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A comparative study of the Early Pleistocene carnivore guild from Dmanisi (Georgia) 1 

 2 

Abstract 3 

The carnivore guild of the Early Pleistocene site of Dmanisi is among the most diverse of the Early 4 

Pleistocene of the entire Old World. It includes 14 carnivoran taxa: Homotherium latidens, 5 

Megantereon whitei, Panthera onca georgica, Acinonyx pardinensis, Lynx issiodorensis; 6 

Pachycrocuta brevirostris; Canis (Xenocyon) lycaonoides, Canis borjgali, Vulpes alopecoides; 7 

Ursus etruscus; Lutra sp., Martes sp., Meles sp. and Pannonictis sp. The analysis of this rich 8 

carnivore guild was carried out under different methodological approachesin order to compare the 9 

assemblage with other chronological coeval European, Asian and African sites from a 10 

paleobiological perspective. To achieve the goal we used a permutational hierarchical method 11 

called boostrapping cluster analysis based on taxonomic absence/presence matrices (at both generic 12 

and specific level) and on ecological matrices (considering dietary preferences/hunting strategies of 13 

each carnivoran) and  carried out Mantels tests assessing magnitude of time, space, ecology and 14 

taxonomy as source of difference between guilds. Our results suggest a close similarity among the 15 

Dmanisi carnivore assemblage and other guilds recorded from European late Villafranchian sites 16 

such as Pirro Nord, Venta Micena and Apollonia 1 and, in a lesser extent, to European 17 

Epivillafranchian sites as Vallonnet, Untermassfeld or the Vallparadís Section. Early to Middle 18 

Pleistocene Asian carnivore assemblages display several similarities with the Dmanisi guild mainly 19 

in the record and diversity of felid and the canid ecomorphotypes. Eastern African sites such as 20 

Olduvai and Omo, as well as South African sites display a lower similarity with the studied sample, 21 

basically for the most diverse hyenid taphocoenoses. To sum up, the present study suggests a close 22 

similarity between the Dmanisi carnivore guild and other European late Early Pleistocene 23 

assemblages without close parallels with African or Asian assemblages. 24 
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 28 

1. Introduction  29 

The Georgian archeo-paleontological site of Dmanisi is located in the Mashavera river valley, 30 

the Lesser Caucasus, 85 km southwest of Tbilisi, (44° 210E, and 41° 90N). The whole stratigraphic 31 

sequence of the fossil assemblage is chronologically constrained to 1.85–1.76 Ma (Gabunia et al., 32 

2000; Vekua et al., 2002; Lordkipanidze et al., 2005, 2007; Ferring et al., 2011).  33 

Dmanisi has one of the most extraordinary assemblage of fossil large mammals (including 34 

hominins) of the late Early Pleistocene of Eurasia, coupled with an abundant record of Oldowan 35 

tools (Lordkipanidze et al., 2005, 2007). This allows the study of potential interactions of the early 36 

Homo erectus out of Africa in association with the other large mammal species, and to infer 37 

paleoenvironmental details. The Dmanisi taphocoenosis is remarkably rich and diverse, with several 38 

species that the hominins probably survived on. The favorable conditions recorded at Dmanisi, and 39 

in general in the Pontocaspian region (Blain et al., 2104; Krijgsman et al., 2019) at the end 40 

Gelasian–Calabrian transition, provided the optimal ecological conditions of the middle latitudes for 41 

the faunal dispersal across Eurasia and Africa (Vekua, 1995; Lordkipanidze et al., 2007; Martínez-42 

Navarro, 2010; Espigares et al., 2013; Martínez-Navarro et al., 2014a; Capellini et al., 2019; Medin 43 

et al., 2019; Bartolini-Lucenti et al., 2020).  44 

The fossil record of Dmanisi includes 26 large mammal species, represented by a combination of 45 

species evolved in Europe during the Villafranchian, including the elephant Mammuthus 46 

meridionalis, or the large omnivorous carnivore Ursus etruscus (Medin et al., 2019) in association 47 

with other taxa (mainly ungulates: bovids, cervids, equids, or rhinocerotids) that originated in Asia 48 

(e.g., Bison georgicus, Gallogoral meneghinii, Praemegaceros obscurus), but also including 49 

carnivorans, e.g. Canis (Xenocyon) lycaonoides or Canis borjgali (Bartolini-Lucenti et al., 2020; 50 

2021). The Dmanisi fauna also includes taxa of African origin, e.g., Megantereon whitei which 51 

dispersed into Europe at the beginning of the late Villafranchian (Vekua, 1995; Lordkipanidze et 52 

al., 2007; Martínez-Navarro, 2010; Rook and Martínez-Navarro, 2010).  53 
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Fossil carnivore guilds, as all fossil associations, are affected by caveats of taphonomy (e.g., 54 

time-averaging, accumulation agent, direct or indirect selection, preferred fossilization; etc.) that 55 

might limit their record as opposed to their original biocoenoses. Moreover, bias arising from 56 

taxonomic attribution should not be ruled out. This considered, here we offer a comparative analysis 57 

of the carnivore guild of Dmanisi with those from other Early Pleistocene localities across the Old 58 

World in order to detect similarities and differences among them and to infer paleobiogeographic, 59 

paleoecological and biochronological implications.  60 

 61 

2. Materials and methods 62 

To assess the degree of similarity among Dmanisi carnivore guild and other guilds of different 63 

localities of the Old World, we performed a cluster analysis on the generic and specific composition 64 

matrices of these assemblages (Table 1 and Supplementary Online Material [SOM] Table S1), 65 

calculating the Jaccard’s index (Jaccard, 1912) to further compare and estimate their similarity. The 66 

thirty-seven localities selected to undertake the comparisons, are distributed across the Old World 67 

(see Fig. 1) and span between the latest Pliocene and the beginning of the early Middle Pleistocene 68 

(2.7–0.7 Ma). We tried to choose localities with accepted chronologies and with a consistent 69 

number of carnivorans recorded. The compiled matrices of occurrences are based on published data 70 

(Teilhard de Chardin, 1940; De Giuli and Masini, 1986; Arribas and Palmqvist, 1998; Sotnikova et 71 

al., 2002; Palombo and Valli, 2003; Gaudzinski, 2004; Martinez-Navarro, 2004; Mazza et al., 2004; 72 

Qiu et al., 2004; Delson et al., 2006; Lordkipanidze et al., 2007; O’Regan, 2007; Jin and Liu, 2009; 73 

Martínez-Navarro et al., 2009; Sotnikova and Titov, 2009; Geraads et al., 2010; Rook and 74 

Martínez-Navarro, 2010; Werdelin and Sanders, 2010; Geraads, 2011; 2016; Kahlke et al., 2011; 75 

Petrucci et al., 2013; Rook et al., 2013; Wang et al., 2013; Madurell-Malapeira et al., 2010; 2012; 76 

2014; Bartolini-Lucenti and Rook, 2016; 2018; Adams et al., 2016; Fourvel et al., 2017; Gkeme et 77 

al., 2017; O’Regan and Steininger, 2017; Koufos, 2018; Sahnouni et al., 2018; Cohen et al., 2019; 78 

Bartolini-Lucenti and Madurell-Malapeira, 2020; Bartolini-Lucenti et al., 2020; Jin et al., 2021) in 79 
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most cases revised and updated. The cluster analyses were carried out by applying a bootstrapping 80 

cluster analysis (hereafter BCA). Bootstrapping cluster analysis is a partitioning methodology that 81 

is useful to test the robustness of the clustering results. It was used in recent papers (Raia et al., 82 

2009 and Carotenuto et al., 2016) to statistically identify Pleistocene communities of Eurasian large 83 

mammals. This method performs an initial clusterization of the dataset by means of the unweighted 84 

pair group method with arithmetic mean (UPGMA) algorithm (Sokal, 1958). In this way the 85 

analysis generates a reference clustering of the selected localities on the basis of their taxonomic 86 

similarity which can putatively have biochronological, taphonomical and paleoecological 87 

implications. This reference clustering is the used to assess probability of each branching in the 88 

reference via a permutational approach. Subsequently, a sample of the original data is randomly 89 

chosen and used to obtain a new UPGMA cluster analysis, which yield a new clustering. This 90 

operation is repeated a number of times. The obtained new clusterization are compared with the 91 

reference one. Asimilarity index (G*) is computed between the reference and the sample clustering. 92 

This index can range between 0 (if the two clusteringzations are totally different) and 1 (if the 93 

clusters generated with the original and sampled data coincides). The G* is then compared with the 94 

expected similarity value between reference and sample-based clustering (G°) under the null 95 

hypothesis that the sampled dataset is a truly random sample of the original data. We repeated 1000 96 

times the procedure of resampling the original dataset, performing as many the UPGMAs on 97 

sampled data and computing similarity indices. In the end, if the probability that G* is higher or 98 

equal to G° is higher than the significant level (P[G° ≤ G*]; α = 0.05), the partitioning levels of the 99 

reference cluster analysis are sharp (see Pillar, 1999 for a detailed explanation of the algorithm). We 100 

performed BCA by using the R package ‘pvclust’ v. 2.2-0 (Suzuki et al., 2019). 101 

We also compared ecological divisions in the analyzed guild grouping carnivorans according to 102 

the classic diet categories: hypocarnivores (less than 50% vertebrate meat in the diet), 103 

mesocarnivores (between 50–70% of vertebrate meat in the diet) and hypercarnivores (>70% 104 

vertebrate meat in the diet; Crusafont-Pairó and Truyols-Santonja, 1956; Van Valkenburgh, 1989). 105 
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To these, we added an additional class of diet for insectivores (taxa specialized to insect feeding). 106 

Finally, to better characterize hypercarnivorous spectrum of adaptations we included hunting 107 

strategies (e.g., ambush or cursorial predation) and dietary habits (e.g., piscivorous or bone-cracking 108 

carnivorans), following the ecological categories proposed in literature (e.g., Van Valkenburgh, 109 

1989; Van Valkenburgh and Koepfli, 1993; Popowics, 2003; Werdelin and Peigné, 2010; Ester, 110 

2012; Flower and Schreve, 2014; Medin et al., 2019). In this ecological analysis of the carnivore 111 

guild of Dmanisi, we decided to ordinate the relative abundances of the diet classes of each locality 112 

according to the order provided by a BCA on the ecological composition of each site. 113 

