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Electrical neuromodulation has strongly hit the foundations of spinal cord injury and

repair. Clinical and experimental studies have demonstrated the ability to neuromodulate

and engage spinal cord circuits to recover volitional motor functions lost after the

injury. Although the science and technology behind electrical neuromodulation has

attracted much of the attention, it cannot be obviated that electrical stimulation must

be applied concomitantly to sensorimotor rehabilitation, and one would be very difficult

to understand without the other, as both need to be finely tuned to efficiently execute

movements. The present review explores the difficulties faced by experimental and

clinical neuroscientists when attempting to neuromodulate and rehabilitate manual

dexterity in spinal cord injured subjects. From a translational point of view, wewill describe

the major rehabilitation interventions employed in animal research to promote recovery of

forelimb motor function. On the other hand, we will outline some of the state-of-the-art

findings when applying electrical neuromodulation to the spinal cord in animal models

and human patients, highlighting how evidences from lumbar stimulation are paving the

path to cervical neuromodulation.

Keywords: upper limb, rehabilitation, neuromodulation, spinal cord injury, activity-dependent plasticity

INTRODUCTION

A shift in scientific paradigm has recently knocked on the spinal cord community’s door.
Unprecedented results, obtained in three independent laboratories, have demonstrated that people
with chronic paraplegia can recover the ability to voluntarily stand and walk while receiving
patterns of electrical stimulation to the lumbar spinal cord (1–3). This intervention, hereafter
referred to as spinal neuromodulation, consisted of engaging spinal networks through the targeted
delivery of patterned electrical stimulation to enable or facilitate motor performance. Never before
has an intervention achieved this success, and a promising new avenue of studies will hopefully
refute the until now valid statement that spinal cord injuries are uncurable (4).

None of these achievements would have been possible without the extensive experimental
research conducted over the last decades. The accumulated knowledge of spinal cord physiology,
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locomotor function, and rehabilitation among others, and
most recently of spinal stimulation, have established strong
bases for quickly and efficiently designing and testing spinal
neuromodulation in chronic spinal cord injured patients.
This scientific success further evidences the necessary synergy
between experimental and clinical studies; results obtained from
lampreys, rodents, cats and non-human primates have settled a
detailed functional map of the brain and the spinal cord and
have made it possible to identify, locate and understand the
function and connectivity of the spinal networks recipient of
the electrical current (5). These reports together with recently
published studies, which will be described in the following
sections, represent only the tip of the iceberg of the work which
still needs to be done before we can roundly state that spinal
cord injuries have found a cure. Indeed, spinal neuromodulation
has undoubtedly opened a realistic, efficient, safe, painless
intervention, but yet requires a vast amount of work before being
universally implemented.

Although neuromodulation has received much of the
attention (i.e., identifying the stimulation pattern and its
properties, determining the number and location of electrodes,
revealing the mode of action, etc.), we cannot ignore the
fact that electrical stimulation must be delivered concomitantly
to the performance of sensorimotor rehabilitation. Thus,
instead of considering the combination of these interventions,
spinal neuromodulation can be understood as an extended
rehabilitation tool, increasing the spinal circuit’s excitability to
enable the execution of movement (6). If so, this statement
intrinsically introduces a new variable, which can have important
effects on the efficiency of the neuromodulatory intervention:
what does the rehabilitation consist of? Or which movements
should be trained?

Herein we will introduce the major findings obtained
and some of the concerns which experimental and clinical
neuroscientists face when attempting to neuromodulate and
rehabilitate motor function in spinal cord injured patients. For
this purpose, we will first describe the gross organization of the
spinal cord, highlighting some of the similarities and plausible
differences with the lumbar spinal cord which may dictate the
feasibility of being electrically neuromodulated. Secondly, we
will explain the major rehabilitation interventions employed in
animal research to promote recovery of forelimb function and
their outcomes. Finally, we will describe some of the state-of-
the-art results when applying electrical stimulation to the cervical
spinal cord in animal models and human patients.

CAN WE ATTEMPT TO RECOVER MANUAL
DEXTERITY?

The critical role that hands play in humankind and their activities
is undeniable, and it is very difficult to conceive of our culture
and behavior without their flexibility, dexterity and strength. It
is not surprising that people with cervical spinal cord injury
(SCI) prioritize recovering hand function over other system
functions (7). Following the motor recovery obtained in people
with paraplegia, a next reasonable step would be for patients to

improve arm and hand sensorimotor function. Can the cervical
spinal cord be recipient of electrical stimulation?

The cervical spinal segment presents many similarities to the
lumbar spinal cord. The butterfly-shaped gray matter hosts the
spinal neuron cell bodies and is centrifugally surrounded by the
spinal pathways connecting the brain sensory and motor centers
with the spinal cord and sensory ganglia. Despite the anatomical
and physiological differences, the mammalian spinal cord is very
conserved among species, allowing translational studies between
animal models and humans. This is especially important for hand
movement recovery. For example, despite the differences in the
species circuit organization controlling manual dexterity (8, 9),
movement gestures to reach and grasp are analogous between
rodents and humans (10).

Unlike locomotion, the neuronal networks controlling skilled
hand movement (i.e., reaching and grasping) are still far from
being identified, localized and functionally characterized. Albeit
far from being completely deciphered, much more is known
about the role of the spinal central pattern generators (CPG),
the mesencephalic region in the brainstem and the motor cortex
in controlling locomotion than in manual dexterity (11). As
shown in Figure 1, the number of interneurons is an order
of magnitude higher than the number of motoneurons and
intuitively suggests the presence of networks that must be tightly
related to arm and hand fine motor control. Electrophysiological
studies have evidenced the presence of a spinal network at C3·C4,
acting as a relay station between the brain and the motoneurons
(13). Work from the Isa laboratory has demonstrated the
same network in the non-human primate spinal cord and
the transitory impairments produced after injury (14) or viral
inactivation (15). Although the existence of a cervical CPG
for locomotion has been postulated in the cat (16), there is
still no evidence demonstrating the existence, location and
physiology of a hypothetical cervical CPG for reaching and
grasping. Moreover, the newly identified role of the brainstem
nucleus medullary reticular formation ventral part (MdV) in
executing reaching and grasping movements (17) highlights the
new view that endows the brainstem with a strong descending
control in hand dexterity (9). Finally, although the motor cortex
and the corticospinal tract have been traditionally cataloged
as the structures controlling skilled movements (18), studies
on rodents (19) and non-human primates (9) have evidenced
the maintenance of skilled hand function despite damage to
the corticospinal tract and suggest a non-executive but more
processing role for this pathway.

