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Abstract. We start with the 13 central configurations of the restricted (4 + 1)–problem
where the four primaries have equal masses and are located at the vertices of a square.
Then we describe the evolution of these central configurations when some of the masses of
the four primaries tend to zero and the remainder ones keep constant. More precisely, we
consider the cases where one of the masses tends to zero, where either two adjacent or two
opposite equal masses tend to zero simultaneously, and where three equal masses tend to zero
simultaneously. Here simultaneously means that the masses which go to zero take the same
value at any moment.

1. Introduction and statement of the main results

The n-body problem is the problem of studying the motions of n punctual masses interacting
between them under the Newtonian gravitation.

A configuration of the bodies of the n-body problem is called central when the acceleration
of each body is proportional to the position vector of the body with respect to the center of
mass.

The set of all planar central configurations is invariant under homotheties with respect to
the center of mass and rotations. When we count the number of central configurations we
mean the number of equivalence classes with respect the equivalence relations defined by these
homotheties and rotations.

Central configurations are important in the analysis of the n-body problem for several
reasons, here we only mentioned briefly some of them.

(1) They allow to compute all the homographic solutions of this problem (see [15]).
(2) Every motion starting or ending in a total collision is asymptotic to a central configu-

ration (see [4, 10]).
(3) Every parabolic motion of the n bodies is asymptotic to a central configuration (see

[4, 10]).
(4) They play a role in the study of the invariant sets obtained fixing the energy and the

angular momentum (see [12, 13]).
(5) They have been used for different missions in the solar system (see [6, 7].

The central configurations of the 2– and 3-body problem are known (see [9]), but the
problem of finding the central configurations when n > 3 is far to be solved. More precisely,
for n > 3 we only know the central configurations for some particular n-body problems where,
in general, the configurations satisfy some geometrical properties, or some of the masses are
equal.
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The objective of this paper is to study some families of central configurations of the planar
restricted (4 + 1)-body problem. More precisely, we start with the 13 central configurations
of the restricted (4 + 1)-body problem with the four primaries having equal masses localized
at the vertices of a square (see for instance [5, 11]). Then we describe the evolution of the
families of central configurations coming from the numerical continuation of these 13 central
configurations when we decrease the mass of either one, or two, or three primaries with equal
masses to zero. These families end at a central configurations of a restricted problem with
either two, three or four infinitesimal masses. All numerical computations have been done
using enough precision to ensure that all results provided here are accurate at least up to
twelve decimal places.

We define the following restricted 5-body problems.

• The restricted square (4 + 1)-body problem with four equal masses at the vertices of a
square and a fifth infinitesimal mass.

• The restricted isosceles trapezoidal (4 + 1)-body problem with two pairs of adjacent
equal masses at the vertices of an isosceles trapezoid and a fifth infinitesimal mass.

• The restricted kite (4 + 1)-body problem with the four masses at the vertices of a kite
and with either a pair of opposite equal masses or three equal masses and a fifth
infinitesimal mass.

• The restricted (2 + 3)-body problem with two primaries having equal masses and three
infinitesimal masses.

• The restricted equilateral triangular (3 + 2)-body problem with three primaries having
equal masses at the vertices of an equilateral triangle and two infinitesimal masses.

• The restricted ((1 + 3) + 1)-body problem with the primary at the origin, three equal
infinitesimal masses at a central configuration of the restricted (1 + 3)-body problem
and a fifth infinitesimal mass equal to zero. We note that our restricted ((1 + 3) + 1)-
body problem is a particular case of the general restricted (1 + 4)-body problem (see
Section 3 for more details).

The paper is structured as follows. In Section 2 we give the equations of central config-
urations of the general 5-body problem. In Section 3 we give the 13 central configurations
of the restricted square (4 + 1)-body problem and we give the central configurations of the
restricted (3 + 2), (2 + 3) and ((1 + 3) + 1)-body problems which appear as the limit cases of
the continued families as either one, two or three infinitesimal masses tend to zero.

In Section 4 we describe the evolution of the families of central configurations emanating
from the restricted square (4+1)-body problem when two adjacent equal masses of the square
tend simultaneously to zero along the family of the restricted isosceles trapezoidal (4+1)-body
problem central configurations. These families end at central configurations of the restricted
(2 + 3)-body problem. The obtained results are summarized in Figure 2.

In Subsection 5.1 we describe the evolution of the families of central configurations emanat-
ing from the restricted square (4 + 1)-body problem when two opposite equal masses of the
square tend simultaneously to zero along the family of the restricted kite (4 + 1)-body prob-
lem central configurations with two pairs of equal masses. These families also end at central
configurations of the restricted (2 + 3)-body problem. The obtained results are summarized
in Figure 5.

In Subsection 5.2 we describe the evolution of the families of central configurations emanat-
ing from the restricted square (4+1)-body problem when one of the masses of the square tends
to 0 along the family of the restricted kite (4 + 1)-body problem central configurations with
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three big equal masses. These families end at central configurations of the restricted equilateral
triangular (3 + 2)-body problem. The obtained results are summarized in Figure 8.

Finally in Subsection 5.3 we describe the evolution of the families of central configurations
emanating from the restricted square (4 + 1)-body problem when three equal masses of the
square tend simultaneously to 0 along the family of the restricted kite (4 + 1)-body problem
central configurations with three small equal masses. These families end at central configu-
rations of the restricted ((1 + 3) + 1)-body problem. The obtained results are summarized in
Figure 11.

