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The motivation for our result stems from a two-phase problem 
for the elliptic harmonic measure.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Singular integral operators are deeply related to geometric properties of measures and, 
in particular, with the concepts of rectifiability and uniform rectifiability. An operator 
that has been profusely studied in this field is the codimension 1 Riesz transform, which 
has a wide relevance because it arises as the gradient of the single layer potential associ-
ated with the laplacian. In particular, it has also been used to investigate the properties 
of harmonic measure. For this reason, it is interesting to understand if the results which 
are known for the Riesz transform generalize to operators defined by gradients of sin-
gle layer potentials associated with suitable elliptic PDEs. In this spirit, the aim of the 
present article is to establish an elliptic equivalent of a quantitative rectifiability theo-
rem that Girela-Sarrión and Tolsa proved in [21] for the Riesz transform, which is also a 
crucial tool in the study of certain non-variational free-boundary problems for harmonic 
measure.

Given a Radon measure μ on Rn+1, its associated n-dimensional Riesz transform is

Rn
μf(x) =

ˆ
x− y

n+1 f(y) dμ(y), f ∈ L1
loc(μ),
|x− y|

http://creativecommons.org/licenses/by-nc-nd/4.0/
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whenever the integral makes sense. Given x ∈ Rn+1 and r > 0, we denote by B(x, r) the 
open ball of center x and radius r. A Radon measure μ has growth of degree n if there 
exists a constant C > 0 such that

μ
(
B(x, r)

)
≤ Crn for all x ∈ Rn+1, r > 0. (1.1)

We call μ n-Ahlfors-David regular (also abbreviated by n-AD-regular or just AD-regular) 
if there exists C > 0, which is referred to as AD-regularity constant, such that

C−1rn ≤ μ
(
B(x, r)

)
≤ Crn for all x ∈ suppμ, 0 < r < diam(suppμ).

A set E ⊂ Rn+1 is said n-AD-regular if Hn|E is a n-AD-regular measure, Hn denoting 
the n-dimensional Hausdorff measure in Rn+1. Note that the support of an n-AD-regular 
measure is n-AD-regular.

A set E ⊂ Rn+1 is called n-rectifiable if there exists a countable family of Lipschitz 
functions fj : Rn → Rn+1 such that

Hn
(
E \

⋃
j

fj(Rn)
)

= 0.

A measure μ is n-rectifiable if it vanishes outside a rectifiable set E and, moreover, it is 
absolutely continuous with respect to Hn|E .

A set E is said uniformly n-rectifiable (or just uniformly rectifiable) if it is n-AD 
regular and there exist θ, M > 0 such that for all x ∈ E and all r > 0 there is a Lipschitz 
mapping g from the ball Bn(0, r) ⊂ Rn to Rn+1 with Lip(g) ≤ M such that

Hn
(
E ∩B(x, r) ∩ g(Bn(0, r))

)
≥ θrn.

We say that a measure μ is uniformly n-rectifiable if it is n-AD-regular and it vanishes 
outside of a uniformly n-rectifiable set.

Many characterizations of uniformly rectifiable measures are available in the literature 
(see e.g. the monograph [18]). To the scopes of the present paper, we are particularly 
interested in those which are formulated in terms of singular integrals.

David and Semmes showed in [17] that, under the background n-AD-regularity as-
sumption, a measure μ is uniformly n-rectifiable if and only if all the singular integral 
operators associated to μ with smooth antisymmetric convolution-type kernels are L2(μ)-
bounded. This class includes the n-Riesz transform and it is interesting to understand if 
the L2(μ)-boundedness of Rn

μ alone suffices to characterize uniform rectifiability.
This deep question is usually referred to as David-Semmes problem in codimension 

1. It has been solved for n = 1 (or, equivalently, for the Cauchy transform) by Mattila, 
Melnikov and Verdera in [35] using the so-called Menger curvature of a measure, and 
by Nazarov, Tolsa and Volverg in [40] for n > 1 via a set of techniques that includes a 
variational argument and rely on the harmonicity of the codimension 1 Riesz kernel. We 
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remark that the David-Semmes problem is formulated, in its more general form, also for 
higher codimensions, and its full solution is not known yet.

The codimension 1 case has various applications, and plays a crucial role in the study 
of the geometric properties of harmonic measure. In particular, it was used in [6] to prove 
that mutual absolute continuity of the harmonic measure associated with an open set 
Ω ⊂ Rn+1 with respect to surface measure Hn in a subset of ∂Ω implies the n-rectifiability 
of that subset. This answered a problem raised by Bishop (see [13]).

The analogous result for elliptic measure relative to an operator in divergence form 
associated with a uniformly elliptic matrix with Hölder coefficients has been proved 
in [43], following the ideas of [6], as an application of the characterization of uniform 
rectifiability via the boundedness of the gradient of single layer potential. The same 
problem was also tackled in [50] and [8] via alternative techniques, under more restrictive 
assumptions on the domains and different hypotheses on the coefficients of the uniformly 
elliptic matrix.

Another question proposed by Bishop asks whether, given two disjoint domains 
Ω1, Ω2 ⊂ Rn+1, mutual absolute continuity of their respective harmonic measures implies 
absolute continuity with respect to surface measure in ∂Ω1 ∩ ∂Ω2 and rectifiability.

This is a so-called two-phase problem for harmonic measure and was solved in its full 
generality in [11]. This work relies on three main tools: a blow-up argument for harmonic 
measure (see [29] and [9]), a monotonicity formula ([2]) and a quantitative rectifiability 
criterion (see [21]).

In particular, we point out that the theorem by Girela-Sarrión and Tolsa can be 
interpreted as a higher-dimensional version of previous results by David and Léger, which 
were formulated in terms of the Menger curvature (see [15] and [31]). Their theorems 
are of fundamental importance also in other two-phase problems examined in the works 
[10] and [44]. The goal of the present paper is to identify an analogous criterion in the 
context of elliptic PDEs in divergence form with Hölder continuous coefficients.

Let A = (aij)1≤i,j≤n+1 be an (n + 1) × (n + 1) matrix whose entries aij : Rn+1 → R

are measurable functions in L∞(Rn+1). Assume also that there exists Λ > 0 such that

Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉, for all ξ ∈ Rn+1 and a.e. x ∈ Rn+1, (1.2)

〈A(x)ξ, η〉 ≤ Λ|ξ||η|, for all ξ, η ∈ Rn+1 and a.e. x ∈ Rn+1. (1.3)

We consider the elliptic equation

LAu(x) := −div (A(·)∇u(·)) (x) = 0, (1.4)

which should be understood in the distributional sense: we say that a function u ∈
W 1,2

loc (Ω) is a solution of (1.4), or LA-harmonic, in an open set Ω ⊂ Rn+1 if

ˆ
A∇u · ∇ϕ = 0, for all ϕ ∈ C∞

c (Ω).
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We denote by EA(x, y), or just by E(x, y) when the matrix A is clear from the context, 
the fundamental solution for LA in Rn+1, so that LxEA(x, y) = δy in the distributional 
sense, where δy is the Dirac mass at the point y ∈ Rn+1. For a construction of the 
fundamental solution under the assumptions (1.2) and (1.3) on the matrix A we refer to 
[24]. Given a measure μ, the function f(x) =

´
EA(x, y) dμ(y) is usually known as the 

single layer potential of μ. We define

K(x, y) = ∇1EA(x, y), (1.5)

the subscript 1 indicating that we take the gradient with respect to the first variable, 
and we consider (1.5) as the kernel of the singular integral operator

Tμ(x) =
ˆ

K(x, y) dμ(y),

for x away from supp(μ). Observe that Tμ is the gradient of the single layer potential 
of μ.

Given a function f ∈ L1
loc(μ), we set also

Tμf(x) = T (f μ)(x) =
ˆ

K(x, y)f(y) dμ(y),

and, for ε > 0, we consider the ε-truncated version

Tεμ(x) =
ˆ

|x−y|>ε

K(x, y) dμ(y).

We also write Tμ,εf(x) = Tε(fμ)(x). We say that the operator Tμ is bounded on L2(μ)
if the operators Tμ,ε are bounded on L2(μ) uniformly on ε > 0.

In the specific case when A is the identity matrix, we have that −LA = Δ and Tμ is 
the n-dimensional Riesz transform up to a dimensional constant factor. We say that the 
matrix A is Hölder continuous with exponent α ∈ (0, 1) (or briefly Cα continuous), if 
there exists Ch > 0 such that

|aij(x) − aij(y)| ≤ Ch|x− y|α for all x, y ∈ Rn+1 and 1 ≤ i, j ≤ n + 1. (1.6)

Under this assumption on the coefficients, the kernel K(·, ·) turns out to be locally of 
Calderón-Zygmund type (see Lemma 2.1). However we remark that, contrarily to what 
happens in the case of the kernel of the Riesz transform, in general K(·, ·) is neither 
homogeneous nor antisymmetric.

Under the assumption (1.6) together with uniform ellipticity, it has been shown by 
Conde-Alonso, Mourgoglou and Tolsa in [14, Theorem 2.5] that Tμ is bounded on L2(μ)
if μ is a uniformly n-rectifiable measure with compact support. Moreover, they also 
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proved that, if μ is a non-zero Borel measure whose upper n-density is positive μ-a.e. 
and the lower n-density vanishes μ-a.e. in Rn+1, then Tμ is not bounded on L2(μ). This 
result was proved for Rn

μ by Eiderman, Nazarov and Volverg in [20] and it inspired 
the variational argument of [40]. We remark that the results of [14] have been recently 
further extended by Bailey, Morris and Reguera (see [12]) to Schrödinger operators of 
the form LV

A = −divA∇ + V , for A Hölder continuous and the potential V belonging to 
the reverse Hölder class RHn+1.

Furthermore, Prat, Puliatti, and Tolsa proved in [43] that, under the same assumptions 
of [14] on LA, an elliptic analogue of the codimension 1 David-Semmes problem holds: if 
the measure μ is n-AD-regular, has compact support and Tμ is bounded on L2(μ), then 
μ is uniformly n-rectifiable.

For our applications, it is essential to determine whether Tμ,εf converges pointwise 
μ-almost everywhere for ε → 0. In case it does, we denote the limit as

pvTμf(x) = lim
ε→0

Tμ,εf(x)

and we refer to it as the principal value of the integral Tμf(x). We prove that, anal-
ogously to the n-Riesz transform (see [48, Chapter 8] and the references therein), the 
L2(μ)-boundedness of Tμ entails the existence of the principal values for general Radon 
measures with compact support and growth of degree n. In the following statement, 
M(Rn+1) indicates the vector space of Borel real finite measure on Rn+1, which is a 
Banach space when endowed with the total variation norm.

Theorem 1.1. Let μ be a Radon measure on Rn+1 with compact support and with growth 
of degree n, i.e. suppose that there is C > 0 such that

μ(B(x, r)) ≤ Crn for all x ∈ Rn+1 .

Let A be a matrix that satisfies (1.2), (1.3) and (1.6) and assume, moreover, that the 
gradient of the single layer potential Tμ associated with LA is bounded on L2(μ). Then:

(1) for 1 ≤ p < ∞ and all f ∈ Lp(μ), pvTμf(x) exists for μ-a.e. x ∈ Rn+1;
(2) for all ν ∈ M(Rn+1), pvTν(x) exists for μ-a.e. x ∈ Rn+1.

In light of this result, in the rest of the paper we will often denote the principal value 
operator simply as Tν, with a slight abuse of notation. We remark that the previous 
theorem was first proved in the case of the Cauchy transform by Tolsa in [47].

Given a ball B = B(x, r) ⊂ Rn+1, we denote by r(B) its radius and, for a > 0, by aB
its dilation B(x, ar). Multiple notions of density come into play in this paper. For a ball 
B, we denote

Θμ(B) = μ(B)
n
r(B)
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and, for γ > 0, its smoothened version

Pμ,γ(B) :=
∑
j≥0

2−jγΘμ(2jB). (1.7)

We remark that if γ1 ≤ γ2, then

Pμ,γ2(B) =
∑
j≥0

2−jγ2Θμ(2jB) ≤
∑
j≥0

2−jγ1Θμ(2jB) = Pμ,γ1(B).

Another notion of density that we need is the pointwise one. In particular, we denote 
the upper and lower n-densities of μ at x respectively as

Θ∗
μ(x) := lim sup

r→0

μ
(
B(x, r)

)
(2r)n and Θ∗,μ(x) := lim inf

r→0

μ
(
B(x, r)

)
(2r)n .

A way to quantify the flatness of a measure at the level of a ball B is in terms of the 
β1-coefficients. For an n-plane L we denote

βL
μ,1(B) = 1

r(B)n

ˆ

B

dist(x, L)
r(B) dμ(x) and βμ,1(B) = inf

L
βL
μ,1(B),

the infimum being taken over all hyperplanes in Rn+1. Using a standard notation, given 
E ⊂ Rn+1 with μ(E) > 0 and f ∈ L1

loc(μ) we write

mμ,E(f) = 1
μ(E)

ˆ

E

f dμ

for the mean of f with respect to the measure μ on the set E. The main result of the 
paper is the following.

Theorem 1.2. Let n > 1, let μ be a Radon measure on Rn+1 with compact support and 
consider an open ball B ⊂ Rn+1. Let C0, C1 > 0 and let A be a matrix satisfying (1.2), 
(1.3) and (1.6). Denote by Tμ the gradient of the single layer potential associated with 
LA and μ. Suppose that μ and B are such that, for some positive λ, δ and ε and some 
α̃ ∈ (0, 1), the following properties hold

(1) r(B) ≤ λ.
(2) C−1

0 r(B)n ≤ μ(B) ≤ C0r(B)n.
(3) Pμ,α̃(B) ≤ C0 and for all x ∈ B and 0 < r ≤ r(B) we have μ

(
B(x, r)

)
≤ C0r

n.
(4) Tμ|B is bounded on L2(μ|B) with ‖Tμ|B‖L2(μ|B)→L2(μ|B) ≤ C1 and T

(
χ2Bμ

)
∈

L2(μ|B).
(5) βμ,1(B) ≤ δ.
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(6) We have
ˆ

B

∣∣Tμ(x) −mμ,B(Tμ)
∣∣2 dμ(x) ≤ εμ(B).

There exists a choice of λ, δ and ε small enough and a proper choice of α̃ = α̃(α, n), 
all possibly depending on C0 and C1, such that if μ satisfies (1)− · · · −(6), there exists a 
uniformly n-rectifiable set Γ that covers a big portion of the support of μ inside B. That 
is to say, there exists τ > 0 such that

μ(B ∩ Γ) ≥ τμ(B).

Notice that Theorem 1.2 readily implies that a big piece of μ|B is mutually absolutely 
continuous with a big piece of Hn|Γ. This is a relevant feature in light of possible appli-
cations. At the moment, very few rectifiability criteria for general measures in terms of 
singular integrals are available in the literature. Our result is a non trivial extension of 
[21, Theorem 1.1] to more general operators. A prototype for these results can be found 
in a quantitative version David-Léger theorem [31, Proposition 1.2]. Given x, y, z ∈ R2, 
define c(x, y, z) = 0 if the three points are aligned and, otherwise, c(x, y, z) = R(x, y, z)−1

where R(x, y, z) stands for the radius of the circumference containing x, y and z. The 
theorem asserts that, given a measure μ on R2 with growth of degree 1, and a ball B(x, r)
such that μ(B) ≈ r, there exists ε > 0 such that the following holds: if ν := μ|B is such 
that

c2(ν) :=
˚

c(x, y, z)2 dν(x) dν(y) dν(z) ≤ εμ(B), (1.8)

then there exists a possibly rotated Lipschitz graph Γ on the plane such that μ(B∩Γ) ≥
99
100μ(B). The quantity in the left hand side of (1.8) is the so-called Menger curvature of 
ν and it was introduced in this field by Melnikov in [36], who also showed together with 
Verdera in [37] that c(ν) is (modulo an error term) comparable to the L2(ν)-norm of 
the Cauchy transform of ν. However, Menger curvature cannot be used to link the L2-
boundedness of Rn

μ to uniform n-rectifiability, if n > 1. Hence, in a sense, the property 
(6) in Theorem 1.2 can be interpreted as a suitable substitute of (1.8).

The formulation of Theorem 1.2 involves a relatively long list of hypotheses. On 
the other hand we remark that those assumptions are necessary, natural and, most 
importantly, optimal for the application to elliptic measure.

The assumption (1), namely requiring the ball B to be small enough, represents 
a relevant conceptual difference with respect to the analogous theorem for the Riesz 
transform. The locality of our result reflects the non-scale invariant character of the 
Hölder regularity assumption for the coefficients of the matrix A. This issue is evident also 
in [43], where the elliptic analogue of the codimension 1 David-Semmes problem requires 
an additional compactness assumption on the support of the measure. We remark that 
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the assumption (1) is particularly relevant for a localization estimate (see Lemma 9.3), 
and it allows to bound efficiently the error term in the variational argument of Section 11
(see Subsection 11.2). It is also important to mention that the locality of (1) does not 
affect the applicability of Theorem 1.2 to the two-phase problem for the elliptic measure, 
which is of qualitative nature.

The second part of the requirement (3) excludes a class of measures like, for instance, 
the area measure. It is verified, for example, if μ has growth of degree n in the sense 
of (1.1). On the other hand, the assumption Pμ,α̃(B) ≤ C0 plays a different role and is 
useful to deal with technical problems. For example, as shown at the end of Section 3, 
it is important to ensure that Tμ(x) − mμ,B(Tμ) is defined in a BMO-sense, and it is 
also essential to obtain proper localization estimates for the gradient of the single layer 
potential (see Lemma 6.1 and its proof). Furthermore we remark that, in order to show 
that the integral in the left-hand side of the assumption (6) is well-defined, we also use 
the existence of principal values.

