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Abstract
Ionospheric scintillation is one of the most challenging sources of errors in global navigation satellite systems (GNSS). It is 
an effect of space weather that introduces rapid amplitude and phase fluctuations to transionospheric signals and, as a result, 
it severely degrades the tracking performance of receivers, particularly carrier tracking. It can occur anywhere on the earth 
during intense solar activity, but the problem aggravates in equatorial and high-latitude regions, thus posing serious concerns 
to the widespread deployment of GNSS in those areas. One of the most promising approaches to address this problem is the 
use of Kalman filter-based techniques at the carrier tracking level, incorporating some a priori knowledge about the statistics 
of the scintillation to be dealt with. These techniques aim at dissociating the carrier phase dynamics of interest from phase 
scintillation by modeling the latter through some correlated Gaussian function, such as the case of autoregressive processes. 
However, besides the fact that the optimality of these techniques is still to be reached, their applicability for dealing with 
scintillation in real-world environments also remains to be confirmed. We carry out an extensive analysis and experimenta-
tion campaign on the suitability of these techniques by processing real data captures of scintillation at low and high latitudes. 
We first evaluate how well phase scintillation can be modeled through an autoregressive process. Then, we propose a novel 
adaptive, low-complexity autoregressive Kalman filter intended to facilitate the implementation of the approach in practice. 
Last, we provide an analysis of the operational region of the proposed technique and the limits at which a performance gain 
over conventional tracking architectures is obtained. The results validate the excellence of the proposed approach for GNSS 
carrier tracking under scintillation conditions.
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Introduction

It is well known that global navigation satellite systems 
(GNSS) have become the key technology for positioning and 
navigation purposes using satellite ranging signals. Their 
maturity, widespread deployment and accuracy in open-sky 
environments are leading to a growing demand for extend-
ing GNSS beyond the limits of its original designs. This 

entails moving into the arena of high-precision, safety–criti-
cal applications such as aviation, maritime navigation and 
autonomous vehicle driving, just to mention a few. One key 
enabling feature is that GNSS carrier phase measurements 
do provide ultra-precise positioning information, and thus, 
their exploitation becomes essential. However, the use of 
GNSS in environments with many propagation impairments, 
different from those for which GNSS was initially conceived, 
hinders the determination of reliable carrier phase estimates 
and thus poses new technological challenges faced by next-
generation GNSS receivers. Some examples are weak signal 
reception and multipath. But in particular, one of the most 
challenging sources of error to deal with in GNSS is the 
so-called ionospheric scintillation effect (Lee et al. 2017).

The ionosphere is the upper earth’s atmosphere ionized 
by solar radiation, and it has a significant influence on tran-
sionospheric radio wave propagation. Ionospheric scintilla-
tion is a known effect of space weather whereby ionospheric 
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electron density irregularities introduce rapid fluctuations 
onto GNSS signals when crossing the ionosphere in form 
of random amplitude fades and abrupt phase jumps (Kintner 
et al. 2007). These have a detrimental effect on the perfor-
mance and stability of GNSS receivers and the proper deter-
mination of the synchronization parameters, particularly the 
carrier phase dynamics of interest. Ionospheric scintillations 
can cause cycle slips, severe carrier phase jitter, loss of sig-
nal even in line-of-sight (LoS) conditions, signal integrity 
issues and degrade navigation performance. Furthermore, 
although ionospheric scintillation can occur anywhere on 
earth during intense solar activity, it is more frequent in the 
earth’s high- and low-latitude/equatorial regions (Kintner 
et al. 2009) and it certainly poses serious concerns to the 
widespread deployment of GNSS in emerging countries. 
Therefore, the design and validation of novel signal pro-
cessing techniques for providing carrier phase estimates 
that are robust to ionospheric scintillation have become of 
paramount importance.

In order to exploit carrier phase measurements, GNSS 
receivers usually implement a carrier (along with code) 
tracking stage that keeps them synchronized with the sat-
ellites so that it accurately monitors any variation in the 
observed satellite-to-user dynamics. In most existing receiv-
ers, this is implemented using the well-known phase-lock 
loop (PLL) technique, a simple closed-loop architecture that 
compares the input carrier phase values to a local replica and 
drives the resulting error to zero by properly adjusting the 
phase of the local oscillator (Gupta 1975). Notwithstanding, 
this technique is known to experience serious troubles in 
the presence of unexpected propagation impairments, and it 
becomes the bottleneck in GNSS receivers under scintilla-
tion conditions (Lee et al. 2017). As a countermeasure, the 
use of advanced tracking techniques such as those based on 
the Kalman filter (KF) is gradually being introduced from 
the general framework of optimal minimum mean square 
estimation (MMSE). Some examples can be found in Maca-
biau et al. (2012), Won et al. (2012), Jiang et al. (2017), Susi 
et al. (2017) and Yang et al. (2017), where carrier phase 
dynamics is estimated using KFs that encompass kinematic 
models in their state-space formulation. As a matter of fact, 
the application of KF-based GNSS carrier tracking turns into 
an interesting approach for dealing with phase scintillation 
when noting that the random nature of the latter can be mod-
eled through, for instance, a correlated Gaussian distribution 
(Humphreys et al. 2010). This opens the door to phase scin-
tillation being accommodated by the KF in a natural man-
ner, thus taking advantage of its optimality properties under 
Gaussian disturbances for linear models. A case of particu-
lar interest is the class of autoregressive (AR) processes, 
which are gaining relevance for the problem at hand and are 
claimed to provide potentially promising results (Nunes and 
Sousa 2014; Fohlmeister et al. 2018; Morton et al. 2020).