Despite their anatomical similarity, the functional differences
between the cervical and lumbar spinal cord are obvious. We
use our legs to stand, maintain the posture and move, whereas
our body biped position allows us to primarily use the arms
and hands to transport and manipulate objects. Furthermore,
lumbar spinal cord function may rely more robustly on spinal
reflexes than the cervical spinal cord, which could be under
stronger control from the supraspinal nuclei (20). If we want to
neuromodulate an injured cervical spinal cord and replicate the
recovery in posture and gait control, it will be necessary to dissect
and identify the circuits controlling skilled hand movements
which need to be targeted by the electrical stimulation, and
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FIGURE 1 | Neurons in the cervical spinal cord. (A) Neural marker (NeuN) immunostaining of a transverse section from a rat C6 spinal segment. The left side shows

the spinal section raw immunostaining, depicting the neuronal cell bodies distributed along the dorsal, mid, and ventral gray matter. The right side shows the image

analysis performed to categorize and subdivide the identified neurons, based on their soma size and location, in interneurons (light green) and motoneurons (red). (B)

The graph shows the mean ± SE of total interneurons and motoneurons quantified from individual serial sections of the cervical spinal cord from three uninjured adult

rats. The number of motoneurons follows the anatomy of the cervical enlargement, with increasing numbers at C5–C7, where the motoneuron pools of the forelimb

muscles are located (12). In contrast, the number of interneurons is higher at the most rostral cervical segments and gradually decreases along the rostro-caudal axis.

we will further need to evaluate the synergies and possible
countereffects between the stimulation and the rehabilitation.

Nevertheless, there is a considerable amount of work on upper
limb rehabilitation and lumbar neuromodulation which has
paved the way for studying the opportunities of neuromodulating
the cervical spinal cord (21–24). In the following sections we will
describe some of these studies, in animal models and humans,
and draw on some of the principles learned if we want that
rehabilitation and neuromodulation work together to facilitate
skilled hand functional recovery.

REHABILITATIVE TRAINING: AN ENGINE
FOR NEUROPLASTICITY

To date, motor rehabilitation is the only therapeutical
intervention applied in people with SCI and some of the
interventions applied have proven effective in improving patient
outcome (25). Other approaches, aiming to repair or regenerate
the damaged tissue still have not shown or have failed to prove
their potential benefits in human patients as previously reported
in experimental animal models (26, 27).

Although physical training has been employed in
rehabilitative medicine since the eighteen hundreds (28),
optimal training protocols are still not well-established and
the underlying neuronal mechanisms resulting in motor
improvements remain poorly understood (29). Despite the
remarkable benefits of training-based rehabilitation, alone or in
combination with other interventions, its systematic application
in SCI preclinical studies remains barely settled. Based on the
accumulated experience from the clinical rehabilitation centers,
animal studies are focused on identifying the mechanisms of
recovery, testing the additive synergies with other interventions,
and importantly, setting efficient training regimes for achieving

consistent functional recovery. However, due to the variety of
protocols tested, and the lack of methodological consensus, the
optimal parameters still need to be defined (30, 31). Nevertheless,
some lessons have been learned, and it is becoming clear that
factors such as timing and training intensity, or those limiting
training enrolment, have a decisive impact on successful motor
recovery and must be carefully considered.

Defining What, When and How to Train: the
Opportunity Window
After an injury to the central nervous system (CNS),
rehabilitative training aims to recover sensorimotor function
by promoting adaptive neuroplastic changes through repetition
of specific movements (32). Similar to what happens during
development or learning processes (33, 34), activity-dependent
plasticity relies on reshaping the residual neural circuit
connectivity, ultimately improving their functionality (35–
37). However, neuroplasticity does not always translate into
functional improvement; if not applied during particular time
windows, or under specific conditions after injury, it may lead
to suboptimal or even maladaptive neural changes (38–40).
Therefore, it will be crucial to implement rehabilitation protocols
according to the specific pathophysiological stage of the injured
spinal cord thus enabling activity-based plasticity to make the
most of these limited windows of opportunity, a concept long
used in stroke research (39).

The Training Task
The first challenge to face when designing a rehabilitative
training program for improving upper limb motor control
is deciding which task(s) should be trained. Forelimb motor
function is assessed in rodents with cervical SCI through a
variety of tests, including over-ground locomotion, horizontal
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FIGURE 2 | Task specific forelimb motor assessment and rehabilitation. Long-Evans rats are commonly used to study forelimb motor control. In comparison to other

rat strains, Long-Evans rats rapidly learn dexterous tasks, which can be associated with a larger cortical motor representation map (41). Different specific motor tasks

are being used to assess the animals skills and abilities, including (A) single pellet reaching and grasping, (B) reaching and grasping in a staircase, (C) grip strength,

(D) reaching and grasping form a grid, (E) food manipulation, such as pasta or cereals, (F) rope pulling, (G) horizontal ladder, and (H) treadmill locomotion.

ladder, single pellet retrieval, grip strength, rope pulling and food
manipulation [for a detailed review see (30)] (Figure 2). Among
them, reaching and grasping-based paradigms, including single-
pellet reaching and grasping (SPRG) implemented by Whishaw
(42), Montoya staircase pellet retrieval (43), or seed/pellet
retrieval from a grid floor (44) are the main methods chosen
for rehabilitative training after cervical SCI. Rodent studies show
that training a particular movement (i.e., task-specific training)
induces recovery mainly in that specific trained task, although
it may interfere with the performance of untrained tasks (35,
44). For instance, reaching and grasping training improved
motor outcome in the same task but interfered with horizontal
ladder performance in rats (35, 45, 46). Similarly, locomotor
training worsened reaching and grasping scores in rats with
unilateral dorsal funiculus section (44). On the other hand,
some studies report improvement in non-trained movements
(44, 47). For example, horizontal ladder or single-pellet retrieval
rehabilitation not only induced recovery in the trained task,
but some improvement also transferred reciprocally between
tasks, and even to a novel, untrained pellet retrieval task (i.e.,
the staircase) (47). As the degree of transferability seems fairly
unpredictable based on movement similarities, choosing the best
rehabilitation task may rely on the severity and type of deficit
produced by the injury. Thus, tasks training fine digit control

(e.g., SPRG) may result more appropriate for the recovery from
mild or moderate injuries, or those affecting distal rather than
proximal movements. On the other hand, treadmill locomotion
(48) and forced/voluntary running wheel (49), which involve
strength/cardiovascular resistance, can also promote recovery
of forelimb movements. However, these trainings may entail
a confounding factor when interpreting motor improvement
as it is difficult to dissect the neural bases from the exercise-
induced benefits (31). Additionally, environmental enrichment
has been used as a non-task-specific forelimb rehabilitative
training after SCI (50–52). This consists of supplementing
the animal’s home cage with diverse objects, such as ropes,
ladders, wheels, cones, bridges or pellet dispensers, that motivate
the animal to increase its general motor activity (Figure 3).
Although environmental enrichment has been reported to
improve forelimb motor performance (50, 52, 53), motor
output in a particular non-trained task may be interfered with
depending on the tasks included as enrichment, which should be
chosen carefully.