As in the main result of Girela-Sarrión and Tolsa, the hypothesis (5) is important 
for technical reasons. However, it is not known if is necessary for the result to hold. 
Indeed, in the case n = 1 covered by the David-Léger theorem, an analogous flatness 
assumption is not needed: under the assumptions discussed before (1.8), the inequality 
c2(μ|B) ≤ εμ(B) implies the existence of a line L such that βL

μ,1(B) ≤ δ(ε)μ(B), with 
δ → 0 as ε → 0. However, having to ask βμ,1(B) � 1 does not constitute a problem 
when applying the theorem to the study of the two-phase problem for elliptic measure, 
see Section 12.

Another difference with respect to [21] is that we could not formulate the theorem in 
terms of Pμ,1. Our proof of the theorem shows that a good choice for α̃ is α̃ = α/2n+1. It 
is not clear whether Theorem 1.2 holds with a condition on Pμ,α(B), that seems a more 
natural homogeneity to assume. The proofs of the rectifiability results for the harmonic 
measure in [9] and [11] actually rely on the fact that the theorem of Girela-Sarrión and 
Tolsa holds for α̃ = 1. However, a slight variation on their arguments allows to overcome 
this technical obstacle.

Let us now present an application of Theorem 1.2, which is, in fact, its main moti-
vation. Before stating it, recall that if Ω is a Wiener regular set, the elliptic measure 
ωp
LA

with pole at p associated with the elliptic operator LA is the probability measure 
supported on ∂Ω such that, for f ∈ C0(∂Ω),

ˆ
f dωp

LA
= f̃(p),

where f̃ denotes the LA-harmonic extension of f . A large literature is available on the 
subject. For example, we refer to [22] and [27] (and the references therein) for its definition 
and basic properties.

Theorem 1.3. Let n ≥ 2 and let A be an elliptic matrix satisfying (1.2), (1.3) and (1.6). 
Let Ω1, Ω2 ⊂ Rn+1 be two disjoint Wiener-regular domains and, for pi ∈ Ωi, i ∈ {1, 2}, 
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let ωpi

LA,i be the respective elliptic measures in Ωi associated with LA and with pole pi. 
Suppose that E is a Borel set such that ωp1

LA,1|E � ωp2
LA,2|E � ωp1

LA,1|E. Then there exists 
an n-rectifiable set F ⊂ E with ωp1

LA,1(E \ F ) = 0, and such that ωp1
LA,1|F and ωp2

LA,2|F
are mutually absolutely continuous with respect to Hn|F .

We remark that the generalization of the blow-up methods for the harmonic measure 
to our elliptic context is contained in the work [8]. Also, the proof of Theorem 1.3
follows closely the path of the work [11]. However, some relevant variations are needed 
so we decided to sketch the proof at the end of the paper, where we also provide precise 
references for the reader’s convenience.

We finally remark that recently several studies have appeared concerning the con-
nection between the geometry of a domain and the properties of its associated elliptic 
measure, among which we list [1], [5], [23], [25], [26] and [28].

Discussion of the proofs. For the proof of the main theorem we follow the elaborated 
scheme of [21]. However, there are many delicate obstacles which are not present when 
dealing with the Riesz transform and that require original approaches. Section 2 is de-
voted to settle our notation and to make an overview of the results in PDEs relevant 
for our work. In particular, we need a rescaled version of some estimate for the gradient 
of the fundamental solution first proved in the context of homogenization theory, which 
are indispensable to estimate the behavior of EA(x, y) for big values of |x − y|.

In Section 3 we prove Theorem 1.1 separating the case in which μ is rectifiable to 
the one in which it has zero n-density. This is possible because Prat, Puliatti, and 
Tolsa proved in [43] that the L2(Hn|Γ)-boundedness of THn|Γ , Γ ⊂ Rn+1 compact with 
Hn(Γ) < ∞, implies the rectifiability of Γ, generalizing a result first proved in [41].

Then, in Section 4 we proceed to state the Main Lemma that we use to prove The-
orem 1.2. The biggest advantage of this lemma is that the flatness condition on the 
β1-number in Theorem 1.2 is replaced by a smallness hypothesis on the α-numbers of 
Tolsa. The latter are more powerful tools when trying to transfer the flatness estimates 
to the integrals. Furthermore, we have to show that we can consider the matrix A of the 
elliptic operator which defines Tμ to be symmetric.

We then proceed to discuss, in Section 5, an equivalent formulation of the Main 
Lemma in terms of an auxiliary elliptic operator which shares more symmetries than 
LA. In particular, we discuss the construction of a particular auxiliary periodic matrix 
via a sequence of reflections.

In Sections 6, 7, 8 and 9 we recall the definition of the dyadic cells associated with μ
as constructed by David and Mattila, and, in an attempt to balance brevity and clarity, 
we mainly follow the path of the original work for the Riesz transform. However, we 
remark that these sections are necessary for the sake of the exposition; indeed, they 
present the core of the contradiction argument for the proof of the Main Lemma and the 
construction of a periodic auxiliary measure which is needed for the arguments of the 
remaining sections of the paper.
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The starting point for the crucial variational argument, whose proof occupies Sec-
tion 11, is a localization estimate for the potential at the level of a small cube. This is 
proved in Section 10, along with the existence of the limit of proper smooth truncates 
of the potential of bounded periodic functions. We emphasize that, again, these proofs 
rely heavily on the periodicity of the modification of the elliptic matrix.

In Section 11 we complete the proof of the Main Lemma via a variational technique. 
We highlight that one of the most delicate point consists in finding an appropriate variant 
of a maximum principle in an infinite strip in our elliptic setting. Moreover, the proof 
in [21] exploits the fact that the map x = (x1, . . . , xn+1) �→ xn+1 is harmonic. The fact 
that this function, in general, is not a solution of LA requires a more technical method 
based on the additional symmetries provided by the modified matrix.

In the final Section 12 we sketch the proof of Theorem 1.3, with particular care of 
highlighting the points which require additional explanations with respect to its harmonic 
counterpart.

2. Preliminaries and notation

We write a � b to denote that there is a constant C > 0 such that a ≤ Cb. To make 
the dependence of the constant on a parameter t explicit, we write a �t b. Also, we say 
that b � a if a � b and a ≈ b if both a � b and b � a.

All the cubes, unless specified, will be considered with their sides parallel to the 
coordinate axes. Given a cube Q, we denote its side length as �(Q) and, for a > 0, we 
understand aQ as the cube with side length a�(Q) and sharing the center with Q.

We say that a cube Q has t-thin boundary if

μ
{
x ∈ 2Q : dist(x, ∂Q) ≤ λ�(Q)

}
≤ tλμ(2Q)

for every λ > 0. Analogously to (1.7), we define

Pμ,γ(Q) =
∑
j≥0

2−jγΘμ(2jQ) =
∑
j≥0

2−jγ μ(2jQ)
�(2jQ)n .

Given a measure μ and a measurable set E, we denote as μ|E the restriction of μ to 
E and, for φ : Rn+1 → Rn+1, we use the notation φ�μ(E) := μ(φ−1(E)). An important 
tool in the study of rectifiability is the so-called α-number introduced by Tolsa in [49]. 
Let us fix a cube Q ⊂ Rn+1 and consider two Radon measures μ and ν on Rn+1. A 
natural way to define a distance between μ and ν is to consider the supremum

dQ(μ, ν) := sup
f

ˆ
fd(μ− ν),

where f ∈ Lip(Rn+1), ‖f‖Lip ≤ 1 and supp f ⊆ Q. For a n-plane L in Rn+1, we define
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αL
μ(Q) := 1

�(Q)n+1 inf
c≥0

dQ(μ, cHn|L). (2.1)

Given a matrix A(·), possibly with variable coefficients, AT (·) indicates its transpose. 
Also, we write Ln+1 for the Lebesgue measure on Rn+1.

Partial Differential Equations. For any uniformly elliptic matrix A with Hölder continu-
ous coefficients, one can show that K(x, y) = ∇1 E(x, y) is locally a Calderón-Zygmund 
kernel.

Lemma 2.1. Let A be an elliptic matrix with Hölder continuous coefficients satisfying 
(1.2), (1.3) and (1.6). If K(·, ·) is given by (1.5), then it is locally a Calderón-Zygmund 
kernel. That is, for any given R > 0,

(a) |K(x, y)| � |x − y|−n for all x, y ∈ Rn+1 with x �= y and |x − y| ≤ R.
(b) |K(x, y) −K(x, y′)| +|K(y, x) −K(y′, x)| � |y−y′|α|x −y|−n−α for all y, y′ ∈ B(x, R)

with 2|y − y′| ≤ |x − y|.
(c) |K(x, y)| � |x − y|(1−n)/2 for all x, y ∈ Rn+1 with |x − y| ≥ 1.

All the implicit constants in (a), (b) and (c) depend on Λ and ‖A‖α, while the ones in 
(a) and (b) depend also on R.

The statements above are rather standard. For more details, see [14, Lemma 2.1]. Let 
ωn denote the surface measure of the unit sphere of Rn+1. For any elliptic matrix A0
with constant coefficients, we have an explicit expression for the fundamental solution 
of LA0 , which we denote by Θ(x, y; A0). More precisely, Θ(x, y; A0) = Θ(x − y; A0) with

Θ(z;A0) = Θ(z;A0,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

(n− 1)ωn

√
detA0,s

1
(A−1

0,sz · z)(n−1)/2 for n ≥ 2,

1
4π

√
detA0,s

log
(
A−1

0,sz · z
)

for n = 1,
(2.2)

where A0,s is the symmetric part of A0, that is, A0,s = 1
2 (A0 +AT

0 ). For more details we 
refer to [38].

The reason why only the symmetric part of A0 enters (2.2) it that, using Schwarz’s 
theorem to exchange the order of partial derivatives writing A0 = {aij}i,j , for every 
appropriate function u we have

LA0u = −
∑
i,j

∂i(aij∂ju) = −1
2
∑
i,j

aij∂i∂ju− 1
2
∑
i,j

aij∂j∂iu

= −
∑
i,j

aij + aji
2 ∂i∂ju = LA0,su. (2.3)

These formal considerations can be made rigorous by standard arguments.
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Differentiating (2.2) we obtain

∇Θ(z;A0) = 1
ωn

√
detA0,s

A−1
0,sz

(A−1
0,sz · z)(n+1)/2 .

The next result is proven in [30, Lemma 2.2].

Lemma 2.2. Let A be an elliptic matrix with Hölder continuous coefficients satisfying 
(1.2), (1.3) and (1.6). Let also Θ(·, ·; ·) be given by (2.2). Then, for x, y ∈ Rn+1, 0 <
|x − y| ≤ R,

(1) |EA(x, y) − Θ(x, y; A(x))| � |x − y|α−n+1,
(2) |∇1EA(x, y) −∇1Θ(x, y; A(x))| � |x − y|α−n,
(3) |∇1EA(x, y) −∇1Θ(x, y; A(y))| � |x − y|α−n.

Similar inequalities hold if we reverse the roles of x and y and we replace ∇1 by ∇2. All 
the implicit constants depend on Λ, ‖A‖α, and R.

The gradient of the fundamental solution in the periodic case. We denote as Λα the set 
of matrices such that (1.2), (1.3) hold and with α-Hölder coefficients. We say that the 
matrix A ∈ Λα is �-periodic, � > 0, if

A(x + �z) = A(x) for every z ∈ Zn+1.

For periodic matrices the estimates in Lemma 2.1 turn out to be global.

Lemma 2.3 ([30]). Let A ∈ Λα be 1-periodic and let EA be the fundamental solution of 
LA. Let K(·, ·) is given by (1.5). Then

(1) |∇1 EA(x, y)| ≤ c1|x − y|−n for every x, y ∈ Rn+1 with x �= y.
(2) | ∇1 EA(x, y) −∇1 EA(x′, y)| + | ∇1 EA(y, x) −∇1 EA(y, x′)| ≤ c2|x −x′|α|x −y|−(n+α)

for every x, x′, y ∈ Rn+1 such that 2|x − x′| ≤ |x − y|.

The constants appearing in (1) and (2) are such that c1 ≈n,Λ c2 ≈n,Λ ‖A‖α.

The period of the matrix plays an important role in our construction, so it is useful 
to rephrase the previous lemma for matrices with a period different from 1. We are 
interested in studying matrices with small period, so we only consider the case in which 
it is strictly smaller than 1.

Lemma 2.4. Let 0 < � < 1. Let A ∈ Λα be �-periodic and let EA be the fundamental 
solution associated with LA. Then
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(1) |∇1 EA(x, y)| ≤ c′1|x − y|−n for every x, y ∈ Rn+1 with x �= y.
(2) | ∇1 EA(x, y) −∇1 EA(x′, y)| + | ∇1 EA(y, x) −∇1 EA(y, x′)| ≤ c′2|x − x′|α|x − y|−n−α

for every x, x′, y ∈ Rn+1 such that 2|x − x′| ≤ |x − y|.

The constants appearing in (1) and (2) are such that c′1 ≈n,Λ c′2 ≈n,Λ ‖A‖α.

Proof. For � ∈ (0, 1) and all x ∈ Rn+1 we define the rescaled matrix

Ã(x) := A(�x)

and we denote by Ẽ the fundamental solution of LÃ. By the definition of fundamental 
solution, it is not difficult to see that

∇1 Ẽ(x, y) = �n ∇1 EA(�x, �y) for x, y ∈ Rn+1 . (2.4)

Moreover,

|Ã(x) − Ã(y)| = |A(�x) −A(�y)| ≤ �α‖A‖α|x− y|α ≤ ‖A‖α|x− y|α,

so that ‖Ã‖α ≤ ‖A‖α. Applying Lemma 2.3 together with (2.4) we get

| ∇1 EA(x, y)| = �−n| ∇1 Ẽ(�−1x, �−1y)| � �−n|�−1x− �−1y|−n = |x− y|−n

for any x, y and

| ∇1 EA(x, y) −∇1 EA(x′, y)| = �−n| ∇1 Ẽ(�−1x, �−1y) −∇1 Ẽ(�−1x′, �−1y)|

� �−n |�−1x− �−1x′|α
|�−1x− �−1y|n+α

= |x− x′|α
|x− y|n+α,

for 2|x − x′| ≤ |x − y|. The same estimate holds for | ∇1 EA(y, x) −∇1 EA(y, x′)|. �
The following is the (global) analogue of Lemma 2.2 in the 1-periodic setting.

Lemma 2.5. Let A ∈ Λα be 1-periodic. Then for every x, y ∈ Rn+1, x �= y, we have

∣∣ EA(x, y) − Θ(x, y;A(x))
∣∣ � |x− y|α−n+1∣∣∇1 EA(x, y) −∇1Θ(x, y;A(x))
∣∣ � |x− y|α−n∣∣∇1 EA(x, y) −∇1Θ(x, y;A(y))
∣∣ � |x− y|α−n,

the implicit constants depending on ‖A‖α and Λ. Similar estimates hold if we replace ∇1
by ∇2.
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Let us now recall some result from elliptic homogenization. For more details we refer 
to the work by Avellaneda and Lin [3]. For this purpose, we need to recall the definition 
of vector of correctors χ and homogenized matrix A0. Let � > 0 and let A ∈ Λα be a 
1-periodic matrix, i.e.

A(x + z) = A(x) for every z ∈ Zn+1.

We will denote by χ(x) = (χi(x)), for i ∈ {1, . . . , n + 1} the vector of correctors, which 
is defined as the solution of the following cell problem⎧⎪⎪⎨⎪⎪⎩

Lχ = divA,

χ is 1-periodic,´
[0,1]n+1 χ(x)dx = 0,

(2.5)

where the first condition in (2.5) has to be understood in coordinates as∑
i,j

∂xi

[
aij∂xjχh

]
(x) = −

∑
i

∂xiaih(x),

(aij)i,j being the coefficients of the matrix A. An important fact is that

‖∇χ‖∞ ≤ C, (2.6)

the bound C depending only on n, α and ‖A‖Cα . We remark that ∇χ denotes the matrix 
with variable coefficients whose entries are ∂iχj for i, j = 1, . . . , n +1. Now, if we consider 
the following family of elliptic operators

Lε := div
(
A(x/ε)∇ ·

)
depending on the parameter ε > 0, it can be proved that for any f ∈ L2(Rn+1), the 
solutions uε ∈ W 1,2(Rn+1) of

Lεuε = div f

converge weakly in W 1,2(Rn+1) to a function u0 as ε → 0. This function solves the 
equation

L0u0 := div(A0∇u0) = div f,

where A0 is an elliptic matrix with constant coefficients usually called homogenized ma-
trix (see, for example, [45]).

Homogenization is a powerful tool to study the fundamental solution of an elliptic 
equation in divergence form whose associated matrix is periodic and has Cα coefficients. 
The main result that we will use is the following (see [3, Lemma 2] and [30, Lemma 2.5]).
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Lemma 2.6. Let A ∈ Λα. Let us assume that A is 1-periodic. There exists γ ∈ (0, 1)
depending on α, ‖A‖Cα and n such that∣∣ EA(x, y) − (Id + ∇χ(x))Θ(x, y;A0)

∣∣ � c

|x− y|n+γ−1 (2.7)

and ∣∣∇1 EA(x, y) − (Id + ∇χ(x))∇1Θ(x, y;A0)
∣∣ � c

|x− y|n+γ
, (2.8)

where Id denotes the identity matrix and the implicit constants in (2.7) and (2.8) depend 
just on n, α and ‖A‖α.

The period of the coefficients of A plays a crucial role in these estimates. We will be 
dealing with matrices with periodicity different from 1, so we need a suitably adapted 
version of the previous lemma. Let A ∈ Λα be a �-periodic matrix. Let us define the 
1-periodic matrix

Ã(x) := A(�x)

for x ∈ Rn+1 and let χ̃ denote the vector of correctors associated with Ã defined according 
to (2.5). For � > 0 we define

χ�(x) := � χ̃
(x
�

)
.