From the above observations, the use of a KF with a 
kinematic model augmented with a linear Gaussian model 
such as the AR becomes then the natural leap forward for 
optimally dealing with both phase dynamics and scintilla-
tion experienced by received GNSS signals. This gives rise 
to a hybrid autoregressive Kalman filter (KF-AR) tech-
nique, an innovative approach pioneered by the authors 
of the present work in Locubiche-Serra et al. (2016) and 
Vilà-Valls et al. (2013), whereby the above-mentioned 
kinematic and AR models are hybridized into one single 
state-space formulation. The underlying idea is to discern 
between phase dynamics and scintillation and thus provide 
decoupled estimates of both while making explicit that 
they must be determined in the presence of one another. 
The latter means, indeed, that the KF-AR can be employed 
to obtain either dynamics-robust phase scintillation esti-
mates or scintillation-robust phase dynamics estimates. 
Even though remaining out of the scope of this work, the 
former does enable GNSS for ionosphere-related scien-
tific applications such as ionospheric scintillation monitor-
ing (ISM) itself. Our focus is placed on the latter, where 
robustness to scintillation is sought for positioning and 
navigation purposes. The final goal is to locally recon-
struct the phase scintillation disturbance so that it can be 
removed from the input carrier phase and result in a clean 
phase depending on the user’s dynamics only.

The existing contributions on this topic are focused on 
the design and characterization of the above techniques. 
However, an analysis of their efficiency based on real data 
experimentation is still lacking. In that sense, our objec-
tive is to validate the applicability and suitability of KF-AR 
techniques in realistic environments for scintillation-robust 
GNSS carrier tracking. To this end, an extensive experimen-
tation campaign is carried out using real scintillation data 
captures at high and low latitudes to introduce real-world-
representative scintillation disturbances in the analysis, in 
contrast to many existing contributions that are restricted 
to synthetic data. In this sense, the work leads to a three-
fold contribution. First, we confirm the suitability of AR 
processes for modeling phase scintillation. Second, we pro-
pose a novel adaptive, low-complexity KF-AR technique 
designed with the practical implementation of the approach 
in the spotlight, aiming at facilitating its applicability in 
practice. This implementation is intended to circumvent the 
performance and computational limitations of other fixed 
and adaptive implementations previously proposed in the 
literature and attain the theoretical performance given by 
the well-known Bayesian Cramér–Rao bound (BCRB) irre-
spective of the input working conditions. Third, we provide 
some guidelines on the behavior of the proposed techniques 
as a function of the environmental working conditions. We 
also evaluate the performance limits at which the proposed 
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techniques can operate in practice and outperform conven-
tional PLLs.

Architecture of GNSS receivers

Apart from the antenna itself, the radiofrequency (RF) 
front-end is the first module of any GNSS receiver, where 
the analog processing and conditioning of the received 
signal for further digital processing is carried out. This 
involves low-noise amplification, filtering, frequency 
down-conversion to baseband and analog-to-digital con-
version. Then, at its output, the digital processing of 
GNSS signals is usually performed through two sequen-
tial stages: the acquisition and tracking stages, followed 
by the position, velocity and time (PVT) module, which 
ultimately determines the user’s position using the pro-
cessed information.

The acquisition stage is in charge of detecting the sat-
ellites that are present in the received signal and finding 
a tentative estimate of their code delays (i.e., pseudor-
anges). As some Doppler shift is present owing to receiver 
oscillator inaccuracies and the relative motion between 
the satellite and the receiver, this search is performed in a 
two-dimensional grid, that is, in both time and frequency 
domains, by computing the so-called cross-ambiguity 
function. Therefore, when satellites are detected, the 
acquisition stage also provides coarse estimates of the 
code delay and Doppler shift at which the signal of interest 
is located. These outputs are then provided to the tracking 
stage.

Tracking stage

The tracking stage is a closed-loop architecture with a two-
fold objective. First, to refine the synchronization param-
eters estimated in the acquisition stage. Second, to accu-
rately follow any possible variation of these parameters 
over time. The underlying idea is to find the code delay 
and carrier phase values to generate a local replica of the 
signal of interest that aligns with the received one. This is 
done by recursively comparing the local replica with the 
received signal and driving the resulting error to zero. To 
this end, a closed-loop system such as the one shown in 
Fig. 1 is employed, formed by two coupled architectures, 
one for code tracking and one for carrier tracking, usually 
referred to as delay-lock loop (DLL) and PLL architec-
tures, respectively. Both follow the same basis. First, the 
input signal is correlated with the local replica using a set 
of correlators, namely early (E), prompt (P) and late (L), 
formed by integrate-and-dump (I&D) blocks performing 
coherent ( Nc ) and non-coherent ( Ni ) integrations (only 

coherent in the PLL case). The result is fed to the dis-
criminators, which provide a function that is proportional 
to the local replica errors to be corrected. The loop filters 
(LF) aim at removing the noise at the discriminator output 
and providing a smoothed version of the corrections to 
be applied. This is then fed to the numerically controlled 
oscillators (NCO) that indicate such corrections to the 
code and carrier generators, thus closing the loop. In this 
work, we will focus on the PLL architecture, as detailed 
next.

For a given satellite, consider the signal x(n) at the 
input of the tracking stage with the following discrete-
time complex baseband equivalent signal (Seco-Granados 
et al. 2012),

where n is the discrete-time variable, P is the signal power, 
d(n) is the navigation message, � is the code delay, and e(n) 
is the contribution due to receiver noise. The term r(n) is 
the transmitted signal encompassing the receiver-to-satel-
lite synchronization parameters, which can be expressed as 
(Seco-Granados et al. 2012),

that is, � delays the pseudorandom sequence c(n) linked to 
the satellite under study, and �d(n) is the carrier phase of a 
complex exponential that contains the Doppler shift due to 

(1)x(n) =
√
Pd(n − �)r(n) + e(n)

(2)r(n) = c(n − �)ej�d(n)

Fig. 1   Block diagram of conventional GNSS code and carrier track-
ing architectures. Code tracking is used for fine code delay estima-
tion. Carrier tracking is used for fine carrier phase estimation
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signal dynamics. The PLL aims at providing an estimate 
of the latter, denoted as 𝜃̂d(n) , and using it for generating 
the local replica in a way to compensate for the complex 
exponential in (2),

where the phase error 𝜃𝜀(n) ≐ 𝜃d(n) − 𝜃̂d(n) is driven to zero 
by iterating the loop. To that effect, the input signal is cor-
related with the local replica c(n − 𝜏) through the P correla-
tor in Fig. 1, denoted as yP(𝜏) , which is centered at 𝜏 , the 
delay estimated by the DLL. Note that the DLL employs 
two additional correlators, the E–L correlators, centered at 
𝜏 plus some shift � at each side, which facilitate the detection 
of the main correlation peak. In contrast, the PLL employs 
only the P one.

