride length (%) 20.18 ± 2.63 9.60 ± 2.26 **

Support base of forelimbs

(cm)

2.51 ± 0.12 2.64 ± 0.10 n.s.

Support base of hindlimbs

(cm)

3.96 ± 0.11 3.48 ± 0.19 n.s.

Speed (cm/s) 6.66 ± 0.75 2.13 ± 0.45 ***

Cadence (steps/s) 2.87 ± 0.24 0.96 ± 0.20 ***

Muscular strength:

Hanger test

(See Figure 5)

Grip strength (latency, s) 0.88 ± 0.14 2.55 ± 0.24 ***

Grip distance (cm) 0.0 ± 0.0 2.17 ± 0.73 *

Muscular endurance

(latency, s)

0.92 ± 0.16 17.80 ± 3.87 **

Muscular endurance

(distance, cm)

0 ± 0.0 9.35 ± 2.24 **

Motor performance:

Rotarod

(See Figure 6)

Motor learning (latency, s) 6.33 ± 1.62 19.51 ± 8.07 *

Trials learning (n of trials

needed)

9.86 ± 0.61 3.38 ± 0.37 ***

Physical endurance (latency,

s)

32.55 ± 3.83 157.02 ± 9.56 ***

Coordination (latency, s) 10.93 ± 2.09 74.64 ± 11.80 **

Spin (n) 1 ± 0.0 1.70 ± 0.19 *

Geotaxis (latency, s) 16.46 ± 5.91 8.89 ± 1.93 n.s.

Student’s t-test, ***p < 0.01, **p < 0.05, *p < 0.05, n.s.p > 0.05 vs. NTg mice.

Since the beginning of the test, genotype-dependent
differences were found in freezing behavior since it was only
present in both groups of transgenic mice [Trial 1, Fisher (df 2),
p= 0.004; Trial 2, Fisher (df 2), p= 0.006]. Backward movement
and stretching were also observed. These bizarre behaviors were
elicited in greater frequency in transgenic animals, with the
most frequent stretching recorded in the 3xTg-AD/ISO group
[Trial 1, X2 (df 2); p = 0.042]. Both types of movements indicate
the intention to explore before traveling through a given space
(Figure 3D).
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FIGURE 1 | Physical frailty phenotype. (A) Hindlimb clasping, the results are expressed as episodes of hindlimb clasping (%). Statistics: X2, *p < 0.05, **p < 0.01,

and ***p < 0.001 in 3xTg-AD vs. the NTg group; #p < 0.05 and ##p < 0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group. (B) Geotaxis, the results are

expressed as mean ± SEM. Statistics: One-way ANOVA followed by post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001 in 3xTg-AD vs. the NTg group;
#p < 0.05 and ##p < 0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group. Ø indicates 0 data in this group.

On the other hand, the latency to initiate horizontal (freezing
latency of movement) in transgenic animals was increased
[Freezing (latency of movement), F(2, 45) = 7.429, p = 0.002;
post-hoc: 3xTg-AD vs. NTg p = 0.027, 3xTg-AD/ISO vs. NTg
p = 0.002]. In this variable, an effect of isolation was shown
as a higher motion latency than its group-housed transgenic
counterpart [Students’ t-test, p = 0.015] (Figure 3A). In the
vertical activity, higher latency was shown in the 3xTg-AD groups
compared with other NTg mice [Rearing: F(2, 45) = 18.860 p
= 0.000; post-hoc: 3xTg-AD vs. NTg p = 0.000, 3xTg-AD/ISO
vs. NTg p = 0.012] (Figure 3B). Despite this could be due to
the presence of freezing, the total vertical (rearings episodes)
and horizontal (crossings episodes) exploratory activity was also
lower in both groups of transgenic animals compared to the NTg
group [N rearing, F(2, 45) = 50.400, p= 0.000; post-hoc: 3xTg-AD
vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg p = 0,000], [N visited
corners, F(2, 45) = 36.322, p = 0.000; post-hoc: 3xTg-AD vs. NTg
p= 0,000, 3xTg-AD/ISO vs. NTg p= 0.000] (Figure 3C).