The Time of Onset
Clinical experience shows that rehabilitation only has a
remarkable impact on functional outcome if implemented during
the first few months after injury (54, 55). Following this
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FIGURE 3 | Enriched environment rehabilitation. An alternative to task-specific

rehabilitation is to engage the animals in an enriched environment in which

they have the chance to voluntarily run along rungs, climb the cage walls, nest

with the cage sawdust, manipulate food and run in a running wheel.

period, which is highly susceptible to plastic changes, motor
performance reaches a plateau and further improvements are
scarce. Both animal and clinical studies point to the same
principle: an early onset (within the first week in animal
studies) leads to motor improvement (35, 56), but delaying
the start of the training remarkably hinders functional recovery
(57–59). Rats substantially recovered forelimb motor function
when reaching and grasping training was applied as early
as four to seven days after injury (35, 45). In contrast,
those improvements were practically absent when a similar
rehabilitative regime was initiated 2 months after injury (60),
although some authors describe certain improvements when
starting at the same timepoint (61). Similarly, macaque monkeys
with a corticospinal tract lesion recovered dexterous hand
movements during the first 1–2 months if food retrieval training
was initiated immediately after injury, but if training onset was
delayed 1 month, hand performance remained deficient even
after 3 months of training (59). Delayed onset is also associated
with increased use of alternative movements (i.e., compensatory
strategies) (59, 60). These compensatory strategies probably
emerge as a spontaneous form of motor learning during the
transient period of enhanced plasticity that occurs immediately
after an injury to the CNS (62), setting suboptimal circuitry
rearrangements. Compensatory movements can be prevented
if task-specific training is introduced on time to appropriately
shape this plastic potential, promoting restorative rather than
compensatory motor recovery. On the other hand, rehabilitative
research after stroke shows that earlier onset is not always better
and introducing training too soon after CNS insult leads to
deleterious effects (39, 63, 64). It is not clear whether this might
also apply to SCI, but it has been observed that if onset of
reaching and grasping training is established at 4 days after
a cervical SCI, motor performance in a non-trained task (i.e.,
horizontal ladder) is impaired (35). Notably, this deleterious
effect was prevented if reaching training was delayed to 12

days post-injury, without affecting the recovery of the trained
task (45).

Intensity and Dosage
When designing a rehabilitative protocol, researchers must
also define several parameters related to the amount of effort
performed by the animal throughout the training: the total
number of training sessions, their frequency, the number of
gesture repetitions per session and the number of repetitions
per time unit (i.e., speed). All these factors strongly influence
the effectiveness of rehabilitation, both in animal models (65,
66) and humans (32, 67). In human patients with SCI, it has
been estimated that maximal functional recovery requires high
intensity training, understood as >60 total training sessions
of at least 1.5 h per session, administered daily (32), although
severity, type of injury and trained task may modify these
predictions. However, it is difficult to extract clear conclusions
from animal studies as reporting training intensity and/or dosage
details is often omitted (31). Typically, during reaching and
grasping rehabilitation, the delivery of 20–40 pellets within
a 10-min daily session is enough to observe certain motor
improvement (35, 45, 68). Recent studies suggest that there
is potential for stronger motor improvement if training is
delivered at higher intensity rates (66, 69). In cervical SCI
rats, reaching and grasping rehabilitation led to motor recovery
when applied early after injury but resulted ineffective if
administered in the chronic stages of SCI unless the rehabilitation
intensity was tripled (60). Another study showed that ad
libitum access to an automated device for reaching and grasping
rehabilitation allowed injured rats to undergo self-directed
training intensity and to naturally segregate the animals as
low- and high-performers based on their training strategy
(66). Those animals self-engaged in high-intensity training (i.e.,
higher number of total attempts and performed at higher
speed) displayed better motor recovery. However, values over
a particular amount and intensity of rehabilitative training did
not involve any benefit in recovery, suggesting that there is
a limit after which further recovery cannot be achieved (66).
Moreover, excessive training intensity may lead to detrimental
effects (i.e., repetition-associated musculoskeletal pathologies
(70, 71) with no further benefits, highlighting the relevance
of establishing the optimal high-dose limit of rehabilitation-
induced recovery.

Rehabilitation Enrolment: Do Not Miss the
Chance
Unlike body-support treadmill locomotion, forelimb
rehabilitation often involves training tasks that require a
high input of voluntary drive. This volitional component
becomes particularly evident after SCI, when the animal
struggles to execute the task and the relationship between effort
and reward becomes unbalanced. As observed in the clinical
setting, poor patient enrolment can severely compromise the
successful execution of any rehabilitation protocol (72), and
even those carefully designed to take maximum profit from the
rehabilitative training would turn out to be ineffective. Several
strategies aimed to ensure the animal’s engagement in training
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have been explored with favorable results, although some
associated drawbacks should also be acknowledged (30, 73).

As most of the training tasks employed to rehabilitate skilled
forelimb function are based on food-associated rewards (e.g.,
single-pellet reaching and grasping or seed retrieval), the animal’s
motivation can usually be maintained by increasing the hedonic
value of the food, or by restricting the amount of available
food in their home cage (35, 56, 74). In these cases, highly
palatable food should be restrained to isocaloric substitutes to
minimize undesired effects on satiation and/or metabolism. If
food restriction is applied, the severity of deprivation must be
carefully controlled, since hungry animals tend to increase their
number of attempts at the expense of worsening their success rate
due to higher anxiety-like states (75).

A key aspect in rehabilitation engagement relies on the
duration of each training session. Specific forelimb training tasks
are typically trained by placing the animal in a particular setting
or apparatus for a short (i.e., some minutes to 1–2 h) time.
This unavoidably limits the amount of training received per
day, but also establishes a fixed time during which animals are
trained, usually during the light period of the day. Approaches
consisting of free access to training overcome these limitations
and allow the animal to train steadily and during the night, which
coincides with the active phase of the rodent’s circadian cycle.
Environmental enrichment is one of these ad libitum approaches,
but it involves a non-task-specific training as stated above and
the amount of training performed by each individual is difficult
to monitor (50–52). Recently, diverse automated systems (e.g.,
automatic pellet dispensers) have been developed so they can
be coupled to or integrated in the animal’s home cage allowing
for free access to forelimb task-specific training (76–78). These
studies report that both intact and injured rats self-engage in
reaching and grasping training more prominently during the
dark (66, 79), and achieve higher amounts of rehabilitative
training by self-enrolment than manual training after cervical
SCI (66, 76). However, the quantity of training performed by
each subject is difficult to control as it relies on the animal’s will,
leading to high inter-subject variability in training amount and
intensity performed as well as its progression throughout the
rehabilitation period (66).