Eventually, we tested whether the differences emerged from the previous analyses were 114 

statistically related to temporal and/or geographical factors. To this aim, we performed a Mantel test 115 

to asses any relationship between the taxonomical and the ecological distance matrices as used 116 

before in comparison to the geographic and age distance matrices measured between all the fossil 117 

localities here studied. More specifically, the kind of analysis we performed is able to test the 118 

relationship between a response matrix and a predictor matrix while taking into account the effect 119 

of other predictor matrices by means of permutations. Hence, we first analyzed the correlation 120 

between taxonomic and ecological distance while taking into account time and geographic 121 

distances. Then deepened the analysis taking into account taxonomy and ecological preference 122 

singularly. We tested the relationship between the taxonomic distance and the geographic distance 123 

by accounting for the effect of the temporal distance and, then, we repeated the same analyses, this 124 

time by accounting for the effect of geographic distance on the relationship between taxonomic and 125 

temporal distance matrices. We proceeded in the same way with the ecological distance matrix. In 126 

addition, since we expected that the African sites would have accrued the contribution of geography 127 

on determining taxonomical distances between fossil sites, we repeated the mantel tests this time by 128 

using Eurasian fossil sites in order to test effect of both space and time in assessing the taxonomical 129 

and ecological proximity of Dmanisi to the other Eurasian sites. We carried out the Mantel tests 130 

using the R package ‘ecodist’ v. 2.0.1 (Goslee and Urban, 2007). 131 



 7 

 132 

3. Results 133 

Dmanisi carnivore guild is among the most diverse ones of the contemporary Old-World 134 

assemblages analyzed in the present work (Table 1 and SOM Table S1). The carnivore guild from 135 

Dmanisi is composed of five species of Felidae, i.e., Homotherium latidens, Megantereon whitei, 136 

Panthera onca georgica, Acinonyx pardinensis, Lynx issiodorensis; one Hyaenidae (Pachycrocuta 137 

brevirostris); three species of Canidae, i.e., Canis (Xenocyon) lycaonoides, Canis borjgali, Vulpes 138 

alopecoides; one Ursidae (Ursus etruscus); and four Mustelidae, i.e., unstudied species of the 139 

genera Lutra, Martes, Meles and Pannonictis (Fig. 2; Vekua, 1995; Lordkipanidze et al., 2007; 140 

Hemmer et al., 2010; Medin et al., 2019; Bartolini-Lucenti and Madurell-Malapeira, 2020; 141 

Bartolini-Lucenti et al., 2020, 2021). Compared to selected almost coeval localities from Africa and 142 

East Asia (Fig. 2), the carnivoran association at Dmanisi is characterized by a lower diversity of 143 

Hyaenidae (only a single species contrary to the two species of Olivola and Jinyuan Cave Lower 144 

Fauna and the four of Kromdraai Member 2) but a considerably higher diversity of Mustelidae. 145 

Felidae is instead the most abundant family in all the considered localities, with the exception of 146 

Kromdraai Member 2, with the remarkable absence of the genus Lynx in Africa, a genus very 147 

common in Eurasian localities. Additionally, homotherinii and smilodontinii felids are normally 148 

recorded in Eurasian localities being metailurinii, the genus Panthera and Acinonyx more common 149 

in African ones. Ursidae are very abundant in Eurasian localities and also present Northafrican 150 

ones, but it is absent in subsaharian localities. Canidae diversity in Dmanisi is similar to those from 151 

Asia and Europe, rather than to the African one. Peculiarity exclusive of the African site is the 152 

presence of Hespertidae and Viverridae in the assemblage, unlike the other localities. A more 153 

extensive analysis of the guild composition of Dmanisi is here undertaken. 154 

 155 

3.1. The Dmanisi carnivore guild structure: Comparison with European, Asian and African guilds 156 
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To assess the degree of similarity and/or differences between Old World localities we performed 157 

a BCA on taxonomic matrices of absence/presence. The results of the BCA on the genera of the 158 

carnivore guilds of numerous localities across the Old World are reported in the SOM S1 (SOM 159 

Figures S1–S2, whereas that performed on the species are shown in Figures 3 and 4. The two 160 

different analyses show similar patterns (i.e., distinction between African and Eurasian localities, 161 

distintion between older and younger guilds, the position of Dmanisi). Of the two, the analysis on 162 

the matrix of absence/presence based on species is, as expected, more resolved (Fig. 3), although its 163 

Jaccard indices are in general lower than those of genera (see Fig. 4, SOM Fig. S2 and SOM Tables 164 

S2–S3). Similarly to the genera-based analysis (SOM Fig. S1), the dendrogram of the BCA on the 165 

species matrix shows two distinct groups: one composed only of African localities (hereafter the 166 

‘African cluster’; identified at node A1) and a second one is made up of the Eurasian ones 167 

(hereafter the ‘Eurasian cluster’, sprouting from node B1). These two groups are well supported by 168 

high values of percentage p-values (both 98%) and evidently separated also on the basis of Jaccard 169 

similarity indices (Fig. 4). In the African cluster, the pattern of similarities yielded in the genera-170 

based hierarchical analysis (SOM Fig. S1) or in the respective Jaccard indices (SOM Fig. S2) are 171 

more or less confirmed. For instance, the grouping of the South African and of the North African 172 

sites, of the members of the Shungura Formation of Omo (Fig. 3). The Jaccard values of Omo 173 

members are the highest of the African cluster (Fig. 4) and much higher in comparison to those of 174 

SOM Figure S2, testifying to a considerably higher similarity when species are taken into 175 

consideration (Fig. 4). In contrast to the genera-based hierarchical analysis, the site of Ahl al 176 

Oughlam is rooted at the base of the African cluster and groups with the other North African site of 177 

Tighennif. Both these sites have diverse and numerous peculiar taxa, supporting the distance in 178 

comparison to other African sites. This is confirmed also by their Jaccard indices (Fig. 4). For 179 

instance, in Tighennif there is the first record of Lyncodontini in the African continent (Pannonictis 180 

hoffstetteri) whereas some taxa recorded in Ahl al Oughlam show affinity with Eurasian species like 181 

the raccoon dog Nyctereutes abdeslami, the scimitar-toothed cat Homotherium latidens, Lynx gr. 182 
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issiodorensis and Ursus etruscus, although most of the species is African related. After Ahl al 183 

Oughlam-Tighennif group, the following group to branch out (node A6) is that of the South African 184 

localities. Of these four, Member 2 of Kromdraai is the first to separated from the others. This is 185 

possibly due to the occurrence of taxa like Aonyx capensis, Civettictis civetta, Mellivora capensis, 186 

Propoecilogale bolti and primitive wild of the Canis (Xenocyon) falconeri group, absent in the 187 

other sites. The same can be said for Sterkfontein Member 4, which shares more affinity with 188 

Drimolen and Coopers D, but also possess exclusive taxa absent in the latter sites, e.g., 189 

Pachycrocuta and Canis brevirostris. The support to node A8 is among the highest of the analysis 190 

(percentage p-value = 98%). Despite their clear similarity and fairly numerous shared species (eight 191 

taxa), Drimolen and Coopers possess several carnivorans that are present in one site but absent in 192 

the other one. For instance, Drimolen lacks Acinonyx jubatus, Herpestes ichneumon, Lupulella 193 

mesomelas, Panthera leo, but on the other side it records Dinofelis barlowi, Lycaenops silberbergi, 194 

Vulpes chama. These differences are testified to also by the rather low Jaccard indices. The last 195 

group in the African cluster is that composed of East African localites (node A3; Fig. 3). As 196 

discussed before, the members of Shungura Formation of Omo form a well-supported and identified 197 

subgroup (node A12). The Tanzanian Olduvai beds and Kenyan Koobi Fora members are arranged 198 

together, apparently not strictily following a chronological order. They are joined by some elements 199 

like the felids Panthera leo and Panthera pardus and the hyenid Crocuta crocuta and Hyaena 200 

hyaena and the viverrid Pseudocivetta ingens, which are present in almost every site. Despite these 201 

shared taxa, each site shows a number of species that differ from the other. This limited similarity is 202 

reflected in the Jaccard values, which are high only for Olduvai Bed II and KBS member (that share 203 

5 taxa out of eight, Olduvai Bed II, and of six, KBS, respectively).  204 

The opposite group is entirely composed of Eurasian localities (Fig. 3). This Eurasian cluster is 205 

further subdivided in two groups: one comprises all Chinese localities (node B2), whereas European 206 

localities fall together (node B3). In turn, those groups, the Chinese and the European clusters, are 207 

made up by two subclusters. The first of the two Chinese subclusters (node B4) is composed of 208 
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three localities close in age to one another, the upper levels of Jinyuan Cave, Zhoukoudian Loc. 1 209 

and Gongwangling. The closer affinity between the latter two sites (node B5), is due to four shared 210 

species although both record several taxa absent in the other (six of GWL absent in ZKD1 and five 211 

of ZDK1 not present in GWL) as testified to by the fairly low percentage of the p-value (= 58%). 212 

The second group of the Chinese cluster includes the oldest Asian localities on the analysis and it is 213 

fairly well supported (percentage p-value = 92%). The first to branch out is Zhoukoudian Loc. 18. 214 

The limited record of this site makes difficult to narrow down its affinity to other localities. The 215 

latter are grouped in two small clusters, both well supported (node B12 = 95% and node B14 = 216 

99%). Longguopo and and Renzidong form a group sharing almost all their carnivorans. The other 217 

group is composed of three sites. Jinyuan Cave Lower Fauna lies at the base of the subcluster and is 218 

distinguished from Longdan and Nihewan (Xiashagou), which cluster together (Fig. 3). The Jaccard 219 

indices are high for the three sites (> 0.60; Fig. 4), testifying to their affinities. Of the last three 220 

sites, Jinyuan Cave Lower Fauna is distinct from Longdan and Nihewan for the presence of Martes 221 

andressoni. Moreover, there are some taxa shared by Jinyuan Cave Lower Fauna and Longdan and 222 

others present only in Nihewan and Jinyuan Cave Lower Fauna. With Longdan, Jinyuan Cave 223 