In addition, as illustrated in Figure 4, all the quantitative gait
indicators (stride length, variability of stride, speed, and cadence)
showed alterations and deficits in displacement and trajectory
[Stride length, F(2, 45) = 11.552, p = 0.000; post-hoc: 3xTg-AD
vs. NTg p= 0.000, 3xTg-AD/ISO vs. NTg p= 0.015], [Variability
of stride, F(2, 45) = 4.714, p= 0.014; post-hoc: 3xTg-AD vs. NTg p
= 0.011], [Speed, F(2, 45) = 14.393, p= 0.000; post-hoc: 3xTg-AD
vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg p = 0.002], [Cadence,
F(2, 45) = 15,341, p= 0.000; post-hoc: 3xTg-AD vs. NTg p= 0.000,
3xTg-AD/ISO vs. NTg p= 0.001] (Figures 4A–E), but not in the
anterior or posterior base of support, which remained preserved
[Forelimbs: F(2, 45) = 0.61, p= 0.772; Hindlimbs: F(2, 45) = 1.651,
p = 0.204] (Figure 4C). Increased defecation was recorded in
the 3xTg-AD group, reaching 41% of the episodes [X2 (df 2);
p= 0.000].

Muscular Strength
The assessment of muscle strength of the forelimbs, illustrated
in Figure 5, showed a deficit in the NTg control group, while
the highest grip strength in the 3xTg-AD/ISO group and the
muscular endurance in the 3xTg-AD group. [Grip strength-
latency, F(2, 45) = 12.958, p = 0.000; post-hoc: 3xTg-AD vs.
NTg p = 0.001, 3xTg-AD/ISO vs. NTg p = 0.000], [Muscular
endurance-latency, F(2, 45) = 8.622, p = 0.001; post-hoc: 3xTg-
AD vs. NTg p = 0.001, 3xTg-AD/ISO vs. NTg p = 0.016]
(Figures 5A,C). In the same way, the distance covered by the
animal while it was suspended was greater in transgenic animals
in the two strength tasks [Grip-distance, F(2, 45) = 5.303, p =

0.009; post-hoc: 3xTg-AD/ISO vs. NTg p = 0.008], [Endurance-
distance, F(2, 45) = 6.113, p = 0.005; post-hoc: 3xTg-AD vs. NTg
p= 0.004] (Figures 5B,D).

Additionally, we have detected that the isolated animals have
a higher grip and displacement force on this test than their
transgenic group-housed counterparts [Grip strength. Students’
t-test, p= 0.007; Grip-distance. Students’ t-test, p= 0.018].

Motor Performance
In learning and physical endurance tests, transgenic animals’
motor performance was higher than that of NTg animals.
Transgenic animals needed an average of three trials to learn the
test, unlike NTg animals that required an average of nine trials, so
the latencies obtained were consequently higher in the transgenic
group, albeit they did not reach statistical significance. [Trials
learning, F(2, 45) = 41.824, p= 0.000; post-hoc: 3xTg-AD vs. NTg
p= 0.000, 3xTg-AD/ISO vs. NTg p= 0.000] (Figures 6A,B).

Physical endurance, as well as learning, was higher in
transgenic animals, with the 3xTg-AD/ISO group being the one
who achieved the best physical performance in the six trials.
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FIGURE 2 | Spontaneous gait analysis. (A) Normal gait stride length and (B) base of support measurement using hindlimbs and forelimbs paw prints in mice with a

normal gait. (C) Bizarre circling in a representative 3xTg-AD mice showing a general directional movement, with traced route being short and wide when making

narrow circles or having many loops.

[Physical endurance-latency, F(2, 45) = 45.507, p = 0.000; post-
hoc: 3xTg-AD vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg p =

0.000] (Figure 6C). [Physical endurance trial by trial, MRA, F
= 45.515, p = 0.000, [ANOVA T1-T6; T1: F(2, 45) = 11.304, p
= 0.001; post-hoc: 3xTg-AD vs. NTg p = 0.001, 3xTg-AD/ISO
vs. NTg p = 0.000; T2: F(2, 45) = 15.791, p = 0.000; post-hoc:
3xTg-AD vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg p = 0.000;
T3: F(2, 45) = 35.788, p = 0.000 post hoc: 3xTg-AD vs. NTg p =