When feeding the result to the PLL discriminator, the 
objective is to extract the phase error ��(n) of the complex 
exponential in (3). For this purpose, several discriminators 
can be employed, highlighting the PLL-, Costas PLL- and 
frequency-lock loop (FLL)-type ones. Since we are interested 
in phase measurements, we focus on the PLL-type discrimi-
nators, specifically the well-known four-quadrant arctangent 
(ATAN2) discriminator as it duplicates the dynamic range of 
the Costas PLL and is robust to phase variations. In addition, 
it is the optimal maximum likelihood (ML) phase extractor at 
high carrier-to-noise ratio (C/N0) (Proakis 2001), while it also 
fits very well into GPS signals synchronized at bit level, as 
well as into the data-less nature of pilot signals growingly used 
nowadays. Its output, denoted as Δ�ATAN2

(
��
)
 , is given by,

where the terms Im
[
yP(𝜏)

]
 and Re

[
yP(𝜏)

]
 correspond to 

the imaginary and real parts of the prompt correlator, 
respectively.

Effect of ionospheric scintillation

When the signal received from a given satellite is affected by 
ionospheric scintillation, the effect can be modeled as a multi-
plicative channel introducing signal amplitude As(n) and phase 
�s(n) variations to the transmitted signal r(n) in (Vilà-Valls 
et al. 2013),

in such a way that the carrier phase perceived by the PLL 
becomes the combination of the signal dynamics plus the 
scintillation phase, that is, �(n) ≐ �d(n) + �s(n).

(3)r(n)e−j𝜃̂d(n) = c(n − 𝜏)ej𝜃𝜀(n)

(4)Δ𝜃ATAN2
(
𝜃𝜀
)
= arctan

(
Im

[
yP(𝜏)

]

Re
[
yP(𝜏)

]
)

(5)
As(n)e

j�s(n)r(n) = As(n)c(n − �)ej(�d(n)+�s(n)) = As(n)c(n − �)ej�(n)

Signal models

The term �(n) is the phase to be dealt with at the carrier track-
ing level. For this purpose, the corresponding signal models 
must first be defined. The models adopted in this work are 
described next.

Signal model for carrier phase dynamics

For the problem of GNSS carrier tracking, we assume that 
the discrete-time evolution of the carrier phase due to signal 
dynamics can be approximated by a third-order kinematic 
model, which has been found to be a self-standing approach 
of interest in many practical cases (Bar-Shalom et al. 2004),

where Ts is the sampling time, and the terms 𝜃̇d(n) , 𝜃̈d(n) 
and 𝜃d(n) are the Doppler shift, Doppler rate and Doppler 
acceleration (i.e., first, second and third derivatives of the 
carrier phase), whose evolution is given by,

which follows the structure in (7). This is then the signal 
model to be used later to formulate the problem of GNSS 
carrier tracking.

Signal model for phase scintillation

When approximating the discrete-time evolution of phase 
scintillation by a pth-order AR process, namely AR(p), the 
following signal model is adopted (Kay 1993),

where 
{
�m

}p

m=1
 is the set of p AR coefficients and sp(n) is the 

so-called AR driving noise or prediction error of an AR(p) 
process, usually modeled as sp(n) ∼ N

(
0, �2

sp

)
 with 

E
[
sp(i)s

∗
p
(j)
]
= 0 for i ≠ j . This is then the signal model to 

be used later to formulate the problem of phase scintillation 
tracking. Additionally, the power spectral density (PSD) of 
an AR(p) process is given by (Kay 1993),

(6)
𝜃d(n) ≈ 𝜃d(n − 1) + Ts𝜃̇d(n − 1) +

1

2
T2
s
𝜃̈d(n − 1) +

1

3!
T3
s
𝜃d(n − 1)

(7)
𝜃̇d(n) ≈ 𝜃̇d(n − 1) + Ts𝜃̈d(n − 1) +

1

2!
T2
s
𝜃d(n − 1)

𝜃̈d(n) ≈ 𝜃̈d(n − 1) + Ts𝜃d(n − 1)

𝜃d(n) ≈ 𝜃d(n − 1)

(8)�s(n) =

p∑
m=1

�m�s(n − m) + sp(n)

(9)S�s

�
ej�

�
=

�2
sp

���1 −
∑p

k=1
�ke

−j�k���
2
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with � the discrete-time frequency variable. Expression (9) 
is used next to evaluate the feasibility of modeling phase 
scintillation through an AR process.

AR model fitting of phase scintillation

Once the signal models are defined, this section is intended 
to show the suitability of modeling scintillation phase 
through AR processes, a required step before formulating 
the KF-AR.