Lower Fauna shares Panthera leo and Canis (Xenocyon) dubius. With Nihewan these shared taxa 224 

include Nyctereutes sinensis and Ursus gr. etruscus. Longdan and Nihewan share thirteen taxa and 225 

have a high Jaccard similarity index (Fig. 4). The differences, in addition to those already discussed 226 

above, Nihewan uniquely records Acinonyx pardinensis, Canis (Xenocyon) gr. lycaonoides, Eucyon 227 

minor, Lutra licenti and Ursus etruscus, whereas Longdan records the presence of Canis 228 

(Xenocyon) dubius and Ursus gr. thibetanus.  229 

Opposite to this Chinese cluster, there is a large well-supported European cluster (node B3; Fig. 230 

3), which is again divided in two subclusters (nodes B7 and B11). The smaller one (node B7), in 231 

terms of number of sites included in it, is composed of six localities in two subgroups (nodes B9 232 

and B10). This group includes localities dated between ca 2.5 and 1.7 Ma. The Casa Frata lies at the 233 

base of the cluster composed of the Italian localities of Poggio Rosso and Olivola (Fig. 3), in a 234 
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group of geographically and spatially close localities. Jaccard similarity index for Casa Frata is 235 

fairly higher of Olivola and Poggio Rosso (Fig. 4) because it lacks several elements of the latter 236 

sites (e.g., Canis etruscus, Chasmaporthetes lunensis, and Felis sylvestris), while possessing other 237 

taxa like Canis (Xenocyon) falconeri and Vulpes alopecoides absent in the latter sites. Poggio Rosso 238 

and Olivola have high Jaccard indices (the highest of the group of node B7), thanks for the fourteen 239 

shared taxa. The second small subgroup (node B9) shows Khapry Faunal Complex at the base of 240 

the grouping of the French sites of St. Vallier and Senèze (node B13). Three sites share iconic 241 

Gelasian species like derived Nyctereutes gr. megamastoides and Pliocrocuta perrieri, as well as 242 

others e.g., Acinonyx pardinensis and Homotherium latidens. The similarity between Senèze and St. 243 

Vallier is undoubtful, although at a lower degree compared to the group of Olivola and Poggio 244 

Rosso, as testified to by the Jaccard indices (Fig. 4). The second subcluster is the one that includes 245 

also Dmanisi, together with all younger sites (node B11; Fig. 3). At its base stems ‘Ubeidiya. Its 246 

guild shares with the other late Early Pleistocene sites the presence of some Eurasian elements like 247 

Canis mosbachensis, C. (Xenocyon) lycaonoides, V. alopecoides, Martellictis ardea and U. 248 

etruscus. On the other side, ‘Ubeidiya guild is characterized by the occurrence of African taxa like 249 

Crocuta crocuta and Vormela peregusna. Within the subcluster, there are two groups formed 250 

respectively by late Villafranchian (node B19) and by Epivillafranchian sites (node B18). 251 

Interestingly, these groups have the highest Jaccard index of all (Fig. 4). Within the late 252 

Villafranchian cluster, Pirro Nord lies at the base. Pirro Nord is the most diverse guild of the late 253 

Villafranchian group (with fourteen species). It shares almost all the taxa with the remaining sites 254 

but has some exclusive taxa like: Puma pardoides, Pannonictis nestii and Mustela palerminea. 255 

Dmanisi is closely associated with Venta Micena and Apollonia 1 (as it is visible from some of the 256 

highest values of Jaccard similarity index, Fig. 4). Indeed, there are only few differences among the 257 

guilds of the three sites, despite the difference in age: the badger of Venta Micena and Apollonia 1 258 

belongs to the lineage of the extant Meles meles, whereas the specimens from Dmanisi are yet 259 

unpublished and not studied in detail. Furthermore, no Acinonyx was found in the Spanish and 260 
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Greek sites, whereas A. pardinensis is present in Dmanisi. The Epivillafranchian sites are grouped 261 

in couples with the two chronological groups of the Vallparadís Section grouped together (node 262 

B21), whereas on the other side (node B20), Vallonnet is grouped with Untermassfeld for their 263 

almost identical guild (Fig. 3). This is also confirmed by the indices of Fig. 4. 264 

If we analyze in more detail the Jaccard similarity indices reported in Fig. 4, we see that the 265 

African localities have very low indices (between 0.0 and 0.2; SOM Table S3) when compared to 266 

Eurasian localities, justifying their clusterization in two different groups. Within the African group, 267 

the East African sites of Olduvai Bed 2, KBS and Upper Burgi of Koobi Fora have fairly high 268 

indices (0.20–0.56; SOM Table S3) when compared to other African localities, with the exception 269 

of Drimolen which have particularly low indices, close to zero, as opposed to the East African sites. 270 

Indeed, Drimolen is one of the most different of all African localities, possessesing very low values 271 

of Jaccard index, apart with Coopers D and Sterkfortein Member 4. Other guilds with fairly low 272 

similarity indices are those of the North African Ahl al Oughlam and Tighennif (below 0.26). 273 

Whereas, close to several East African guilds, e.g., Olduvai Bed 2, KBS and Upper Burgi, members 274 

of Shungura Formation at Omo differ markedly in Jaccard indices from North and South African 275 

ones (indices between 0.17 and 0.0). In comparison to the other guilds analyzed, Ahl al Oughlam 276 

and Tighennif are the African localities with a limited similarity with Eurasian guild, as expected 277 

considering the position and the connection between the Mediterranean Africa and the Levatine 278 

corridor or the Iberian Peninsula. Indeed, the third highest Jaccard index of Tighennif is with 279 

‘Ubeidiya (still rather low: 0.22), whereas Ahl al Oughlam has a slightly high values (between 280 

0.207 and 0.176) with St. Vallier and with 2.0 Ma-old localities of China (e.g., Nihewan, 281 

Longgupo) and Europe (e.g., Olivola). The other African guilds, both East and South African, do 282 

not show indices higher than 0.15 (SOM Table S3). The Eurasian group is characterized by sensibly 283 

higher Jaccard indices (Fig. 4). As explained above this group is further subdivided into two 284 

subclusters, a Chinese and a European one. The Jaccard indices confirm the pattern yielded by the 285 

BCA, particularly showing that the cluster of Epivillafranchian localities, among which Dmanisi is 286 
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also included in spite of its older age (Fig. 4), has the highest Jaccard values of all the compared 287 

guilds (above 0.56; SOM Table S3), with Venta Micena showing two greatest indices respectively 288 

with Apollonia-1 (0.909) and with Dmanisi (0.818; SOM Table S3). Apart from the clear division 289 

in two groups and the high values of the European Epivillafranchian guilds, Jaccard indices allow 290 

additional comparisons. Of the Chinese group, the site younger in age (i.e., Gongwangling, 291 

Zhoukoudian Loc. 1 and Jinyuan Cave Upper Fauna) are those with the lowest Jaccard values, 292 

because of their taxonomic difference with the rest of the Chinese guilds. This is particularly 293 

evident with Jinyuan Upper Cave (maximum Jaccard index with a Chinese locality = 0.27), 294 

although this site shows similar values (0.214–0.231; SOM Table S3) with European sites, e.g., 295 

Venta Micena, EVT 10/12 and Dmanisi. A comparable degree of affinity withWestern sites is 296 

shown also by Xiashagou locality of Nihewan basin, which have modestly high values of Poggio 297 

Rosso, Dmanisi and Olivola but also with the younger Apollonia-1. Within the European group, the 298 

Jaccard indices are on average fairly high (average of the Jaccard indices = 0.373). The sites with 299 

lowest Jaccard indices are Khapry FC and Senèze. The former has even an index of zero in 300 

comparison to ‘Ubeidiya (Fig. 4; SOM Table S3). On the contrary, in comparison to Chinese 301 

localities Khapry FC have modestly high values (between 0.150 and 0.238, SOM Table S3), apart 302 

from Gongwangling, Zhoukoudian Loc. 1 and Loc. 18. Indeed, in respect to Chinese guilds, Senèze 303 

is more different compared to Khapry FC and so is St. Vallier, whose Jaccard indices are below 304 

0.125 (only Nihewan is above this value). The localities of Casa Frata, Olivola and Poggio Rosso 305 

have intermediate values (roughly enclosed between 0.20 and 0.50) in comparison to the early 306 

Gelasian and the later Calabrian localities of Western Europe. Apart from the high values of the late 307 

Calabrian group that includes Dmanisi, ‘Ubeidiya interestly possesses higher Jaccards with guilds 308 

of Dmanisi, Venta Micena and Apollonia-1 than in comparison to other localities of Asia and 309 

Europe (Fig.4; SOM Table S3). As priviledged subject of this research, the Jaccard indices of 310 

Dmanisi confirm its prominent affinity with younger sites (Figs. 3–4; SOM Table S3), but also a 311 
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certain affinity to the Italian sites of Olivola, slightly older, and Casa Frata, slightly younger of the 312 

Georgian one. 313 

 314 

3.2.  Ecological comparison between guild elements 315 

The comparison between the guild structures, in terms of ecological preferences is reported in 316 

Figure 5. This figure shows the relative abundance of each preference in the locality but also a 317 

clusterizazion of the site on the basis of their ecological composition. The BCA on these 318 

parameters, because indirectly influenced by taxonomy, yields interesting results. The Asian 319 

localities are separated from the others. Apart from Renzidong, which is completely separated from 320 

all the other sites, the other localities are included in a group at the bottom of Figure 5, together 321 

with the eastern European locality of Khapry FC. Despite this apparently large-scale geographic 322 

clustering, the other sites, the European and African ones, are arranged in different clusters. Some 323 

of the pattern seen in the BCA based on taxonomy are respected in Figure 5. Among these, the 324 

relationship of Dmanisi with Pirro, Venta Micena and Apollonia 1. If analyzed in detail, the 325 

carnivorans of the guild from Dmanisi spot out in their ecological preferences: although more than 326 

70% of its taxa were plausibly hypercarnivorous, as meso- and hypocarnivorous species account for 327 

30% of the guild, within this large group, different diet preferences and hunting strategies can be 328 

observed. Of these hypercarnivorous taxa, surely the most abundant are the cursorial ones, 329 

carnivores basing their hunting strategy on long pursuits such as the Eurasian hunting dog C. 330 

(Xenocyon) lycaonoides and the cheetah Acinonyx pardinensis, evidencing the prevalence of open 331 

environments at Dmanisi. These taxa comprise almost a third of the whole carnivore guild (Fig. 5). 332 