0.000, 3xTg-AD/ISO vs. NTg p = 0.000; post-hoc: 3xTg-AD/ISO
vs. 3xTg-AD p= 0.033; T4: F(2, 45) = 54.453, p= 0.000; post-hoc:
3xTg-AD vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg p = 0.000;
post-hoc: 3xTg-AD/ISO vs. 3xTg-AD p = 0.024; T5: F(2, 45) =
37.370, p = 0.000; post-hoc: 3xTg-AD vs. NTg p = 0.000, 3xTg-
AD/ISO vs. NTg p = 0.000; T6: F(2, 45) = 30.044, p = 0.000;
post-hoc: 3xTg-AD vs. NTg p = 0.000, 3xTg-AD/ISO vs. NTg p
= 0.000] (Figure 6D).

Regarding the coordination measured in the rotarod, the
3xTg-AD animals exhibited higher latency than the NTg animals,
exceeding 60 s in this test. In addition, there was a greater use of
spin or postural strategies to stay on the bar while turning in both
directions, [Coordination-latency: F(2, 44) = 8.786, p = 0.001;

post-hoc: 3xTg-AD vs. NTg p = 0,000], [Spin: F(2, 45) = 5.461,
p= 0.008; post-hoc: 3xTg-AD vs. NTg p= 0.010] (Figures 6E,F).

DISCUSSION

The present work assessed the psychomotor functions in male
mice with normal and AD-pathological aging and the impact of
“naturalistic isolation” in a subgroup of 3xTg-AD mice. Male sex
was chosen to explore further the stronger sex-dependent motor
effects of aging reported in male C57BL/6 mice than in females
(Baeta-Corral and Giménez-Llort, 2015) and because at this age,
the singularity of the natural isolation scenario only occurs in
male 3xTg-AD mice as a result of their neuroimmunoendocrine
derangement and increased mortality rates (Giménez-Llort et al.,
2008). The results indicated genotype differences with paradox
better performance in motor variables involving more significant
physical work in 3xTg-AD animals independently of social
isolation, and a delayed appearance of motor deficits related to
physical resistance and tolerance to exercise in 3xTg-AD mice
survivors that remained isolated during 2–3months. However, in
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FIGURE 3 | Spontaneous gait phenotype: exploratory activity. Results are expressed as mean ± SEM. (A) Freezing (latency of movement); (B) Rearing; (C) Vertical

and horizontal activities. Statistics: One-way ANOVA followed by post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001 in 3xTg-AD vs. the NTg group; #p

< 0.05 and ##p < 0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group. Student’s t-test, 3xTg-AD vs. NTg, in Freezing (Latency of movement), @ indicates

isolation. (D) Behaviors associated with exploration and circling bizarre behaviors, results are expressed as incidences of bizarre behaviors (%). Statistics: X2, ***p <

0.01, **p < 0.05, *p < 0.05, n.s.p > 0.05, g indicates genotype, and @ indicates isolation.

the variables that involve information processing and decision-
making to perform a task (exploration and gait), these animals
exhibited poor or deficient performance that includes circling as
bizarre behavior.

Regarding the physical frailty phenotype, middle-aged NTg
animals were obese and presented tremors in the extremities
accompanied by partial alopecia in some animals. In the 3xTg-
AD mice, the frequency of alopecia was similar to that of NTg
animals, accompanied by a high, stiff tail that is associated
with alert and arousal in animals. Most 3xTg-AD/ISO animals
presented some degree of alopecia in their body, but normal
parameters were found in the rest of the variables. Unlike the
results obtained by Kane et al. (2018), 3xTg-AD mice were more
fragile than NTg males, accompanied by higher mortality. This
was in agreement with our recent work in end-of-life scenarios
(Muntsant et al., 2021).

On the other hand, geotaxis and buckling may indicate NTg
animals’ alterations due to body weight, like that observed in
rotarod, and lighter mice perform better than heavier mice
(Stover et al., 2015). In particular, the grip has been described
as an alteration of the extremities’ reflexes due to motor
coordination deficits, neurological signs that resemble myoclonic
movements, epileptic seizures, or pathological reflexes that alter
gait (Lalonde et al., 2012). However, we have already shown in
male C57BL/6 mice that grip strength and prehensility are also

sensitive to body weight and fat composition associated with the
aging process (Baeta-Corral et al., 2018).