It is not surprising that, after lateralized damage to the CNS,
some subjects rely on the unaffected forelimb to compensate for
the loss of function in the impaired paw. This leads to what is
known as learned nonuse (80) and exacerbates the impairment of
the ipsilesional side since it discourages the use of the impaired
forelimb (typically corresponding to the originally preferred
limb) and also mobilizes skill learning-associated plastic changes
that interfere with functional recovery (39, 81). Several strategies
can be employed to prevent the use of the contralateral forelimb
after cervical SCI. For instance, Montoya’s staircase is designed so
the animal can only reach the pellets with a particular forelimb.
Whishaw’s reaching and grasping task can be adapted to force
the use of the affected limb by placing the pellet aligned with
the outer margin of the window (31, 79), or by using lateralized
windows accomplishing the same function. Forced use of the
affected forelimb has also been encouraged by restricting the
movement of the unaffected paw with a cast (56, 81). After

corticospinal tract injury in rats, this strategy led to improved
motor performance on the horizontal ladder and activity-
dependent intraspinal reorganization, whereas immobilizing the
animal’s impaired forelimb impeded functional recovery (81).
Nevertheless, it must be considered that modifications in the
posture or gesture adopted by the animal (especially quadrupeds)
will be affected in a manner that hinders accurate comparison
with existing data, particularly electromyographic or kinematic
data which could be notably affected.

Passive Exercises: When Willing Is Not
Enough
The interventions described above require long-lasting active
voluntary activity. However, it is worth mentioning those
interventions that are applied with subjects who are physically
very weak and unstable and cannot engage in such demanding
tasks. Passive physiotherapy has mainly been studied in
humans with paraplegia, and there is very little literature on
animal work. Thus, there is scant information available on
hindlimb and forelimb function. Passive movement therapies
are mainly aimed at promoting plasticity by acting on
the sensory drive to produce changes in synaptic efficacy
between afferents and alpha motoneurons (34). Sophisticated
body-weight supported treadmill training (82, 83), passive
cycling (84), functional electrical stimulation (85) or direct
strengthening and stretching exercises (86) are employed
to exercise the hindlimb. Arm- and hand-function passive
exercises are, by contrast, based on the use of assisted
robotics alone or in combination with neuromuscular electrical
stimulation (87).

Animal studies have shown that passive cycling improves
cardiac function (88), reduces spinal hyperreflexia (89) and
promotes cortical reorganization (90) in animals with thoracic
spinal cord injuries. On the other hand, the results from
body-weight supported treadmill training have revealed an
astonishing plasticity of the spinal cord, allowing spinalized
adult rats and cats to take steps (91, 92) and resolved the
bases for the subsequent application in human patients.
Unfortunately, thus far, body-weight supported treadmill
training has not been as successful as expected for humans to
recover locomotion (93), probably due to incompatibilities
in translating the technical characteristics of treadmill
training to over-ground locomotion (94, 95). Although
passive exercise has not been applied after cervical SCI for
forelimb control recovery in rodents, future studies where
injury severity does not allow for active training (either
voluntary or forced), particularly in early post-lesion phases,
would benefit from including passive training as part of their
therapeutic intervention.

Plasticity-Promoting Strategies:
Broadening the Window
As previously mentioned, a temporary window of heightened
plasticity appears after SCI during which physical activity,
either spontaneous (i.e., everyday movements) or through
rehabilitation, can drive meaningful structural changes leading
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to functional recovery (96). Many of the efforts in SCI
research have been dedicated to enhancing, prolonging or
retrieving this neuroplastic potential beyond the subacute
stages after the injury. Diverse approaches have been explored
to promote axonal growth and collateral sprouting, most
of which aim to either overcome the extrinsic inhibitory
environment around the lesion, or to stimulate the intrinsic
regenerative capacity of neurons. Although many of these
attempts successfully achieved structural reorganization (i.e.,
axonal growth and higher fiber density due to collateral
sprouting) (97), there is growing evidence that training might
be essential for neuroplasticity-promoting treatments to endow
these anatomical changes with functional meaning, enabling
recovery (31, 44, 68, 98).

Overcoming the Inhibitory Environment
Glial proliferation and scar formation are relevant extrinsic
plasticity inhibitors (99). Rolipram, a selective cAMP
phosphodiesterase inhibitor, reduces microglial function
and proliferation (100) and attenuates the formation of the
glial scar after SCI (101), facilitating a permissive environment
for axon growth. Although rolipram improved paw placement
and locomotion (101, 102), it was not able to further improve
motor recovery when co-administered with daily rehabilitation
(50, 53). Particular constituents of the extracellular matrix,
including chondroitin sulfate and keratan sulfate proteoglycans,
are potent axon growth inhibitory molecules within the glial
scar that become upregulated after the injury (103, 104).
Digestion of these components with chondroitinase ABC
(44) or keratanase II (105) promotes axon regeneration and
plasticity after SCI, leading to functional recovery when
applied together with task-specific forelimb training in rats.
Chondroitinase ABC also proved to generalize motor recovery
to untrained tasks even with a delayed rehabilitation onset
(i.e., 4 weeks post-injury) (58). Axon guidance molecules
such as the Wnt family alter the neuroplastic potential after
SCI. Besides orchestrating axon growth and direction during
development, Wnts are also reinduced after SCI to regulate
axon regeneration/sprouting, repelling descending corticospinal
tract axons (106). Inhibiting cortical expression of Ryk, the
Wnt receptor that mediates repulsive effects, or administering
antibodies against Ryk, resulted in increased corticospinal
axon sprouting in the spinal cord and enhanced recovery of
reaching and grasping following a cervical SCI when combined
with task-specific rehabilitation (107). Similarly, sequential
application of Nogo-A [a myelin-associated neurite outgrowth
inhibitor) (108)] antibodies and rehabilitative training induced
contralateral axon sprouting and improvement in skilled
forelimb function after cervical SCI (109). Non-human primates
also benefit from Nogo receptor blockade after SCI and
show corticospinal sprouting below the injury and improved
forelimb use that remained at least 2 months after treatment
cessation (110).

Promoting the Neuron’s Intrinsic Plastic Capacities
Diverse approaches aiming to enhance intrinsic rewiring
potential have been combined so far with forelimb rehabilitation.