The second most important component of the carnivore guild are the hypercarnivorous taxa that 333 

ambush their prey (Fig. 5). In Dmanisi those are the felids L. issiodorensis, M. whitei and P. onca 334 

georgica. Piscivorous and bone-cracker carnivores are limited to one taxon for each group in 335 

Dmanisi, respectively Lutra and Pachycrocuta. The small-sized hypercarnivores are represented by 336 

Martes sp. whilst mesocarnivorous and omnivorous species include respectively V. alopecoides, 337 
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and Meles and Ursus. In comparison to African guilds, Dmanisi lacks insectivorous taxa (Fig. 5), 338 

e.g., of the families Herpestidae or even Canidae (as in the case of Olduvai Bed I). In turns, African 339 

localities lack small-sized hypercarnivores common in Eurasian context (mainly represented by 340 

mustelids of the genera Martes and Mustela; Fig. 5). In these two elements, Dmanisi is closer to 341 

Eurasian sites. Moreover, generally African localities have a larger proportion of bone-cracking 342 

Hyaenidae in their guild compared to Dmanisi and Eurasian sites. Hypocarnivorous taxa with 343 

adaptations to nearly herbivorous diet has only been recorded in Eurasia: Ailuropoda in eastern 344 

Asian and Ursus deningeri in the late Villafranchian deposits of Europe. Ursus etruscus from 345 

Dmanisi is related to the latter yet it does not show herbivorous-related adaptations in its 346 

dentognathic features (Medin et al., 2019). As a whole, the most similar guilds are those from 347 

Eurasia as the BCA of Figure 5 clearly shows. In terms of proportions between these ecological 348 

divisions are ‘Ubeidiya and Nihewan Basin, although the latter has fewer omnivorous species 349 

compared to Dmanisi and in the former the percentage of ambush predators is larger compared to 350 

the Georgian one.  351 

 352 

3.3. Mantel test 353 

The Mantel tests provided significant results when considering both the whole record and the 354 

reduced sample of Eurasian sites. The first set of Mantel tests, at Old-World scale, yielded 355 

significant relationships either between the taxonomic and ecological distance matrices, when 356 

accounting for the effect of time and space (r = 0.243; p(r<0) = 0.002; p(r>0) = 0.999; p(r=0) = 0.002). 357 

When excluding ecology, the test yield significant result either between the taxonomic and the 358 

temporal distance matrices when accounting of the effect of space (r = 0.163; p(r<0) = 0.008; p(r>0) = 359 

0.993; p(r=0) = 0.008) either between the taxonomic and geographic distance matrices when 360 

accounting for time (r = 0.551; p(r<0) = 0.001; p(r>0) = 1.000; p(r=0) = 0.001). If the ecology distance 361 

matrix is used as response matrix in comparison to temporal (with space distance accounted for) 362 

and then spatial (with time accounted for) are predictor matrices, we obtain interesting results. 363 
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When space is the main predictor matrix, we obtain significant correlation between it and ecology 364 

distance (r = 0.467; p(r<0) = 0.001; p(r>0) = 1.000; p(r=0) = 0.001), as in the case of the taxonomy 365 

distance matrix. In the case of the ecology and age distance matrices accounting for the geographic 366 

distance, the relationship is low and non-significant (r = 0.088; p(r<0) = 0.113; p(r>0) = 0.888; p(r=0) = 367 

0.240). 368 

Comparable results are obtained when we performed by ruling out the African fossil sites. There is 369 

significant relationships either between taxonomic and temporal distances when accounting for 370 

geography (r = 0.405; p(r<0) = 0.001; p(r>0) = 1.000; p(r=0) = 0.001); between taxonomic and spatial 371 

distances when accounting for time (r = 0.581; p(r<0) = 0.001; p(r>0) = 1.000; p(r=0) = 0.001); and 372 

lastly, between ecological and geographic distance matrices when accounting for time (r = 0.399; 373 

p(r<0) = 0.001; p(r>0) = 1.000; p(r=0) = 0.001). When testing relationship between ecological and 374 

temporal distances considering the effect of space differences, we find no significant relationship 375 

between them (r = 0.131; p(r<0) = 0.066; p(r>0) = 0.935; p(r=0) = 0.104). 376 

 377 

4. Discussion 378 

4.1 Carnivore guild of Dmanisi in the framework of Old World carnivore guilds 379 

The association of carnivorans recovered from Dmanisi represent one of most diverse guilds of the 380 

Old World, with fourteen taxa (ten recognized at a specific level and four only at a generic one) and 381 

seven different ecological categories (the maximum among the studied guilds). While analyzing 382 

similarities and differences between carnivore guilds, some issues must be kept in mind. A first idea 383 

one might get dealing with large scale analyses of sites (as well as guilds) might be that their 384 

clusterization was driven by biases in the taxonomic attributions made by authors describing those 385 

associations or those carrying out the analyses. Undoubtedly, such biases arise for different reasons 386 

(competency of the researcher; different interpretations, etc.) and are greater at a specific level, 387 

rather than at a genus one. The correspondence between the patterns resulted from the analyses 388 

genera and the species here carried out (Fig. 3; SOM Fig. S1) rules out the possibity that the 389 
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affinities yielded by the BCA could be explained by biases derived by questionable attributions of 390 

taxa, especially at a specific level. Those similarities/differences are therefore related rather to 391 

geography, age, taxonomic and ecological composition of the guild. More complex and 392 

considerably difficult to assess, is the impact of taphonomic processes in the fossil assemblages, and 393 

particularly for the carnivore guild. Indeed, taphonomy may affect greatly the interpretation derived 394 

by comparisons between different guilds, both in terms of taxonomy and of ecology. For instance, 395 

certain elements like carnivorans preying on small prey are generally small-sized themselves (e.g., 396 

herpestids, mustelids, viverrids) and could be underrepresented (or absent) in many sites due to a 397 

selective biotic or abiotic agent of accumulation, unsuitable or unfavorable condition of burial 398 

and/or fossilization, etc. Likewise, competition among large-sized carnivorans of similar ecology 399 

might dwindle the chances of or even prevent the accumulation and the eventual fossilization of 400 

some of them. Borne that in mind, the analyses of the considered guilds yielded interesting results.  401 

Our study clearly points out the affinity of the carnivorans association of Dmanisi to the younger, 402 

late Villafranchian ones of Western Europe in comparison to any other of the Old World. Among 403 

these, particularly, Apollonia 1, Pirro Nord and Venta Micena, on the basis of both ecological 404 

preferences of their carnivorans and their taxonomy (Figs. 3–5). Furthermore, the 405 

similarities/differences resulted from the analyses sheds light on larger-scale patterns of dispersal 406 

and affinity that took place during the Early Pleistocene. Although Eurasian sites shares circa one 407 

thirds of the species with the African localities, this was not enough to homogenize the composition 408 

carnivore guilds of the two continents, neither taxonomically nor ecologically, as explained by the 409 

Mantel tests. This supports the importance of areas connecting different continent, e.g., the 410 

Levantine corridor and the Pontocaspian region, in explaining association in the Old World. On the 411 

one hand, it is an indirect proof that geographical corridors between the two continents acted as a 412 

filter for many taxa and as ecological barriers limiting the dispersal of taxa in certain areas (e.g., the 413 

presence of ursids in subsaharian Africa). On the other, many of the shared taxa are recorded in 414 

these areas of contact. Although explained by geographic distance, the ecological differences are 415 
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poorly related to chronological difference, as visible from the Mantel test. The contribution of both 416 

geography and time still explains the taxonomical differences when considering Eurasian sites only, 417 

and likewise the ecological differences are still related to geographic distances rather than to 418 

temporal ones. 419 

 420 

4.2 The Dmanisi carnivorans in the Old World context  421 

The carnivoran taxa that compose the diverse carnivore guild of Dmanisi can be ascribed to three 422 

groups based on their paleogeographic origin. 423 

 424 

Species previously recorded in European guilds Most of the species recorded in Dmanisi were 425 

previously identified in the middle-late Villafranchian guilds of Europe as H. latidens, A. 426 

pardinensis, L. issiodorensis, U. etruscus and V. alopecoides (Rook and Martínez-Navarro, 2010; 427 

Madurell-Malapeira et al., 2010; Bartolini-Lucenti and Madurell-Malapeira, 2020 and references 428 

therein). Within these typical Villafranchian species, Homotherium latidens was a pursuit predator 429 

adapted to open environments with an estimated body mass of 150–250 kg (Hemmer, 2004). It is 430 

recorded since the beginning of the Villafranchian (ca. 3.2 Ma) in localities like Perrier-Les 431 

Etouaires, Saint Vallier, Senèze, Upper Valdarno or Incarcal complex (Viret, 1954; Ballesio, 1963; 432 

Rook et al., 2013; Alba et al., 2016) being also widely recorded in Africa and Asia during the Plio-433 

Pleistocene (Werdelin and Peigné, 2010; Jin et al., 2021). Concerning the social behaviour of 434 

Homotherium, or if this species hunts in packs as extant lions, a lot of literature is centered on the 435 

sociality of sabertoothed cats, especially Smilodon (Carbone et al., 2009). Nowadays, no direct 436 

evidence supports the sociality in Homotherium, however is reasonable to think that this species 437 

displays a certain degree of social behavior (Antón, 2013).  438 

The European record of the giant cheetah A. pardinensis is noticeably scarce. Although, it is 439 

present in several European sites since the beginning of the Villafranchian as Montopoli, Saint 440 

Vallier, Villarroya, Pantalla or Olivola, normally it is only recorded on the basis of partial or 441 
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fragmentary remains (Viret, 1954; Cherin et al., 2014a; Madurell-Malapeira and Vinuesa, 2016). 442 

The record of a complete forelimb of this species in Dmanisi (Hemmer et al., 2011), show that A. 443 

pardinensis is stoutly built solitary hunter (ca. 60–130 kg), which preferred open habitats and can 444 

be a potential fresh meat supplier for other scavenger species, including hominins (Hemmer, 2004; 445 

Hemmer et al., 2011). The genus is known to occur in Africa since 4 Ma (Werdelin and Peigné, 446 