2. Equations of the central configurations of the 5-body problem in the
plane

Let (xi, yi) for i = 1, . . . , 5 be the position of the punctual mass mi of the i–th body. Then
the center of masses (c1, c2) of the 5-body problem is defined by

(c1, c2) =
1

M

(
5∑

i=1

mixi,

5∑

i=1

miyi

)
,

where M =
5∑

i=1

mi. Since in a central configuration the acceleration of each body is propor-

tional with a constant λ to the position vector of the body with respect to the center of mass,
a configuration

{(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)}
of the 5 bodies is central if it satisfies the equations

(1) exi
= 0, eyi = 0,

for i = 1, . . . , 5, where rij =
√
(xi − xj)2 + (yi − yj)2 and

exi
=

5∑

j=1,j ̸=i

mj
xi − xj

r3ij
− λ(xi − c1),

eyi =
5∑

j=1,j ̸=i

mj
yi − yj
r3ij

− λ(yi − c2).

We note that we have the next two relations
5∑

i=1

miexi
= 0,

5∑

i=1

mieyi = 0.

Therefore the ten equations (1) can be reduced to the following eight equations

(2) ej = exj+1
− ex1 = 0, ej+4 = eyj+1

− ey1 = 0, for j = 1, 2, 3, 4.

3. Central configurations of the limiting problems

Recall that the restricted (L+N)-body problem is the limit case of the (L+N)-body problem
having L given masses and N small masses when these small masses tend to zero. Thus,
mathbfq is a central configuration of the restricted (L+N)-body problem if q = limε→0 q(ε)
where q(ε) is a central configuration of the planar (L+N)-body problem with masses mi for
i = 1, . . . , L and mj+L = εµj for j = 1, . . . , N . One can easily see, by taking the terms of
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Figure 1. Possible positions of the infinitesimal mass for the restricted square
(4 + 1)-body problem

order 0 in ϵ in the equations of central configurations of the (L+N)-body problem, that in the
central configurations of the restricted (L+N)-body problem with N > 1 the L large masses
must be in a central configuration of the L-body problem and the possible positions of each
one of the infinitesimal masses are the possible positions of the infinitesimal mass in a central
configuration of the restricted (L + 1)-body problem. Thus in this case the positions of the
infinitesimal masses do not depend on the values of µi. When N = 1 the terms of order 0 in ϵ
in the equations are not enough to determine the position of the N infinitesimal masses and
we must use the terms of order 1. This causes that the positions of the infinitesimal masses
in a central configuration of the restricted (1 +N)-body problem depend on µi (see for more
details [3]).

3.1. Restricted square (4+1)-body problem central configurations. First we describe
the central configurations of the restricted square (4+1)-body problem with four equal masses
at the vertices of a square. By taking conveniently the units of mass and length it is not
restrictive to consider four equal masses m1 = m2 = m3 = m4 = 1 at the vertices of the square
with coordinates (x1, y1) = (−1,−1), (x2, y2) = (1,−1), (x3, y3) = (1, 1) and (x4, y4) = (−1, 1)
and a fifth infinitesimal mass m5 at (x5, y5).

For the restricted square (4 + 1)-body problem central configurations, we know from the
works [5, 11] that the infinitesimal mass must be placed at an axis of symmetry of the square
and that there exists exactly 13 possible positions for the infinitesimal mass (see Figure 1). We
have computed their coordinates sk = (xk

5, y
k
5) for k = 1, . . . , 13 under the above assumptions

and they are (see again Figure 1)
(3)
s1 = (0, 0), s2 = (0.986244975201.., 0),
s3 = (2.266147813663.., 0), s4 = (0, 0.986244975201..),
s5 = (0, 2.266147813663..), s6 = (1.880455410280.., 1.880455410280..),
s7 = (0, −0.986244975201..), s8 = (0, −2.266147813663..),
s9 = (1.880455410280.., −1.880455410280..), s10 = (−0.986244975201.., 0),
s11 = (−2.266147813663.., 0), s12 = (−1.880455410280.., −1.880455410280..),
s13 = (−1.880455410280.., 1.880455410280..).
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3.2. Restricted equilateral triangular (3+2)-body problem. We consider the restricted
equilateral triangular (3+2)-body problem with three massesm2 = m3 = m4 = 1 at the vertices
of an equilateral triangle and two infinitesimal masses m1 = m5 = 0. The possible positions
of the infinitesimal masses are the positions for the infinitesimal in a central configuration of
the restricted equilateral triangular (3 + 1)-body problem with three equal masses located at
the vertices of an equilateral triangle and one infinitesimal mass.

These central configurations were studied first by Arenstorf in [1] and later on by Bang and
Elmabsout in [2], and by Fernandes et al. in [5] also in the more general case of the (n+ 1)-
body problem with n equal masses at the vertices of a regular n-gon. In all these papers
the authors proved that for the central configurations of the restricted equilateral triangular
(3 + 1)-body problem and the infinitesimal mass must be on one of the three straight lines
passing through the barycenter and a vertex of the triangle, and on each of these straight lines
there are exactly four positions for the infinitesimal mass. But none of the authors provided
the exact position for the infinitesimal mass in such central configurations.