One of these works attempted to promote new connections
specifically between the corticospinal tract and the reticulospinal
tract in the brainstem to enable a detour for descending signals
and hence functional recovery after a cervical dorsolateral
quadrant section (98). Thus, viral overexpression of brain-
derived neurotrophic factor (BDNF), a promoter of collateral
sprouting (111) was induced in cortical motor neurons, whereas
the chemoattractant neurotrophin 3 (NT-3) was overexpressed
in reticular neurons, encouraging CST collaterals to grow toward
them (98). This approach promoted forelimb functional recovery
only when combined with skilled reaching training, resulting
in task-specific improvements. Interestingly, these effects were
independent of collateral sprouting of the CST or RtST and
remain to be further explored. Dietary supplementation with the
omega-3 fatty acid docosahexaenoic acid (DHA) also resulted
in functional recovery following pyramidotomy and cervical
SCI (112), particularly when combined with forelimb training
(113). DHA induced sprouting of CST and serotonergic fibers
into the denervated side below the lesion (113), possibly by
increasing BDNF levels, among other mechanisms (114, 115).
Stimulation of BDNF release, together with potentiation of
serotonergic activity within the spinal cord, also takes place
after exposure to acute intermittent hypoxia (AIH), a plasticity-
promoting approach consisting of brief exposures to reduced
oxygen levels alternating with normo-oxygen breaths (116–118).
AIH has proved to reopen a period of enhanced plasticity
when applied at four (116, 117) or even at 8 weeks (118) post-
injury, leading to task-specific functional recovery exclusively
when combined with forelimb training. Similarly, reintroducing
inflammation through systemic injection of lipopolysaccharide
re-established a heightened-plasticity state at 8 weeks post-
injury, allowing reaching and grasping training to recover its
efficacy to induce CST sprouting into the spinal gray matter and
skilled functional improvement (60). A recent work reports that
combining task-specific rehabilitative training with inhibition of
PTEN (phosphatase and tensin homolog), an intrinsic negative
regulator of axon regeneration (119), promotes CST regeneration
beyond the lesion site and recovery of reaching and grasping
after cervical SCI (120). The onset time for this intervention was
also delayed (i.e., 4 weeks) after injury, further supporting that
time-dependent plasticity decay after injury can be successfully
counteracted through several pharmacological manipulations to
prolong activity-driven recovery.

SPINAL NEUROMODULATION: AN ADDED
TOOL FOR FACILITATING
REHABILITATION

The engagement of spinal circuitries, by delivering electrical
stimulation patterns, facilitates the performance of the
rehabilitated movements. The International Neuromodulation
Society defines neuromodulation as “the alteration of nerve
activity through targeted delivery of a stimulus, such as
electrical stimulation or chemical agents, to specific neurological
sites in the body.” Here, we will refer to neuromodulation
as the modulation induced by electrical stimulation. Spinal
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neuromodulation was originally used to mitigate chronic pain
(121, 122). Studies with multiple sclerosis patients, who received
epidural spinal cord stimulation to relieve uncontrollable pain,
also showed gains in voluntary motor control (123). Remarkably,
once the stimulation stopped, the improved function did not
revert, suggesting that electrical stimulation was producing some
sort of change in the nervous system.

The First Steps: Learning From Lumbar
Neuromodulation
Most of the studies on neuromodulation have been performed
on the lumbar spinal cord aiming to gain hindlimb motor
control. This is probably due to the longer tradition of
studying locomotion.

The delivery of electrical stimulation has been evolving over
the years, from a very invasive approach using intraspinal
electrodes implanted in the spinal parenchyma, to single or
arrays of electrodes sutured to the epidural layer surrounding
the dorsal surface of the spinal cord, and most recently to
transcutaneous stimulation, which delivers the current through
adhesive electrodes placed on paravertebral or midline skin
(Figure 4).

Intraspinal electrodes implanted in the spinal ventral horns
directly activate close spinal motoneurons and can robustly evoke
complex hindlimb movements in frogs [reviewed in (124)], cats
(125–127) and rats (128, 129). By adapting externally controlled
machine learning algorithms, the electrical current was delivered
through a combination of selective electrodes within an array
that enabled decerebrated cats to generate flexor and extensor
movements of the hindlimbs, producing bilateral weight-bearing
stepping (130). The invasiveness of the procedure makes it less
attractive than more recently developed techniques; however,
efforts have focused on translating this approach to humans
by studying its functionality and mechanical stability in bigger
mammals (131).

Epidural electrodes offer a less invasive approach. Although
surgery is required to expose the spinal cord and fix the single
or electrode arrays on the meninges layer covering the spinal
cord, there is no need to penetrate the spinal parenchyma,
thus avoiding tissue damage. However, some difficulties may
arise due to electrode migration, inflammation or electrode
failure (132). Depending on the stimulation intensity, epidural
stimulation can evoke early, middle and late reflex latency
responses in the hindlimb muscles, which correspond to direct
motor, monosynaptic and polysynaptic activation, respectively
(133). Therefore, compared to intraspinal stimulation, an
additional advantage of epidural stimulation is the nature of the
neurons activated.

Using a pair of implanted wire electrodes on the lumbar
spinal cord, stepping was evoked in decerebrated cats (134),
spinalized cats (135, 136), and spinalized rats (137) while the
animals were placed on a treadmill. Electrical stimulation can
be combined with pharmacological modulation; injection or
delivery of serotoninergic agonist drugs showed additive effects,
leading to better stepping kinematics, in rats with complete
(138, 139) or incomplete (140) spinal cord injuries. Importantly,
the stimulation parameters have been carefully identified, as

well as the optimal placement of the electrodes, which have
shown to be crucial for enabling proper steps in spinalized
rats, whose kinematic and muscle recruitment resembled those
of uninjured rats (141). The development of soft multi-
electrode arrays which topographically extend over the dorsum
of several spinal segments (142) allowed the specific stimulation
under real-time processing of gait kinematics and locomotor
performance to optimally readjust the hindlimb kinematic for
stepping (143).

From the clinical studies, it is mandatory to mention the
work done by the group of Harkema and colleagues. Chronic
complete SCI (AIS A-B) patients regained voluntary control of
leg movements while receiving epidural lumbosacral stimulation
together with extensive rehabilitation protocols (144), but also
immediately after electrode implantation (145). Subsequent
studies have shown that following an intervention period, motor
recovery included standing (146) and stepping (3) recovery, even
in the absence of stimulation.

The most recently developed approach is the use of
transcutaneous electrical spinal stimulation. Without the need
for surgery, adhesive stimulating cathode electrodes are placed
at single (147) or multiple sites (148) along the back, and
the anode electrode on the hips. Transcutaneous stimulation
is generally delivered using the “Russian current” method, in
which a carrier frequency of 2.5–10 kHz alternating current
is applied in 50Hz rectangular bursts (149) and is painless
(148). However, carrier frequency stimulation appears better
tolerated than conventional stimulation by neurologically intact
participants only at low intensities, whereas both stimulation
protocols are indistinguishable once the threshold to evoke spinal
motor potentials is reached (150). Nevertheless, Kumru et al.
have shown that subthreshold stimulation influences the spinal
circuitry more efficiently than higher stimulation intensities
(151), reinforcing the use of painless transcutaneous stimulation
as a tool to modulate the spinal cord. A recent meta-analysis,
including a total sample of 55 persons with SCI showed that
transcutaneous electrical spinal stimulation induced muscle
activation in the lower and upper limbs. The studies reported
an increase in motor response measured by recording surface
electromyography, voluntary movement, muscle strength, or
function (152).