2010), whereas this species is also recorded in Asian Pleistocene taphocoenoses under different 447 

taxonomical adscriptions (Qiu et al., 2004).  448 

Lynx-like felids traditionally included in Lynx issiodorensis are recorded in Europe since the 449 

beginning of the Pliocene in sites like Serrat d’en Vaquer or Cuevas de Alzamora (Werdelin, 1981; 450 

Montoya et al., 2001). However, the taxonomic status of these early representatives of the Lynx 451 

lineage remains controversial as a consequence of the scanty and poorly diagnostic record. Since 452 

the beginning of the Villafranchian, true lynxes were recorded in several sites such as: Perrier-Les 453 

Etouaires, Saint Vallier, Olivola and Pantalla (Viret, 1954; Ficcarelli and Torre, 1977; Kurtén, 454 

1978; Cherin et al., 2013; Mecozzi et al., 2021). According to some authors L. issiodorensis was the 455 

ancestor of both Lynx lynx and Lynx pardinus (Werdelin, 1981; Boscaini et al., 2015; 2016; 456 

Mecozzi et al., 2021), with L. pardinus first recorded in eastern Iberian Peninsula at ca. 1.6 Ma 457 

(Boscaini et al., 2015).  The Dmanisi lynx together with the Upper Valdarno record probably 458 

corresponds to the last representatives of this large species, larger than an extant boreal lynx and 459 

with an estimated body mass of 23.5 Kg (Mecozzi et al., 2021) enabling it to hunt medium to large 460 

species of ungulates.  461 

In a recent work focused on the ursid remains from Dmanisi, Medin et al. (2019) provided some 462 

inferences on the dietary behavior and evolutionary history of U. etruscus, recorded since the 463 

Middle Villafranchian (ca. 2.6 Ma) in European localities like Saint Vallier, Upper Valdarno or 464 

Kuruksay (Ristori 1897; Viret, 1954; Sotnikova, 1978). We favor the traditional point of view of 465 

Kurtén (1958) who first hypothesized a phylogenetic line for cave bears started with the Early 466 

Pleistocene U. etruscus, followed by the Middle Pleistocene Ursus deningeri and finally in the Late 467 
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Pleistocene for Ursus spelaeus s.l. Considering the profound effects of the Pleistocene climatic 468 

shifts and their impact on the members of this lineage, it is possible that this pioneering hypothesis 469 

of gradual evolution from the omnivorous etruscoid forms to the hyperherbivorous speleoid forms 470 

needs to be improved. Especially considering the severity of climatic oscillations at the beginning 471 

of the Early-Middle Pleistocene Transition (ca. 1.2 Ma), the sudden increase in size and the start of 472 

cave dependence of these forms around that time, appears to fit more with rapid diversification rates 473 

of the punctuated equilibria. However, the results of Medin et al. (2019) on the sample from 474 

Dmanisi show the existence of a remarkable sexual dimorphism in the early forms of this lineage. 475 

Moreover, the authors point evidence that U. etruscus inhabited mixed environments of woodlands 476 

and/or wooded grasslands, where it fed on a broad variety of food items with a substantial intake of 477 

meat and/or fish (Medin et al., 2017).  478 

Regarding medium-to small sized carnivores, few remains of a small canid from Dmanisi can be 479 

ascribed to Vulpes alopecoides. The taxonomy and phylogenetic relationships among European 480 

Plio-Pleistocene foxes were a matter of considerable debate the last decades (Bartolini-Lucenti and 481 

Madurell-Malapeira, 2020 and references therein). In paleontological literature, several different 482 

species were described from Early Pleistocene deposits across Europe. These were V. alopecoides, 483 

Vulpes praeglacialis and Vulpes praecorsac. One of the main criteria used to distinguish them was 484 

size. In a recent revision of the Early Pleistocene fox record across Europe, Bartolini-Lucenti and 485 

Madurell-Malapeira (2020) considered that the observed morphological and morphometric 486 

variability of fossil foxes from this chronological time span can be accommodated in a single 487 

species. Considering the priority of the name V. alopecoides, V. praeglacialis and V. praecorsac 488 

should be junior subjective synonyms of V. alopecoides. Its origin seems to be related to the Near 489 

Eastern forms of the late Early Pliocene (Bartolini-Lucenti and Madurell-Malapeira, 2021) and it is 490 

plausibly related to the extant red fox, Vulpes vulpes (Bartolini-Lucenti and Madurell-Malapeira, 491 

2020). The pan-European species V. alopecoides was most probably replaced at the beginning of 492 
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the Middle Pleistocene (ca. 0.6 Ma) by the red fox (Bonifay, 1971; Madurell-Malapeira et al., 493 

2021).  494 

Although not yet studied in detail or fully characterized, the mustelids recovered from Dmanisi 495 

confidently belong to some of the genera widespread in Eurasia during the Late Pliocene and Early 496 

Pleistocene. For instance, Pannonictis spp. are known from the Earliest Pleistocene deposits of 497 

Hungary (Ros-Montoya et al., 2021: Fig. 1). The most probable origin of the genus is the European 498 

continent (Bartolini-Lucenti, 2018; Rook et al., 2018). Whereas Meles was recorded in other 499 

European localities like Saint Vallier, Vatera and Lesvos islands (Viret, 1951; 1954; Madurell-500 

Malapeira et al., 2011; Koufos, 2014). The evolutionary history of Lutra is more complicated and 501 

fragmentary (Cherin and Rook, 2014; Cherin, 2017). The earliest European record is that of Lutra 502 

bravardi from Perrier-Les Etouaries yet the validity of this taxon was questioned by several 503 

scholars as its type was lost (Willemsen, 1992; Cherin and Rook, 2014; Cherin, 2017). A certain 504 

attribution is that of Lutra fatimazohrae from the Earliest Pleistocene of Morocco (Geraads, 1997). 505 

Yet as the author of the original description asserts, this species cannot be regarded as the ancestor 506 

of subsequent species (e.g., Lutra simplicidens) and so, for the moment an African origin for these 507 

taxa could be excluded (Geraads, 1997). Although its origin is still clouded, Lutra and other similar 508 

taxa (Cherin et al., 2016; Cherin, 2017), became widespread during the Late Villafranchian.  509 

 510 

Species previously recorded in Asian guilds Although early, disputed, findings of Canis species are 511 

recorded from 3 Ma deposits (Vialette; Lacombat et al., 2006) of Western Europe, the center of 512 

radiation and dispersion in the Old World is most certainly eastern Eurasia (Sotnikova and Rook, 513 

2010). The subsequent records of Canis in Europe seem to testify these waves of dispersion of 514 

different canid taxa from Asia. For instances, Coste San Giacomo, Fonelas P1, Gerakarou, Olivola, 515 

Pantalla, Senèze and Upper Valdarno record the arrival of C. etruscus and Canis senezensis (Torre, 516 

1967; Martin, 1973; Garrido and Arribas, 2008; Cherin et al., 2014b). Canis arnensis is slightly 517 

younger and at present limited to Italy (Bartolini-Lucenti and Rook, 2016). The record in Dmanisi 518 
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of a new species of medium-sized canid, Canis borjgali, represents a novelty in the scenario of 519 

Eurasian canids (Bartolini-Lucenti et al., 2020). As also noted by other scholars (e.g., Sotnikova and 520 

Rook, 2010), the cranial features possessed by C. borjgali are more derived compared to the coeval 521 

canids of Europe (i.e., Canis etruscus, C. arnensis) and Asia (e.g., Canis chihliensis; Bartolini-522 

Lucenti et al., 2020). Considering the similarity, C. borjgali can be regarded as the ancestor of the 523 

Canis mosbachensis lineage, including Canis orcensis (Bartolini-Lucenti et al., 2017; 2020; 524 

Martínez-Navarro et al., 2021) and, thus, strictly related to the wolf-crown group (i.e., Canis lupus, 525 

Canis latrans, Canis lupaster, Canis anthus, Canis aureus; Sotnikova and Rook, 2010; 526 

Gopalakrishnan et al., 2017; Bartolini-Lucenti et al., 2020). Moreover, the early record of this 527 

derived form anticipates the turnover that can be called the ‘late Early Pleistocene canid revolution’, 528 

when the diversity of medium- and large-sized Canidae dropped to two taxa (C. mosbachensis and 529 

Canis [Xenocyon] lycaonoides) that replaced more primitive forms across Europe, probably 530 

remaining in isolated refugia (Sotnikova, 2001; Rook and Martinez-Navarro, 2010; Sotnikova and 531 

Rook, 2010; Petrucci et al., 2013; Bartolini-Lucenti et al., 2017).  532 

Whereas other large-sized and hypercarnivorous species are known across Eurasia and Africa 533 

during the Calabrian [e.g., C. (Xenocyon) falconeri and C. (Xenocyon) africanus; see Rook, 1994), 534 

the specimen of Canis (Xenocyon) lycaonoides from Dmanisi is more derived compared to these 535 

(Bartolini-Lucenti et al., 2021), clearly resembling the later forms from Venta Micena, Pirro Nord, 536 

Vallparadís Estació and Untermassfeld (Sotnikova, 2001). Like in the case of C. borjgali, the 537 

discovery a specimen of C. (Xenocyon) lycaonoides in Dmanisi confirms the relevancy of the 538 

Georgian sites in the scenario of dispersion of Canidae, and other species across the entire Old 539 

World. Unlike the medium-sized forms, C. (Xenocyon) lycaonoides also managed to disperse into 540 

Africa (as testified by the record of Olduvai Bed II) and also to reach North America (Cripple Creek 541 

Sump, Alaska; Tedford et al., 2009), becoming one of the extinct canids with the widest range of 542 

distribution, larger than extant C. lupus.  543 

 544 
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Species previously recorded in African guilds Only three of the species identified in the Dmanisi 545 

sample are putative possible African immigrants, namely: M. whitei, Pa. brevirostris and P. onca 546 

georgica. Similarly to the genus Homotherium, the genus Megantereon was recorded in Europe 547 

since the beginning of the Villafranchian (3.2 Ma; Rook and Martínez-Navarro, 2010). 548 

Megantereon was clearly an ambush-predator with a powerful forelimb which might have preferred 549 

closed and forested habitats. Its estimated body mass ranged between 80–150 Kg (Hemmer, 2004). 550 