Frailty and dementia are closely related and share similar
common risk factors, such as sociodemographic factors,
comorbidities, and lifestyle factors (Buchman et al., 2008;Wallace
et al., 2018; Petermann-Rocha et al., 2020). According to the
results obtained in human beings in several studies, the decrease
in grip strength and a slow gait speed or the deterioration of
balance have been attributed to a worse cognitive condition
among people with frailty, which contributes to the incidence of
dementia, including AD (Li, 2002; Hanlon et al., 2018; Lim et al.,
2018; Petermann-Rocha et al., 2020).

In this respect, it is noteworthy that the gait of the
3xTg-AD mice showed deficits similar to gait with an aging
pattern, accompanied by a series of bizarre behaviors that can
interfere with the trajectory and movement similar to that
reported by Muntsant and Giménez-Llort (2020a) in long-
term isolation in male mice. At the beginning of the task,
a long freezing period is accompanied by a high latency in
the exploratory activity that interferes with the horizontal and
vertical activity counts compared to the NTg group. This
neophobic response corresponds to one of the most sensitive
ethological behaviors of the 3xTg-AD phenotype detected in
previous studies (Giménez-Llort et al., 2007; Giménez-Llort,
2010; Muntsant and Giménez-Llort, 2020a). Likewise, we can
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FIGURE 4 | Spontaneous gait phenotype: quantitative parameters of gait. Results are expressed as mean ± SEM. (A) Stride Length; (B) Variability of Stride Length;

(C) Base of Support; (D) Speed; (E) Cadence. Statistics: One-way ANOVA followed by post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001 in 3xTg-AD

vs. the NTg group; #p < 0.05 and ##p < 0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group.

distinguish that the 3xTg-AD group-housed animals presented
several episodes in the horizontal and vertical components
slightly lower than the 3xTg-AD isolated animals, contrary to
what occurs in the movement latency at the beginning of the
test, where the isolated animals 3xTg-AD took longer to perform
movements, thus influencing the results of all quantitative
gait parameters.

Bizarre behaviors are mainly related to psychiatric and
neurological disorders (Giménez-Llort et al., 2002; Baeta-Corral
and Giménez-Llort, 2014; Cordón-Barris et al., 2016). In
previous studies, it has been reported that these behaviors can
also be provoked when animals are subjected to unfamiliar
environments, mainly those used to evaluate anxiety behavior as
a manifestation or response of stress (Willner, 1991; Giménez-
Llort et al., 2002, 2007). We described that is at the age of 6
months when the initial freezing response observed in 3xTg-
AD and NTg animals of both sexes when assessed under
anxiogenic conditions, such as the open field test or the
corner test is more likely to be followed by the elicitation
of bizarre behaviors (Baeta-Corral and Giménez-Llort, 2014).
During the tests, the animals exhibited behaviors considered
bizarre that were classified as stereotyped stretching, stereotyped
rearing, backward movement, and jumping, apparently without
a purpose but considered coping-with-stress strategies. In the
Morris water maze, a stressful scenario for mice, we have already
reported circling swimming behavior in 6-month-old 3xTg-
AD mice (Castillo-Mariqueo and Giménez-Llort, 2019). The

presence of this bizarre behavior worse with the progress of the
disease as it is a distinctive swimming pattern in male 3xTg-
AD mice at 13 months of age, modeling advanced disease stages
(Baeta-Corral and Giménez-Llort, 2015). In the present work, the
results corroborate that when faced with novelty and recognition
of places, 3xTg-ADmice exhibit these behaviors, which delays the
appearance of horizontal and vertical exploration. Stretching and
circling were behaviors exhibited by isolated animals, suggesting
that stretching behavior or risk assessment was sensitive to
social conditions.

In the quantitative gait parameters, 3xTg-AD mice showed
deficits like gait with an aging pattern, accompanied by a
series of bizarre behaviors that can interfere with trajectory
and movement, as mentioned above. The gait analysis reported
by Brown’s laboratory in 16-month-old animals did not show
significant differences in the length or width of the stride between
genotypes or sexes (Garvock-de Montbrun et al., 2019), whereas
at 6months of age, the animals exhibited a longer stride thanNTg
mice (Stover et al., 2015). In the present work, we have detected a
decrease in all variables related to stride length in the transgenic
group (cadence, speed, and stride variability) without altering the
base of support of the front and rear extremities are similar to
those detected in the control group.