However, transcutaneous stimulation is scarcely studied in
animals. Unstable fixation of the adhesive electrode on the
animal’s skin and the difficulty placing the electrodes identically
during longitudinal studies limit its implementation and have
led to the development of transvertebral electrical stimulation,
in which electrodes are implanted into the vertebral spinous
processes, with a mode of action and muscle responses analogous
to those evoked by transcutaneous stimulation (153).

Cervical Neuromodulation to Regain
Manual Dexterity
There are fewer neuromodulation studies conducted on the
cervical than on the lumbar spinal cord, and this is probably
attributable to the higher complexity of controlling discrete goal-
oriented movements with the hands than of rhythmic stepping
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FIGURE 4 | Spinal cord electrical stimulation. Different approaches have been developed in the last years to neuromodulate the spinal cord. (A) Intraspinal electrodes

within the spinal gray matter, close to the motoneuron pools; (B) Epidural electrode arrays are placed over the dorsal side of the spinal cord fixed to the outer side of

the meningeal layer; (C) Transcutaneous stimulation is delivered by big size adhesive electrodes which are placed percutaneously on the back skin.

with the legs. However, as described below, all studies are
showing a parallel trend as that for the lumbar spinal cord, with
a similar mode of action, suggesting that the beneficial effects of
lumbar neuromodulation can be replicated in or interpolated to
the cervical spinal cord (Table 1).

Intraspinal electrodes implanted in the cervical ventral horns
can elicit complex forelimb movements (e.g., reaching and
grasping) by the coactivation of multiple muscle activity, as
shown in intact anesthetized macaques (154, 155) and uninjured
and contused anesthetized rats (160). Awake macaques with
muscimol-silenced motor cortex had better electromyographic
activity, movement amplitude and grasp-pull success when
receiving intraspinal stimulation (161). Moreover, intraspinal
stimulation has shown to induce plastic changes in the
spinal cord circuits: contused rats had better reaching and
grasping performance when stimulation was delivered before
the beginning of the testing sessions, priming the system for
movement execution (164). In a later study, contused spinal cord-
injured rats were rehabilitated for reaching and grasping while
receiving intraspinal stimulation, and they not only performed
better than non-stimulated rats, but their gains also persisted
for 3 weeks without any additional intervention, indicating that
intraspinal stimulation has long lasting effects that extend beyond
the stimulation period (165). Importantly, motor recovery
was only observed under a closed-loop (but not open-loop)
procedure in which spinal stimulation was triggered after muscle
EMG activity detection, denoting the relevance of temporal
tuning of stimulation delivery.

Epidural stimulation also improves reaching and grasping
performance in rats with cervical SCI (166). The animal’s
success improved when the epidural stimulation was applied
concomitantly to or before the beginning of the testing.
Bipolar stimulation between electrodes implanted in the
caudal cervical spinal segments produced the higher reaching
and grasping success rates and argue that muscle synergies,
which had been impaired with the SCI, returned to pre-
injury levels. Recent studies have further investigated in-depth

the mechanisms by which epidural stimulation modifies the
spinal circuit physiology. Using sophisticated computational
simulations together with data obtained from cervical epidural
stimulated macaques, it was evidenced that dorsally placed
epidural electrodes predominantly recruit spinal motoneurons
trans-synaptically through depolarization of sensory afferent
fibers (158). Epidural stimulation also recruited descending and
ascending fibers (including corticospinal and spinocerebellar
tracts and dorsal columns), depending onmedio-lateral electrode
placement. Indeed, only low-amplitude stimulation at laterally-
placed electrodes was able to preserve segmental specificity
(i.e., selective recruitment of individual roots). Notably, primary
afferent stimulation of upper limb muscles enhanced the motor
activity of synergistic muscles only when delivered during a
voluntary task (i.e., reaching and grasping), suggesting that
the modulatory effect of epidural stimulation is movement-
dependent and likely promotes muscle synergies (158). Using
a new multielectrode cuff, which surrounds the perimeter
of the spinal cord, it has also been possible to selectively
stimulate the dorsal and the ventral aspects of the spinal
cord in anesthetized macaques (159). As hypothesized, dorsal
epidural stimulation trans-synaptically activated the cervical
motoneurons, whereas ventral epidural stimulation acted on
them directly. Along these same lines, Sharma and Shah (157)
explored several stimulation protocols in both anesthetized
and awake rats and identified diverse responses recorded in
the forelimb muscles. Their results replicate the previously
described responses evoked by lumbar spinal stimulation in
hindlimb muscles (133) and demonstrate the stimulation’s equal
mode of action on the cervical and the lumbar spinal cord.
These experiments also suggest that not only sensory fibers
are susceptible to electrical stimulation, but also spinal neurons
can be activated. At increasing stimulation intensities, motor
responses with different latencies were recorded and identified
as early, middle and late responses. Whereas, early responses
probably arose from direct activation of motor efferents, middle
and late responses were presumably elicited by activation
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TABLE 1 | Summary of the most relevant animal studies on cervical spinal neuromodulation.

Injury Spinal stimulation Functional assessments Long-term intervention

Reference Species Type Level Type Level Electrophysiology Behavior Regime Stim.

parameters

Training Major findings

Moritz et al.

(154)

Macaque

monkey

N/A N/A Intraspinal C6-T1 Mapping of

spinally-evoked motor

responses (SEMR) and

forelimb movements

(by pulse trains).

None

(anesthetized)

N/A N/A N/A Arm/hand movements (flexor

predominantly) evoked at most of

stimulated sites. Coactivation of two

to six muscles found at half of sites.

Responses elicited from dorsal and

ventral horn and from fiber tracts.

Zimmermann

et al. (155)

Macaque

monkey

N/A N/A Intraspinal C6-T1 Mapping of SEMR and

forelimb movements

(by pulse trains).

None

(anesthetized)

N/A N/A N/A Coordinated functional arm/hand

movements evoked by long trains at

one stimulation site. R&G movement

required stimulation of only two

spinal sites.

Sharpe and

Jackson (156)

Macaque

monkey

N/A N/A Intraspinal,

subdural,

epidural

C5-C7 Dorsoventral mapping

of SEMR and forelimb

movements (by single-

or train-pulses); paired

subdural-intraspinal

stimulation.

None

(anesthetized)

N/A N/A N/A Motor effects of ventral stimulation

mainly mediated by direct activation

of motoneurons. Dorsal stimulation

increased trans-synaptic excitation

mediated by descending projections,

afferent inputs and/or local

interneurons. Subdural stimulation

was more specific than epidural or

intraspinal.