Some recent research in Asian taphocoenosis suggest Megantereon might not be well-adapted to 551 

closed-humid forested environment but rather than more open-habitats (Zhu et al., in press). The 552 

species diversity of the genus Megantereon have been highly debated in the past (Martínez-Navarro 553 

and Palmqvist, 1995, 1996; Werdelin and Lewis, 2002; Palmqvist et al., 2007; Lewis and Werdelin, 554 

2010;), from authors favoring the existence of only two main species in the Old World (Palmqvist 555 

et al., 2007) while other support the existence of a higher diversity (Werdelin and Lewis, 2002). 556 

Despite the debate, it seems to be widely accepted that in Europe in Early-Middle Villafranchian 557 

times the most abundant species is M. cultridens and that, later on, M. whitei replaced this taxon. 558 

Megantereon whitei was an African taxa that dispersed into Europe in the Calabrian, and Dmanisi is 559 

indeed one of the first European records. This species was subsequently recorded in Venta Micena, 560 

Pirro Nord, Argentario Apollonia 1, and lately at Untermassfeld and Vallparadís Section EVT12 561 

(Martínez-Navarro and Palmqvist, 1996; Sardella et al., 2008; Petrucci et al., 2013; Hemmer, 2001; 562 

Madurell-Malapeira et al., 2010, 2017). Megantereon whitei was an efficient hunter, which 563 

probably used its powerful forelimbs to subdue its prey, in order to bite, suffocate and bleed out the 564 

prey with a powerful bite with its sharp and long canines (around 10 cm length). Some authors have 565 

pointed out that because of its canines and specialized check teeth, M. whitei was only able to eat 566 

the soft parts of the prey, leaving a big part of the carcasses for scavengers, like the large-sized 567 

hyena Pa. brevirostris and hominins (Martínez-Navarro and Palmqvist, 1995, 1996; Palmqvist et 568 

al., 2007).  569 
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The origin and earliest records of the genus Pachycrocuta has also been strongly debated in the 570 

last decades. Palmqvist et al. (2011) favored an African origin of this genus, while other authors 571 

such as Werdelin (1999) and Liu et al. (2021) convincingly supported an Asian origin of this genus. 572 

The latter scholars point out that the earliest records in Asia and Africa are practically simultaneous: 573 

ca. 4.0–3.5 Ma (Turner and Antón, 1996). Moreover, these scholars argue that the earlier Asian 574 

forms display more reliable morphological characters in comparison with the African ones 575 

(Werdelin, 1999; Liu et al., 2021). In either case Pa. brevirostris dispersed into Eurasia around 2.0 576 

Ma, where it became one of the most common elements in Eurasian faunas, often the primary agent 577 

responsible for the accumulations. Its ubiquitous Eurasian presence lastet until the late Early 578 

Pleistocene in Europe, until 0.86 Ma (Martínez-Navarro, 2004, 2010; Madurell-Malapeira et al., 579 

2010, 2017), and until the Middle Pleistocene in Asia, where it was extensively recorded at the 580 

Zhoukoudian 1 site (Pei, 1934; Palmqvist et al., 2011; Espigares et al., 2013; Madurell-Malapeira et 581 

al., 2017; Liu et al., 2021). The impact of this species in the European Pleistocene taphocoenosis 582 

and their relationships of putative competition with early hominins raised also hotly debates the last 583 

decades (see Espigares et al., 2013; Madurell-Malapeira et al., 2017). 584 

Finally, the evolutionary story of Old-World jaguars is far from being resolved. Most of the 585 

authors hypothesized an African origin of this species (Hemmer et al., 2010; Argant and Argant, 586 

2011) linking their first appearance in Europe at ca. 1.8 Ma with the record of a large pantherine 587 

form in the Late Pliocene of Laetoli Upper Beds (ca. 3.7 Ma) ascribed to Barry (1987) to Panthera 588 

leo aff. gombaszoegnesis. Other authors on the contrary included the first pantherine material of 589 

Laetoli to Panthera leo (Turner, 1990). Eventually, in a more parsimonious hypothesis, Werdelin 590 

and Peigné (2010) pointed out that African pantherine specimens older than 2 Ma are not diagnostic 591 

at species level. From 2 Ma onwards, all the African material can be ascribed to P. leo and P. 592 

pardus (Werdelin and Peigné, 2010). We agree with the latter authors supporting the idea that there 593 

is no a direct link among the African specimens and European P. gombaszoegensis s.l. Since 1.8 Ma 594 

the early forms of P. gombaszoegensis (or P. toscana according to other authors) were common 595 
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elements of the Late Villafranchian faunas of Europe, as testified to by the records of Olivola, 596 

Upper Valdarno, Tegelen, Pirro Nord, Untermassfeld and until the Middle Pleistocene of Chateau 597 

(Hemmer, 2001; Argant and Argant, 2011; Hemmer et al., 2010: Jiangzuo and Liu, 2020). Hemmer 598 

et al., (2010) analyzed the remains of jaguar from Dmanisi recently pointing several differences 599 

with the European species P. gombaszoegensis and erecting a new sub-species P. o. georgica that in 600 

the former authors opinion is the direct ancestor of the American species P. o. augusta (Hemmer et 601 

al., 2010; Argant and Argant, 2011; Jiangzuo and Liu, 2020). In any case, Hemmer and coauthors 602 

(2010) describe the jaguar from Dmanisi as an ambush-predator with an estimated body mass of ca. 603 

100 kg, which preferred riparian landscapes in forested and open grassland areas. 604 

 605 

4.3. The role of humans in Dmanisi and the Early Pleistocene Old World carnivore context 606 

Dmanisi is characterized by the presence of an abundant lithic artifacts collection of the Oldowan 607 

complex (Ferring et al., 2011) and, as it has been described in this study, by a relevant record of 608 

fossil vertebrates and a high diversity of large carnivorans species. This abundance of carnivorans is 609 

also similar to other Eurasian Early Pleistocene archeo-paleontological sites, such those from Orce, 610 

Barranco León and Fuente Nueva 3 , dated 1.4 and 1.3 Ma, respectively (Martínez-Navarro et al., 611 

1997, 2010; Espigares et al., 2013, 2019; Toro et al., 2013; Titton et al., 2021), Vallonnet in France, 612 

(1.1 Ma; Moullè  et al., 2006), or at the site of ‘Ubeidiya in Israel (1.6–1.2 Ma), where a very 613 

primitive Acheulian lithic collection together with a rich carnivore assemblage was described 614 

(Ballesio, 1986; Bar-Yosef and Goren-Inbar, 1993; Martínez-Navarro et al., 2009). Likewise, 615 

carnivorans are well represented at the African sites older than 1.7–1.8 Ma, such as the South 616 

African caves, i.e., the lower levels of Swartkrans or Sterkfontein Member 5 (Brian, 1980; 617 

O’Regan, 2007; O'Regan and Steininger, 2017), or those from eastern Africa, such as Olduvai Bed 618 

I, Lokalalei, or Shungura E–G, and in North Africa at Ain Hanech (see Sahnouni and van der Made, 619 

2009, and references there in).  620 



 26 

This scenario totally changes when the archeo-paleontological assemblages are dominated by the 621 

presence of developed Acheulian tools. In this context, carnivorans are normally not recorded or, if 622 

they are present, they are very scarce and their diversity is very reduced. This evidence is testified 623 

to by African records younger than 1.7 Ma, as in the Eastern African sites of Melka Wakena 624 

(Ethiopia, Hovers et al., 2021), Buia and Engel Ela-Ramud (Eritrea), dated close to 1.0 Ma 625 

(Martinez-Navarro et al., 2004; Martínez-Navarro et al., 2016), or at the Middle Pleistocene site of 626 

Asbole, (Ethiopia, ca 0.6 Ma; Geraads et al., 2004), and in North Africa at the site of Wadi Sarrat in 627 

Tunisia (0.7 Ma; Martínez-Navarro et al., 2014b). An analogous pattern can be seen in sites out of 628 

Africa characterized by developed Acheulian lithic industries and dated to the Early-Middle 629 

Pleistocene transition, as those of Gesher Benot Ya’akob (Israel, 0.7–0.8 Ma; Martínez-Navarro and 630 

Rabinovich, 2011), and in most of the Middle Pleistocene European Acheulian assemblages, such la 631 

Solana del Zamborino in Spain, (0.4 Ma; Álvarez-Posada et al., 2017), or at Venosa Notarchirico in 632 

Italy (ca. 0.5 Ma; Piperno, 2000). Nevertheless, an exception to this distribution may be found in 633 

the Acheulian sites of Tighennif in Algeria (ca. 1.0 Ma; Geraads, 2016), where carnivores are well 634 

represented (Geraads, 2016). 635 

This evidence shows that when the lithic assemblages correspond to the Oldowan complex 636 

carnivorans are abundant, whereas in Acheulian complexes carnivorans are less represented. How 637 

may be interpreted this correlation? Martínez-Navarro (2018) suggested that this can be related to 638 

the evolution of human behavior from scavenging to hunting. Humans with Oldowan tools probably 639 

found challenging to compete with large carnivorans as active hunter and behaved more frequently 640 

as opportunistic scavengers, trying to steal parts or the entire prey’ s carrion hunted down by other 641 

large carnivorans or simply found dead. This competition has been described especially with the 642 

large hyenas (Epigares et al., 2013). In this scenario, humans were just another species with also 643 

carnivore habits in the faunal assemblages of the Early Pleistocene, in strict ecological competition 644 

with the large carnivore guild. On the contrary, the limited presence of large carnivorans in 645 
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Acheulian assemblages may indicate that a different and radical change in humans behavior have 646 

taken place, from scavengers to active hunters.  647 

Dmanisi fits with this interpretation, representing a typical Oldowan site with abundant large 648 

carnivorans dominating the scenario. 649 

 650 

5. Conclusions 651 

We analyzed the composition of the Dmanisi carnivore guild under different perspectives. We 652 

carried out a permutation cluster analysis (BCA; Fig. 3; SOM Fig. S1) on the generic and species 653 

composition matrices comparing the studied sample with coeval European, Asian and African 654 

Pleistocene sites. Later we tested the different ecomorphological diet categories present at Dmanisi 655 

with the same key Old-World sites in order to decipher changes in the environment and carnivore 656 

guild composition. Finally, we analyzed the origin and lineage history of the taxa of carnivorans 657 

present at Dmanisi.  658 

The results of the deep analyses of the Dmanisi carnivore assemblage show that it is consistently 659 

most similar to the Late Villafranchian European sites of Pirro Nord, Venta Micena and Apollonia 660 