We assume that the masses m2 = m3 = m4 = 1 are at the vertices of the equilateral
triangle T defined by (x3, y3) = (1, 0), (x4, y4) = (Ta, Tb), and (x2, y2) = (x4,−y4) with Ta =
−0.145130124159.. and Tb = 0.661141185440... This is not restrictive by taking conveniently
the units of mass and length. The triangle T is the one that will appear later on when m tends
to 0. We also assume that the infinitesimal mass m1 is at (x1, y1) and we compute the possible
positions of m1 on the straight line y = 0. We get the four positions (x1, y1) = pi = (pix, p

i
y)

for i = 1, . . . , 4 with piy = 0 and

p1x = −1, p2x = −0.079390442398..,
p3x = 0.236579917226.., p4x = 1.7968710056...

Note that we also have the positions pi rotated by an angle 2π/3 which are denoted by pi∗

and rotated by an angle 4π/3 which are denoted by pi∗∗.

3.3. Restricted (2+3)-body problem central configurations. We consider the restricted
(2 + 3)-body problem with two equal masses m1 = m2 = 1 located at (x1, y1) = (−1, 0) and
(x2, y2) = (1, 0) and three infinitesimal masses m3 = m4 = m5 = 0 located at (x3, y3), (x4, y4)
and (x5, y5). This is not restrictive by taking conveniently the units of mass and length. The
possible positions for each one of the infinitesimal masses in a central configuration of the
restricted (2+3)-body problem coincide with the possible positions for the infinitesimal mass
in a central configuration of the restricted (2 + 1)-body problem with two equal masses m1 =
m2 = 1 located at (x1, y1) = (−1, 0) and (x2, y2) = (1, 0) and an infinitesimal mass located
at (x, y). Under our assumptions, the equations of central configurations of the restricted
(2 + 1)-body problem are

1

4
− 1

4
(x+ 1) +

x− 1

((x− 1)2 + y2)3/2
+

x+ 1

((x+ 1)2 + y2)3/2
= 0,

y

(
−1

4
+

1

((x− 1)2 + y2)3/2
+

1

((x+ 1)2 + y2)3/2

)
= 0.

For more details on these equations, see Szebehely [14], but take into account that there the
two primaries have masses equal to 1/2 and they are located at (0, 0) and (1, 0). Its solutions
are qk = (xk, yk) with

q1 = (0, 0), q2 = (−√
α, 0), q3 = (

√
α, 0),

q4 = (0,−
√
3), q5 = (0,

√
3),
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where α = 5.744709149227.. is the unique real solution of the equation

x5 − 4x4 + 6x3 − 68x2 − 127x− 64 = 0.

3.4. Restricted ((1+3)+1)-body problem. By taking conveniently the units of mass and
length we consider what we call the restricted ((1+3)+1)-body problem which consists of four
massesm1 = 1 at (−1, 0), m2 = m3 = m4 = 0 withm3 = (1, 0) in a central configuration of the
restricted (1+ 3)-body problem with three infinitesimal equal masses and a fifth infinitesimal
mass m5 = 0. It is a particular case of the restricted restricted (1 + 4)-body problem where
µ1 = µ2 = µ3 and µ4 = 0. In this sense this problem can be thought as a restricted problem of
the restricted (1 + 3)-body problem with three equal infinitesimal masses. Is for that reason
that we call it restricted ((1 + 3) + 1)-body problem.

Now we recall that the solutions of the central configurations (1 + 3)-body problem were
studied in [8, 3]. The (1 + 3)-body problem with three infinitesimal equal masses has three
different classes of central configurations but here we only describe the one that will appear
as limit when m tends to 0. In this central configuration m1 is at (−1, 0), and the other
three equal masses are on the circle of radius 2 centered at m1 with m3 at (1, 0), m2 at
τ 2 = (τ 2x , τ

2
y ) = (0.354757322483..,−1.471269043097..), and m4 at τ 4 = (τ 2x ,−τ 2y ). The angles

in counterclockwise starting at the positive x–axis of the masses m2, m3 and m4 are α2 =
−0.8266029360.., α3 = 0 and α4 = −α2.

We need to study the central configurations of the restricted ((1 + 3) + 1)-body problem.
To simplify the computations we assume that m1 = 1 is located at the origin and the three
infinitesimal equal masses are located on the circle of radius 1 centered at the origin with
angles α2, 0, and −α2. Using the results of [3] the equations of the central configurations for
the infinitesimal mass m5 located on the circle of radius 1 with angle α1 are

− sin(α1 − α2)

(
1− 1

8
∣∣sin

(
1
2
(α2 − α1)

)∣∣3

)
− sin(α1 + α2)

(
1− 1

8
∣∣sin

(
1
2
(α1 + α2)

)∣∣3

)

− sinα1

(
1− 1

8
∣∣sin α1

2

∣∣3

)
= 0

The solutions of this equation are

α1
1 = −1.547748984048.., α2

1 = −0.407577027360.., α3
1 = −α2

1, α4
1 = −α1

1, α5
1 = π.

Now we consider the restricted ((1 + 3) + 1)-body problem with m1 = 1 at (−1, 0), m2 at
(τ 2x , τ

2
y ), m3 at (1, 0), and m4 at (τ

4
x , τ

4
y ), then the position of the central configurations for m5

now is tk = (tkx, t
k
y) = (−1, 0) + 2(cos(αk

1), sin(α
k
1)) for k = 1, . . . , 5. In particular, ....