Sharma and

Shah (157)

Rat N/A N/A Epidural C6 and C8 SEMR (by single- and

paired-pulses, at

multiple frequencies) at

rest, during volitional

motor task, and under

anesthesia.

SPRG N/A N/A N/A SEMR with three different

waveforms—early, middle and late-,

corresponding, respectively, to

activation of motoneurons directly,

type-I sensory afferents and wider

spinal interneuronal circuits. Middle

and late responses, but not early,

modulated by repeated stimulation

protocols and volitional motor

activity.

Greiner et al.

(158)

Macaque

monkey

N/A N/A Epidural C3/C4 and

T1/T2

Mapping of SEMR (by

single- and

train-pulses) through

medial and lateral

electrodes under

anesthesia; continuous

stimulation (50Hz)

during volitional motor

task.

Reaching,

grasping and

pulling

N/A N/A N/A Stimulation of individual roots

achieved with lateral (better than

medial) electrodes. Motoneuron

recruitment trans-synaptically via
direct excitation of sensory afferents.

Modulatory effect of stimulation was

movement-phase-dependent.

(Continued)
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TABLE 1 | Continued

Injury Spinal stimulation Functional assessments Long-term intervention

Reference Species Type Level Type Level Electrophysiology Behavior Regime Stim.

parameters

Training Major findings

Guiho et al.

(159)

Macaque

monkey

N/A N/A Epidural C7 SEMR (by single- and

train-pulses) through

surrounding

multielectrode cuff;

paired ICMS-epidural

SCS

None

(anesthetized)

N/A N/A N/A Ventral stimulation elicited robust

forelimb movements even at low

intensities and high frequencies.

Dorsal stimulation facilitated

supraspinal-evoked responses,

especially at intermediate stimulation

frequencies.

Guiho et al.

(159)

Macaque

monkey

N/A N/A Transcutaneous C3/C4

and

T1/T2

Paired

ICMS-transcutaneous

SCS (“Russian

current”).

None

(anesthetized)

N/A N/A N/A Transcutaneous stimulation effective

(less than epidural) at facilitating

supraspinal-evoked responses,

especially at intermediate stimulation

frequencies.

Sunshine et al.

(160)

Rat Lateralized

contusion

C4-C5 Intraspinal C3-T1 Mapping of SEMR and

forelimb movements

(by pulse trains).

None

(anesthetized)

N/A N/A N/A Motor thresholds and number of

movement-evoking sites unchanged

by SCI. Three and 6 weeks after

injury: extensor-predominant

movements and restricted muscle

synergies. Nine weeks after injury:

recovery of full robust arm/hand

movements.

Zimmermann

and Jackson

(161)

Macaque

monkey

Reversible

inactivation

(muscimol)

Hand

region

of M1

(cortex)

Intraspinal

(closed-loop)

C4-T1 SEMR (by pulse trains)

at rest; closed loop

system: biphasic

pulses delivered

100–200ms after M1

neuron spiking during

volitional motor task.

Reaching,

grasping and

pulling

N/A N/A N/A During closed-loop stimulation,

animals with disrupted corticospinal

control displayed better EMG,

movement amplitude and grasp-pull

success than when the stimulation

was off.

Alam et al.

(162)

Rat Dorsal

funiculi crush

C4 Epidural C6 and

C8

SEMR (by single-pulse)

at diverse electrode

configurations, at rest;

continuous stimulation

(40Hz) during volitional

motor task.

Grip strength N/A N/A N/A SEMR were evoked in all muscles

also after SCI. Simultaneous C6 and

C8 stimulation produced better

muscle recruitment and higher grip

strengths than stimulation at one

site.

Samejima

et al. (163)

Rat Lateralized

contusion

C4 Epidural (brain-

computer-spinal

interface)

C6 Pre/post-injury cortical

decoding for forelimb

movement; spinal RMT

(by pulse trains) at rest.

BCI: biphasic train

pulses (50–100Hz)

delivered after

sensorimotor cortex

local field potentials

during volitional motor

task.

Lever-pressing

task

N/A N/A N/A Intracortical local field potentials

were stable markers of forelimb

movement intention before and after

SCI. Forelimb function improved

after injury when brain-controlled

epidural stimulation was on.

(Continued)
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TABLE 1 | Continued

Injury Spinal stimulation Functional assessments Long-term intervention

Reference Species Type Level Type Level Electrophysiology Behavior Regime Stim.

parameters

Training Major findings

Kasten et al.

(164)

Rat Lateralized

contusion

C4-C5 Intraspinal C6-T1 Spinal stimulation

resting motor

thresholds (RMT)

SPRG, forelimb

asymmetry

ISMS: 7 h/day, 5

d/week, 12

weeks; start 4

weeks after injury

Continuous

biphasic pulses

(at RMT), 4 ±

1.5Hz

SPRG after each

ISMS session

Injured animals performed better in

SPRG when stimulation was given

before reaching and grasping,

possibly priming the system for

movement execution.

McPherson

et al. (165)

Rat Lateralized

contusion

C4-C5 Intraspinal

(closed-loop)

C6-C8 Spinal stimulation

RMT (by single-pulses)

SPRG ISMS: 5–8 h/day,

5 d/week, 13

weeks, start 6

weeks after injury

Biphasic pulses

(at 90% RMT),

delivered 0.2ms

after EMG activity

(closed-loop) or at

EMG-independent

pattern

(open-loop)

SPRG (30

min/day) during

ISMS

Injured rats receiving closed-loop

ISMS plus rehabilitation showed

better SPRG performance than

open-loop ISMS+rehabilitation or

only-rehabilitation rats. Therapeutic

gains remained for three additional

weeks without stimulation.

Alam et al.

(166)

Rat Dorsal

funiculi crush

C4 Epidural C6 and C8 Spinal stimulation

RMT (by train pulses).

SPRG Intense functional

assessment: 3

d/week SEMR

threshold + 3

d/week

SPRG+stim. 10

weeks, start 1

week after injury

Monophasic

pulses (60–70%

RMT), at 20, 40

and 60Hz.

SPRG (20

min/day) during

on/off stimulation

Injured rats improved SPRG

performance during bipolar C6–C8

stimulation compared to monopolar

stimulation or no stimulation. C6–C8

stimulation recovered pre-injury-like

muscle synergies.

Rascoe et al.

(167)

Rat Complete

hemisection

C4 Epidural

(closed-loop)

C6 and C9 Spinal stimulation

RMT (by train pulses).

SPRG,

horizontal

ladder,

treadmill,

grooming and

rearing

Epidural SCS

during

unsupervised

overnight activity:

7 h/session, 6

d/week,

12 weeks

Biphasic pulses

(at 90% RMT),

delivered after

EMG activity

onset, single or

at 500ms, 40Hz

trains.

Forelimb testing

(1 d/week)

Proof of concept for long-term

implementation of EMG-triggered

closed-loop epidural stimulation

(effects on skilled forelimb function

not analyzed).