Observe that, because of (2.6) there exists C > 0 depending on the n, α and ‖A‖Cα such 
that

‖∇χ�‖∞ ≤ C. (2.9)

Lemma 2.7. Let 0 < � < 1. Let A ∈ Λα be an �-periodic matrix. Then there exists 
γ ∈ (0, 1) and c > 0, both depending just on n, α and ‖A‖α such that∣∣∇1 EA(x, y) −∇1Θ(x, y;A(x))

∣∣ ≤ c�α|x− y|α−n, (2.10)∣∣∇2 EA(x, y) −∇2Θ(x, y;A(y))
∣∣ ≤ c�α|x− y|α−n. (2.11)∣∣∇1 EA(x, y) − (Id + ∇χ�(x))∇1Θ(x, y;A0)
∣∣ ≤ c�γ |x− y|−n−γ ,

for every x �= y.

Proof. Let Ẽ denote the fundamental solution of the operator LÃ. As in (2.4), we have

∇1 EA(x, y) = �−n∇1Ẽ(x/�, y/�), (2.12)
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so an application of Lemma 2.5 gives∣∣∇1 EA(x, y) −∇1Θ(x, y;A(x))
∣∣

= �−n|∇1 EÃ(�−1x, �−1y) −∇1Θ(x, y; Ã(�−1x))| ≤ c�α|x− y|α−n.

Using (2.8) and (2.12), we get

|∇1 EA(x, y) − (Id + ∇χ�(x))∇1Θ(x, y;A0)|
= �−n|∇1Ẽ(x/�, y/�) − (Id + ∇χ̃(x/�))∇1Θ(x/�, y/�;A0)|

� c�n+γ

�n|x− y|n+γ
= c�γ

|x− y|n+γ
,

where c depends on n, α and ‖Ã‖α, ‖Ã‖α ≤ ‖A‖α. Inequality (2.11) follows as (2.10). �
3. The existence of principal values

The proof of the existence of principal values can be divided into the study of two 
different cases: the case in which μ is a rectifiable measure and the one in which μ has 
zero n-density, i.e.

lim
r→0

μ(B(x, r))
rn

= 0 for μ-a.e. x ∈ Rn+1 .

Indeed, if μ is a measure on Rn+1 with no point masses and Tμ is bounded on L2(μ), [43, 
Theorem 1.2] allows us to write μ = μ0 + μ1, where μ0 has vanishing upper n-density 
μ0-almost everywhere and μ1 is n-rectifiable. See also the argument in [48, Chapter 8]
for the case of the Cauchy transform.

3.1. Principal values for rectifiable measures with compact support

This subsection follows the scheme of [14, Section 2.2]. The proof of the existence of 
principal values for Tμ if the measure μ is rectifiable and has compact support relies on 
the following result.

Theorem 3.1. Let μ be a rectifiable measure. Let K ∈ C∞(Rn+1 \ {0}) be an odd kernel 
and homogeneous of degree −n, i.e. K(x) = −K(−x) and K(λx) = λ−nK(x). Assume, 
for some M = M(n), the further regularity condition

|∇jK(x)| �n C(j)|x|−n−j for all 0 ≤ j ≤ M and x ∈ Rn+1 \ {0}.

Then the operator TK,μ is bounded on L2(μ) with operator norm

‖TK,μ‖L2(μ)→L2(μ) �n ‖K|Sn‖CM (Rn+1).
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Moreover, the principal value

TK,μf(x) = lim
ε→0

ˆ

|x−y|≥ε

K(x− y)f(y)dμ(y)

exists μ-almost everywhere.

The proof of the boundedness of TK,μ is due to David and Semmes. The result on 
principal values was first proved imposing an analogous condition for all j = 0, 1, 2, . . .
(for a more detailed exposition we refer, for example, to [33, Chapter 20]). We remark 
that it has been more recently improved by Mas (see [32, Corollary 1.6]).

The previous theorem together with a spherical harmonics expansion of the kernel is 
the key tool to prove the following result.

Lemma 3.1. Let μ be an n-rectifiable measure. There exists M = M(n) such that the 
following holds. Let b(x, z) be odd in z and homogeneous of degree −n in z, and assume 
Dα

z b(x, z) is continuous and bounded on Rn+1 × Sn, for any multi-index |α| ≤ M . Then 
for every f ∈ L2(μ), the limit

Bf(x) = lim
ε→0

ˆ

|x−y|>ε

b(x, x− y)f(y)dμ(y)

exists for μ-almost every x.

Proof. This result is used in [39] (see for example [39, (1.14)]). The proof is a variation of 
the argument in [39, Proposition 1.2]. For the reader’s convenience we discuss the details 
below.

Let {ϕj,l}j≥1,1≤l≤Nj
be an orthonormal basis of L2(Sn) consisting of surface spherical 

harmonics of degree j. Recall that (see [4, (2.12)])

Nj = O(jn−1), for j � 1. (3.1)

Using the homogeneity assumption for b(x, ·) and the orthonormal expansion, we write

b(x, z) = b
(
x,

z

|z|
)
|z|−n =

∑
j≥1

Nj∑
l=1

〈b(x, ·), ϕj,l〉L2(Sn)ϕj,l

( z

|z|
)
|z|−n

=
∑
j,l

bj,l(x)ϕj,l

( z

|z|
)
|z|−n,

(3.2)

where bj,l(x) := 〈b(x, ·), ϕj,l〉L2(Sn). Since b(x, ·) is an odd function and ϕ2j,l is even for 
every j, bj,l(x) ≡ 0 for j even. Being b in L∞(Rn+1 × Sn) by hypothesis and Hölder’s 
inequality, we have
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|bj,l(x)| ≤ C(n)‖b(x, ·)‖L∞(Sn)‖ϕj,l‖L2(Sn) ≤ C(n)‖b‖L∞(Rn+1×Sn) ≤ C(n). (3.3)

Moreover, recalling that we can suppose j odd, the function K̃j,l(z) := ϕj,l

(
z/|z|

)
|z|−n

satisfies the hypothesis in Theorem 3.1: there exists an harmonic polynomial Pj,l of odd 
degree j such that ϕj,l(z/|z|) = Pj,l(z)/|z|j , so

∣∣∣∇ϕj,l

( z

|z|
)∣∣∣ � 1

|z|

and

∣∣∇K̃j,l(z)
∣∣ � ∣∣∣∇ϕj,l

( z

|z|
)∣∣∣ 1

|z|n +
∣∣∣ϕj,l

( z

|z|
)∣∣∣ 1

|z|n+1 � 1
|z|n+1 .

Analogous estimates hold for higher order derivatives. So, Theorem 3.1 ensures that

T
K̃j,l,μ

f(x) = lim
ε→0

ˆ

|x−y|>ε

K̃j,l(x− y)f(y)dμ(y) ≡ lim
ε→0

T
K̃j,l,μ,ε

f(x) (3.4)

exists for μ-a.e x. Recall also that by the Theorem 3.1 there exists M = M(n) such that 
T
K̃j,l,μ

is bounded on L2(μ) with operator norm

‖T
K̃j,l,μ

‖L2(μ)→L2(μ) � ‖K̃j,l|Sn‖CM (Sn) = ‖ϕj,l‖CM (Sn). (3.5)

Gathering (3.2), (3.3) and (3.4), to prove the lemma it is enough to show that the 
dominated convergence theorem applies and, in particular, that

∑
j,l

∣∣bj(x)T
K̃j,l,μ,ε

f(x)
∣∣ ≤ C(x) < ∞, (3.6)

where C(x) does not depend on ε. By Lebesgue differentiation theorem, to prove (3.6)
it suffices to show that for every ball B0 ⊂ Rn+1 we have

∑
j,l

ˆ

B0

∣∣bj,l(x)T
K̃j,l,μ,ε

f(x)
∣∣dμ(x) �B0,n

∑
j,l,m

‖bj,l‖∞‖ϕj,l‖Cm(Sn)‖f‖L2(μ)

≤ C‖f‖L2(μ)

for some C > 0, where the first inequality above uses the L2-boundedness (3.5).
The smoothness of b implies that (see [46, 3.1.5])

‖bj,l‖∞ � 1
3n+2+M

,

j 2
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where the exponent on the right hand side is chosen accordingly to what we need next. 
Now, recall that the Sobolev space Hs(Sn), s ∈ R can be defined via spherical harmonics 
expansion. In particular, it is the completion of C∞(Sn) with respect to the norm

‖v‖Hs(Sn) :=
(∑

j,l

(
j + n− 1

2

)2s
|vj,l|2

)1/2
, (3.7)

where vj,l = 〈v, ϕj,l〉L2(Sn). For the definition and the properties of this space, we refer 
for example to [4, Section 3.8] and to [4, Section 6.3] for the relation of (3.7) with that 
via the restriction of the gradient to the unit sphere. By Sobolev embedding theorem, 
Hs(Sn) continuously embeds into C(Sn) for s > n/2. So, choosing s = n

2 + 1 and using 
(3.7) we can estimate

‖Dmϕj,l‖C(Sn) �n ‖ϕj,l‖Hs+m(Sn) =
(2j + n− 1

2

)n
2 +m+1

.

Hence, using (3.1)

∑
j,l

‖bj,l‖∞‖ϕj,l‖CM (Sn) �n

M∑
m=0

∑
j≥1

Njj
− 3

2n−2−M j
n
2 +m+1 �

∑
j≥1

1
j2 < ∞,

which concludes the proof. �
Theorem 3.2. Let μ be an n-rectifiable measure on Rn+1 with compact support. Let A
be a matrix having the properties (1.2), (1.3) and (1.6). Then for every f ∈ L2(μ) the 
principal value

Tμf(x) = lim
ε→0

ˆ

|x−y|>ε

∇1 E(x, y)f(y)dμ(y)

exists for μ-almost every x.

Proof. Let ε > 0 and denote b(x, z) := ∇1 Θ(z, 0; A(x)). As a consequence of the explicit 
formula (2.2), it is not difficult to see that each component of b verifies the hypothesis 
of Lemma 3.1. So, split Tμ,ε as

Tμ,εf(x) =
ˆ

|x−y|>ε

b(x, x− y)f(y)dμ(y)

+
ˆ

|x−y|>ε

(
∇1 E(x, y) −∇1 Θ(x, y;A(x))

)
f(y)dμ(y). (3.8)

The limit for ε → 0 of the first integral in the right hand side of (3.8) exists μ-a.e. because 
of Lemma 3.1. On the other hand, ∇1 E(x, y) −∇1 Θ(x, y; A(x)) defines an operator which 
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is compact on Lp(μ) because of Lemma 2.2, which guarantees that the limit for ε → 0
exists for μ-a.e. x and concludes the proof. �
3.2. Principal values for measures with zero density

Again, suppose that μ has compact support.
A combination of the proof of [34, Theorem 1.4] (see also [48, Theorem 8.10]) and 

Lemma 2.2 (which has to be used instead of antisymmetry) makes possible to prove that 
if μ is a Radon measure in Rn+1 with growth of degree n, then for every 1 < p < ∞
and f ∈ Lp(μ), {Tμ,εf}ε admits a weak limit Tw

μ f in Lp(μ) as ε → 0. Moreover, the 
representation formula

Tw
μ f(x) = lim

r→0

 

B(x,r)

Tμ

(
fχB(x,r)c

)
(y)dμ(y) (3.9)

holds for μ-almost every x ∈ Rn+1, giving an explicit way of computing the weak limit. 
We remark that, in general, we can only infer that formula (3.9) holds if Tμ has an 
antisymmetric kernel.

Let us recall the following theorem by Mattila and Verdera (see [34]), here reported 
in the formulation of [48, Theorem 8.11].

Theorem 3.3. Let μ be a Radon measure in Rd that has growth of degree n and zero n-
dimensional density μ-a.e. Let Tμ be an n-dimensional antisymmetric Calderón-Zygmund 
operator. Then, for all 1 < p < ∞ and f ∈ Lp(μ), pv Tμf(x) exists for μ-a.e. x ∈ Rd

and coincides with T w
μ f(x). Also, for all ν ∈ M(C), pv T ν(x) exists for μ-a.e. x ∈ Rd.

This result can be transferred to the gradients of the single layer potential Tμ.

Theorem 3.4. Let μ be a Radon measure in Rn+1 that has growth of degree n, zero n-
dimensional density and compact support. Suppose that Tμ is a bounded operator from 
L2(μ) to L2(μ). Then, for all 1 < p < ∞ and f ∈ Lp(μ), pvTμf(x) exists for μ-a.e. 
x ∈ Rn+1 and coincides with Tw

μ f(x). Also, for all ν ∈ M(C), pvTν(x) exists for μ-a.e. 
x ∈ Rn+1.

Proof. Let 1 < p < ∞ and f ∈ Lp(μ). We decompose Tμf into its symmetric and 
antisymmetric part. That is to say,

Tμf(x) = T (a)
μ f(x) + T (s)

μ f(x),

where T (a)
μ is the integral operator with kernel (∇1 E(x, y) −∇1 E(y, x))/2 and T (s)

μ whose 
kernel is (∇1 E(x, y) + ∇1 E(y, x))/2. We can apply Theorem 3.3 to antisymmetric part 
T

(a)
μ , obtaining that pvT (a)

μ f(x) exists for μ-a.e. x.
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On the other hand, T (s)
μ defines a compact operator on Lp(μ) since

ˆ
| ∇1 E(x, y) + ∇1 E(y, x)|dμ(y) � diam(suppμ)α,

so that the principal values exist.
The fact that Tw

μ f coincides with pvTμf a.e. follows from the definition of weak limit 
together with dominated convergence theorem:

ˆ
Tw
μ fg dμ = lim

ε→0

ˆ
Tμ,εfg dμ =

ˆ
pvTμfg dμ for all g ∈ Lp′

(μ),

p′ being the Hölder conjugate exponent of p. �

A remark on the well-posedness of the assumption (6) of Theorem 1.2. Let T, μ and B
be as in Theorem 1.2. Let x, y ∈ B and ε > 0 and write

Tεμ(x) − Tεμ(y) = Tμ,εχ2B(x) − Tμ,εχ2B(y) +
[
Tμ,εχRn+1 \2B(x) − Tμ,εχRn+1 \2B(y)

]
.

(3.10)
Now observe that, being the operator Tμ|B bounded on L2(μ|B), Theorem 1.1 (2) applies 
with ν = χ2Bμ. So, the first two summands on the right hand side of (3.10) admit a 
limit as ε → 0 for almost every x, y ∈ B. The limit for ε → 0 of the last summand exists, 
too. Indeed, since x, y do not belong to Rn+1 \2B, for ε < r(B),

Tμ,εχRn+1 \2B(x) − Tμ,εχRn+1 \2B(y) =
ˆ

Rn+1 \2B

(
∇1 E(x, z) −∇1 E(y, z)

)
dμ(y).

If we assume α̃ ≤ α in the statement of the main theorem, an application of the Calderón-
Zygmund property of the kernel combined with a dyadic decomposition of the domain 
of integration gives

∣∣∣ ˆ

Rn+1 \2B

(
∇1 E(x, z) −∇1 E(y, z)

)
dμ(z)

∣∣∣ � |x− y|α
+∞∑
j=1

ˆ

2j+1B\2jB

1
|x− z|n+α

dμ(z)

≤ Pμ,α(B) ≤ Pμ,α̃(B) < +∞.
(3.11)

In particular, this tells that Tμ(x) −Tμ(y) exists in the principal value sense for almost 
every x, y ∈ B.

We also want to point out that Tμ −mμ,B(Tμ) defines an L2(μ|B)-function. Indeed, 
for x ∈ B and using (3.11),
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|Tμ(x) −mμ,B(Tμ)| ≤ 1
μ(B)

ˆ

B

|Tμ(x) − Tμ(y)|dμ(y)

≤ |T (χ2Bμ)(x)| +
(
mμ,B |T (χ2Bμ)|2

)1/2 + Pμ,α̃(B).

The right hand side of the previous majorization defines an L2(μ|B) function because of 
the assumptions T (χ2Bμ) ∈ L2(μ|B) and Pμ,α̃(B) < +∞ in Theorem 1.2.

4. The Main Lemma

As we mentioned in the Introduction, it is convenient to formulate the statement 
of the main Theorem 1.2 in terms of α-numbers (see (2.1)). This is made possible by a 
mostly geometric argument: a careful read shows that the same arguments of [21, Section 
3] apply to our case. More specifically, in order to prove Theorem 1.2, it suffices to prove 
the following result, whose proof we shortly outline after the statement for the reader’s 
convenience.

Lemma 4.1 (Main Lemma). Let n > 1 and let C0, C1 > 0 be some arbitrary con-
stants. There exist M = M(C0, C1, n) > 0 big enough, λ(C0, C1, n) > 0 and ε =
ε(C0, C1, M, n) > 0 small enough such that if δ = δ(M, C0, C1, n) > 0 is sufficiently 
small, then the following holds. Let μ be a Radon measure in Rn+1 with compact support 
and Q0 ⊂ Rn+1 a cube centered at the origin satisfying the properties:

(1) �(MQ0) ≤ λ.
(2) μ(Q0) = �(Q0)n.
(3) Pμ,α̃(MQ0) ≤ C0.
(4) For all x ∈ 2Q0 and 0 < r ≤ �(Q0), Θμ(B(x, r)) ≤ C0.
(5) Q0 has C0-thin boundary.
(6) αL

μ(3MQ0) ≤ δ, for some hyperplane L through the origin.
(7) Tμ|2Q0

is bounded on L2(μ|2Q0) with ‖Tμ|2Q0
‖L2(μ|2Q0 )→L2(μ|2Q0 ) ≤ C1.