4. Restricted isosceles trapezoidal (4 + 1)-body problem central
configurations

We consider the restricted isosceles trapezoidal (4 + 1)-body problem having m1 = m2 = 1,
m3 = m4 = m located at the vertices of an isosceles trapezoid with coordinates (x1, y1) =
(−1, 0), (x2, y2) = (1, 0), (x3, y3) = (a, b) and (x4, y4) = (−a, b) with a, b > 0. Here we
have taken the unit of length so that the distance between m1 and m2 be two which is not
restrictive.
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Substituting these values into equations (2) with m5 = 0 we get e5 = 0 and e7 = e6. From
e1 = 0 we obtain

λ =
1

4
+m

(
− a− 1

((a− 1)2 + b2)3/2
+

a+ 1

((a+ 1)2 + b2)3/2

)
.

Substituting λ in the remaining equations we get that e3 = −e2 and

e2 =
m− a3

4a2
+

(a− 1)(am+ 1)

((a− 1)2 + b2)3/2
− (a+ 1)(am− 1)

((a+ 1)2 + b2)3/2
= 0,

e4 =− x5

4
+

x5 − 1

((x5 − 1)2 + y25)
3/2

+
x5 + 1

((x5 + 1)2 + y25)
3/2

+
(a− 1)mx5

((a− 1)2 + b2)3/2
− (a+ 1)mx5

((a+ 1)2 + b2)3/2

− m(a− x5)

((a− x5)2 + (b− y5)2)
3/2

+
m(a+ x5)

((a+ x5)2 + (b− y5)2)
3/2

= 0,

e6 =− b

4
+

b(am+ 1)

((a− 1)2 + b2)3/2
− b(am− 1)

((a+ 1)2 + b2)3/2
= 0,

e8 =− y5
4

+
y5

((x5 − 1)2 + y25)
3/2

+
y5

((x5 + 1)2 + y25)
3/2

+
m((a− 1)y5 + b)

((a− 1)2 + b2)3/2
+

m(b− (a+ 1)y5)

((a+ 1)2 + b2)3/2

+
m(y5 − b)

((a− x5)2 + (b− y5)2)
3/2

+
m(y5 − b)

((a+ x5)2 + (b− y5)2)
3/2

= 0.

(4)

Notice that when m = 1, a = 1 and b = 2 the four primaries with masses m1 = m2 =
m3 = m4 = 1 are located at a square with vertices (x1, y1) = (−1, 0), (x2, y2) = (1, 0),
(x3, y3) = (1, 2) and (x4, y4) = (−1, 2). This square is the one in Section 3 displaced one unit
above the y-axis. Therefore when m = 1, a = 1 and b = 2 the restricted isosceles trapezoidal
(4 + 1)-body problem becomes the restricted square (4 + 1)-body problem and the possible
positions of the infinitesimal mass m5 = 0 that provide central configurations are s̃k where
s̃k = sk + (0, 1) for k = 1, . . . , 13 with sk given in (3). Let Sk for k = 1, . . . , 13 denote the
central configuration of the restricted square (4+1)-body problem with the infinitesimal mass
m5 = 0 located at the position s̃k.

We want to continue numerically the central configurations of the restricted square (4+1)-
body problem to the restricted isosceles trapezoidal (4 + 1)-body problem with the mass m
playing the role of a parameter varying from m = 1 to m = 0.

Whenm = 0 the restricted isosceles trapezoidal (4+1)-body problem becomes the restricted
(2 + 3)-body problem with two equal masses m1 = m2 = 1 located at (x1, y1) = (−1, 0) and
(x2, y2) = (1, 0) and three infinitesimal masses m3 = m4 = m5 = 0 located at (x3, y3), (x4, y4)
and (x5, y5) studied in Subsection 3.3.

Now we make the continuation of central configurations from the restricted square (4 + 1)-
body problem to the restricted (2+3)-body problem with masses m1 = m2 = 1 at (−1, 0) and
(1, 0) and three infinitesimal masses m3 = m4 = m5 = 0 through the family of the restricted
isosceles trapezoidal (4 + 1)-body problem. Note that we only need to continue the central
configurations of the restricted square (4 + 1)-body problem Sk with k = 1, . . . , 9 (i.e. with
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x ≥ 0). The continuation of S13 (respectively, S11, S10, and S12) can be obtained from the
continuation of S6 (respectively, S3, S2, and S9) by symmetry.

The equations of the central configurations of the restricted isosceles trapezoidal (4 + 1)-
body problem are the four equations (4) with the four unknowns a, b, x5, y5. So we want to
find numerically the solutions of this set of four equations as m varies from 1 to 0. Let

(5) M =




∂e2
∂a

∂e2
∂b

∂e2
∂x5

∂e2
∂y5

∂e4
∂a

∂e4
∂b

∂e4
∂x5

∂e4
∂y5

∂e6
∂a

∂e6
∂b

∂e6
∂x5

∂e6
∂y5

∂e8
∂a

∂e8
∂b

∂e8
∂x5

∂e8
∂y5




.

A central configuration given by σ0 = (a0, b0, x0
5, y

0
5) for a fixed value of m = m0 is said to

be degenerate if the rank of the matrix M is not maximal at m0 and σ0. From the Implicit
Function Theorem we know that every non-degenerate central configuration can be continued
to a unique family of central configurations when the parameter m varies. So the number of
central configurations can only change if the degeneracy condition holds for some m ∈ [0, 1).