Scintillation time series

Scintillation is reported to be frequent in low- and high-
latitude regions and in the dark times of the day and year 
(Aarons 1982). Following these baselines, we analyze two 
different scintillation data captures gathered at monitoring 
stations of the Monitor network from the European Space 
Agency (ESA). First, a capture from the station in Dakar, 
Senegal (lat. 14.765, long. 352.624°) as representative of 
low-latitude scintillation, taken on December 1, 2014 from 
22:00 to 23:00 h local time coinciding with Coordinated 
Universal Time (UTC + 0) for GPS satellite vehicle (SV) 
#24. This is henceforth denoted as DAK.2014.335.22.
GPS24, with 335 referring to the day of the year. Second, 
a capture from the station in Kiruna, Sweden (lat. 67.743, 
long. 21.060°) as representative of high-latitude scintillation, 
taken on April 16, 2015 from 04:00 to 05:00 h local time 
(UTC + 2) for GPS SV #22. This is henceforth denoted as 
KIR.2015.106.04.GPS22. In both cases, the setup for scin-
tillation monitoring is formed by a high-grade antenna fol-
lowed by a Septentrio PolaRxS receiver providing binary 
files with raw data and scintillation parameters at a rate of 
50 Hz. These files are converted to raw American Standard 
Code for Information Interchange (ASCII) files contain-
ing the in-phase and quadrature (IQ) correlation samples, 
from which the scintillation power and phase time series are 
extracted following the data-detrending algorithm in Desh-
pande et al. (2012). We also use the algorithm to eliminate 
residual low-frequency systematic effects initially affecting 
the captures, such as those from the troposphere, satellite 
geometry and receiver oscillator instabilities, which intro-
duce undesired fluctuations that add to the scintillation data 
and distort the measurements.

The look of the detrended phase and power is shown in 
Figs. 2 and 3 for the Dakar and Kiruna captures, respectively. 
We will focus on the segments delimited within the vertical 
stripped lines as scintillation is more prominent there, with 
satellite elevation angles above 15° to avoid any propagation 
degradation effect owing to low satellite elevation. On the one 
hand, in order to characterize amplitude scintillation, S4 is the 

index usually employed in the literature, defined as (Hum-
phreys et al. 2010),

with E[⋅] the expectation operator. On the other hand, phase 
scintillation is characterized through the standard devia-
tion index ��s of the phase series. At low latitudes, phase 
scintillation is correlated with amplitude scintillation, 
with ��s = 0.35 rad and power drops around 5–10 dB with 
S4 = 0.3 , being overall representative of mild scintillation. 

(10)S4 =

√√√√√E
[
A2
s
(n)

]
− E

[
As(n)

]2

E
[
As(n)

]2
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Fig. 2   Detrended phase and power of DAK.2014.335.22.GPS24 cap-
ture, representative of low-latitude scintillation. The focus is placed 
on the segment delimited within vertical stripped lines
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Fig. 3   Detrended phase and power of KIR.2015.106.04.GPS22 cap-
ture, representative of high-latitude scintillation. The focus is placed 
on the segment delimited within vertical stripped lines
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However, a different situation is observed at high lati-
tudes, where even larger phase scintillations are perceived, 
with ��s = 0.65 rad, but no major power drops occur, with 
S4 = 0.05 , thus being representative of strong scintillation 
events in terms of phase. The behavior in both cases is in 
line with what is reported in the literature for low- and high-
latitude scintillation (Jiao et al. 2013; Lee et al. 2017).

Suitability of phase scintillation AR fitting

In order to evaluate how well the above live captures of 
phase scintillation can be modeled through an AR(p) pro-
cess, the AR parameters that best fit the time series must 
be first found, namely the coefficients 

{
�m

}p

m=1
 and the 

prediction error power �2
sp

 . By applying either the 
Yule–Walker equations or the least squares method (Kay 
1993; Stoica and Moses 2005), the obtained results are 
shown in Table 1 for the Dakar and Kiruna data captures 
considering AR(p) models with p up to three. These values 
are used to determine the corresponding PSDs using (9), 
which are then compared to the periodogram of the meas-
urements as a nonparametric estimator of the true PSDs. 
The results are shown in Figs. 4 and 5 for each capture. A 
very tight match is obtained, despite some discrepancies 

observed at low frequencies that are, though, mainly due 
to the low-pass filtering steps involved during the detrend-
ing process. Note that the interest lies in the high-fre-
quency variations introduced by scintillation (Deshpande 
et al. 2012). In that sense, an AR process with any order p 
can be used in both captures, thus suggesting that a good 
fit can be obtained by just keeping the lowest order, 
namely AR(1). This result can already be anticipated by 
looking at the values in Table 1, where the prediction 
errors are very similar for all orders. Therefore, these 
results show the suitability of modeling phase scintillation 
events using an AR(1) process.

Kalman filter equations

As previously explained, there is a growing trend to replace 
conventional PLL architectures (in particular the loop filter) 
by a KF-based one. Therefore, the objective of this section 
is to briefly present the generic KF equations, also termed 
state-space and observation models, which will be used later 
to formulate the KF-AR with the kinematic and AR signal 
models introduced earlier to track carrier phase dynamics 
and phase scintillation.

Table 1   Optimal AR parameters 
for phase scintillation time 
series

DAK.2014.335.22.GPS24 KIR.2015.106.04.GPS22
𝛼̂
p
 (unitless) 𝜎̂2

s
p

 (rad2) 𝛼̂
p
 (unitless) 𝜎̂2

s
p

 (rad2)

AR(1) 0.9501 1.8658 × 10−3 0.9606 3.0462 × 10−3

AR(2) [0.7210, 0.2316] 1.7372 × 10−3 [0.7515, 0.2085] 2.9008 × 10−3

AR(3) [0.7024, 0.1637, 0.0874] 1.7148 × 10−3 [0.7504, 0.1588, 0.0511] 2.8904 × 10−3
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Fig. 4   Periodogram of DAK.2014.335.22.GPS24 versus estimated 
PSD of optimal AR(1, 2, 3) models. Low-latitude scintillation
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Fig. 5   Periodogram of KIR.2015.106.04.GPS22 versus estimated 
PSD of optimal AR(1, 2, 3) models. High-latitude scintillation
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The sequential estimation of the parameters of interest is 
governed by the following state transition equation (Yang 
et al. 2017),

where �(n) is the state vector containing such parameters of 
interest at time instant n. It propagates toward the next time 
instant n + 1 through the transition matrix F, plus the process 
noise �(n) that accounts for the possible modeling discrep-
ancy of the Kalman state-space model to the true one charac-
terizing the input samples. It usually follows �(n) ∼ N

(
0,�2

�

)
 

such that E
[
�H(i)�(j)

]
= 0 for i ≠ j . As observed in (11), the 

weight of �(n) onto the different Kalman states is adjusted 
through a linear transformation given by matrix G that 
results in a zero-mean Gaussian process with the covari-
ance matrix � ≐ E

[
���H�H

]
.