(8) We have

ˆ

Q0

|Tμ(x) −mμ,Q0(Tμ)|2dμ(x) ≤ εμ(Q0). (4.1)

Then there exists some constant τ > 0 and a uniformly n-rectifiable set Γ ⊂ Rn+1 such 
that

μ(Q0 ∩ Γ) ≥ τμ(Q0), (4.2)

where the constant τ and the uniform rectifiability constants of Γ depend on all the 
constants above.
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Sketch of the proof of Theorem 1.2 via the Main Lemma 4.1. Let σ be a Radon mea-
sure on Rn and, given a cube Q ⊂ Rn, we denote

αRn

σ (Q) := 1
�(Q0)n

inf
c≥0

dQ
(
σ, cHn|Rn

)
.

Let D(Rn) be the family of dyadic cubes in Rn. Let us assume that σ is a finite Radon 
measure such that, for some C̃ > 0 and �0 > 0 we have σ(Q) ≤ C̃�(Q)n for all Q ∈ D(Rn)
and �(Q) ≥ �0. A general geometric argument (see [21, Lemma 3.4]) gives∑

Q∈D(Rn):Q⊂R,�(Q)≥�0

αRn

σ (3Q)2�(Q)n � C̃2�(R)n.

This formula and another purely geometric proof allow us, given B and μ as in the 
statement of Theorem 1.2, for all M ′ > 10 and δ′, ε′ > 0 to find a cube Q0 with thin 
boundary such that 3M ′Q0 ⊂ B and dist(3M ′Q0, ∂B) ≥ C ′

0r(B) for C ′
0 = C ′

0(C0, n). 
The cube Q0 can be constructed in such a way that it satisfies μ(Q0) ≥ C ′

0�(Q0)n and, for 
δ small enough in the statement of the Main Theorem, αμ(3M ′Q0) ≤ δ′. Furthermore,

ˆ

Q0

|Tμ(x) −mμ,Q0(Tμ)|2 dμ(x) ≤ 2
ˆ

Q0

|Tμ(x) −mμ,B(Tμ)|2 dμ(x)

≤ 2εμ(B) ≈C0,δ εμ(Q0).

This gives the analogue of [21, Lemma 3.2]. Hence, it is not hard to prove that the 
construction of Q0 implies that the measure μ̃ := �(Q0)n

μ(Q0) μ satisfies the hypotheses (1)-
...-(8) of Lemma 5.5. The details, which we omit for brevity, follow verbatim Section 3 
of the paper of Girela-Sarrión and Tolsa, to which we also refer for the whole discussion 
of the construction sketched here. �

The matrix A may have a very general form. In particular, we need some additional 
argument to overcome the lack of “symmetries” of the matrix with respect to reflections 
and to periodization (the exact meaning of this sentence will be clear after the reading of 
Section 5, where we recall how second order PDE’s in divergence form are affected by a 
change of variable). Indeed, this is a crucial point for our proof to work. A similar problem 
has been faced in [43]. First, in order to be able to argue via a change of variables, we 
have to show that we can assume the matrix A to be symmetric.

We recall Schur’s test for integral operators with a reproducing kernel. The proof is a 
standard application of Cauchy-Schwarz’s inequality.

Lemma 4.2. Let K : Rn+1×Rn+1 → Rn+1 be a function such that, for a constant C > 0, 
we have

ˆ
|K(x, y)|dμ(x) ≤ C
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and
ˆ

|K(x, y)|dμ(y) ≤ C.

Then the operator Tf = K ∗ f is a continuous operator from L2(μ) to L2(μ) and

‖T‖L2(μ)→L2(μ) ≤ C.

Let A be a matrix as before. We denote by As = (A + AT )/2 its symmetric part and 
by TAs

μ its correspondent gradient of the single layer potential.

Lemma 4.3. Let Q be a cube in Rn+1 such that, for M > 1, Pμ,α(MQ) ≤ C1. The 
operator T (s)

μ|2Q is bounded on L2(μ|2Q) if and only if Tμ|2Q is bounded on L2(μ|2Q). In 
particular

∥∥Tμ|2Q
∥∥
L2(μ|2Q)→L2(μ|2Q) =

∥∥TAs

μ|2Q

∥∥
L2(μ|2Q)→L2(μ|2Q) + O(�(Q)α). (4.3)

Moreover

ˆ

Q

∣∣TAsμ(x)−mμ,Q(TAsμ)
∣∣2dμ(x)

�Λ,‖A‖α

ˆ

Q

∣∣Tμ(x) −mμ,Q(Tμ)
∣∣2dμ(x) +

(
Mα�(Q)α + M−α

)2
μ(Q).

(4.4)

Proof. Let us first prove (4.3). The identity (2.3) for matrices with constant coefficients 
leads to

TAs

μ|2Qf(x) =
ˆ

2Q

∇1 EAs
(x, y)f(y)dμ(y)

=
ˆ

2Q

(
∇1 EAs

(x, y) −∇1Θ(x, y;As(x))
)
f(y)dμ(y)

+
ˆ

2Q

(
∇1Θ(x, y;A(x)) −∇1 E(x, y)

)
f(y)dμ(y) +

ˆ

2Q

∇1 E(x, y)f(y)dμ(y)

≡ I + II + Tμ|2Qf(x).

(4.5)

To estimate I and II in (4.5) it suffices, then, to invoke Lemma 2.7 and Schur’s test. 
This finishes the proof of the first part of the lemma.
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Let us now prove (4.4). We split

Tμ(x) −mμ,Q(Tμ)

=
(
T (χMQμ)(x) −mμ,Q

(
T (χMQμ)

))
+
(
T (χ(MQ)cμ)(x) −mμ,Q

(
T (χ(MQ)cμ)

))
.

(4.6)

Let us estimate the two terms in the right hand side separately. Again, as a consequence 
of (4.5) and Lemma 2.2 we can write∣∣∣T (χMQμ) −mμ,Q(T (χMQμ)) −

(
TAs(χMQμ) + mμ,Q

(
TAs(χMQμ)

))∣∣∣ � Mα�(Q)α.

To bound the second term in the right hand side of (4.6), notice that for x, y ∈ Q

standard estimates together with Lemma 2.7 give

∣∣Tμχ(MQ)c(x) − Tμχ(MQ)c(y)
∣∣ � ˆ

(MQ)c

|x− y|α
|x− z|n+α

dμ(z)

� |x− y|α
�(MQ)αPμ,α(MQ) � 1

Mα
Pμ,α(MQ) � 1

Mα
,

thus, averaging over y in Q we have∣∣T (χ(MQ)cμ)(x) −mμ,Q

(
T (χ(MQ)cμ)

)∣∣ � M−α

The same calculations lead to∣∣∣TAs(χ(MQ)cμ)(x) −mμ,Q

(
TAs(χ(MQ)cμ)

)∣∣∣ � M−α,

so the inequality (4.4) in the statement of the lemma follows by gathering all the previous 
considerations. �

As an immediate application of Lemma 4.3, we can assume in Lemma 4.1 (and hence 
in Theorem 1.2) that the matrix A is symmetric. In order to see this, let us suppose 
that we can construct a uniformly n-rectifiable set Γ as in the statement of the Main 
Lemma 4.1 if the conditions (7) and (8) hold for TAs . More specifically, assume that 
there exists C̃1 > 0 such that TAs

μ|2Q0
is bounded on L2(μ|2Q0) with

‖TAs

μ|2Q0
‖L2(μ|2Q0 )→L2(μ|2Q0 ) ≤ C̃1.

Then, by (4.3) and the condition (1) in the Main Lemma, we have that for λ small 
enough it holds

‖Tμ|2Q ‖L2(μ|2Q )→L2(μ|2Q ) ≤ C̃1 + λα/2.

0 0 0
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By (4.4), an analogous consideration holds for the assumption (8) in the Main Lemma. 
Hence, recalling that λ = λ(C0, C̃1, n), Γ is the desired uniformly n-rectifiable that 
satisfies (4.2).

Thus, in the rest of the paper we will understand that A is symmetric.

Remark 4.1. Arguing as in Lemma 4.3, one could prove that

∥∥Tμ|2Q
∥∥
L2(μ|2Q)→L2(μ|2Q) =

∥∥T a
μ|2Q

∥∥
L2(μ|2Q)→L2(μ|2Q) + O(�(Q)α), (4.7)

where T a is the operator corresponding to the antisymmetric part of the kernel K(·, ·), 
that is to say Ka(x, y) = (K(x, y) − K(y, x))/2. Although for the purposes of many 
technical parts of the paper it may look natural to work with T a

μ|2Q , we prefer not to 
make this reduction. Indeed, it would create problems at some crucial stages of the main 
variational argument. In particular, it would be an obstacle to the application of the 
maximum principle: it is not clear how to adapt the argument in (11.26) to show that 
the adjoint operator (T a)∗ (see (11.1) for the definition) solves a proper elliptic equation. 
We remark that an analogous problem had to be dealt in the papers [14] and [43], where 
T a
μ was not used for the same reasons. Finally, since the inequality (4.7) is never used in 

the rest of the paper, we prefer to omit its proof.

5. The modification of the matrix

5.1. The change of variable

The following lemma deals with how the fundamental solution and its gradient are 
affected by a change of variable.

Lemma 5.1 (see [43], Lemma 5.2). Let φ : Rn+1 → Rn+1 be a locally bilipschitz map 
and let A ∈ Λα. Let EA be the fundamental solution of LA = − div(A∇·). Set Aφ :=
| detφ|D(φ−1)(A ◦ φ)D(φ−1)T . Then

EAφ
(x, y) = EA(φ(x), φ(y)) for x, y ∈ Rn+1,

and

∇1 EAφ
(x, y) = D(φ)T (x)∇1 EA(φ(x), φ(y)) for x ∈ Rn+1 .

Let us state a lemma concerning how the gradient of the fundamental solution trans-
forms under a change of variable φ as in Lemma 5.1. We use the notation

Tφμ(x) :=
ˆ

∇1 EAφ
(x, y)dμ(y).
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Lemma 5.2 (see [43], Lemma 5.3). Let φ : Rn+1 → Rn+1 be a bilipschitz change of 
variables. For every x ∈ Rn+1 we have

Tφμ(x) = D(φ)T (x)Tφ�μ(φ(x)).

A particularly useful change of variable is the one that turns the symmetric part of 
the matrix at a given point into the identity. For the following statement we refer to [5].

Lemma 5.3. Let Ω ⊂ Rn+1 be an open set, and assume that A is a uniformly elliptic 
matrix with real entries. Let As = (A +AT )/2 be the symmetric part of A and for a fixed 
point y0 ∈ Ω define S =

√
As(y0). If

Ã(·) = S−1(A ◦ S)(·)S−1,

then Ã is uniformly elliptic, Ãs(z0) = Id if z0 = S−1y0 and u is a weak solution of 
LAu = 0 in Ω if and only if ũ = u ◦ S is a weak solution of LÃũ = 0 in S−1(Ω).

We point out that the change of variables ϕ(x) := Sx that we defined in Lemma 5.3 is 
a linear map and, in particular, a bilipschitz map of Rn+1 to itself, namely there exists 
C ≥ 1 such that

C−1|x− y| ≤ |ϕ(x) − ϕ(y)| ≤ C|x− y| for x, y ∈ Rn+1 .

The bilipschitz constant of ϕ depends on the ellipticity of the matrix A. We need to 
quantify flatness of images of cubes via maps of the aforementioned type. For a set 
E ⊂ Rn+1, we define the α-number in an analogous ways as for cubes. In particular, for 
any hyperplane L and any measure ν, we denote

αL
ν (E) := 1

diam(E)n+1 inf
c≥0

dE(ν, cHn |L).

This particular notation will be used only in this section.

Lemma 5.4. Let ϕ be an affine, bilipschitz change of variables of Rn+1 with bilipschitz 
constant C ≥ 1. Let L be a hyperplane in Rn+1. Let Jϕ > 0 be the Jacobian of ϕ. Then, 
for any Radon measure ν, for any cube Q ⊂ Rn+1 and any constant c ≥ 0 we have that

dQ(ν, cHn |L) ≈n,C dϕ(Q)
(
ϕ�ν, cHn |ϕ(L)

)
. (5.1)

Hence,

αL
ν (Q) ≈n,C α

ϕ(L)
ϕ�ν (ϕ(Q)

)
. (5.2)
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Proof. Formula (5.2) is an immediate consequence of (5.1) and the fact that �(Q) ≈C

diam(ϕ(Q)).
Let us prove (5.1). For every c ≥ 0

ϕ�
(
cHn |L

)
= c(ϕ�Hn)|ϕ(L).

Indeed for any ϕ� Hn |L-measurable set E we have

ϕ�(cHn |L)(E) = cHn
(
ϕ−1(E) ∩ L

)
= cHn

(
ϕ−1(E ∩ ϕ(L))

)
= c(ϕ�Hn)|ϕ(L)(E).

Moreover, as a consequence of the Radon-Nikodym differentiation theorem (see [19, 
Lemma 1, p. 92]), we have

Hn
(
ϕ−1(E)

)
= Jϕ Hn(E).

So,

dQ(ν, cHn |L) ≈C dϕ(Q)
(
ϕ�ν, ϕ�cHn |L

)
≈n,C dϕ(Q)

(
ϕ�ν, cHn |ϕ(L)

)
,

which proves the lemma. �
5.2. Reduction of the Main Lemma to the case A(0) = Id

Recall that by Lemma 4.3 we can assume A to be a symmetric matrix.
Let us begin with a preliminary observation. Let Q0 ⊂ Rn+1 be a cube as in the 

Main Lemma 4.1 and let us denote S := As(zQ0)1/2, where zQ0 is the center of Q0. We 
choose the map ϕ so that ϕ(x) = Sx. By Lemma 5.3 we have that Aϕ(ϕ−1(zQ0)) = Id. 
Denoting ν = ϕ−1�μ, the change of variables and Lemma 5.2 give

mν,ϕ−1(Q0)(Tϕν) = 1
ν(ϕ−1(Q0))

ˆ

ϕ−1(Q0)

Tϕν d(ϕ−1�μ) = 1
μ(Q0)

ˆ

Q0

Tϕν
(
ϕ−1(x)

)
dμ(x)

= 1
μ(Q0)

ˆ

Q0

S · Tν(x) dμ(x) = S ·mμ,Q0(Tμ).

Thus,
ˆ

Q0

∣∣Tμ(x) −mμ,Q0(Tμ)
∣∣2dμ(x) =

ˆ

ϕ−1(Q0)

∣∣S · (Tϕν −mν,ϕ−1(Q0)(Tϕν))
∣∣2dν

≈
ˆ

−1

∣∣Tϕν(x) −mν,ϕ−1(Q0)(Tϕν)
∣∣2dν(x).
ϕ (Q0)
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The implicit constant above depends only on ϕ and, hence, on the ellipticity of the 
matrix A. Analogously, it is not hard to see that we have

‖Tϕν‖L2
(
ν|ϕ−1(2Q0)

) ≈ ‖Tμ‖L2
(
μ|(2Q0)

).
Using these facts and Lemma 5.4, we have that the Main Lemma 4.1 can be restated 

as follows.

Lemma 5.5. Let n > 1 and let C0, C1 > 0 be some arbitrary constants. There exists M =
M(C0, C1, n) > 1 big enough, λ(C0, C1, n) > 0 small enough and ε̃ = ε̃(C0, C1, M, n) > 0
small enough such that if δ = δ(M, C0, C1, n) > 0 is small enough, then the following 
holds. Let μ be a Radon measure in Rn+1, Q0 ⊂ Rn+1 a cube centered at the origin 
and ν := ϕ−1�μ, ϕ being as in the comments before the lemma, satisfying the following 
properties:

(1) Aϕ

(
ϕ−1(0)

)
= Id.

(2) �(MQ0) ≤ λ.
(3) ν

(
ϕ−1(Q0)

)
= �(Q0)n.

(4) Pν,α/2
(
ϕ−1(MQ0)

)
≤ C0.

(5) For all x ∈ 2Q0 and 0 < r ≤ �(Q̃), Θμ(B(x, r)) ≤ C0.
(6) Q0 has C0-thin boundary.
(7) α

ϕ−1(H)
ν

(
ϕ−1(3MQ0)

)
≤ δ, where H = {x ∈ Rn+1 : xn+1 = 0}.

(8) Tϕ,ν|ϕ−1(2Q0)
is bounded on L2(ν|ϕ−1(2Q0)) with

∥∥Tϕ,ν|ϕ−1(2Q0)

∥∥
L2(ν|ϕ−1(2Q0))→L2(ν|ϕ−1(2Q0))

≤ C1.

(9) we have
ˆ

ϕ−1(Q0)

∣∣Tϕν(x) −mν,ϕ−1(Q0)(Tϕν)
∣∣2dν(x) ≤ ε̃ν

(
ϕ−1(Q0)

)
.

Then there exists some constant τ > 0 and a uniformly n-rectifiable set Γ ⊂ Rn+1 such 
that

μ(Q0 ∩ Γ) ≥ τμ(Q0),

where the constant τ and the UR constants of Γ depend on all the constants above.

The aim of most of the rest of the paper is to provide the proof of this result.
In what follows, for the sake of simplicity of the notation, we will assume that A(0) =

A(zQ0) = Id, which in particular gives that ϕ = Id, μ = ν and Tϕ,μ = Tμ. Indeed, if 
this is not the case, we should carry the following proofs for the image of cubes via ϕ−1, 
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periodize with respect to the image of a lattice of standard cubes and work with Tϕ

instead of T . This would be a merely notational complication that we prefer to avoid to 
make the arguments more accessible.

Reduction to a periodic matrix. The forthcoming lemma shows, roughly speaking, that 
the local structure of A close to Q0 is what matters to the purposes of Lemma 4.1. An 
immediate consequence of this fact is that, without loss of generality, we can replace the 
matrix A with a periodic matrix, provided that the new matrix coincides with A in a 
suitable neighborhood of the cube Q0.

In what follows, we assume the matrix Ā to have Hölder continuous coefficients of 
exponent α̃ < α for technical reasons that will result clearer later on.