Let σ0
k = (1, 2, s̃k) for k = 1, . . . , 9 be the solution of (4) with m = 1 corresponding to the

central configuration of the restricted square (4 + 1)-body problem Sk. For each k = 1, . . . , 9
we compute the values of the determinant of M evaluated at the solution σ0

k = (1, 2, s̃k) that
we denote by |Mk| and we get

|M1| = −0.482357853887.., |M2| = |M7| = 2.646929597501..,
|M3| = |M8| = −0.136787789633.., |M4| = 2.646929597501..,
|M5| = −0.136787789633.., |M6| = |M9| = 0.145282467634..

Since all these determinants are different from zero, the central configuration Sk is non–
degenerate for all k = 1, . . . , 9 and, from the Implicit Function Theorem, it can be continued
to a unique family of central configurations with values of m sufficiently close to 1. We
continue numerically these families of central configurations for m decreasing from 1 to 0 by
using the following methodology. For each k = 1, . . . , 9 we continue numerically the solution
σ0
k = (1, 2, s̃k) of (4) from m = 1 to either m = 0, or to a value m∗ where the determinant |M |

evaluated at the corresponding solution becomes 0. The continuation method is based in the
Newton’s algorithm for finding zeroes of a vectorial function. We see that the determinant of
M along the continued families is never zero. Therefore each central configuration Sk can be
continued to a unique family of central configurations of the restricted isosceles trapezoidal
(4+ 1)-body problem for m ∈ [1, 0). The continued families tend to a central configuration of
the restricted (2+3)-body problem with the two infinitesimal masses (m3,m4) colliding at q5.
Moreover, the infinitesimal mass m5 is located at: q5 for Sk with k = 1, . . . , 6; q1 for S7; q4

for S8; and q3 for S9. The position of the five masses along the continued families is plotted
in Figure 2. In Figure 3 we plot the values of a and b as functions of m along the continued
families and in Figure 4 we do the same with the values x5 and y5. Notice that since the mass
m5 is zero, the position of the masses m3 and m4 as a function of m is the same for all the
continued families.
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Figure 2. Continuation from the restricted square (4+1)-body problem to the
restricted (2 + 3)-body problem through the family of the restricted isosceles
trapezoidal (4 + 1)-body problem.

b

a

0.2 0.4 0.6 0.8 1
m

0.5

1

1.5

3

2

Figure 3. Evolution of the values a and b along the family of central configu-
rations that comes from the continuation from the restricted square (4+1)-body
problem to the restricted (2 + 3)-body problem through the family of the re-
stricted isosceles trapezoidal (4 + 1)-body problem.

5. Restricted kite (4 + 1)-body problem central configurations

We consider the restricted kite (4 + 1)-body problem having m1,m3 and m2 = m4 located
at the vertices of a kite with coordinates (x1, y1) = (−1, 0), (x2, y2) = (a,−b), (x3, y3) = (1, 0)
and (x4, y4) = (a, b) with b > 0. Notice that here we have taken the unit of length so that the
distance between m1 and m3 be 2 which is not restrictive.
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Figure 4. Evolution of the values x5 (in blue) and y5 (in red) along the family
of central configurations that comes from the continuation from the restricted
square (4+1)-body problem to the restricted (2+3)-body problem through the
family of the restricted isosceles trapezoidal (4 + 1)-body problem.

Substituting these values into equations (2) with m5 = 0 we get e6 = 0, e3 = e1 and
e7 = −e5. From e1 = 0 we obtain

λ =
2m2 +m1

((a+ 1)2 + b2)3/2
+

m3

a+ 1

(
a− 1

((a− 1)2 + b2)3/2
+

1

4

)
.
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Substituting λ in the remaining equations we get that

e2 =
m1

4
+

(a− 1)m3

4(a+ 1)
− 2(m1 − (a− 1)m2)

((a+ 1)2 + b2)3/2

− 2(a− 1)((a+ 1)m2 +m3)

(a+ 1) ((a− 1)2 + b2)3/2
= 0,

e4 =
m3(a− x5)

4(a+ 1)
+

2m2(a− x5)−m1(x5 + 1)

((a+ 1)2 + b2)3/2
− (a− 1)m3(x5 + 1)

(a+ 1) ((a− 1)2 + b2)3/2

+
m1(x5 + 1)

((x5 + 1)2 + y25)
3/2

+
m3(x5 − 1)

((x5 − 1)2 + y25)
3/2

+
m2(x5 − a)

((a− x5)2 + (b− y5)2)
3/2

+
m2(x5 − a)

((a− x5)2 + (b+ y5)2)
3/2

= 0,

e5 = −m2

4b2
+

bm3

4(a+ 1)
+

2bm2

((a+ 1)2 + b2)3/2
− 2bm3

(a+ 1) ((a− 1)2 + b2)3/2
= 0,

e8 = − m3y5
4(a+ 1)

− y5(m1 + 2m2)

((a+ 1)2 + b2)3/2
− (a− 1)m3y5

(a+ 1) ((a− 1)2 + b2)3/2

+
m1y5

((x5 + 1)2 + y25)
3/2

+
m3y5

((x5 − 1)2 + y25)
3/2

+
m2(y5 − b)

((a− x5)2 + (b− y5)2)
3/2

+
m2(b+ y5)

((a− x5)2 + (b+ y5)2)
3/2

= 0.