The KF aims at providing clean estimates of �(n) based 
on the available noisy input measurements, which are mod-
eled through the following measurement equation (Yang 
et al. 2017),

where the scalar measurements z(n) can be understood 
as a linear transformation of the system states through 
the observation matrix H. The measurements are cor-
rupted by the presence of an uncorrelated Gaussian noise 
w(n) ∼ N(0,R(n)) such that E

[
w(i)w∗(j)

]
= 0 for i ≠ j.

Hybrid autoregressive Kalman filter (KF‑AR)

This section is intended to show the integration of the kin-
ematic and AR signal models introduced earlier into the 
Kalman equations, leading to the hybrid autoregressive 
Kalman filter (KF-AR), and present low-complexity imple-
mentation proposed in this work.

Baseline technique: the KF‑AR(1): state‑space 
and observation models

Recalling the kinematic signal model in (6)–(7), the states of 
interest for a three-dimensional KF are �d(n) , 𝜃̇d(n) and 𝜃̈d(n) . 
Hence, the state-space model for carrier dynamics tracking 
can be written in normalized matrix notation as,

where by direct comparison with (11), the (3 × 1) state vec-
tor of the carrier phase dynamics and the transition matrix 
are identified,

(11)�(n + 1) = ��(n) +��(n)

(12)z(n) = �T�(n) + w(n)

(13)

⎡⎢⎢⎣

𝜃d(n)
Ts𝜃̇d(n)
T2
s
𝜃̈d(n)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1 1 1∕2

0 1 1

0 0 1

⎤
⎥⎥⎦

⎡⎢⎢⎣

𝜃d(n − 1)

Ts𝜃̇d(n − 1)

T2
s
𝜃̈d(n − 1)

⎤⎥⎥⎦
+

⎡⎢⎢⎣

1∕6

1∕2

1

⎤⎥⎥⎦
T3
s
𝜃d(n − 1)

The process noise is given by u(n) ≐ T3
s
𝜃d(n) ∼ N

(
0, 𝜎2

u

)
 , 

which is intended to cover the higher-order terms that are 
missing in the truncated model in (6). It propagates to the 
Kalman states through �d ≐

[
1∕6 1∕2 1

]T that leads to 
�d ≐ �2

u
�d�

H
d

.
On the other hand, the recursion in (8) for an AR(1) 

process becomes readily the Kalman state transition equa-
tion for the problem of phase scintillation tracking, where 
the only state �s(n) propagates through � , and the process 
noise is now given by the AR driving noise sp(n) , which 
propagates entirely to the state. Then, by merging the kin-
ematic and AR models, the KF-AR(1) state-space system 
model results into the following augmented state transition 
equation,

where the state vector and transition matrix are identified as,

The process noise becomes,

with p = 0 referring to a dynamics-only, non-AR KF that 
will be used by the adaptive technique in the next section. 
The noise in (19) propagates to the Kalman states through 

the augmented process noise matrix � ≐

[
�d �3×1
0 1

]
 , result-

ing in a zero-mean Gaussian noise with covariance matrix 

� ≐

[
�2
u
�d�

H
d
�3×1

�1×3 �2
sp

]
.

When dealing with both phase dynamics and phase scin-
tillation, we assume to have the following measurements 
available,

where the augmented observation matrix is identified as 
� ≐

[
1 0 0 1

]T . The measurement noise w(n) corresponds 
to the phase noise at the discriminator output. Assuming 

(14)�d(n) ≐
[
𝜃d(n) Ts𝜃̇d(n) T

2
s
𝜃̈d(n)

]T

(15)�d ≐

⎡
⎢⎢⎣

1 1 1∕2

0 1 1

0 0 1

⎤
⎥⎥⎦

(16)

[
�d(n)

�s(n)

]
=

[
�d �3×1
�1×3 �

][
�d(n − 1)

�s(n − 1)

]
+

[
�d �3×1
0 1

]
�(n)

(17)�(n) ≐
[
�T
d
(n) �s(n)

]T

(18)� ≐

[
�d �3×1
�1×3 �

]

(19)�(n) ≐

{ [
u(n) sp(n)

]T
if p = 1

u(n) if p = 0

(20)z(n) = �T� + w(n) = �d(n) + �s(n) + w(n)
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that the output of the prompt correlator is normalized to unit 
mean power, the variance of w(n) for the ATAN2 discrimina-
tor is a scalar given by (Del Peral-Rosado et al. 2010),

where the second term inside the brackets at the right-hand 
side accounts for the squaring losses due to the nonlinear 
behavior of the discriminator at low C/N0 (Curran et al. 
2012).

Adaptive technique: the AHL‑KF‑AR(0, 1)