Lemma 5.6. Let Ā ∈ Λα̃ be such that Ā(x) = A(x) for every x ∈ 2Q0. Let T̄ denote the 
gradient of the single layer potential associated with Ā. The operator Tμ|2Q0 is bounded 
in L2(μ|2Q0) if and only if T̄μ|2Q0

is bounded in L2(μ|2Q0) and

‖Tμ|2Q0
‖L2(μ|2Q0 )→L2(μ|2Q0 ) = ‖T̄μ|2Q0

‖L2(μ|2Q0 )→L2(μ|2Q0 ) + O
(
�(Q0)α̃

)
.

Moreover we have
ˆ

Q0

|Tμ(x) −mμ,Q0(Tμ)|2dμ(x)

�
ˆ

Q0

|T̄ μ(x) −mμ,Q0(T̄ μ)|2dμ(x) +
(
�(MQ0)2α̃ + M−α̃

)2
μ(Q0), (5.3)

where M is as in the statement of Lemma 4.1 and the implicit constant in (5.3) depends 
on diam(suppμ).

The proof of Lemma 5.6 relies on the fact that Θ(·, ·; A(x)) = Θ(·, ·; Ā(x)) for every 
x ∈ 2Q0 and it is very similar to the one of Lemma 4.3, so that we omit it.

In the rest of the paper, without additional specifications, we will deal with a matrix 
Ā periodic with period �, 2�(Q0) < � � �(Q0).

The definition of the matrix Ā. The construction in the present subsection is dictated 
by the necessity of having an auxiliary matrix which agrees with A on 2Q0 and has the 
further properties of being periodic (which is crucial to use the estimates of the theory 
of homogenization) and of presenting ‘additional symmetries’ with respect to reflections 
(see the forthcoming Lemma 5.8). For a scheme of this construction we also refer to 
Fig. 1.

Let ej denote the j-th element of the canonical basis of Rn+1. We denote by 
ψj : Rn+1 → Rn+1 the map

ψj(x) := x + (3�(Q0) − 2xj)ej , (5.4)
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Fig. 1. A schematization of the construction of Ā at the level of the periodic unit.

which corresponds to the reflection across the hyperplane Pj orthogonal to ej and which 
passes through the point 3

2�(Q0)ej . Let 0 < δ < 1/10.

Given a matrix B(x) with variable coefficients, we define Bj as

Bj = Bψj
= D(ψ−1

j )(B ◦ ψj)D(ψ−1
j )T . (5.5)

Moreover, we define the matrix B̃ as

B̃(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
B(x)

for dist
(
x, ∂(3Q0)

)
≥ δ�(Q0),

dist(x,∂(3Q0))
δ�(Q0) B(x) +

(
1 − dist(x,∂(3Q0))

δ�(Q0)

)
Id

for dist
(
x, ∂(3Q0)

)
< δ�(Q0).

(5.6)

It is also useful to introduce the notation

B̂j(x) =
{
B(x) for xj ≤ 3

2�(Q0),
Bj(x) for xj >

3
2�(Q0).

(5.7)

Let us apply the previous constructions to the matrix A. First, observe that the matrix 

Âj is not necessarily continuous. However, (̂Ã)j is continuous because Idj = Id and 

Ã|∂(3Q0) ≡ Id. Our aim, now, is to define the final auxiliary matrix Ā by an iteration of 
the construction in (5.7) along every direction and which is followed by a periodization. 
Before doing so, let us observe that for i, j ∈ {1, . . . , n + 1},
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(Ãi)j(x) = (Ãj)i(x), x ∈ Rn+1 .

This follows directly from (5.5) using the facts that ψi

(
ψj(x)

)
= ψj

(
ψi(x)

)
and that 

the matrices D(ψ−1
i ), D(ψ−1

j ) are diagonal. Thus by the linearity of the interpolation in 
(5.6) we have that

(̂
(̂Ã)i

)
j

=
(̂
(̂Ã)j

)
i
=: (̂Ã)i,j , (5.8)

so the order of the modifications is not relevant.
Let us now construct the matrix Ā in two steps:

• For x belonging to the cube of side length 6�(Q0) centered at the point with coordi-
nates 3

2�(Q0)(1, . . . , 1) we define

Ā(x) := (̂Ã)1,...,n+1.

• By (5.6), the matrix Ā defined in the first step coincide with Id for x belonging to 
the boundary of the cube with side length 6�(Q0) and centered at 3

2�(Q0)(1, . . . , 1). 
Hence, Ā admits a continuous and 6�(Q0)-periodic extension to Rn+1 so that

Ā(x) = Ā
(
x + 6�k�(Q0)

)
for every �k ∈ Zn+1.

The following holds.

Lemma 5.7. The matrix Ā is well-defined and periodic with period 6�(Q0). Furthermore, 
for �(Q0) small enough it is Hölder continuous with exponent α/2n+1 and constant not 
depending on �(Q0).

Proof. The well-definition of Ā follows from (5.8), and the periodicity holds by construc-
tion. We are left with the proof of Hölder continuity. As a first step, we prove that there 
exists C > 0 such that

|Ā(x) − Ā(y)| ≤ C|x− y|α/2, for x, y ∈ 3Q0. (5.9)

By the construction of Ā, it suffices to verify the condition (5.9) for x, y ∈ {z ∈
3Q0 : dist(z, ∂(3Q0)) ≤ δ�(Q0)} with |x − y| ≤ δ�(Q0). In this case, we denote 
t := dist(x, ∂(3Q0)), s := dist(y, ∂(3Q0)) and we have

|Ā(x) − Ā(y)| =
∣∣∣A(x) t +

(
1 − t )

Id−A(y) s +
(
1 − s )

Id
∣∣∣
δ�(Q0) δ�(Q0) δ�(Q0) δ�(Q0)
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≤
∣∣∣(A(x) − Id) t

δ�(Q0)
− (A(y) − Id) s

δ�(Q0)

∣∣∣
≤ |A(x) − Id|

∣∣t− s
∣∣

δ�(Q0)
+ |A(x) −A(y)| s

δ�(Q0)
=: I + II.

The α-Hölder continuity of A and the choice s ≤ δ�(Q0) yield

II � |x− y|α.

On the other hand, the choice |x −y| ≤ δ�(Q0), the identity A(0) = Id, and the Lipschitz 
character of the map dist(·, ∂(3Q0)) give that, for �(Q0)α/2/δα ≤ 1 we have

I ≤ |x|α |t− s|
δ�(Q0)

� |x|α |t− s|α
(δ�(Q0))α

� |x− y|α
δα

� �(Q0)α/2

δα
|x− y|α/2 ≤ |x− y|α/2.

Gathering the above estimates for I and II, we obtain (5.9). An analogous calculation 
shows that (5.9) holds for x, y ∈ 3Q0 ∪ (3Q0 + 3�(Q0)en+1) (see also [43, Lemma 8.1]). 
By periodicity of the matrix, this is enough to conclude the proof of the lemma. In 
particular, the exponent α/2n+1 is given by the fact that the proof has to be iterated 
for all the (n + 1) different directions. �

We remark that, being Ā periodic, in the previous lemma there is no need to introduce 
a radial cut-off for the matrix as in [43]. For the rest of the paper we use the notation 
α̃ := α/2n+1.

Properties of EĀ. As a consequence of the definition of Ā and, more specifically, of its 
periodicity and the fact that by construction

Āj(x) = Ā(x)

for every x ∈ Rn+1 and j = 1, . . . , n + 1, we have the following.

Lemma 5.8.

EĀ(x, y) = EĀ(ψj(x), ψj(y)) for j = 1, . . . , n + 1 (5.10)

and

EĀ(x, y) = EĀ

(
x + 6�k�(Q0), y + 6�k�(Q0)

)
for �k ∈ Zn+1.

By Lemma 2.3, the function K̄ = ∇1 EĀ(·, ·) is (globally) a Calderón-Zygmund kernel. 
In particular

(a) |K̄(x, y)| � |x − y|−n for all x, y ∈ Rn+1 with x �= y.
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(b) |K̄(x, y) −K̄(x, y′)| + |K̄(y, x) −K̄(y′, x)| � |y−y′|α̃|x −y|−n−α̃ for 2|y−y′| ≤ |x −y|.

Let T̄μ denote the singular integral operator associated with K̄,

T̄μf(x) =
ˆ

K̄(x, y)f(y)dμ(y).

Lemma 5.6 tells that we can prove the Main Lemma for T̄ instead of T , possibly by 
slightly worsening the parameters involved.

6. A first localization lemma

It is useful to provide a local analogue of the BMO-type estimate (4.1). This is possible 
because of the smallness of the α-number and the bound for the Pμ,α̃-density. Also, recall 
that because of the assumptions in Lemma 4.1, we have μ(MQ0) � Mnμ(Q0). In what 
follows we sketch the proof of the localization of (4.1) for T̄μ, highlighting the differences 
with respect to the case of the Riesz transform (see [21, Lemma 4.2]).

In the rest of the paper we omit to indicate the dependence of the implicit constants 
in our estimates on C0 and C1.

Lemma 6.1. For δ small enough depending on M , the following inequality holds
ˆ

Q0

|T̄μχMQ0 |2dμ �
(
ε + 1

M2α̃ + M4n+2δ1/(4n+4) + (M�(Q0))2α̃
)
μ(Q0). (6.1)

Proof. First, observe that
ˆ

Q0

|T̄μ(χMQ0)|2dμ

≤ 2
ˆ

Q0

|T̄μ(χMQ0) −mμ,Q0(T̄μχMQ0)|2dμ + 2|mμ,Q0(T̄μχMQ0)|2μ(Q0). (6.2)

Let us estimate the two summands on the right hand side of (6.2) separately. To study 
the first one, we write
ˆ

Q0

∣∣T̄μχMQ0 −mμ,Q0(T̄μχMQ0)
∣∣2dμ

≤ 2
ˆ

Q0

∣∣T̄μχ(MQ0)c(x) −mμ,Q0(T̄μχ(MQ0)c)
∣∣2dμ(x) + 2

ˆ

Q0

|T̄ μ−mμ,Q0(T̄ μ)|2dμ.

(6.3)

Applying Lemma 2.1, it follows that for x, y ∈ Q0
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|T̄μχ(MQ0)c(x) − T̄μχ(MQ0)c(y)| ≤
ˆ

(MQ0)c

|K̄(x, z) − K̄(y, z)|dμ(z)

� |x− y|α̃
ˆ

(MQ0)c

1
|x− z|n+α̃

dμ(z)

� |x− y|α̃
∞∑
j=1

ˆ

2j+1MQ0\2jMQ0

1
|x− z|n+α̃

dμ(z) � |x− y|α̃
�(MQ0)α̃

Pμ,α̃(MQ0) �
1

M α̃
,

being Pμ,α̃(MQ0) � 1. Then, averaging the previous inequality over the variable y, we 
get

∣∣T̄μχ(MQ0)c(x) −mμ,Q0(T̄μχ(MQ0)c)
∣∣ � 1

M α̃

and
ˆ

Q0

|T̄μχ(MQ0)c(x) −mμ,Q0(T̄μχ(MQ0)c)|2dμ(x) � 1
M2α̃μ(Q0).

Recalling that by hypothesis we have
ˆ

Q0

∣∣T̄ μ−mμ,Q0(T̄ μ)
∣∣2dμ ≤ εμ(Q0),

we can estimate (6.3) as

ˆ

Q0

∣∣T̄μ(χ(MQ0)c) −mμ,Q0(T̄μχMQ0)
∣∣2dμ �

(
ε + 1

M2α̃

)
μ(Q0). (6.4)

An application of Lemma 2.7 together with the antisymmetry of ∇1 Θ(·, ·; Ā(x)) also 
gives

∣∣mμ,Q0(T̄μχQ0)
∣∣ � 1

μ(Q0)

ˆ

Q0

ˆ

Q0

|x− y|−n+α̃dμ(x)dμ(y) � �(Q0)α̃. (6.5)

Minor variations of the arguments which prove [21, (4.2)] show that

|mμ,Q0(T̄μχMQ0)|
(6.5)
� |mμ,Q0(T̄μχMQ0\Q0)| + �(Q0)α̃

� M2n+1δ1/8(n+1) +
(
M�(Q0)

)α̃ + �(Q0)α̃

2n+1 1/8(n+1) ( )α̃ (6.6)
� M δ + M�(Q0) .
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For the sake of brevity we omit the details and we just point out that the presence of 
the second summand on the right hand side comes from the estimate∣∣∣ ˆ

Q0

T̄
(
ϕHn|H

)
dHn|H

∣∣∣ � (
M�(Q0)

)α̃
�(Q0)n, (6.7)

where ϕ is a proper even C1 function with 0 ≤ ϕ ≤ 1 and supported on MQ0 \Q0. To 
get the estimate (6.7), we just write

∣∣∣ ˆ
Q0

T̄
(
ϕHn|H

)
dHn|H

∣∣∣
≤
ˆ

Q0

ˆ

MQ0

∣∣∣12K̄(x, y) − 1
2∇1Θ(x, y; Ā(x))

∣∣∣ dHn|H(x)dHn|H(y)

+
ˆ

Q0

ˆ

MQ0

∣∣∣12K̄(x, y) − 1
2∇1Θ(x, y; Ā(y))

∣∣∣ dHn|H(x)dHn|H(y)

+ 1
2

∣∣∣ ˆ
Q0

ˆ

MQ0

(
∇1Θ(x, y; Ā(x)) + ∇1Θ(x, y; Ā(y))

)
dHn|H(x)dHn|H(y)

∣∣∣.
Then, the third summand is null because of the antisymmetry of its integrand and the 
first two terms can be estimated via Lemma 2.2.

Gathering (6.2), (6.4) and (6.6) we are able to conclude the proof of the lemma. �
7. The David and Mattila lattice associated with μ and its properties

The dyadic lattice constructed by David and Mattila [16, Theorem 3.2] is a powerful 
tool in the study of the geometry of Radon measures. Its main properties are listed in 
the following lemma, that we state for a general Radon measure with compact support.

Lemma 7.1 (David and Mattila). Let σ be a compactly supported Radon measure in Rn+1. 
Consider two constants K0 > 1 and A0 > 5000K0 and denote W = suppσ. Then there 
exists a sequence of partitions of W into Borel subsets Q, Q ∈ Dσ,k, which we will refer 
to as cells, with the following properties:

• For each integer k ≥ 0, W is the disjoint union of the cells Q, Q ∈ Dσ,k. If k < l, 
Q ∈ Dσ,l, and R ∈ Dσ,k, then either Q ∩R = ∅ or Q ⊂ R.

• For each k ≥ 0 and each cell Q ∈ Dσ,k, there is a ball B(Q) = B
(
zQ, r(Q)

)
such that

zQ ∈ W, A−k
0 ≤ r(Q) ≤ K0A

−k
0

W ∩B(Q) ⊂ Q ⊂ W∩28B(Q) = W ∩B
(
zQ, 28r(Q)

)
,
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and the balls 5B(Q), Q ∈ Dσ,k are disjoint.
• The cells Q ∈ Dσ,k have small boundaries. By this, we mean that for each Q ∈ Dσ,k

and each integer l ≥ 0, if we set

N int
l :=

{
x ∈ Q : dist(x,W \Q) < A−k−l

0
}

N ext
l (Q) :=

{
x ∈ W \Q : dist(x,Q) < A−k−l

0
}

and

Nl(Q) := N int
l (Q) ∪N ext

l (Q),

we get

σ
(
Nl(Q)

)
≤

(
C−1K

−3(n+1)−1
0 A0

)−l
σ
(
90B(Q)

)
• Denote by Ddb

σ,k the family of cells Q ∈ Dσ,k for which

σ
(
100B(Q)

)
≤ K0σ

(
B(Q)

)
.

We have that r(Q) = A−k
0 when Q ∈ Dσ,k \ Ddb

σ,k and

σ
(
100B(Q)

)
≤ K−1

0 σ
(
100l+1B(Q)

)
(7.1)

for all l ≥ 1 with 100l ≤ K0 and Q ∈ Dσ,k \ Ddb
σ,k.

Let us denote Dσ :=
⋃

k Dσ,k. Let us choose A0 big enough so that

C−1K
−3(n+1)−1
0 A0 > A

1/2
0 > 10. (7.2)

Here we list some useful quantities associated with each cell Q ∈ Dσ,k:

• J(Q) := k, which may be interpreted as the generation of Q.
• �(Q) := 56K0A

−k
0 , that we also call side length. Notice that

1
28K

−1
0 �(Q) ≤ diam(28B(Q)) ≤ �(Q)

and r(Q) ≈ diam(Q) ≈ �(Q).
• calling zQ the center of Q, we denote BQ := 28B(Q) = B(zQ, 28r(Q)), which in 

particular gives

Q ∩ 1
BQ ⊂ Q ⊂ BQ.
28
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We recall, now, some of the properties of the cells in the David and Mattila lattice.
The choice in (7.2) implies, for 0 < λ ≤ 1, the estimate

σ
(
{x ∈ Q : dist(x,W \Q) ≤ λ�(Q)}

)
+ σ

(
{x ∈ 3.5BQ \Q : dist(x,Q) ≤ λ�(Q)}

)
≤ cλ1/2σ(3.5BQ).

We denote Ddb
σ :=

⋃
k≥0 D

db
σ,k and we say that it is the lattice of doubling cells. This 

notation is justified by the fact that, for Q ∈ Ddb
σ , we have

σ(3.5BQ) ≤ σ(100B(Q)) ≤ K0σ(B(Q)) ≤ K0σ(Q).

An important feature of the David and Mattila lattice is that every cell Q ∈ Dσ can be 
covered by doubling cells up to a set of σ-measure zero ([16, Lemma 5.28]). Moreover, 
if we have two cells R, Q ∈ Dσ with Q ⊂ R and such that every intermediate cell 
Q � S � R belongs to Dσ \ Ddb

σ , we have the control

σ(100B(Q)) ≤ A
−10n(J(Q)−J(R)−1)
0 σ(100B(R)) (7.3)

on the decay of the measure. The estimate (7.3) is proved via an iterated application of 
the inequality

σ(100B(Q)) ≤ A−10n
0 σ(100B(Q̂)), (7.4)

where Q̂ is the cell from Dσ,J(Q)−1 containing Q (also called parent of Q). We remark 
that (7.4) follows by (7.1) and a proper choice of A0 and K0 (see [16, Lemma 5.31]).