Song et al.

(168)

Rat Unilateral

section

Pyramids Transcutaneous

(plus cortical

stimulation)

C4-T2 MEP facilitation by

spinal-cortical paired

stimulation at diverse

ISIs, spinal and cortical

stimulation RMT.

Horizontal

ladder (1–4w

post-

stimulation)

tDCS plus cortical

stimulation: 27

min/d, 10 days,

start 1 week

after injury

tDCS: continous

current at 1.5mA

N/A In intact rats, cathodal tsDCS

combined with cortical

neuromodulation facilitated MEPs

and increased M1 activity/forelimb

EMG correlation during locomotion.

Daily cortical+spinal

neuromodulation after injury restored

horizontal ladder performance and

CST sprouting.

(Continued)
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TABLE 1 | Continued

Injury Spinal stimulation Functional assessments Long-term intervention

Reference Species Type Level Type Level Electrophysiology Behavior Regime Stim.

parameters

Training Major findings

Zareen et al.

(169)

Rat Midline

contusion

C4 Transcutaneous

(plus cortical

stimulation)

C4-T2 Spinal and cortical

stimulation RMT

separately.

Horizontal

ladder, cereal

manipulation

(IBB) (1–3w

post-

stimulation)

tDCS plus cortical

stimulation: 30

min/d, 10 days,

start 1 week after

injury

tDCS: continous

current at 1.5mA

N/A Combined cortical and spinal

neuromodulation after SCI improved

motor recovery and enhanced CST

sprouting below and above the injury.

Yang et al.

(170)

Rat Midline

contusion

C4 Transcutaneous

(plus cortical

stimulation)

C4-T2 Spinal and cortical

stimulation RMT

separately.

Horizontal

ladder, cereal

manipulation

(IBB) (1–4w

post-

stimulation)

tDCS plus cortical

stimulation: 30

min/d, 10 days,

start 11 days after

injury

tDCS: continous

current at 1.5mA

N/A Replication study (169) in an

independent lab. Combined cortical

and spinal neuromodulation after SCI

improved forelimb performance and

enhanced CST sprouting.

Sharif et al.

(171)

Rat Midline

contusion

C4 Transcutaneous

(plus cortical

stimulation)

C4-T2 Spinal and cortical

stimulation RMT

separately.

Horizontal

ladder (2–8w

post-

stimulation)

tDCS plus cortical

stimulation: 30

min/d, 10 days,

start 2w after

injury

tDCS: continous

current at 1.5mA

Horizontal ladder:

5 days/week for

6 weeks after

stimulation period

Combined cortical and spinal

neuromodulation plus rehabilitation

enhanced recovery of horizontal

ladder performance and CST

sprouting compared to rehabilitation

only.

SCS, spinal cord stimulation; SEMR, spinally-evoked motor responses; ICMS, intracortical microstimulation; SPRG, single-pellet reaching and grasping; ISMS, intraspinal microstimulation; tDCS, transcraneal direct current stimulation.
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of type-I sensory afferents and of interneuronal circuitries,
respectively. These results evidence that neurons at different
locations within the dorsal-ventral axis respond to stimulation
applied on the dorsum of the cord and suggest that not only
thick sensory fibers but also spinal neurons can be modulated by
electrical stimulation.

The first published study on neuromodulation of the cervical
spinal cord to improve the recovery of upper limb function in
human patients used epidural electrodes (172). Patients suffering
from a chronic AIS B cervical SCI (at C5/C6 level) showed better
hand control and strength when receiving neuromodulation
within the same session and improved in both conditions (with
and without stimulation) during the 8 weeks of intervention.
At present, most clinical studies focus on testing the effects of
transcutaneous stimulation. In a clinical case study, Inanici et al.
(173) tested a patient with C3, incomplete, chronic SCI (AIS D)
who received rehabilitation phases alternating with and without
stimulation. The patient improved sensory and motor function,
even when tested without stimulation, and the improvements
remained for at least 3 months after finishing the treatment.
In another study, hand grip strength was measured in chronic
AIS B-C patients (174). Patient hand grip strength was greater
when receiving the stimulation and at the end of the 4-week
intervention, indicating a physiological improvement and not
exclusively restricted to the acute stimulation period. Long-
lasting effects were also reported in patients with chronic AIS
B, who received transcutaneous stimulation together with the
administration of the serotoninergic agonist buspirone (175).

To our knowledge, except for Guiho et al. (159), who studied
forelimb motor responses in anesthetized non-human primates
elicited by transcutaneous SCS and epidural stimulation, there
are no reported animal studies using cervical transvertebral
electrical stimulation. However, in a different paradigm,
work from John Martin’s laboratory explores the effects of
combined cortical epidural motor cortex stimulation and
cathodal transcutaneous cervical direct current stimulation
on motor function recovery (168–171). Notably, when this
combined cortical and spinal neuromodulaton approach was
applied together with horizontal ladder rehabilitation, forelimb
motor improvement and corticospinal sprouting was more
evident than in animals receiving rehabilitation only (171).

In summary, all the aforementioned studies evidence that
any of the neuromodulatory approaches when applied to the
cervical spinal cord enable to some extent voluntary control of
previously paralyzed upper limb muscles. A detailed description
of the mechanism of actions governing the underlying plasticity

remain unknown. However, there is a consensus that the
stimulation effects are based on recruiting sensory inputs from
the dorsal cord lying under the stimulating electrodes, followed
by polysynaptic activation of the spinal neuronal circuits (176).
No secondary effects (such as pain or spasticity) have been
reported (173, 177, 178). Future directions pursue to develop
neuromodulatory “closed-loop” systems and brain-computer-
spinal interfaces (163, 167, 179–181), where the stimulation
is directly controlled by endogenous biological signals that
highly correlate with intentionality, instead of being applied by
the experimenter/therapist.

CONCLUSIONS

As recently reported by Morse et al. (4), a recent proceeding
hosted by the National Institutes of Health (NIH) aimed to
present and discuss the progress, opportunities and priorities
for the next decade of spinal cord research clearly expressed
the general interest and optimism among scientist, clinicians,
patients and general public regarding the potential of spinal
neuromodulation to improve motor and other systemic
physiological functions in people with chronic spinal cord
injuries. It also highlighted the necessity to understand the
rehabilitation dose necessary for clinically meaningful effects and
to optimize the stimulation parameters to neuromodulate spinal
networks at different stages after injury. To fill in these gaps, there
is no doubt that animal studies will bring valuable information
on the structure and physiology of the cervical spinal cord
networks, together with the plastic processes occurring during
and after activity-dependent interventions. We need to carefully
look back and take advantage of what has been learned from
the lumbar spinal cord and draw up a new set up to engage
cervical spinal networks to regain the control of skilled arm and
hand movements.
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