Gait disorders in patients with AD have been described within
the group of disorders known as “frontal gait,” and in particular,
gait in AD has been defined as “cautious gait” (Pirker and
Katzenschlager, 2017; Baker, 2018). At the same time, cautious
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FIGURE 5 | Muscular strength—hanger test. Results are expressed as mean ± SEM. (A) Grip Strength-latency; (B) Grip-distance; (C) Muscular Edurance-latency;

(D) Endurance-distance. Statistics: One-way ANOVA followed by post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001 in 3xTg-AD vs. the NTg group;
#p < 0.05 and ##p < 0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group. Students’ t-test, 3xTg-AD vs. NTg in Grip Strength-latency and Grip-distance, @

indicates isolation. Ø indicates 0 data in this group.

gait occurs more frequently in patients with mild dementia
(Clinical Dementia Rating Scale: Hughes CDR, stage 1). This gait
pattern is like the one observed in aging, and it may present
a decrease in speed, stride length, and gait postural stability,
which is manifested more specifically in static and dynamic
balance, with a widened support base (Scherder et al., 2007).
Dynamic instability has also been observed in mild andmoderate
AD (Mesbah et al., 2017). In advanced AD stages, the disorder
becomes more prominent, and the gait has been described as
“frontal gait.” At this stage, the person has difficulties standing up
and postural maladjustments that prevent the change to different
positions in coordination with the segments, such as arms and
legs, causing difficulties to achieve a stable position (Munoz et al.,
2010; Pirker and Katzenschlager, 2017). It is complex to mimic
human motor disorders in mice, but we have detected some
similarities in gait execution. The onset of gait in humans is
affected as occurs in Parkinson’s disease, with bradykinesia, some
patients try to start gait by swinging the trunk laterally or by

exaggerated movements of the arms, there is dragging of the
feet, but it disappears after walking a few steps with what the
gait usually improves (Beauchet et al., 2016; Montero-Odasso
and Perry, 2019). Also, freezing or freezing episodes can occur,
especially when turning and when facing obstacles (Muir et al.,
2012). Although AD’s clinical feature is declining cognition, the
motor signs that frequently accompany AD often precede and
predict AD’s clinical diagnosis (Munoz et al., 2010). In 3xTg-
AD animals, the bizarre behaviors described above appear to
be a translational approach to detecting the severity of the
psychomotor disorders presented in Alzheimer’s disease, and
they differentiated the effects of social isolation.

We have found significant differences in muscular strength
that indicate that 3xTg-AD animals have a conserved strength
in isolation, and this is the first time this finding has been
reported. Already at 6 months of age, Stover et al. (2015)
reported that the 3xTg-AD mice had a lower strength than the
NTg mice at 16 months, Garvock-de Montbrun et al. (2019)

Frontiers in Aging | www.frontiersin.org 9 March 2021 | Volume 2 | Article 648567

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


Castillo-Mariqueo and Giménez-Llort Translational Psychomotor Function in Dementia in COVID-19

FIGURE 6 | Motor performance—Rotarod. Results are expressed as mean ± SEM. (A) Motor learning—Latency; (B) Trials learning; (C) Physical Endurance-latency;

(E) Coordination-Latency; (F) Spins. Statistics: One-way ANOVA followed by post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001 in 3xTg-AD vs. the

NTg group; #p < 0.05 and ##p < 0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group. (D) Physical Endurance trial by trial. Statistics: MRA T1-T6, followed by

post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001, G: indicates differences in genotype, @: indicates differences in isolation conditions. One-way

ANOVA T1, T2, T3. T4, T5. T6, followed by post-hoc Bonferroni test, *p < 0.05, **p < 0.01, and ***p < 0.001 in 3xTg-AD vs. the NTg group; #p < 0.05 and ##p <

0.01, ###p < 0.001 in 3xTg-AD/ISO vs. the NTg group.

found no significant differences, although the 16-month-oldmice
were heavier than those of 6 months, his grip strength did
not decrease.