In order to deal with the time-varying nature of ionospheric 
scintillation, Locubiche-Serra et  al. (2016) proposed a 
KF-AR implementation that consisted in three real-time 
adaptive algorithms on the baseline KF-AR state-space and 
observation models presented in the previous section. First, 
an estimator of the optimal AR model parameters. Second, 
an estimator of the optimal AR model order. Third, the 
use of adaptive hard-limited (AHL) Kalman gains to deal 
with the nonlinear C/N0 drops introduced by scintillation. 
This KF-AR technique is referred to as AHL-KF-A2R(p). 
However, despite its agility and adaptability advantages, it 
is found to present two drawbacks. On the one hand, the 
simultaneous use of three adaptive mechanisms at each time 
instant incurs quite a high resource and computational bur-
den. On the other hand, the available scintillation data are 
distorted by the presence of additive white Gaussian noise 
(AWGN) in the input measurements, which leads to a biased 
estimation of the optimal AR model parameters that eventu-
ally incurs some performance degradation, particularly when 
scintillation is not very strong. As a matter of fact, this latter 
adaptive implementation is also the major contributor to the 
computational cost enhancement, as it involves either the 
Yule–Walker or the least squares methods that require com-
puting several autocorrelation functions and inverse matrices 
at each time instant. Therefore, in order to circumvent these 
limitations, we present the AHL-KF-AR(0, 1), a new imple-
mentation that uses a fixed set of AR model parameters, 
while partially preserving the other adaptive modules of the 
AHL-KF-A2R(p): the AHL implementation remains as is, 
whereas the AR model-order estimator will be employed as 
a scintillation detector switching between a kinematic-only 
KF when scintillation is absent, that is, KF-AR(0), and a 
KF-AR(1) when scintillation is present.

The proposed technique corresponds to the carrier track-
ing architecture depicted in Fig. 6. As can be observed, the 
carrier discriminator output is the magnitude to be processed 
by the KF, which corresponds to the innovation sequence 
i(n) that contains the error between the incoming phase 
and the Kalman predicted phase. Before the local replica 

(21)R(n) =
1

2TsC
/
N0(n)

[
1 +

1

2TsC
/
N0(n)

]

is compensated with the estimated scintillation phase (i.e., 
output of I&D block), the architecture implements a second 
carrier discriminator that, since the carrier dynamics have 
already been compensated, outputs only the input scintil-
lation phase. This is used to detect the presence of scintil-
lation to consequently enable or disable the AR module of 
the KF and update the Kalman gains K(n) and the transition 
matrix accordingly. The state correction is carried out, and 

Fig. 6   Block diagram of AHL-KF-AR(0, 1) carrier tracking tech-
nique. The scintillation detector is used to set the AR model order to 
0 or 1, thus disabling or enabling the AR module. The C/N0 estimator 
is used to deal with nonlinear signal power fades through the AHL 
implementation
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the prediction for the next time instant is computed. The lat-
ter is then employed to obtain the measurement prediction 
and update the local replica, which is correlated with the 
input signal, thus closing the loop.

Feature 1: optimal fixed AR parameters

In order to determine the optimal AR parameters for the 
AHL-KF-AR(0, 1), the best achievable performance for 
each of the considered datasets must first be known. This 
information is readily provided by the BCRB, which can be 
recursively computed as (Van Trees and Bell 2007),

with �B(n) the Bayesian information matrix. For the optimal 
AR parameters in Table 1, and considering a high C/N0 of 
45 dB Hz, the BCRB for the phase dynamics of interest is 
located at 3.6 × 10−3 and 1 × 10−2 rad2 for the Dakar and 
Kiruna captures, respectively. We will take the smallest 
value to be our best possible target performance. That is to 
say, we take 3.6 × 10−3 rad2 as the MSE carrier phase perfor-
mance to be attained by the AHL-KF-AR(0, 1).

In order to make the AHL-KF-AR(0, 1) robust, the opti-
mal AR parameter determination is carried out with strong 
phase scintillation in the spotlight, such as the one from the 
Kiruna capture analyzed herein. That is, the objective is to 
design the parameters such that the resulting tracking 
scheme is able to cope with strong scintillation while attain-
ing the aforementioned target MSE of 3.6 × 10−3 rad2. For 
this purpose, note that the KF-AR is a closed-loop architec-
ture that can thus be characterized by its equivalent loop 
bandwidth, which must be large enough for adequate signal 
tracking. As a matter of fact, such bandwidth is driven by 
the KF-AR process noise variance (Jwo 2001), given by �2

sp
 

for the case of phase scintillation tracking. Therefore, as a 
first step we can simply take the value of �2

sp
 in Table 1 

required to track the scintillation in Kiruna as reference, 
namely �2

sp
 = 3 × 10−3 rad2. Then, it remains to determine the 

coefficient � , which is sought as the value for which, with 
such �2

sp
 , the KF-AR attains the above target performance. 

By evaluating the BCRB for different candidate values of � 
as shown in Fig. 7 it is found that, for �2

sp
 = 3 × 10−3 rad2, the 

performance of 3.6 × 10−3 rad2 is attained for � = 0.925 . 
Therefore, this is the set of AR parameters to be used by the 
AHL-KF-AR(0, 1).

Feature 2: real‑time scintillation detection

When designing an AR(p) process, the model order p plays 
an important role for optimal AR fitting to a given set of 

(22)
�−1
B
(n + 1) =

[(
�(n) + �(n)�−1

B
(n)�T (n)

)−1
+ R−1(n)�T (n)�−1(n)

]

measurements. In that sense, determining the optimal order 
of a statistical model is a well-known problem in the field of 
signal processing often referred to as model-order selection 
(Stoica and Selen 2004). Several criteria can be found in the 
literature in this regard, such as Akaike’s information crite-
rion (AIC) (Akaike 1974), the modified AIC, the generalized 
information criterion (GIC) and the minimum description 
length (MDL) (Djuric et al. 1999). The proposed technique 
implements the latter, as it is reported to be a consistent 
criterion. It computes the optimal p as,

with N  the number of samples in the data segment under 
analysis. In the proposed AHL-KF-AR(0, 1), this estimator 
is implemented in form of a sliding window that evaluates 
segments with 5 s of data as a function of time, and detects 
whether scintillation is present or not by determining 𝜎̂2

sp
 for 

p = 0 and p = 1 using � = 0.925 and applying (23).