1, and to a lesser extent with the Epivillafranchian localities of Le Vallonnet, Untermassfeld and 661 

Vallparadís Section. All these localities, both Late Villafranchian and Epivillafranchian, are 662 

characterized by a large diversity of felids, including species like H. latidens, P. onca-663 

gombaszoegensis and M. whitei, a reduced diversity of hyenids, with only Pa. brevirostris present, 664 

and pursuit-predator canids as the medium-sized C. borjgali-mosbachensis and the large C. 665 

(Xenocyon) lycaonoides. Such guild composition, characterized by new and more derived elements 666 

like M. whitei, C. gr. mosbachensis and C. (X.) lycaonoides, which replaced the older and more 667 

primitive taxa, respectively M. cultridens, C. etruscus and C. (X.) falconeri, has its First Appearance 668 

Datum in Dmanisi. These results support evidence from other taxa (bovids, e.g., Soergelia minor 669 

and Bison georgicus; equids, Equus altidens; Bernor et al., 2021) and fits also with the Eurasian 670 

dispersion undertaken by the genus Homo at the end of the Gelasian-beginning of the Calabrian, 671 
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whose earliest western European record are the very same sites most closely affine to Dmanisi, 672 

Pirro Nord and Orce Site complex. 673 
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 1095 

Figure Captions 1096 

Figure 1. Map of the Old World showing the considered localities in the present paper. Localities 1097 

are grouped in chronological cluster: circles are localities dated 2.70–2.01 Ma; squares, sites 1098 

between 2.00–1.20 Ma; triangles are localities between 1.19–0.70 Ma. Red star is the location of 1099 

Dmanisi. Numbers are the same as in Table 1. Numbers: 1 = Dmanisi (Georgia); 2 = Ahl al 1100 

Oughlam (Morocco); 3 = Tighennif (Algeria); 4 = Upper Burgi Member, Koobi Fora Formation 1101 
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(Kenya); 5 = KBS Member, Koobi Fora Formation (Kenya); 6 = Okote Member, Koobi Fora 1102 

Formation (Kenya); 7 = Olduvai Bed I (Tanzania); 8 = Olduvai Bed II (Tanzania); 9 = Omo 1103 

Members C–F, Shungura Formation (Ethiopia); 10 = Omo Members G–K, Shungura Formation 1104 

(Ethiopia); 11 = Sterkfontein Member 4 (South Africa); 12 = Kromdraai Member 2 (South Africa); 1105 

13 = Drimolen (South Africa); 14 = Coopers D (South Africa); 15 = Saint Vallier (France); 16 = 1106 

Senèze (France); 17 = Olivola (Italy); 18 = Poggio Rosso (Italy); 19 = Casa Frata (Italy); 20 = 1107 

Venta Micena (Spain); 21 = Pirro Nord (Italy); 22 = Apollonia 1 (Greece); 23 = Vallonnet (France); 1108 

24 = EVT10/12, Vallparadís Estacio level 10–12 (Spain); 25 = EVT7/CGRD7, Vallparadís Estacio 1109 

level 7/Cal Guardiola 7 (Spain); 26 = Untermassfeld (Germany); 27 = Ubeidiya (Israel); 28 = 1110 

Khapry Faunal Complex (European Russia); 29 = Longdan locality (China); 30 = Zhoukoudian 1111 

Locality 18 (China); 31 = Renzidong Cave (China); 32 = Xiashagou, Classic Nihewan (China); 33 1112 

= Jinyuan Cave Lower fauna (China); 34 = Longgupo (China); 35 = Gongwangling (China); 36 = 1113 

Jinyuan Cave Upper fauna (China); 37 = Zhoukoudian Locality 1 (China). 1114 

 1115 

Figure 2. Pie charts of carnivore guild composition in Dmanisi and three roughly coeval localities 1116 

of Europe (Olivola, Italy), Asia (Jinyuan Cave Lower Fauna; China) and Africa (Kromdraai 1117 

Member 2; South Africa) with the relative percentage of the families there recorded.  1118 

 1119 

 1120 

 1121 

Figure 3. Dendrogram resulting from the bootstrapping cluster analysis (BCA) based on the 1122 

presence/absence species group matrix of 36 sites across the Old World (Table 1). Abbreviations: 1123 

AaO = Ahl al Oughlam (Morocco); APL = Apollonia 1 (Greece); CF = Casa Frata (Italy); COOPD 1124 

= Coopers D; DRIM = Drimolen (South Africa); EVT10/12 = Vallparadís Estacio level 10–12 1125 

(Spain); EVT7/CGRD7 = Vallparadís Estacio level 7/Cal Guardiola 7 (Spain); GWC = 1126 

Gongwangling (China); JYCLow = Jinyuan Cave Lower fauna (China); JYCUpp = Jinyuan Cave 1127 
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Upper fauna (China); KBS = KBS Member, Koobi Fora Formation (Kenya); KhFC = Khapry 1128 

Faunal Complex (European Russia); KRMD2 = Kromdraai Member 2 (South Africa); LGP = 1129 

Longgupo (China); Longdan = Longdan locality (China); Nihew = Xiashagou, Classic Nihewan 1130 

(China); Okot = Okote Member, Koobi Fora Formation (Kenya); Old 1 = Olduvai Bed I 1131 

(Tanzania); Old 2 = Olduvai Bed II (Tanzania); OLIV = Olivola (Italy); OMO C-F = Members C–1132 

F, Shungura Formation (Ethiopia); OMO G-K = Members G–K, Shungura Formation (Ethiopia); 1133 

Pirro = Pirro Nord (Italy); PR = Poggio Rosso (Italy); RZD = Renzidong Cave (China); Sen = 1134 

Senéze (France); St.Val = St. Vallier (France); STK Mb4 = Sterkfontein Member 4 (South Africa); 1135 

TIGH = Tighennif (Algeria); U Burgi = Upper Burgi Member, Koobi Fora Formation (Kenya); 1136 

UBEI = ‘Ubeidiya (Israel); UMD = Untermassfeld (Germany); Vallt = Vallonnet (France); VM = 1137 

Venta Micena (Spain); ZKD1 = Zhoukoudian Locality 1 (China); ZKD18 = Zhoukoudian Locality 1138 

18 (China). 1139 

 1140 

Figure 4. Heatmap of the Jaccard similarity index calculated on the presence/absence matrix of the 1141 

species of the thirty-six localities analyzed here (Table 1). Dendrograms are the same as in Figure 1142 

4. The color code is expressed by the legend on the top left corner of the graph. This color legend 1143 

also reports the number of each Jaccard index (light cyan histogram). Abbreviations: AaO = Ahl al 1144 

Oughlam (Morocco); APL = Apollonia 1 (Greece); CF = Casa Frata (Italy); COOPD = Coopers D; 1145 

DRIM = Drimolen (South Africa); EVT10/12 = Vallparadís Estacio level 10–12 (Spain); 1146 

EVT7/CGRD7 = Vallparadís Estacio level 7/Cal Guardiola 7 (Spain); GWC = Gongwangling 1147 

(China); JYCLow = Jinyuan Cave Lower fauna (China); JYCUpp = Jinyuan Cave Upper fauna 1148 

(China); KBS = KBS Member, Koobi Fora Formation (Kenya); KhFC = Khapry Faunal Complex 1149 

(European Russia); KRMD2 = Kromdraai Member 2 (South Africa); LGP = Longgupo (China); 1150 

Longdan = Longdan locality (China); Nihew = Xiashagou, Classic Nihewan (China); Okot = Okote 1151 

Member, Koobi Fora Formation (Kenya); Old 1 = Olduvai Bed I (Tanzania); Old 2 = Olduvai Bed 1152 

II (Tanzania); OLIV = Olivola (Italy); OMO C-F = Members C–F, Shungura Formation (Ethiopia); 1153 
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OMO G-K = Members G–K, Shungura Formation (Ethiopia); Pirro = Pirro Nord (Italy); PR = 1154 

Poggio Rosso (Italy); RZD = Renzidong Cave (China); Sen = Senéze (France); St.Val = St. Vallier 1155 

(France); STK Mb4 = Sterkfontein Member 4 (South Africa); TIGH = Tighennif (Algeria); U Burgi 1156 

= Upper Burgi Member, Koobi Fora Formation (Kenya); UBEI = ‘Ubeidiya (Israel); UMD = 1157 

Untermassfeld (Germany); Vallt = Vallonnet (France); VM = Venta Micena (Spain); ZKD1 = 1158 

Zhoukoudian Locality 1 (China); ZKD18 = Zhoukoudian Locality 18 (China). 1159 

 1160 

 1161 

Figure 5. Histograms of the relative proportions of the ecological preference of the carnivorans 1162 

in the analyzed guilds of the Old World, arranged according to a BCA based on ecological matrix 1163 

of the sites. Abbreviations: AMB = hypercarnivorous ambush predators; BoCr = hypercarnivorous 1164 

species with bone-cracking adaptations; CURS = hypercarnivorous cursorial predators; HERB = 1165 

hypocarnivorous adaptations towards herbivory; HSmP = small-sized hypercarnivorous species; 1166 

INSE = insectivorous species; MESO = mesocarnivores; OMNI = omnivorous, hypocarnivorous 1167 

and opportunistic feeders; PISC = hypercarnivores adapted to a piscivorous diet; AaO = Ahl al 1168 

Oughlam (Morocco); APL = Apollonia 1 (Greece); CF = Casa Frata (Italy); COOPD = Coopers D; 1169 

DRIM = Drimolen (South Africa); EVT10/12 = Vallparadís Estacio level 10–12 (Spain); 1170 

EVT7/CGRD7 = Vallparadís Estacio level 7/Cal Guardiola 7 (Spain); GWC = Gongwangling 1171 

(China); JYCLow = Jinyuan Cave Lower fauna (China); JYCUpp = Jinyuan Cave Upper fauna 1172 

(China); KBS = KBS Member, Koobi Fora Formation (Kenya); KhFC = Khapry Faunal Complex 1173 

(European Russia); KRMD2 = Kromdraai Member 2 (South Africa); LGP = Longgupo (China); 1174 

Longdan = Longdan locality (China); Nihew = Xiashagou, Classic Nihewan (China); Okot = Okote 1175 

Member, Koobi Fora Formation (Kenya); Old 1 = Olduvai Bed I (Tanzania); Old 2 = Olduvai Bed 1176 

II (Tanzania); OLIV = Olivola (Italy); OMO C-F = Members C–F, Shungura Formation (Ethiopia); 1177 

OMO G-K = Members G–K, Shungura Formation (Ethiopia); Pirro = Pirro Nord (Italy); PR = 1178 

Poggio Rosso (Italy); RZD = Renzidong Cave (China); Sen = Senéze (France); St.Val = St. Vallier 1179 
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(France); STK Mb4 = Sterkfontein Member 4 (South Africa); TIGH = Tighennif (Algeria); U Burgi 1180 

= Upper Burgi Member, Koobi Fora Formation (Kenya); UBEI = ‘Ubeidiya (Israel); UMD = 1181 

Untermassfeld (Germany); Vallt = Vallonnet (France); VM = Venta Micena (Spain); ZKD1 = 1182 

Zhoukoudian Locality 1 (China); ZKD18 = Zhoukoudian Locality 18 (China). 1183 

 1184 



Table 1 

Presence of species of carnivorans in selected European, Asian and African sites from the Early to Middle Pleistocene with their ecological 

characterization. 
 