It has been previously reported that in humans, there is an
association between the pathology of AD in the cognitive regions
and the grip strength or grip strength (Buchman et al., 2008;
Boyle et al., 2009). Also, the loss of strength and muscle mass is
frequent in the aging; even BMI and frailty are associated with

AD’s risk (Boyle et al., 2009; Moon et al., 2019). Thus, muscle
mass and strength are not related to each other in the male and
female groups. In AD patients, large muscle mass does not mean
more significant power. A simple assessment of lower extremity
muscle strength is effectively predicted cognition than mass
muscle measurement in male patients (Moon et al., 2018, 2019).
Stover et al. (2015) reported that 6-month-old 3xTg-ADmice had
a higher motor performance in both strength and rotarod tests
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TABLE 2 | Physical frailty phenotype.

Physical frailty

phenotype

NTg

n = 15

3xTg-AD

n = 31

3xTg-AD

n =24

3xTg-AD/ISO

n = 7

Statistics

Body weight 43 ± 1.8 g 32 ± 0.1 g 33 ± 0.6 g 32 ± 0.8 g ***, ggg

Kyphosis – – – – –

Alopecia 3/15 (20%) 9/31 (29%) 5/24 (21%) 4/7 (57%) @

Body position – – – – –

Palpebral closure – – – – –

Piloerection – – – – –

Tail position – 4/31 (13%) 4/24 (17%) – n.s.

Temblor 5/15 (33%) – – – ***, gg

ANOVA; X2 :, ***p < 0.01, **p < 0.05, *p < 0.05, n.s.p > 0.05, g, genotype; @, isolation.

than their NTg counterparts. In the current 13-month-old NTg
animals studied, we cannot rule out that body weight may be the
variable that modifies muscle strength as this group is made up
of obese animals, so it is necessary to contrast these results with
normal-weight animals.

The motor performance performed by the isolated 3xTg-
AD animals is even higher than the 3xTg-AD grouped animals,
which has allowed us to discriminate its effect in this group. At
the clinical level, exercise is a widely used therapeutic resource
to contribute to the treatment of the disease’s symptoms and
improve patients’ quality of life with AD (Dao et al., 2013;
Meng et al., 2020). Physical exercise is related to maintaining
an optimal cognitive state and adequate maintenance of the
mainly musculoskeletal and cardiovascular systems, making
it a protective factor of health (Fielding, 1995; Taylor, 2014;
Langhammer et al., 2018). In these animals, the practice of
exercise during the six trials studied shows an increase in physical
resistance as the test develops. This variable may indicate that
the basal physical state of these animals is optimal and that the
effect of physical exercise enhances their performance. We can
highlight that although the rotarod results indicate that mice
improved motor performance, they performed worse in other
tasks that relate to cognitive and affective variables, in agreement
with the hallmarks of the disease.

On the other hand, the 3xTg-AD animals in the coordination
test carried out in the rotarod reached a higher performance
without isolation effects. This group managed to stay on the
rotating bar for more than 1min, performing an average of
two turns, reflecting the postural adjustment necessary to avoid
falling from the bar. In contrast, in humans, it has been
shown that alterations in balance and coordination are clinically
demonstrable in people with mild cognitive impairment and
AD (Franssen et al., 1999). These findings indicate that balance
control aspects deteriorate with increasing severity of cognitive
impairment and that executive function plays an essential role
in controlling balance and coordination (Franssen et al., 1999;
Eggermont et al., 2010; Tangen et al., 2014).

One of the main differences concerning the genotype NTg
group may be due to changes typical of aging. We know that
there is a functional decline as age increases. Also, there is a
slow and gradual sensory deterioration (Cavazzana et al., 2018).