Feature 3: adaptive hard‑limited measurement noise 
variance

The adaptive hard-limited (AHL) implementation is thought 
to deal with the nonlinear amplitude fades introduced by 
scintillation, whereby the KF-AR is affected by abnormal 
measurements that may compromise the linearity of the 
phase discriminator, thus degrading its performance and 
even driving the technique to lose lock. The AHL exploits 
the fact that the amplitude fades make themselves explicit at 
C/N0 level. Interestingly, this information can be provided to 
the KF-AR through the measurement noise variance R(n) as 

(23)p̂MDL = argmin
p

(
N log

(
𝜎̂2
sp

)
+ p log (N)

)
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Fig. 7   BCRB of KF-AR(1) as a function of AR model parameters. 
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seen in (21), so that the filter be dynamically self-adjusted 
to match the actual working conditions. Therefore, the AHL 
adapts R(n) based on actual C/N0 measurements, subject to 
a hard-limiting threshold such that,

with R̂(n) the measurement noise variance in (21) using 
Ĉ
/
N0(n) , and where setting R(n) = ∞ drives the Kalman 

gains to zero whenever the C/N0 drops below a given thresh-
old � . In this way, the KF-AR becomes totally isolated from 
the carrier discriminator output, and the loop relies only 
on the Kalman internal state-space model, thus protecting 
the technique from abnormal measurements until the C/N0 
recovers to nominal conditions.

To estimate the C/N0, the new AHL-KF-AR(0, 1) imple-
ments the narrow-wideband power ratio (NWPR) estimator, 
as it is a low-complexity algorithm of easy implementation 
that provides reliable results (Van Dierendonck 1996). On 
the other hand, taking into account that the C/N0 tracking 
threshold is located around 20 dB-Hz (Kaplan and Hegarty 
2006), the threshold � is set to 25 dB-Hz so as to leave some 
margin for KF-AR operation at low C/N0.

Experimentation results and performance 
evaluation

In this section, we assess the performance of fixed and 
adaptive KF-AR techniques to validate the suitability and 
efficiency of the proposed approach for tracking carrier 
phase dynamics under scintillation conditions. We evalu-
ate the adaptability features of the techniques under time-
varying scintillation working conditions and the closeness 
to the expected BCRB in comparison with the performance 
provided by conventional PLLs. To this end, an experimen-
tation campaign has been carried out using a MATLAB 
software GNSS carrier tracking simulator for GPS L1 C/A 
signals with a sampling time of Ts = 20 ms. The campaign 
simulates the environmental conditions in terms of signal 
dynamics and receiver noise and adds the scintillation time 
series captured in Dakar and Kiruna on top of these. We 
consider a C/N0 of 45 dB Hz in a static receiver. The only 
experienced dynamics are due to the satellite motion, thus 
assuming a Doppler shift of 10 Hz, Doppler rate of 1 Hz/s 
and maximum Doppler acceleration of ± 2 × 10−4 Hz/s2. The 
latter leads to �2

v
= 3.4 × 10−17 rad2 as the variance of a uni-

form distribution delimited by such Doppler acceleration 
values. The executions are 600 s long with a time-varying 
presence of scintillation. Only AWGN is present during the 
first 150 s, then scintillation appears between 150 and 450 s, 
then scintillation disappears again during the last 150 s. In 

(24)R(n) =

{
R̂(n) if �C

/
N0(n) ≥ 𝛾

∞ otherwise

that sense, two sets of results are provided, namely for low 
and high latitudes. The metrics employed for performance 
evaluation are the root mean square error (RMSE) of the 
estimated carrier phase dynamics, the number of cycle slips 
and the probability of loss of the tracking lock (LoL). The 
three metrics are computed by running the executions with 
100 Monte Carlo realizations.

Experiment 1: KF‑AR performance for low‑ 
and high‑latitude scintillation

Figures 8 and 9 show the RMSE performance of the previ-
ous KF-AR techniques and the new one proposed herein 
for the Dakar and Kiruna data captures, respectively. Addi-
tionally, Fig. 10 illustrates the error in cycles between the 
estimated and true carrier phase of interest for some of the 
Monte Carlo realizations.

As can be observed, all techniques outperform the RMSE 
that would be obtained with a conventional PLL, as the lat-
ter estimates scintillation as part of the signal dynamics. 
The PLL presents a LoL of about 20%, and it suffers from 
some tens of cycle slip occurrences over time, especially in 
Kiruna, as shown in Fig. 10 top. More particularly, the mean 
number of cycle slip occurrences in 300 s is found to be 45, 
meaning that a cycle slip is expected to occur approximately 
every 6–7 s. On the contrary, KF-AR techniques are found to 
present no cycle slips, as shown in Fig. 10 bottom, and the 
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Fig. 8   Phase RMSE performance for DAK.2014.335.22.GPS24 (top), 
and success rate on detecting the presence or absence of scintillation 
(bottom)
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LoL probability is below 1% as no Monte Carlo realization 
has lost lock, except for the AHL-KF-A2R(p), which shows 
a LoL probability of 5% in Kiruna.

When scintillation is present, the fixed KF-AR(1) that 
employs the optimal AR parameters in Table 1 can fully 
reach the target performance given by the BCRB, thus 
confirming the validity of the modeling phase scintillation 

through an AR process. Note that the ideal situation would 
be to attain the BCRB obtained when scintillation is absent. 
However, the KF-AR approach already outperforms the 
conventional PLL by a factor of 6. The inconvenient of the 
fixed KF-AR(1) is, though, that it fails at providing optimal 
performance when pulled out of the test case for which it has 
been designed, particularly in terms of the transient expe-
rienced when scintillation disappears, requiring between 
50 and 100 s to converge. This is the penalty incurred by 
forcing a fixed AR module in the KF in the absence of scin-
tillation. This is overcome by the AHL-KF-A2R(p), which 
rapidly detects the absence of scintillation and disables the 
AR module, thus minimizing the transient period toward 
the new condition. In that sense, the major advantage of 
this technique is that it presents good agility and flexibility 
in front of time-varying conditions. Notwithstanding, the 
main inconvenience of the AHL-KF-A2R(p) is that, besides 
presenting a slightly larger LoL probability, it presents some 
RMSE gap that prevents attaining the BCRB by a factor 
between 2 and 3. This is owing to the online AR param-
eter estimator providing biased estimates due to the pres-
ence of AWGN. Furthermore, the computational burden of 
this technique is found to be 2.75 times that of the simplest 
KF-AR. This is where the new AHL-KF-AR(0, 1) technique 
proposed in this work comes into play, which shows very 
promising results. The technique commutes to the KF-AR(0) 
when under AWGN only, and to the fixed KF-AR(1) when in 
the presence of scintillation, thus attaining the correspond-
ing BCRB values in both situations for both data captures. 
The success rate on the detection of scintillation is shown 
in the bottom plots of Figs. 8 and 9, with values above 90%, 
even though some transition time is seen to be particularly 
required when scintillation disappears. The agility of the 
AHL-KF-A2R(p) is preserved, while the required compu-
tational cost is reduced to 1.75 times that of the simplest 
KF-AR and the LoL probability is improved to below 1%, 
thus potentially becoming one robust approach that can be 
implemented in practice.