Species E. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

Crossarchus transvaalensis OMNI        X                                

Galerella debilis MESO        X                                

Helogale hirtula-kitafe MESO          X X                             

Herpestes gr. ichneumon MESO   X     X     X  X                 X        

Ichneumia albicaudata INSE   X     X                                

Mungos minutus INSE        X                                

Suricata suricatta INSE                     X   X X                                               

Civettictis gr. civetta OMNI             X                           

Cynictis penicillata INSE              X X                         

Genetta genetta MESO     X  X                                 

Megaviverra gr. pleistocenica MESO                                X   X     

Pseudocivetta ingens MESO     X X  X X X X                             

Viverra leakey MESO   X             X                                                         

Aonyx capensis HSmP             X                           

Arctonyx minor OMNI                                   X X    

Arctonyx collaris OMNI                                    X    

Baranogale helbingi HSmP                X                        

Eirictis gr. pachygnatha HSmP                              X  X X       

Lutra gr. simplicidens PISC   X     X X       X                        

Lutra licenti PISC                                 X       

Martellictis ardea MESO                X  X          X            

Martes crassa-andressoni HSmP                                X  X      

Meles gr. thorali-meles OMNI                X     X X X X X X X             

Meles gr. chiai-teilhardi OMNI                              X X X X X X X  X 

Mellivora gr capensis MESO   X X X        X                           

Mustela altaica HSmP                               X X        



Mustela palerminea HSmP                      X                  

Oriensictis melina PISC                                      X 

Pannonictis hoffstetteri MESO    X                                    

Pannonictis nestii MESO                      X       X           

Poecillictis lybica MESO   X X                                    

Prepoecilogale bolti MESO   X          X                           

Torolutra ougandensis PISC     X                                   

Vormela peregusna HSmP                            X            

Ontocetus emmonsi PISC   X                                                                       

Acinonyx gr. jubatus CURS   X  X X   X X     X                         

Acinonyx gr. pardinensis CURS X              X X   X  X  X   X  X    X       

Caracal caracal  AMB             X X X                         

Dinofelis petteri-aronoki-piveteau AMB     X  X   X    X X                         

Dinofelis barlowi AMB            X X X                          

Felis gr. sylvetris AMB   X X          X X   X X     X    X  X  X X  X X    

Homotherium latidens CURS X X             X X X X X X X X X X X X  X X  X X X X     

Lynx gr. issiodorensis-pardinus AMB X X X            X  X X X X X X X X X X X  X X X X  X     

Megantereon cultridens AMB                X X X                      

Megantereon gr. falconeri AMB                              X  X X X  X  X 

Megantereon whitei AMB X     X   X X X  X X      X X X X X  X X            

Panthera leo CURS    X   X X X   X   X          X X    X    X    X 

Panthera gr. 'onca' AMB X                X   X X X X  X X X            

Panthera pardus AMB   X  X X  X X X X X X X X         X           X X    

Puma pardoides AMB                X      X    X X             

Sivapanthera linxiaensis CURS                                                         X     X X X       
Chasmaporthetes gr. kani-
progressus CURS                              X   X X      

Chasmaporthetes gr. lunensis CURS                X X X X                     

Chasmaporthetes gr. nitidula CURS   X     X    X  X X                         

Crocuta gr.crocuta BoCr   X X X X X X X   X X  X             X  X   X X      

Hyaena gr. hyaena BoCr    X X X X X X    X                           

Hyaenictitherium? barbatum CURS   X                                     

Lycaenops silberbergi CURS            X  X                          



Pachycrocuta brevirostris BoCr X          X      X X X X X X X X X X  X X X X X X X X X X 

Parahyaena brunnea BoCr            X X  X                         

Pliocrocuta perrieri BoCr   X             X X X           X           

Proteles gr. cristatus INSE             X  X                         

Canis arnensis MESO                                   X X                                     

Canis brevirostris MESO            X                            

Canis gr. chihliensis CURS               X               X X  X X      

Canis gr. etruscus MESO                 X X X    X      X X   X X      

Canis gr. mosbachensis CURS X                   X X X X X X X X        X X X 

Canis (Xenocyon) gr. dubius CURS                              X X   X X     

Canis (Xenocyon) gr. falconeri CURS        X     X       X                    

Canis (Xenocyon) gr. lycaonoides CURS X  X     X            X X X X X X X X     X       

Cuon alpinus CURS                                      X 

Eucyon minor HSmP                                 X       

Lupulella gr. adustus OMNI    X                                    

Lupulella gr. mesomelas MESO   X   X  X    X X  X                         

Lycaon pictus CURS       X                                 

Nyctereutes gr. megamastoides OMNI   X             X X            X   X X X X  X   

Protootocyon reckii INSE        X                                

Vulpes alopecoides MESO X              X X   X X X X X X X  X            

Vulpes chikushanensis OMNI                              X X  X    X X 

Vulpes gr. chama MESO             X X                          

Vulpes gr. rueppelli OMNI   X X                                                                     

Ailuropoda gr. melanoleuca HERB                                                             X     X X     

Ursus gr. etruscus OMNI X X             X X X X X X X X     X   X  X X  X X   

Ursus deningeri HERB                        X X X X          X   

Ursus gr. thibetanus OMNI                                                         X   X     X     X 
Total number of species per site 10 21 11 9 6 7 15 8 7 4 12 15 11 16 14 9 11 8 8 10 14 11 13 10 11 11 11 7 16 8 14 19 14 13 10 6 9 

 

 



Abbreviations: E. = ecological preferences; AMB = hypercarnivorous ambush predators; BoCr = hypercarnivorous species with bone-

cracking adaptations; CURS = hypercarnivorous cursorial predators; HERB = hypocarnivorous adaptations towards herbivory; HSmP = 

small-sized hypercarnivorous species; INSE = insectivorous species; MESO = mesocarnivores; OMNI = omnivorous, hypocarnivorous and 

opportunistic feeders; PISC = hypercarnivores adapted to a piscivorous diet; 1 = Dmanisi (Georgia; ca 1.8 Ma); 2 = Ahl al Oughlam 

(Morocco; ca 2.5 Ma); 3 = Tighennif (Algeria; ca 1.0 Ma); 4 = Upper Burgi Member, Koobi Fora Formation (Kenya; ca 2.0-1.9 Ma); 5 = KBS 

Member, Koobi Fora Formation (Kenya; ca 1.9-1.7 Ma); 6 = Okote Member, Koobi Fora Formation (Kenya; ca 1.5-1.3 Ma); 7 = Olduvai Bed 

I (Tanzania; ca 1.8 Ma); 8 = Olduvai Bed II (Tanzania; ca 1.2 Ma); 9 = Omo Members C–F, Shungura Formation (Ethiopia; ca 2.6-2.3 Ma); 

10 = Omo Members G–K, Shungura Formation (Ethiopia; ca 2.0-1.5 Ma); 11 = Sterkfontein Member 4 (South Africa; ca 2.1 Ma); 12 = 

Kromdraai Member 2 (South Africa; ca 2.0 Ma); 13 = Drimolen (South Africa; ca 2.0-1.5 Ma); 14 = Coopers D (South Africa; ca 1.9 Ma); 15 

= Saint Vallier (France; ca 2.4 Ma); 16 = Senèze (France; ca 2.2 Ma); 17 = Olivola (Italy; ca 2.0 Ma); 18 = Poggio Rosso (Italy; ca 1.9 Ma); 

19 = Casa Frata (Italy; ca 1.7-1.6 Ma); 20 = Venta Micena (Spain; ca 1.5 Ma); 21 = Pirro Nord (Italy; ca 1.4 Ma); 22 = Apollonia 1 (Greece; 

ca 1.2-0.9 Ma); 23 = Vallonnet (France; ca 1.0 Ma); 24 = EVT10/12, Vallparadís Estacio level 10–12 (Spain; ca 1.1 Ma); 25 = 

EVT7/CGRD7, Vallparadís Estacio level 7/Cal Guardiola 7 (Spain; ca 0.9 Ma); 26 = Untermassfeld (Germany; ca 1.0 Ma); 27 = Ubeidiya 

(Israel; ca 1.4 Ma); 28 = Khapry Faunal Complex (European Russia; ca 2.5-2.0 Ma); 29 = Longdan locality (China; ca 2.4-2.2 Ma); 30 = 

Zhoukoudian Locality 18 (China; ca 2.2 Ma); 31 = Renzidong Cave (China; ca 2.0 Ma); 32 = Xiashagou, Classic Nihewan (China; ca 1.8-1.6 

Ma); 33 = Jinyuan Cave Lower fauna (China; ca 2.0-1.8 Ma); 34 = Longguopo (China; ca 1.9 Ma); 35 = Gongwangling (China; ca 1.1 Ma); 

36 = Jinyuan Cave Upper fauna (China; ca 1.1 Ma); 37 = Zhoukoudian Locality 1 (China; ca 1.0 Ma). 
 