(6)

Notice that when m1 = m2 = m3 = m4 = 1, a = 0 and b = 1 the restricted kite (4 + 1)-
body problem given by equations (6) becomes the restricted square (4 + 1) body problem
given in Subsection 3 with the positions of the masses scaled by a factor 1/

√
2 and rotated

clockwise by an angle π/4. Let S̃k for k = 1, . . . , 13 be the central configuration of the square
restricted (4 + 1)-body problem with the primaries located at (x1, y1) = (−1, 0), (x2, y2) =
(0,−1), (x3, y3) = (1, 0), (x4, y4) = (0, 1), and the infinitesimal mass m5 = 0 located at
s̃k = (xk/2 + yk/2,−xk/2 + yk/2), where s

k = (xk, yk) are the coordinates given in (3). Using
the symmetry of the configurations we need only to consider the central configurations with
y5 ≤ 0; that is, S̃k for k = 1, 2, 3, 6, 7, 8, 9, 12. The others can be obtained by symmetry. The
positions s̃k for k = 1, 2, 3, 6, 7, 8, 9, 12 are given by

s̃1 = (0, 0), s̃2 = (0.493122487600..,−0.493122487600..),
s̃3 = (1.133073906831..,−1.133073906831..), s̃6 = (1.880455410280.., 0),
s̃7 = (−0.493122487600..,−0.493122487600..) s̃8 = (−1.133073906831..,−1.133073906831..),
s̃9 = (0,−1.880455410280..) s̃12 = (−1.880455410280.., 0).

We want to continue numerically the families of the restricted square (4+ 1)-body problem
to the restricted kite (4 + 1)-body problem with either m1 = m3 = 1 and m2 = m4 = m (two
pairs of equal masses), or m1 = m and m2 = m3 = m4 = 1 (three big equal masses and one
smaller mass), or m1 = 1 and m2 = m3 = m4 = m (three small equal masses and one bigger
mass) and where the parameter m varies from 1 to 0.

5.1. Kite central configurations with two pairs of equal masses. We study the central
configurations of the restricted kite (4 + 1)-body problem having m1 = m3 = 1, m2 = m4 =
m located at the vertices of a kite with coordinates (x1, y1) = (−1, 0), (x2, y2) = (0,−b),
(x3, y3) = (1, 0) and (x4, y4) = (0, b) with b > 0.
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Substituting m1 = m3 = 1, m2 = m4 = m and a = 0 into (6) we get that e2 = 0 and

e4 =− x5

4
− 2mx5

(b2 + 1)3/2
+

x5 − 1

((x5 − 1)2 + y25)
3/2

+
x5 + 1

((x5 + 1)2 + y25)
3/2

+
mx5

((b− y5)2 + x2
5)

3/2
+

mx5

((b+ y5)2 + x2
5)

3/2
,

e5 =
2b(m− 1)

(b2 + 1)3/2
+

b3 −m

4b2
,

e8 =− y5
4

− 2my5

(b2 + 1)3/2
+

y5

((x5 − 1)2 + y25)
3/2

+
y5

((x5 + 1)2 + y25)
3/2

+
m(y5 − b)

((b− y5)2 + x2
5)

3/2
+

m(b+ y5)

((b+ y5)2 + x2
5)

3/2
.

Now we continue numerically the central configurations of the restricted square (4+1)-body
problem to the restricted kite (4 + 1)-body problem with the mass m playing the role of a
parameter varying from m = 1 to m = 0. Note that the equations of the central configurations
of the restricted kite (4 + 1)-body problem are the three equations e4 = e5 = e8 = 0 with
the three unknowns b, x5, y5. So we shall find numerically the solutions of that set of three
equations as m varies from 1 to 0. Using the symmetry of the configurations we need only
to continue the central configurations with x5 ≥ 0 and y5 ≤ 0; that is, S̃k for k = 1, 2, 3, 6, 9.
The others can be obtained by symmetry. Let M be as in (5) without the row related with
the equation e2 and the column related to the variable a, and taking e5 instead of e6. For
each class S̃k we provide the values of the determinant of M , that we denote by |Mk| for
k = 1, 2, 3, 6, 9 and we get

|M1| = −6.558360386504.., |M2| = 35.988878543651..,
|M3| = −1.859830027973.., |M6| = |M9| = 1.975327597366..

Since all these determinants are different from zero, from the Implicit Function Theorem, the
central configuration S̃k for k = 1, 2, 3, 6, 9 can be continued to a family of central configura-
tions with values of m sufficiently close to 1.

Now we make the continuation from the restricted square (4 + 1)-body problem to the
restricted (2 + 3)-body problem with masses m1 = m3 = 1 at (−1, 0) and (1, 0) and three
infinitesimal masses m2 = m4 = m5 = 0 through the family of the restricted kite (4+1)-body
problem with two pairs of equal masses. In order to continue the central configurations we
have used the same methodology as for the isosceles trapezoid.

The central configurations S̃k for k ∈ {3, 6, 9} can be continued to a family of central
configurations of the restricted kite (4 + 1)-body problem for m ∈ [1, 0) (the determinant is
never zero along the families) that tends to the configurations of the restricted (2 + 3)-body
problem with the three infinitesimal masses located at: q4 for S̃3 and S̃9; and q3 for S̃6.