For Q ∈ Dσ, we denote by Dσ(Q) the cells in Dσ which are contained in Q and 
Ddb

σ (Q) := Dσ(Q) ∩ Ddb
σ .

8. The Key Lemma, the stopping time condition and a first modification of the 
measure

The heart of the proof of Lemma 5.5 consists in providing a control on the abundance 
of cells with low density (in some sense that we clarify below). The whole construction 
that we are about to discuss depends on some auxiliary parameter to be chosen properly 
later in the proof.

Definition 8.1 (Low density cells). Let 0 < θ0 � 1. A cell Q ∈ Dμ is said to be of low 
density if

Θμ(3.5BQ) ≤ θ0

and it is maximal with respect to the set inclusion. We denote by LD the family of low 
density cells.
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Most of the rest of the paper deals with the proof of the fact that the low density cells 
fail to cover a significant portion of Q0.

Lemma 8.1 (Key Lemma). Let ε, δ and M be as in Lemma 4.1. There exists ε0 > 0 such 
that if M is big enough and θ0, δ and ε are small enough, then

μ

(
Q0 \

⋃
Q∈LD

Q

)
≥ ε0μ(Q0). (8.1)

Sketch of the proof of the Main Lemma 5.5 using the Key Lemma (8.1). The proof is 
analogous to the argument of [21, Section 10]. For the reader’s convenience, we briefly 
outline the construction of the uniformly n-rectifiable set Γ in the statement of the 
Main Lemma. Let us define F := Q0 ∩ suppμ \

⋃
Q∈LD Q, the Key Lemma 8.1 gives 

μ(F ) ≥ ε0μ(Q0). Let σ := μ|Q0 , let Dσ be its associated David-Mattila lattice, and let 
us define the maximal dyadic operator

MDσ
f(x) := sup

Q∈Dσ:x∈Q

1
σ(Q)

ˆ

Q

|f |dσ.

Let F̃ := {x ∈ F : MDσ
(χF c)(x) ≤ 1 − (ε0/2)}. It is not hard to prove that σ(F̃ ) ≥

σ(F )/2. We consider a family {Qj}j∈J ⊂ Dσ of maximal cells (with respect to the 
inclusion) such that σ(Qj \ F ) >

(
1 − (ε0/2)

)
σ(Qj). For j ∈ J , we denote as Aj the 

family of maximal doubling cells that cover Qj, and by A0 the family {P ∈ ∪j∈JAj :
σ(P ∩ F ) > 0}. We can now define the main auxiliary measure

ζ = σ|F̃ +
∑

Q∈A0

Hn|S(Q),

where S(Q) indicates an n-dimensional sphere with the same center as B(Q) and ra-
dius B(Q)/4. Lemma 10.2 in [21] gives that the measure ζ is AD-regular with constant 
depending only on C0, θ0 and ε0. Furthermore, it is routine to check that the proof of 
[21, Lemma 10.3] yields that T̄ζ is bounded on L2(ζ) with norm depending on the same 
parameters and C1. Hence, we can apply [43, Theorem 1.1], which gives that ζ is uni-
formly n-rectifiable. By construction and using the fact that σ(F̃ ) ≥ σ(F )/2, Γ := supp ζ

satisfies

μ(Γ) ≥ μ(F̃ ) = σ(F̃ ) ≥ ε0μ(Q0)/2,

which proves the Main Lemma 5.5. �
The rest of the present article (a part from the last section) is devoted to the proof 

of Lemma 8.1.
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We argue by contradiction: assume that (8.1) does not hold, that is to say

μ

( ⋃
Q∈LD

Q

)
> (1 − ε0)μ(Q0). (8.2)

More specifically, we want to show that a choice of ε0 small enough leads to an absurd. 
The proof is based on a stopping time argument. Roughly speaking, for Q ∈ LD, we 
say that a cell R belongs to its associated stopping family if it is a descendant of Q
(i.e. R ⊂ Q) and it is sufficiently small. The definition of stopping cells depends on a 
parameter t, which has to be thought small and that will be appropriately chosen later.

Definition 8.2 (Stopping cells). Let Q ∈ LD. Let 0 < t < 1. We say that R ∈ Stop(Q) if 
the following two conditions are verified and they are maximal with respect to contain-
ment:

• R ∈ Ddb
μ , R ⊂ Q.

• �(R) ≤ t�(Q).

We also denote Stop :=
⋃

Q∈LD Stop(Q) the family of all the stopping cells.

Assuming that the stopping cells in Stop(Q) are doubling makes sense in light of the 
fact that doubling cells cover Q up to a set of μ-measure zero. In particular, this implies 
that (8.2) is equivalent to

μ

( ⋃
Q∈Stop

Q

)
> (1 − ε0)μ(Q0).

The proof of the Key Lemma 8.1 involves a periodization of the measure μ, which 
is essentially carried out by replicating μ|Q0 on the horizontal plane according to the 
periodicity of the matrix Ā.

The stopping cells which are close to the boundary of Q0 (in a proper sense) are 
problematic for our analysis, so we need to rule them out of the construction. In order 
to do this, we have to show that their contribution to the measure of Q0 is negligible 
(see (8.4)). We say that P ∈ Bad if P ∈ Stop and 1.1BP ∩ ∂Q0 �= ∅.

Another technical problem is that Stop may contain infinitely many cells. This second 
difficulty can be easily overcome considering a finite family of cells, named Stop0, which 
contains a big portion of the measure of Stop, e.g.

μ

( ⋃
Q∈Stop0

Q

)
> (1 − 2ε0)μ(Q0). (8.3)

The rest of the section is devoted to a justification of the last affirmations concerning Bad
and the first modification of the measure μ. It is essentially a rewriting of [21, Lemma 
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6.2, Lemma 6.3, Lemma 6.4] in our context, in which we highlight the right homogeneity 
coming from our elliptic setting.

The following lemma contains an estimate of the density Pμ,α̃ of the stopping cells in 
terms of the low density parameter θ0.

Lemma 8.2. Let Q ∈ Stop and let t = θ
1/(n+α̃)
0 . We have

Θμ(2BQ) ≤ Pμ,α̃(2BQ) � θ
α̃

n+α̃

0 .

Proof. The first inequality is an immediate consequence of the definition of Pμ,α̃. To 
prove the second inequality, we consider the maximal cell R′ ∈ Dμ such that Q ⊂ R′ ⊂ R

and �(R′) ≤ t�(R) and write

Pμ,α̃(2BQ) �
∑

P∈Dσ:Q⊂P⊂R′

Θμ(2BP )
(�(Q)
�(P )

)α̃

+
∑

P∈Dσ:R′⊂P⊂R

Θμ(2BP )
(�(Q)
�(P )

)α̃

+
∑

P∈Dσ:R⊂P⊂Q0

Θμ(2BP )
(�(Q)
�(P )

)α̃

+
∑
k≥1

2−kα̃Θμ(2kBQ)

=I + II + III + IV.

Then, the estimates work as in the case of the work of Girela-Sarrión and Tolsa. In 
particular, the calculations for [21, Lemma 6.2, estimate of S1 + S2] work verbatim and 
give

I + II � θ0

tn

Furthermore [21, Lemma 6.2, estimate of S3 + S4] gives

III + IV � tα̃,

which justifies the choice of t in the statement of the lemma. �
For the rest of the paper we assume t = θ

1/(n+α̃)
0 in Definition 8.2.

Using the estimates in Lemma 8.2, one can prove that

μ

(⋃
Bad

Q

)
� θ

α̃
n+α̃

0 μ(Q0). (8.4)

Its proof (see [21, Lemma 6.3] for all the details) relies on a covering argument: let I be an 
arbitrary finite subset of Bad. An application of Vitali’s covering theorem to the family 
{1.15BQ}Q∈I gives that there exists a family J ⊂ I such that the cells {1.15BQ}Q∈J are 
pairwise disjoint and 

⋃
Q∈J 3(1.15BQ) covers 

⋃
Q∈I 1.15BQ. Furthermore Q ∈ J ⊂ Bad

implies that
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Hn(1.15BQ ∩ ∂Q0) � r(BQ)n.

Lemma 8.2 and the above estimate give

μ
(⋃
P∈I

BP

)
≤

∑
P∈J

μ
(
3.45BP

)
� θ

α̃
n+α̃

0

∑
Q∈J

r(BQ)n � θ
α̃

n+α̃

0 Hn(∂Q0) ≈ θ
α̃

n+α̃

0 μ(Q0),

which readily implies (8.4).

First modification of the measure. As already mentioned, for technical purposes it is 
useful to modify the measure inside Q0 by taking just finitely many stopping cells and 
getting rid of the cells in Bad. To make the previous statement rigorous, we choose a 
small parameter 0 < κ0 � 1 to be fixed later and, after denoting

Iκ0(Q) := {x ∈ Q : dist(x, suppσ \Q) ≥ κ0�(Q)},

we define the modified measure

μ0 := μ|Qc
0 +

∑
Q∈Stop0 \Bad

μ|Iκ0 (Q).

Using (8.3) and (8.4), it is not difficult to prove that μ0 differs from μ, in the sense of 
the total mass, possibly by a very small quantity. Indeed,

‖μ− μ0‖ ≤
(
2ε0 + Cθ

α̃/(n+α̃)
0 + κ

1/2
0

)
μ(Q0). (8.5)

For this modification to be valid for our purposes, we need the gradient of the single 
layer potential associated with this measure to satisfy a localization estimate analogous 
to (6.1). This is easily proved by gathering the L2(μ|Q0)-boundedness of T̄μ|Q0

, the 
estimate (8.5) and the localization estimate (6.1) for μ (see [21, Lemma 6.4]).

Lemma 8.3. If δ is chosen small enough (depending on M), then
ˆ

Q0

|T̄ (χMQ0μ0)|2dμ0

�
(
ε + 1

M2α̃ + M4n+2δ1/(4n+4) + (M�(Q0))2α̃ + ε0 + θ
α̃/(n+α̃)
0 + κ

1/2
0

)
μ(Q0).

9. Periodization and smoothing of the measure

The present technical section contains the construction of a suitable auxiliary mea-
sure. This is done in two steps: first we need to get rid of the truncation at the level of 
M�(Q0) present in the estimate of Lemma 8.3. For this purpose, we replicate the mea-
sure periodically by means of horizontal translations. The localization of the gradient 
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of the single layer potential associated with this auxiliary measure will make us able to 
implement a variational argument in Section 11. We remark that a similar localization 
problem had to be dealt with for the horizontal component of the Riesz transform in 
[40]. In that case, it was possible to argue introducing an auxiliary measure defined by 
reflections with respect to the horizontal hyperplane. However, it is not know how to 
adapt that construction when having to estimate all the components of the transform, 
so Girela-Sarrión and Tolsa introduced the periodization of the measure. The purpose of 
the first part of this section is to show how to adapt their construction to our context.

Moreover, a priori, the measure μ0 may not be absolutely continuous with respect 
to the Lebesgue measure on Rn+1. This would constitute a problem when trying to 
implement the variational techniques in Lemma 11.1, as the existence of a minimizer 
of the functional here introduced relies on the boundedness of the density with respect 
to the measure Ln+1. This issue can be overcome by introducing a smoothing of the 
measure. For this reason, we define a second auxiliary measure in (9.6).

The periodization. We denote by

M :=
{
Q0 + zP : zP ∈ 6�(Q0)Zn × {0}

}
the family of disjoint cubes covering H and obtained translating Q0 along the coordinate 
(horizontal) axes. The factor 6 is chosen in order for this periodization to be coherent 
with the period of the matrix Ā. Given P ∈ M we denote by zP its center and by 
TP : Rn+1 → Rn+1 the translation

TP (x) := x + zP ,

so that the periodization of the measure reads

μ̃ :=
∑
P∈M

TP �μ0|Q0 .

Observe that μ0(∂Q0) = 0, which implies χQ0 μ̃ = μ0. As for the first modification of the 
measure, we have to prove the equivalent of the localization Lemma 8.3.

Lemma 9.1. Let κ0, θ0 and ε0 be as in Section 8 and δ as in the Main Lemma. Letting

δ̃ := Mn+1
(
ε0 + θ

α̃/(n+α̃)
0 + κ

1/2
0 + δ1/2

)
,

we have

αH
μ̃ (3MQ0) � δ̃. (9.1)

Moreover, for
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ε̃ := ε + 1
M2α̃ + M4n+2δ1/(4n+4) + ε0 + θ

α̃/(n+α̃)
0

+ κ
1/2
0 + M2n+2δ̃1/(4n+5) + (M�(Q0))2α̃

we have
ˆ

Q0

∣∣T̄ (χMQ0 μ̃)
∣∣2dμ̃ � ε̃μ̃(Q0). (9.2)

Idea of the proof. The geometric inequality (9.1) was proved in [21, Lemma 7.1]. An 
estimate analogous to (9.2) was proved in [21, Lemma 7.2]. In order to prove it, one 
first observes that the construction of the measure μ̃ yields μ̃|Q0 = μ0|Q0 , which in turn 
implies

ˆ

Q0

∣∣T̄ (χMQ0 μ̃
)∣∣2 dμ̃ =

ˆ

Q0

∣∣T̄ (χMQ0 μ̃
)∣∣2 dμ0

�
ˆ

Q0

∣∣T̄ (χMQ0μ0
)∣∣2 dμ̃ +

ˆ

Q0

∣∣T̄ (χMQ0(μ̃− μ0)
)∣∣2 dμ̃ =: I + II

The first summand can be readily estimated via Lemma 8.3. In order to bound the term 
II let us observe that since, by construction, μ̃0|Q0 = μ̃|Q0 and μ0|(Q0)c = μ̃|(Q0)c , we 
can write

T̄
(
χMQ0(μ̃− μ0)

)
= T̄

(
χMQ0\Q0(μ̃− μ)

)
.

Thus, the integral II can be estimated by an approximation of the characteristic function 
χMQ0\Q0 via a C1 cut-off which is compactly supported in MQ0 \Q0 and using the 
flatness of μ̃ at the level of 3MQ0. We omit further details. �

It is not difficult to see that the measure μ̃ has polynomial growth:

μ̃(B(x, r)) � rn for every x ∈ Rn+1 and r > 0.

The following lemma contains a technical estimate for a suitably modified version of the 
density Pμ̃,α̃(2BQ).

Lemma 9.2. For every Q ∈ Stop0 \ Bad the inequality
ˆ

1.1BQ\Q

ˆ

Q

1
|x− y|n dμ̃(x)dμ̃(y) � θ

α̃
(n+α̃)(1+2n)
0 μ̃(Q) (9.3)

holds. Moreover, the function
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pμ̃,α̃(x) :=
∑

Q∈Stop0 \Bad

χQPμ̃,α̃(2BQ)

satisfies

ˆ

Q0

p2
μ̃,α̃dμ̃ � θ

2α̃
(n+α̃)(1+2α̃)
0 μ̃(Q0). (9.4)

Remark on the proof. For (9.3) we refer to [21, Lemma 7.3]. In order to prove (9.4) it 
suffices to follow verbatim the path of (geometric) [21, Lemma 7.4] taking into consid-
eration the right homogeneity given by α̃, which leads to

ˆ

Q0

p2
μ̃,α̃dμ̃ �

(
κ̄ + θ

2α̃
(n+α̃)
0
κ̄2α̃ + θ

α̃
n+α̃

0

)
μ̃(Q0), (9.5)

where 0 < κ̄ < 1 is a small constant. Inequality (9.5) gives the desired estimate after 
making the choice κ̄ = θ

2α̃/[(n+α̃)(1+2α̃)]
0 . �

The smoothing. Let us define

η0 :=
∑

Q∈Stop0 \Bad

μ0(Q)
Hn+1

( 1
4B(Q)

)Hn+1| 1
4B(Q) (9.6)

and its periodization

η :=
∑
P∈M

TP �η0.

We remark that, since Stop0 is a finite family, the measures η0 and η both have bounded 
density with respect to Hn+1. As specific control on the density is not relevant to the 
purposes of our proof. The following lemma contains a localization estimate for the 
potential associated with η.

Lemma 9.3. Denoting

ε′ := ε̃ + �(Q0)2α̃ + Mnκ−2n−2α̃
0 θ

2α̃
(n+α̃)(1+2α̃)
0 + θ

2α̃
(n+α̃)(1+2n)
0 ,

we have
ˆ

|T̄ (χMQ0η)|2dη � ε′η(Q0).

Q0
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The presence of the summand �(Q0)2α̃ in ε′ (already taken into account in ε̃) to point 
out that, as in (6.6), the lack of antisymmetry of K̄(·, ·) gives the error term∣∣mμ̃,Q

(
T̄μ̃χQ

)∣∣ � �(Q)α̃ � �(Q0)α̃

for every Q ∈ Stop0 \ Bad. This contribution is not present in the case of an elliptic 
matrix with constant coefficients. The rest of the proof is analogous to the one of [21, 
Lemma 8.1] and all is needed is a careful check that Lemma 9.2 applies and the new 
homogeneity does not affect the final result. We omit further details.

Remark 9.1. Observe that the expressions of δ̃, ̃ε and ε′ all include a summand which 
depends on ε0. In particular, the quantities in question are small if ε0 and M�(Q0) are 
chosen small enough. Then the choice of ε0 � 1 (which is possible because we assumed 
(8.2) to hold) gives the localization for the potentials associated with the auxiliary mea-
sures.