Studies of auditory, visual, and vestibular sensory deficits and
alterations in the C57BL/6 strain suggest a deterioration in these
systems, leading to functional and cognitive deterioration in this
group of animals. As a result, the impaired sensory system could
induce poor performance in some of the animals’ tests (Shiga
et al., 2005; Vijayakumar et al., 2015). Besides, the obesity present
in animals can be interference to achieve optimal performance
in some tests, for example, those related to more excellent work
of physical resistance and muscular strength and deficits and
alterations, such as tremor together with hindlimb clasping. Some
studies indicate that this strain tends to develop severe obesity
if put on a high-fat diet (Brownlow et al., 1996; Williams et al.,
2003). Other studies point to obesity in C57BL/6J animals as
one of the changes associated with aging, in which the increase
in adipose tissue alters energy metabolism and cardiovascular
function (Krishna et al., 2016; Chu et al., 2017). Here, it is
interesting to note that in previous work, we have shown that
6-month-old C57BL/6 with the same bodyweight but higher
fat composition due to d-galactose-induced accelerated-aging
exhibited reduced equilibrium, muscular strength, coordination,
and prehensility, and these effects were only found in male sex
(Baeta-Corral et al., 2018). In that work, the effects of accelerated
aging on balance, motor coordination, and learning were also
tested on an accelerating rotarod showing differences in the
number of training trials needed to learn to walk on the lane, and
the distance traveled once the task was learned.

Social isolation, from this perspective of social deprivation,
would increase the vulnerability to stress episodes (Bartolomucci
et al., 2003). Studies carried out in different mouse models
(Swiss CD-1, Tg2576, 3xTg-AD) point out that individually
housed mice show a reduced neophobic reaction and
decreased anxiety compared to group-housed mice (Dong
et al., 2004, 2008; Rothman et al., 2012). Furthermore, an
anxious animal shows a more significant latency to explore
the novel environment (Palanza et al., 2001). Bartolomucci
et al. (2003) pointed out that when Swiss CD-1 mice are
challenged with a new stimulus, individually housed mice
respond with less fear and more extraordinary exploration
and locomotion than group-housed mice. Similarly, we
have recently shown that naturalistic isolation in 3xTg-AD
elicited hyperactive patterns, as measured in both gross and
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fine-motor functions (Muntsant and Giménez-Llort, 2020a).
Pathophysiology is critical to differentiate the underlying
mechanisms that trigger these responses. In the present
study, animals were left alive for monitoring until the more
advanced ages of life, and therefore, the impact on the HPA
axis and neuropathology could not be determined. However,
in our precedent work using the same “naturalistic isolation”
approach, isolated 3xTg-AD mice showed increased AD-brain
asymmetry in the hippocampus and cortical areas, and the above
mentioned behavioral alterations were correlated to increased
hippocampal tau pathology (Muntsant and Giménez-Llort,
2020a,b). Previous work in these findings in the literature
suggests that 3xTgAD mice are more vulnerable than control
mice to chronic psychosocial stress, resulting in an exacerbation
of Aβ accumulation and impairs neurotrophic signaling
(Rothman et al., 2012). On the other hand, Tg2576 mice
exhibit increases in plasma corticosterone and increases in the
expression of GR and CRFR1 in the cortex and hippocampus,
in association with increases in the level of Aβ in brain tissue,
plaque deposition of Aβ, and atrophy of the hippocampus
(Dong et al., 2008).

In summary, we found standard and distinctive psychomotor
features between the normal and pathological aging AD samples
and the impact of the social isolation scenario. We can
highlight the genotype factor and physical activity level as
a protective mechanism, although physical frailty phenotype
indicators are present. While the 3xTg-AD mice showed
more significant deterioration in the physical aspects, their
motor learning capacity remained preserved. Additionally, these
animals exhibited higher performance in exercise tolerance
and muscle strength tests, where the genotype seems to be a
determining factor in general performance. On the other hand,
the “naturalistic isolation” studied here seemed to interfere
with motor performance. The presence of freezing at the
beginning of the exploratory activity and spontaneous gait
test was associated with increased functional limitation in this
group. On the contrary, the physical parameters: strength, and
physical performance in rotarod, apparently are not altered,
showed a coincidence with hyperactivity or anxiety, one of the
manifestations of the advanced stages of AD.

These findings generate new hypotheses to study the
underlying biological mechanisms and have been useful to be
applied in translational scenarios of geriatric rehabilitation

(Castillo-Mariqueo et al., 2020), where timely geriatric
interventions (Giménez-Llort, 2010) should be one of the
priorities to counteract the second impact of the current
pandemic in the older adults with dementia.
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