Let m1 = 0.673935906579.. and m2 = 0.186739432174... In the continuation of S̃1 and S̃2

appear two bifurcation values m1 and m2. The central configuration S̃1 can be continued
to a family of central configurations with x5 = y5 = 0 for m ∈ [1,m1). At m = m1,
b = 1.239315257944.. and x5 = y5 = 0 there is a subcritical pitchfork bifurcation so that when
m decreases three families of central configurations bifurcate from this family, all remain on
x5 = 0. More precisely, from the three bifurcated families one remains at x5 = y5 = 0 for
m ∈ (m1, 0), and the other two, which are symmetric with respect to the y5-axis, can be
continued from m1 from m1 to m2. We continue the bifurcated family with y5 ≤ 0 to m2.
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Figure 5. Continuation from the restricted square (4 + 1)-body problem to
the restricted (2 + 3)-body problem through the family of the restricted kite
(4 + 1)-body problem with two pairs of equal masses.
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Figure 6. Evolution of b along the family of central configurations that comes
from the continuation from the restricted square (4 + 1)-body problem to the
restricted (2+3)-body problem through the family of the restricted kite (4+1)-
body problem with two pairs of equal masses.

At m = m2, b = 1.61028690479.., x5 = 0 and y5 = 0.967261480331.. there is a supercritical
pitchfork bifurcation so that when m decreases three families of central configurations coalesce
in one. More precisely, the family coming from the bifurcation of S̃1 and the two families,
symmetric with respect to the x5-axis, coming from S̃2 and S̃7 coalesce into a unique family
that can be continued for m ∈ (m2, 0). This family remain on x5 = 0 and tends to the central
configuration of the restricted (2+3)-body problem with the three infinitesimal masses located
at q4.

The position of the five masses along the continued families is plotted in Figure 5. In
Figure 6 we plot b as function of m along the continued families and in Figure 7 we plot x5

and y5.
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Figure 7. Evolution of the values x5 and y5 along the family of central configu-
rations that comes from the continuation from the restricted square (4+1)-body
problem to the restricted (2 + 3)-body problem through the family of the re-
stricted kite (4 + 1)-body problem with two pairs of equal masses.

5.2. Restricted kite central configurations of the (4 + 1)-body problem with three
big equal masses. Now we consider the central configurations of the restricted kite (4 + 1)-
body problem having m1 = m and m2 = m3 = m4 = 1 located at the vertices of a kite with
coordinates (x1, y1) = (−1, 0), (x2, y2) = (a,−b), (x3, y3) = (1, 0) and (x4, y4) = (a, b) with
b > 0. The equations of these central configurations are four equations e2 = e4 = e5 = e8 = 0
with ei given by (6) and taking m1 = m and m2 = m3 = m4 = 1.

We want to continue numerically the central configurations S̃k of the restricted square
(4 + 1)-body problem through the family of the restricted kite (4 + 1)-body problem with
three equal masses as the parameter m varies from 1 to 0. We shall find numerically the
solutions of the set of four equations e2 = e4 = e6 = e8 = 0 with the four unknowns a, b, x5, y5
as m varies from 1 to 0. Let M be as in (5) by taking e5 instead of e6. For each class S̃k with
k = 1, 2, 3, 6, 7, 8, 9, 12 we provide the values of the determinant of M , that we denote by |Mk|
for k = 1, 2, 3, 6, 7, 8, 9, 12 (again, the other cases can be obtained by symmetry) and we get

|M1| = −21.829024604302.., |M2| = |M7| = 119.786359533887..,
|M3| = |M8| = −6.190308712523.. |M6| = |M9| = |M12| = 6.574733955334..
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Now we do the continuation from the restricted square (4+1)-body problem withm1 = m2 =
m3 = m4 = 1 located at (x1, y1) = (−1, 0), (x2, y2) = (0,−1), (x3, y3) = (1, 0) and (x4, y4) =
(0, 1) to the restricted equilateral triangular (3+2)-body problem with one infinitesimal mass
m1 = 0 located at (−1, 0) and three massesm2 = m3 = m4 = 1 at the vertices of an equilateral
triangle with (x3, y3) = (1, 0) through the family of the restricted kite (4 + 1)-body problem
with three equal masses. Since all the determinants |Mk| are different from zero, all the
configurations S̃k can be continue to a family of central configurations of the restricted kite
(4+1)-body problem with m close to one. We continue these families of central configurations
by using the same methodology as in the previous cases.

The central configurations S̃k, for k = 2, 3, 6, 8, 9, 12 can be continued to a family of central
configurations of the restricted kite (4 + 1)-body problem for m ∈ [1, 0) (the determinant
along the family is never zero) that tends to the configuration of the restricted equilateral
triangular (3 + 2)-body problem with the three equal masses at the vertices of the equilateral
triangle T and the infinitesimal mass m1 located at p1. Moreover the infinitesimal mass m5

can be located at: p1 for S̃8 and S̃12; p4 for S̃6; p1 rotated by an angle 2π/3 (i.e. p1∗) for S̃3;
p2 rotated by an angle 2π/3 (i.e. p2∗) for S̃2; and p4 rotated by an angle 4π/3 (i.e. p4∗∗) for
S̃9.