10. The localization of T̄ η

Let L∞
M denote the set of functions f ∈ L∞(η) such that

f(x + zP ) = f(x)

for every x ∈ Rn+1 and P ∈ M.
Let ϕ ∈ C1(Rn+1) be a non-negative radial function whose support is contained in 

B(0, 2) and that equals 1 on B(0, 1). For r > 0 and x ∈ Rn+1 let us set ϕr(x) := ϕ(x/r). 
Observe that ‖∇ϕ‖∞ � 1. For x, y ∈ Rn+1 we define the regularized kernel

K̃r(x, y) = K̄(x, y)ϕr(x− y)

and its associated operator

T̃r(fη)(x) :=
ˆ

K̃r(x, y)f(y)dη(y) for f ∈ L∞
M(η),

where the integral above is absolutely convergent.
We are interested in getting an existence result for the limit

pv T̄ (fη)(x) = lim
r→∞

T̃r(fη)(x). (10.1)

For simplicity, we denote the principal value in (10.1) just as T̄ (fη)(x).

Lemma 10.1. Let f ∈ L∞
M. The principal value T̄ (fη)(x) exists for every x ∈ Rn+1. 

Moreover, given any compact set F ⊂ Rn+1, there exist r0 = r0(F ) > 0 and a constant 
cF depending on F such that for s > r ≥ r0
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∥∥T̃r(fη) − T̃s(fη)
∥∥
∞,F

� cF
rγ

‖f‖∞,

where γ ∈ (0, 1) is as in Lemma 2.7.

Remark 10.1. Lemma 10.1 implies that the limit in (10.1) converges uniformly on com-
pact sets and in supp η.

Proof. Recall that we can assume �(Q0) < 1. Let s > r. Let us denote ν := fη, ϕr,s(x) :=
ϕr(x) − ϕs(x) for every x ∈ Rn+1 and K̃r,s(x, y) := K̄(x, y)ϕr,s(x − y). Because of the 
periodicity of f and the definition of η, we have

ν =
∑
P∈M

(TP )�(χQ0ν)

so that

T̃r(fη)(x) − T̃s(fη)(x) =
ˆ

K̃r,s(x, y)d
( ∑

P∈M
(TP )�(χQ0ν)

)
(y)

=
∑
P∈M

ˆ

Q0

K̃r,s(x, y + zp) dν(y),
(10.2)

the last equality being a consequence of K̃r,s having compact support, which implies 
that the sum has only finitely many non-zero terms.

Let A0 be the homogenized matrix associated with {Lε}ε > 0 and χ� be as in Section 2, 
with � = 6�(Q0). Recall that

‖∇χ�‖∞ � 1

(see (2.9)). The matrix A0 is an elliptic matrix whose coefficients are constants and can 
be expressed in terms of χ and those of A. We denote by Θ(·, ·; A0) the fundamental 
solution of the operator L0 = − div(A0∇). We decompose the right hand side of (10.2)
as ∑

P∈M

ˆ

Q0

K̃r,s(x, y + zp)dν(y)

=
∑
P∈M

ˆ

Q0

(
K̄(x, y + zP ) − (Id + ∇χ�(x))∇1Θ(x, y + zP ;A0)

)
ϕr,s(x− y − zP )dν(y)

+
∑
P∈M

ˆ

Q0

(
Id + ∇χ�(x)

)
∇1Θ(x, y + zP ;A0)ϕr,s(x− y − zP )dν(y)

≡ Ir,s(x) + IIr,s(x).
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Let us observe that since F is compact and y ∈ Q0, there exists a compact set F̃ such 
that ±(x − y) ∈ F̃ , so that if we choose r0 ≥ 2 diam

(
F̃
)
, both ϕr,s(x − y − zP ) and 

ϕr,s(x − y + zP ) vanish for |zP | < r. Moreover, |x − y| ≤ diam
(
F̃
)
≤ r/2 ≤ |zP | and

|(x− y) − zP | ≈ |(x− y) + zP | ≈ |zP |.

Let us now estimate Ir,s(x). As stated in Lemma 2.7, there exist C > 0 and γ ∈ (0, 1)
depending only on n and α such that∣∣∇1 EĀ(x, y + zP ) −

(
Id + ∇χ�(x)

)
∇1Θ(x, y + zP ;A0)

∣∣ ≤ C�(Q0)γ |x− y − zP |−(n+γ)

for every x, y ∈ Rn+1. Then, exploiting the linear growth of η and the considerations on 
the support of ϕr,s, we get

|Ir,s(x)| �
∑

P∈M,|zP |≥r

ˆ

Q0

�(Q0)γd|ν|(y)
|x− y − zP |n+γ

� ‖f‖∞
∑

P∈M,|zP |≥r

�(P )n+γ

|zP |n+γ

� ‖f‖∞�(Q0)γ

rγ
. (10.3)

In the last inequality of (10.3) we used the convergence of 
∑

P∈M �(P )n|zP |−n.
We are left with the estimate of IIr,s(x). First, we observe that there exists a compact 

set F̃ such that both (x − y) and −(x − y) belong to F̃ for all x ∈ F and y ∈ Q0. 
Furthermore, P ∈ M if and only if −P ∈ M, by [21, Lemma 8.2, p. 41] we have∣∣∇Θ(x− y − zP ;A0)ϕr,s(x− y − zP ) −∇Θ(x− y + zP ;A0)ϕr,s(x− y + zP )

∣∣
� |x− y|

|zP |n+1 ≤ diam (̃F )
|zP |n+1 , (10.4)

for all P ∈ M with |zP | ≥ r. Moreover, the quantity in the left-hand side of the display 
above vanishes for |zP | < r.

Hence, using the antisymmetry of ∇Θ(·; A0) and the facts highlighted above, there 
exists a constant cF > 0 such that

|IIr,s(x)| ≤ ‖Id + ∇χ�‖∞
∣∣∣∣ ∑
P∈M

ˆ

Q0

∇1Θ(x, y + zP ;A0)ϕr,s(x− y − zP )dν(y)
∣∣∣∣

�
(2.9)

∣∣∣ ∑
P∈M

ˆ

Q0

∇1Θ(x, y + zP ;A0)ϕr,s(x− y − zP )dν(y)
∣∣∣

≤ 1
2

∑
P∈M

ˆ

Q0

∣∣∇Θ(x− y − zP ;A0)ϕr,s(x− y − zP )

−∇Θ(x− y + zP ;A0)ϕr,s(x− y + zP )
∣∣ d|ν|(y)



50 C. Puliatti / Journal of Functional Analysis 282 (2022) 109376
�
(10.4)

∑
P∈M:|zP |≥r

ˆ

Q0

|x− y|
|zP |n+1 d|ν|(y)

� diam(F̃ )
∑

P∈M:|zP |≥r

|ν|(Q0)
|zP |n+1 ≤ cF ‖f‖∞

r
. (10.5)

We conclude the proof of the lemma gathering (10.3), (10.5) and observing that, being 
γ ∈ (0, 1) and r > 1, r−1 < r−γ . �

The measure η is M-periodic and the matrix Ā, by construction, is 6�(Q0)-periodic. 
This implies that for every f ∈ L∞

M(η) and r > 0, the function T̃r(fη) is M-periodic, 
too. The same holds for pvT (fη). Using Lemma 10.1, the following result is immediate.

Corollary 10.1. T̄η is a bounded operator from L∞
M to L∞

M. For r > 0 big enough and for 
every f ∈ L∞

M(η) we have

∥∥T̄ (fη) − T̃r(fη)
∥∥
∞,F

�F
‖f‖∞
rγ

.

Our next intent is to prove the final localization estimate
ˆ

Q0

∣∣T̄ η∣∣2dη � η(Q0). (10.6)

We have already proved that for M big enough there exists ε′ � 1 such that
ˆ

Q0

∣∣T̄ (χMQ0η)
∣∣2dη � ε′η(Q0). (10.7)

Then, in order to prove (10.6), it suffices to use the estimate in the following lemma.

Lemma 10.2. Let f ∈ L1
loc(η) be a M-periodic function and let M̃ = 6Ñ , where Ñ ≥ 3

is an odd number. For all x ∈ 2Q0 we have

∣∣T̄ (χ(M̃Q0)cfη
)
(x)

∣∣ � 1
M̃γ�(Q0)n

ˆ

Q0

|f |dη. (10.8)

Proof. Being Ñ odd, there exists a subfamily M̃ ⊂ M such that

χ(M̃Q0)cη =
∑
P∈M̃

TP �η

and whose elements P ∈ M̃ satisfy |zP | � M̃�(Q0). In particular
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|x− y − zP | ≈ |zp| for x, y ∈ 2Q0. (10.9)

Let r > 0 and x ∈ 2Q0. Denote ν := fη and observe that there are just finitely many 
cubes P ∈ M̃ such that |zP | < r. Arguing as in the proof of Lemma 10.1, this justifies 
the following writings.

T̃r

(
χ(M̃Q0)cfη

)
(x) =

ˆ
K̄(x, y)ϕr(x− y)dν(y)

=
∑
P∈M̃

ˆ

Q0

K̄(x, y + zP )ϕr(x− y − zP )dν(y)

=
∑
P∈M̃

ˆ

Q0

(
K̄(x, y + zP ) − (Id + ∇χ�(x))∇1Θ(x, y + zP ;A0)

)
ϕr(x− y − zP )dν(y)

+
∑
P∈M̃

ˆ

Q0

(
Id + ∇χ�(x)

)
∇1Θ(x, y + zP ;A0)ϕr(x− y − zP )dν(y)

≡ Ir(x) + IIr(x)

Let us estimate Ir(x). Using (10.9) together with Lemma 2.7 and the estimate |zP | �
M̃�(Q0) for P ∈ M̃, we can write

|Ir(x)| �
∑
P∈M̃

ˆ

Q0

�(Q0)γ

|x− y − zP |n+γ
dν(y) ≈

∑
P∈M̃

ˆ

Q0

�(Q0)γ

|zP |n+γ
dν(y)

=
∑
P∈M̃

�(Q0)γ

|zP |n+γ
|ν|(Q0) �

|ν|(Q0)
M̃γ�(Q0)n

( ∑
P∈M̃

�(Q0)n

|zP |n
)

� 1
M̃γ�(Q0)n

ˆ

Q0

|f |dη.

(10.10)

We claim that

|IIr(x)| � 1
M̃�(Q0)n

ˆ

Q0

|f |dη. (10.11)

In order to prove the claim, we observe that Ǩr(·) := ∇Θ(·; A0)ϕr(·) is an antisymmetric 
kernel and that P ∈ M̃ if and only if −P ∈ M̃. Thus, we can write

IIr = 1
2

∑
P∈M̃

(Id + ∇χ�(x))
ˆ

Q0

[
Ǩr(zP + (x− y)) − Ǩr(zP − (x− y))

]
dν(y).

Let us observe that for x ∈ 2Q0 and P ∈ M̃ we have |zP +(x −y)| ≈ |zP −(x −y)| ≈ |zP |. 
Hence, by (2.9) and the Calderón-Zygmund properties of the kernel Ǩr the following 
inequalities hold:
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|IIr| �
∑
P∈M̃

ˆ

Q0

|x− y|
|zP |n+1 d|ν|(y) �

∑
P∈M̃

�(Q0)
|zP |n

|ν|(Q0) �
|ν|(Q0)
M̃�(Q0)

.

This proves the claim (10.11).
The estimates (10.10) and (10.11), together with the observation that M̃−1 ≤ M̃−γ , 

conclude the proof of the lemma after taking the limit for r → ∞. �
Corollary 10.2 (Final localization estimate). We have

ˆ

Q0

∣∣T̄ η∣∣2dη �
( 1
M2γ + ε′

)
η(Q0).

Proof. Inequality (10.8) in the case f ≡ 1 reads

∣∣T̄ (χMQ0η)
∣∣ � 1

Mγ
,

so that applying it together with (10.7), we have
ˆ

Q0

∣∣T̄ η∣∣2dη �
ˆ

Q0

∣∣T̄ (χMQ0η)
∣∣2dη +

ˆ

Q0

∣∣T̄ (χ(MQ0)cη)
∣∣2dη �

( 1
M2γ + ε′

)
η(Q0),

which finishes the proof. �
11. A pointwise inequality and the conclusion of the proof

The following lemma implements a variational technique inspired by potential theory 
that allows to obtain a pointwise inequality for the potential of a proper auxiliary mea-
sure. We denote as T̄ ∗�ξ the operator that, given a vector-valued measure �ξ, is defined 
by

T̄ ∗�ξ(x) :=
ˆ

∇1Ē(y, x) · d�ξ(y) (11.1)

and which corresponds to the adjoint of T̄ .

Lemma 11.1. Suppose that for some 0 < λ ≤ 1 the inequality
ˆ

Q0

|T̄ η|2dη ≤ λη(Q0) (11.2)

holds. Then there is a function b ∈ L∞(η) such that

• 0 ≤ b ≤ 2,
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• b is M-periodic,
•

´
Q0

b dη = η(Q0),

and such that the measure ν = bη satisfies
ˆ

Q0

|T̄ ν|2dν ≤ λν(Q0) (11.3)

and

|T̄ ν|2(x) + 2T̄ ∗((T̄ ν)ν
)
(x) ≤ 6λ for ν-a.e. x ∈ Rn+1. (11.4)

Proof. The proof works almost verbatim as that of [21, Lemma 9.1]. We briefly outline it 
for the reader’s convenience. In particular, we recall that the way to prove (11.4) consists 
in defining an adapted energy functional

J(a) = λ‖a‖L∞(η)η(Q0) +
ˆ

Q0

|T̄ (aη)|2dη,

where a ranges in

A =
{
a ∈ L∞(η) : a ≥ 0, a is M-periodic, and

ˆ

Q0

a dη = η(Q0)
}
.

Then, observe that 1 ∈ A and

inf
a∈A

J(a) ≤ J(1)
(11.2)
≤ 2λη(Q0).

Thus, since J(a) ≥ λ‖a‖L2∞(η)η(Q0), we have that

inf
a∈A

J(a) = inf
a∈A,‖a‖L∞(η)≤2

J(a).

Hence Banach-Alaoglu theorem implies that, possibly passing to a subsequence, aj con-
verges weakly * in L∞(η) to some b ∈ L∞(η). It is not hard to see that b ∈ A. Then 
(using the fact that η has bounded density with respect to the Lebesgue measure) one 
proves that b minimizes J in A and, finally, tests J on the competitors

bt :=
(
1 − tχPM(B)

)
b + t

ν(B)
ν(Q0)

b, 0 ≤ t < 1,

where B is a ball centered at supp ν ∩ Q0 which is contained in Q0, and PM(B) :=⋃
R∈M(B + zR). In this way, we obtain
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ˆ

B

|T̄ ν|2dν + 2
ˆ

B

T̄ ∗((Tν)ν
)
dν ≤ 6λν(B),

so (11.4) follows by Lebesgue’s differentiation theorem as ν(B) → 0. We further remark 
that Girela-Sarrión and Tolsa’s calculations do not use the antisymmetry of the kernel
of T̄ but just its M-periodicity, which follows by the construction of Ā. �
11.1. A maximum principle

Let λ, b and ν be as in Lemma 11.1. In order to be able to perform the final argument 
to get the contradiction, we need to extend the inequality (11.4) out of the support of 
ν. More precisely, the next step consists in proving that a inequality similar to that 
provided by Lemma 11.1 holds in a suitable strip. To this purpose, some version of 
maximum principle is needed. The elliptic setting of the problem makes this procedure 
slightly more technical then the one adopted by Girela-Sarrión and Tolsa in the case of 
the Riesz transform.

Before presenting the main result of the section, we introduce some notation. We 
denote by H̃ the hyperplane

H̃ := {x ∈ Rn+1 : xn+1 = 3�(Q0)/2},

which corresponds to the translate of H that contains the upper face of 3Q0. Let KS � 1
to be chosen later and let S denote the strip

S := {x ∈ Rn+1 : dist(x, H̃) < KS�(Q0)}.

Its boundary ∂S is given by the union of two hyperplanes ∂S+ and ∂S− which lay in 
the upper and lower half spaces respectively. Let

xS±= 3
2�(Q0)(1, . . . , 1, 1) ±

(
0, . . . , 0,KS�(Q0)

)
. (11.5)

For the proof of our next lemma we need to invoke a result on elliptic measure. Suppose 
that Ω � Rn+1 is an open set with n-AD-regular boundary and consider a point p ∈ Ω. 
Let ωp

Ω denote the elliptic measure on ∂Ω associated with the operator LĀ with pole at 
p. For the proof of the following standard result we refer to [7, Lemma 2.3].

Lemma 11.2. Let Ω � Rn+1 be open with n-AD-regular boundary with constant CAD. 
There exists ϑ = ϑ(n, A, CAD) ∈ (0, 1) such that for every x ∈ ∂Ω and 0 < r < diam Ω, 
we have

ωy
Ω
(
B(x, r)c

)
≤ C

( |x− y|)ϑ

for y ∈ Ω ∩B(x, r). (11.6)

r
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An application of (11.6) gives a boundary regularity result for LĀ-harmonic functions, 
see e.g Lemma 2.10 in [5].

Lemma 11.3. Let Ω � Rn+1 be open with n-AD-regular boundary with constant CAD. Let 
u ≥ 0 be LĀ-harmonic function in B(x, 4r) ∩Ω and continuous in B(x, 4r) ∩ Ω̄. Suppose, 
moreover, that u ≡ 0 in ∂Ω ∩B(x, 4r). Then, extending u by zero in B(x, 4r) \ Ω̄, there 
exists ϑ = ϑ(n, A, CAD) ∈ (0, 1) such that u is ϑ-Hölder continuous in B(x, 4r) and, in 
particular,

u(y) �n,A,CAD

(dist(y, ∂Ω)
r

)ϑ

sup
B(x,2r)

u for all y ∈ B(x, r).

Lemma 11.4 (Maximum principle on the strip). Let S be the strip as before and let f be 
a bounded continuous LĀ-harmonic function on S so that f |∂S ≡ 0. Then f ≡ 0 on S.