Experiment 2: KF‑AR operational region

The objective of this section is twofold. First, to extend the 
analysis in the previous section and evaluate the KF-AR 
performance as a function of the input C/N0 and the high-
order dynamics that the KF can tolerate through �2

v
 . Second, 

to quantify the limits of the proposed AHL-KF-AR(0, 1) 
technique within which it provides a performance gain over 
the conventional PLL and out of which there is no point in 
using it over this latter.

By performing a dual-sweep analysis on both the above 
parameters, Fig. 11 shows a 3D plot of the AHL-KF-AR(0, 
1) phase RMSE when considering low-latitude scintilla-
tion (Dakar). As can be observed, the RMSE increases 
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when decreasing the C/N0 or when enhancing the dynam-
ics through the Kalman model discrepancy �2

v
 . The latter 

is explained by the fact that, for larger �2
v
 , the Kalman 

must increase its dependability on the input measure-
ments rather than on its internal state-space model. As 
this occurs, it becomes more difficult for the Kalman to 
discern the scintillation phase from the dynamics phase of 
interest, thus eventually leading to a larger RMSE.

On the other hand, the gray plane in Fig. 11 stands for 
the best performance that could be expected from PLLs. 
The performance limits of the AHL-KF-AR(0, 1) are given 
by the boundary lines given where both KF-AR and PLL 
RMSE plots intersect. The region where the proposed 
technique outperforms the PLL is bounded by a C/N0 in 
the region of 30 dB Hz, with �2

v
 restricted to 10−20 rad2, 

whereas the technique supports up to �2
v
= 10−12 rad2 for 

C/N0 above 35 dB Hz. For larger �2
v
 the technique performs 

very similarly to the PLL, whereby phase scintillation is 
estimated as part of the carrier dynamics of interest. These 
values can be translated into more friendly magnitudes 
such as the maximum supported Doppler acceleration. For 
uniformly distributed process noise, both are related as:

in Hz/s2. Therefore, in other words, the technique can toler-
ate a Doppler acceleration of ± 3 × 10−6 Hz/s2 at low C/N0, 
whereas it can support ± 3 × 10−2 Hz/s2 at high C/N0.

Figure 12 shows the 3D plot of the proposed AHL-
KF-AR(0, 1) phase RMSE when considering high-lati-
tude scintillation (Kiruna). Here, it is remarkable to note 
that the outperformance region is larger than that at low 

(25)𝜃dmax
= ±

√
12𝜎2

v

4𝜋T3
s

latitudes in Fig. 11. The technique outperforms the PLL 
for a lower-bounded C/N0 of 25 dB Hz, that is, the value 
to which the AHL threshold has been set. At this point, 
�2
v
 is limited to around 10−20 rad2, similarly to the case 

at low latitudes, corresponding to a maximum Doppler 
acceleration of ± 3 × 10–6 Hz/s2. For C/N0 of 30 dB Hz and 
above, the tolerated higher-order dynamics is found to be 
up to  �2

v
= 10−10 rad2, corresponding to a maximum Dop-

pler acceleration of ± 3 × 10−1 Hz/s2. Beyond this point, 
the AHL-KF-AR(0, 1) provides similar performance to the 
PLL. The above results confirm the suitability of KF-AR 
techniques for precise localization and cruise navigation 
purposes, and autonomous vehicle driving applications 
with mild acceleration variations.

Conclusions

We have tackled the problem of robust GNSS carrier track-
ing in the presence of ionospheric scintillation utilizing 
hybrid autoregressive Kalman filters. Two main contribu-
tions have been presented. First, we proposed the AHL-KF-
AR(0, 1) low-complexity technique to facilitate the imple-
mentation of the approach in practice. Second, we assessed 
the performance of these techniques using representative 
captures of real scintillation data at low and high latitudes, 
which are two different and complementary situations com-
monly addressed in studies of scintillation disturbances. 
From the work performed, three main conclusions can be 
drawn. First, the obtained results confirm the feasibility 
of modeling the phase scintillations observed by the user 
through AR processes. Second, the proposed AHL-KF-
AR(0,1) low-complexity technique has shown to clearly out-
perform the conventional PLL architecture and other KF-AR 

Fig. 11   Phase RMSE of AHL-KF-AR(0, 1) as a function of C/N0 and 
�2

v
 for DAK.2014.335.22.GPS24. Comparison to expected PLL per-

formance given by gray plane

Fig. 12   Phase RMSE of AHL-KF-AR(0, 1) as a function of C/N0 and 
�2

v
 for KIR.2015.106.04.GPS22. Comparison to expected PLL perfor-

mance given by gray plane
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implementations while conserving the optimality properties 
of the Kalman filter. Third, the performance limits where the 
technique provides a performance gain over the PLL have 
been quantified, thus becoming valuable guidelines during 
the design of the tracking stage of GNSS receivers in real 
environments. Therefore, the work performed validates the 
excellence of the proposed approach for robust GNSS carrier 
tracking under scintillation conditions.
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