Let m3 = 0.0438759786648... The central configurations S̃1 and S̃7 can be continued for
m ∈ [1,m3). At m = m3 with a = 0.138286458360.., b = 0.674663595536, y5 = 0 and
x5 = 0.749916350749 there is a supercritical pitchfork bifurcation so that when m decreases
three families of central configurations (the family comming from the continuation of S̃1 and
the two symmetric families with respect to the y5-axis comming from the continuation of S̃7

and S̃10) coalesce in one. This unique family of central configurations remains at y5 = 0 for
m ∈ [m3, 0), and tends to the configuration of the restricted equilateral triangular (3 + 2)-
body problem with three equal masses at the vertices of the equilateral triangle T and the
two infinitesimal masses m1 and m5 located at p1.

The position of the five masses along the continued families is plotted in Figure 8. In
Figure 9 we plot b as function of m along the continued families and in Figure 10 we plot x5

and y5.

5.3. Restricted kite central configurations of the (4 + 1)-body problem with three
small equal masses. Now we consider the central configurations of the restricted kite (4+1)-
body problem having m1 = 1 and m2 = m3 = m4 = m located at the vertices of a kite with
coordinates (x1, y1) = (−1, 0), (x2, y2) = (a,−b), (x3, y3) = (1, 0) and (x4, y4) = (a, b) with
b > 0. The equations of these central configurations are e2 = e4 = e5 = e8 = 0 with ei given
by (6) and taking m1 = 1 and m2 = m3 = m4 = m.

We want to continue numerically the central configurations S̃k of the restricted square
(4 + 1)-body problem to the restricted (1 + 3) + 1-body problem with m1 = 1 located at
(−1, 0) and three infinitesimal masses m2 = m3 = m4 = 0 at a central configuration of
the (1 + 3)-body problem with (x3, y3) = (1, 0) through the family of the restricted kite
(4 + 1)-body problem with three equal masses as the parameter m varies from 1 to 0. As in
Subsection 5.2, all the configurations S̃k can be continue to a family of central configurations
of the restricted kite (4+ 1)-body problem with m close to one. We continue these families of
central configurations proceeding as in the previous cases.

The central configurations S̃k with k = 3, 6, 7, 8, 9, 12 can be continued to a family of central
configurations of the restricted kite (4 + 1)-body problem with three small equal masses for
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Figure 8. Continuation from the restricted square (4 + 1)-body problem to
the restricted equilateral triangular (3+2)-body problem through the family of
the restricted kite (4 + 1)-body problem with three big equal masses.
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Figure 9. Evolution of a and b along the family of central configurations that
comes from the continuation from the restricted square (4 + 1)-body problem
to the restricted equilateral triangular (3+2)-body problem through the family
of the restricted kite (4 + 1)-body problem with three big equal masses.

m ∈ [1, 0) (the determinant along the families is never zero) that tends to the configuration of
the restricted ((1 + 3) + 1)-body problem with m1 = 1 located at (−1, 0), m2 = m3 = m4 = 0
located at τ 2, (1, 0) and τ 4 respectively. Moreover, the infinitesimal mass m5 is located at: t2

for S̃3; at (1, 0) for S̃6; at τ 2 for S̃7 and S̃9; at t1 for S̃8; and at t5 for S̃12.

In the continuation of the families S̃1 and S̃2 we get two bifurcation values one at m = m4 =
0.461860745797.. with a = 0.127510274911.., b = 1.228892081922.., x5 = 0.147603375472..
and y5 = 0, and another one at m = m5 = 0.255403199450.. with a = 0.217767653987..,
b = 1.342479413641.., x5 = 0.436776292663.. and y5 = −0.550311565370...

The central configuration S̃2 can be continued to a family of central configurations of the
restricted kite (4+1)-body problem with three small equal masses for m ∈ [1,m5). At m = m5

this family passes through a simple fold bifurcation and it can still be continued going back
until m = m4. The central configuration S̃1 also can be continued for m ∈ [1,m4). At m = m4

there is a subcritical pitchfork bifurcation that when decreasing m three solutions bifurcate,
the one coming from the continuation of S̃1 (with always y5 = 0) and the two new symmetric
families with respect to the x5-axis which are the families that come from the continuation
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Figure 10. Evolution of the values x5 and y5 along the family of central con-
figurations that comes from the continuation from the restricted square (4+1)-
body problem to the restricted equilateral triangular (3 + 2)-body problem
through the family of the restricted kite (4 + 1)-body problem with three big
equal masses.

of S̃2 and its symmetric configuration S̃4. The family coming from the continuation of S̃1,
which remains at y5 = 0, is also defined for m ∈ [m4, 0) and tends to the configuration of the
restricted circle ((1 + 3) + 1)-body problem with m2 located at τ 2, m4 located at τ 4 and m5

located at (1, 0) (m5 coalesces with m3).

The position of the five masses along the continued families is plotted in Figure 11. In
Figure 12 we plot b as function of m along the continued families and in Figure 13 we plot x5

and y5.
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the restricted ((1 + 3) + 1)-body problem through the family of the restricted
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Figure 13. Evolution of the values x5 and y5 along the family of central con-
figurations that comes from the continuation from the restricted square (4+1)-
body problem to the restricted ((1 + 3) + 1)-body problem through the family
of the restricted kite (4 + 1)-body problem with three small equal masses.

[5] A.C. Fernandes, B.A. Garcia, J. Llibre and L.F. Mello, New central configurations of the (n+1)-
body problem, J. of Geometry and Physics 124 (2018), 199–207.
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