Proof. Choose R > 100KS and set SR := S ∩ [−R, R]n+1. For p ∈ S, denote hp :=
dist(p, ∂S) and let xp be a point that realizes the distance. We choose p far from the 
“vertical” parts ∂SR \ (∂S+ ∪∂S−) of ∂SR, in particular such that B(xp, R/10) ∩ (∂SR \
∂S) = ∅. Let ωp

R denote the elliptic measure with pole at p associated with LĀ on SR. 
The family {SR}R is a collection of AD-regular sets whose AD-regularity constants do 
not depend on R. Then inequality (11.6) implies that there exit two constants C and ϑ, 
both independent on R, such that

ωp
R(∂SR \ ∂S) ≤ ωp

R

(
B(xp, R/10)c

)
≤ C

(hp

R

)ϑ

.

By hypothesis we may assume that f ≤ 1 on ∂SR \ ∂S. Thus, we have

|f(p)| =
∣∣∣ ˆ fdωp

R

∣∣∣ ≤ ‖f |∂SR\∂S‖∞ωp
R(∂SR \ ∂S) ≤ C

(hP

R

)ϑ

. (11.7)

The results stated in the lemma follows by passing to the limit in (11.7) for R → ∞. �
Now, we prove an existence result on the infinite strip S.

Lemma 11.5. There exists a function fS : S̄ → R such that:

(1) fS is LĀ-harmonic in the strip S and continuous in S̄.
(2) fS is M-periodic.
(3) fS(x) = ±1 on ∂S± and fS(x) = 0 for x ∈ H̃.

Proof. Let k ∈ N, k ≥ 100KS and denote Sk = S∩ [−k, k]n+1. We define the continuous 
functions fk on ∂Sk as
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fk(x) =
xn+1 − 3

2�(Q0)
KS�(Q0)

.

In particular, observe that fk(x) = ±1 for x ∈ ∂S± and

fk(x) = −fk

((
x1, . . . , xn,−xn+1 + 3�(Q0)

))
,

i.e. it is antisymmetric with respect to H̃ .
Define uk be the LĀ-harmonic function such that uk|∂Sk

= fk, whose existence is 
guaranteed by the continuity of fk and the AD-regularity of Sk. Our aim is to prove 
that, a part from possibly considering a proper subsequence, uj converges uniformly in 
the compact subsets of Sk, for every k to an LĀ-harmonic function in S.

We claim that there exist γ ∈ (0, 1) and Ck > 0 such that

|uj(x) − uj(y)| ≤ Ck|x− y|γ for x, y ∈ S̄k, j ≥ k + 2. (11.8)

Assume that (11.8) holds. As a consequence of Ascoli-Arzelà’s theorem together with 
a standard diagonalization argument, there is a function fS so that uk converges to fS
uniformly on the compact subsets of S. The LĀ-harmonicity of fS is a consequence of 
Caccioppoli’s estimate (cfr. [22, Theorem 3.77]).

To prove (2), define �v = (6�(Q0), 0, . . . , 0) and observe that, being the matrix Ā M-
periodic and since fS is constant on ∂S±, the function f(x) = fS(x) − fS(x +�v) satisfies 
the hypothesis of Lemma 11.4. So, f ≡ 0 and fS is M-periodic.

To prove (3), first observe that A(x) = Aφ

((
x1, . . . , xn, −xn+1 + 3�(Q0)

))
, where φ

is the function that maps a point to its reflected with respect to H̃ and Aφ is defined as 
in (5.5). Then we can apply again Lemma 11.4 to

f̃(x) = fS(x) + fS

((
x1, . . . , xn,−xn+1 + 3�(Q0)

))
,

which is LĀ-harmonic and vanishes on ∂S.
We are left with the proof of the claim (11.8). By Lemma 11.3, there exists ϑ ∈ (0, 1)

depending only on n, Ā and the AD-regularity of ∂Ω (hence independent both on j and 
k) such that uj is ϑ-Hölder continuous in the set {x ∈ Ω̄ : dist(x, ∂Ω) ≤ 2�(Q0)}. Being 
‖uj‖∞ ≤ 2 for every j, by De Giorgi-Nash interior estimates we can infer that there 
exists γk independent on j such that, for every j ≥ k + 2, uj is γk-Hölder continuous in 
{x ∈ Ωk+1 : dist(x, ∂Ω) > �(Q0)}. Gathering the interior and the boundary regularity of 
uj proves (11.8). �

By the previous lemma, Lemma 11.3 and the fact that fS ≡ 0 on H̃, we have the 
estimate

|fS(y)| �
(dist(y, H̃))ϑ

, for y ∈ S with dist(y, H̃) ≤ 10�(Q0).

KS�(Q0)
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Let us define the auxiliary function

FS(x) := fS(x)T̄ ν(xS+).

Observe that FS |∂S± ≡ ±T̄ ν(xS+). The rest of the present section is devoted to the 
proof of the following, which may be regarded as an approximated maximum principle 
on S.

Lemma 11.6 (Pointwise bound for the potential on the strip). For x ∈ S we have

|T̄ ν(x) − FS(x)|2 + 4T̄ ∗((T̄ ν)ν
)
(x) � λ1/2 + 1

K2α̃
S

+ 1
Kϑ

S

+ (CS�(Q0))α̃ +
(KS

CS

)α̃

,

where CS is a constant chosen so that CS � KS.

Before proving this lemma, we need some auxiliary result.

Lemma 11.7. Let xS+ and xS− as in (11.5). Then:

(1) For x ∈ ∂S+, dist(x, xS+) � �(Q0) we have the estimate

|T̄ ν(x) − T̄ ν(xS+)| � 1
Kα̃

S

. (11.9)

The analogous estimate holds in x ∈ ∂S− replacing xS+ with xS−.
(2) The difference of −T̄ ν(xS+) and T̄ ν(xS−) can be estimated as

|T̄ ν(x+) + T̄ ν(xS−)| � 1
Kα̃

S

.

(3) For x with dist(x, H̃) ≥ 2�(Q0) we have

T̄ ∗((T̄ ν)ν
)
(x) � λ1/2. (11.10)

Proof. Let us begin with the proof of (1). Because of the M-periodicity of T̄ ν, we can 
assume without loss of generality that xH ∈ [−3�(Q0), 3�(Q0)]n × {0}, xH denoting the 
projection of x on H. We claim that for P ∈ M and y ∈ Q0 we have

|K̄(x, y + zP ) − K̄(xS+, y + zP )| � �(Q0)α̃

(KS�(Q0))n+α̃ + |zP |n+α̃
.

This follows from the (global) Calderón-Zygmund estimates for K̄(·, ·) once we observe 
that |x −xS+| � |x − y− zP | ≈ KS�(Q0) + |zP |. So, for r > 0, standard calculations give
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∣∣T̃rν(x) − T̃rν(xS+)
∣∣ � ∑

P∈M

ˆ

Q0

�(Q0)α̃

(KS�(Q0))n+α̃ + |zP |n+α̃
dν(y)

=
∑
P∈M

�(Q0)n+α̃

(KS�(Q0))n+α̃ + |zP |n+α̃
� �(Q0)n+α̃

(KS�(Q0))n+α̃
= 1

Kα̃
S

.

Being this estimate independent on the choice of r, in the limit for r → ∞ we have 
(11.9). The proof of the analogous estimate for xS− is identical, so we omit it and we go 
to the proof of (2).

Denote by x∗ the reflection of the point x across x0 = 3
2�(Q0)(1, . . . , 1), i.e.

x∗ = 2x0 − x.

By the specific choice of x0, this transformation can be obtained via a composition of 
the reflections ψj ’s with respect to the hyperplanes passing through x0 which we defined 
in (5.4):

x∗ = ψ1 ◦ · · · ◦ ψn+1(x).

Moreover,

(xS+)∗ = 3�(Q0)(1, . . . , 1) − 3
2�(Q0)(1, . . . , 1) −

(
0, . . . , 0,KS�(Q0)

)
= xS− . (11.11)

Thus, an immediate application of Lemma 5.1 and (5.10) gives that, for y ∈ Q0,

K̄(xS+ , y + zP ) = −K̄(xS− , y
∗ + z∗P ), P ∈ M. (11.12)

Observe that

|y + zP − (y∗ − z∗P )| ≤ |y − y∗| + |zP − (−z∗P )| � �(Q0)

which, combined with Lemma 2.4, gives∣∣K̄(xS+ , y + zP ) + K̄(xS− , y − zP )
∣∣

(11.12)= |K̄(xS+ , y + zP ) − K̄(x∗
S− , y

∗ − z∗P )|

=|K̄(xS+ , y + zP ) − K̄(xS+ , y
∗ − z∗P )| � �(Q0)α̃

(KS�(Q0))n+α̃ + |zP |n+α̃
,

(11.13)

where the second equality uses (11.11) (with −zP = z−P replacing zP ). Taking r > 0
and applying (11.13), we have

∣∣T̃rν(xS+) + T̃rν(xS−)
∣∣ � ∑ �(Q0)n+α̃

(KS�(Q0))n+α̃ + |zP |n+α̃
� 1

Kα̃

P∈M S
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which, taking the limit for r → ∞, proves (2).
We are left with the proof of (3). Set σ = (T̄ ν)ν and observe that this measure is M-

periodic. So, without loss of generality, we can assume that xH ∈ [−3�(Q0), 3�(Q0)]n ×
{0}. Let r > 0 and, denoting by A0 the homogenized matrix associated with Ā, by χ the 
vector of correctors and � = 6�(Q0), write

T̃rσ(x) =
∑

P∈M

ˆ

Q0

K̃r(y + zP , x)dσ(y)

=
∑

P∈M

ˆ

Q0

(
K̄(y + zP , x) − (Id + ∇χ�(y + zP ))∇1Θ(y + zP , x;A0)

)
ϕr(x− y − zP )dσ(y)

+
∑

P∈M

ˆ

Q0

(Id + ∇χ�(y + zP ))∇1Θ(y + zP , x;A0)ϕr(x− y − zP )dσ(y)

≡ Ir + IIr.

Recalling that ‖∇χ�‖∞ � 1 and using Lemma 2.7, we can proceed with the following 
estimates

|Ir| �
∑
P∈M

ˆ

Q0

�(Q0)γ

|x− y − zP |n+γ
d|σ|(y) �

∑
P∈M

ˆ

Q0

�(Q0)γ

(dist(x, H̃) + |zP |)n+γ
d|σ|(y)

� �(Q0)n+γ

(dist(x, H̃) + |zP |)n+γ

|σ|(Q0)
�(Q0)n

� �(Q0)n+γ

dist(x, H̃)γ
|σ|(Q0)
�(Q0)n

� |σ|(Q0)
�(Q0)n

,

(11.14)

where the last inequality holds because we assumed dist(x, H̃) ≥ 2�(Q0). We claim that

|IIr| �
|σ|(Q0)
�(Q0)

. (11.15)

In order to prove this, let us first observe that the antisymmetry of ∇Θ(·; A0) and the 
periodicity of χ� yield

IIr = 1
2

∑
P∈M

ˆ

Q0

[
∇χ�(zP + y)∇Θ(zP + (y − x);A0)ϕr(x− y + zP )

−∇χ�(−zP + y)∇Θ(zP − (y − x);A0)ϕr(x− y − zP )
]
dν(y)

= 1
2

∑
P∈M

ˆ

Q0

∇χ�(zP + y)
[
∇Θ(zP + (y − x);A0)ϕr(x− y + zP )

−∇Θ(zP − (y − x);A0)ϕr(x− y − zP )
]
dν(y).

(11.16)

Let us define Ǩr(·) := ∇Θ(·; A0)ϕr(·). We claim that, for x ∈ Q0 ∩ H such that 
dist(x, H) ≥ �(Q0)
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|Ǩr(zP +(x−y))− Ǩr(zP − (x−y))| � dist(x,H)
(dist(x,H) + |zP |)n+1 for y ∈ Q0. (11.17)

The proof of the formula above can be conducted splitting the cases |zP | ≤ 2|x − y|
and |zP | > 2|x − y|, and coupling the Calderón-Zygmund properties of Ǩr with simple 
geometric considerations. The details can be found in [21, (8.25)]. Gathering (11.16), 
(11.17) and (2.9) we obtain

|IIr| � ‖∇χ�‖∞
∑
P∈M

ˆ

Q0

|Ǩr(zP + (x− y)) − Ǩr(zP − (x− y))|d|ν|(y)

�
∑
P∈M

ˆ

Q0

dist(x,H)
(dist(x,H) + |zP |)n+1 d|ν|(y)

= |ν|(Q0)
dist(x,H)
�(P )n

∑
P∈M

�(P )n(
dist(x,H) + |zP |

)n+1 � |ν|(Q0)
�(P )n ,

which concludes the proof of (11.15) and, thus, the lemma.
It is possible to prove this estimate analogously to the case of the Riesz transform. 

We omit its proof in order not to make the presentation too lengthy. We remark that the 
calculations that lead to (11.15) solely relies on the Calderón-Zygmung property of the 
kernel and some geometric considerations that are independent on its specific expression. 
We refer to [21, (8.20)] for more details.

Hence, gathering (11.14), (11.15) and passing to the limit on r, we get

T̄ ∗((T̄ ν)ν
)
(x) � 1

�(Q0)n

ˆ

Q0

|T̄ ν|dν.

Then, recalling (11.3), the growth of ν and using Cauchy-Schwarz’s inequality,

T̄ ∗((T̄ ν)ν
)
(x) � 1

�(Q0)n
( ˆ
Q0

|T̄ ν|2dν
)1/2

ν(Q0) � λ1/2,

which finishes the proof of (3). �
The following result is a direct consequence of Lemma 11.7.

Corollary 11.1. For x ∈ ∂S

|T̄ ν(x) − FS(x)|2 � 1
K2α̃

S

, (11.18)

where the implicit constant does not depend on S.
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Another result which is needed for the application of the maximum principle is the 
estimate of |FS(x)| for x close to the support of the measure ν.

Lemma 11.8. Let KS be an odd natural number, KS ≥ 3. For x ∈ Rn+1 with dist(x, H̃) ≤
10�(Q0) we have

|FS(x)| � 1
Kϑ

S

.

Proof. Because of the Hölder continuity of fS, we can write

|FS(x)| �
(dist(x, H̃)
KS�(Q0)

)ϑ

|T̄ ν(xS+)| � |T̄ ν(xS+)|
Kϑ

S

.

So, to prove the lemma, it suffices to show that

|T̄ ν(xS+)| ≤ C

for some constant C > 0 not depending on KS . Recall now that ν = b η. Applying 
Lemma 10.2 with M̃ = 6KS and f = b to the point 0 ∈ 2Q0, we have the estimate

∣∣T̄ (χ(6KSQ0)cν
)
(0)

∣∣ � 1
(6KS)γ�(Q0)n

ˆ

Q0

|b| dη � 1, (11.19)

where the implicit constant in the last inequality does not depend on KS . Now, we 
observe that the (global) Calderón-Zygmund properties of K̄ and the fact that |xS+| �
KS�(Q0) imply

∣∣T̄ (χ(6KSQ0)cν
)
(0) − T̄

(
χ(6KSQ0)cν

)
(xS+)

∣∣ � ˆ

(6KSQ0)c

∣∣K̄(0, y) − K̄(xS+, y)
∣∣dν(y)

�
ˆ

(6KSQ0)c

|xS+|α̃
(|y| + |xS+|)n+α̃

dν(y) � 1.

(11.20)

Then, by (11.19), (11.20) and the triangle inequality, we have

∣∣T̄ (χ(6KSQ0)cν(xS+)
)∣∣

≤
∣∣T̄ (χ(6KSQ0)cν

)
(0)

∣∣ +
∣∣T̄ (χ(6KSQ0)cν

)
(0) − T̄

(
χ(6KSQ0)cν

)
(xS+)

∣∣ � 1.
(11.21)

Moreover, since dist(xS+, supp ν)n � KS�(Q0) and estimating the kernel via Lemma 2.4,
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∣∣T̄ (χ6KSQ0ν
)
(xS+)

∣∣ ≤ ˆ

6KSQ0

|K̄(xS+, y)|dν(y) �
ˆ

6KSQ0

1
|xS+ − y|n dν(y)

� ν(6KSQ0)
dist(xS+, supp ν)n � Kn

S�(Q0)n

dist(xS+, supp ν)n � 1. (11.22)

Thus, gathering (11.21) and (11.22) we obtain

|T̄ ν(xS+)| ≤
∣∣T̄ (χ6KSQ0ν

)
(xS+)

∣∣ +
∣∣T̄ (χ(6KSQ0)cν(xS+)

)∣∣ � 1,

which proves the lemma. �
In order to be able to use the previous lemma, from now on we assume without loss of 

generality KS ≥ 3 and we suppose it to be an odd number. Observe that for x ∈ supp ν, 
Lemma 11.8 and (11.4) give

sup
x∈supp ν

∣∣T̄ ν(x) − FS(x)
∣∣2 + 4T̄ ∗((T̄ ν)ν)(x)

≤ sup
x∈supp ν

2
∣∣T̄ ν(x)|2 + 4T̄ ∗((T̄ ν)ν)(x) + 2|FS(x)|2

≤ 12λ + 2|FS(x)|2 � λ + 1
Kϑ

S

.

(11.23)

Moreover, by (11.10) and (11.18),

sup
x∈∂S

∣∣T̄ ν(x) − FS(x)
∣∣2 + 4T̄ ∗((T̄ ν)ν)(x) � 1

K2α̃
S

+ λ1/2

which, together with (11.23) brings us to

sup
x∈∂S∪supp ν

∣∣T̄ ν(x) − FS(x)
∣∣2 + 4T̄ ∗((T̄ ν)ν)(x) � λ1/2 + 1

K2α̃
S

+ 1
Kϑ

S

. (11.24)

Finally, we provide the proof of Lemma 11.6.

Proof. We recall that Ā = ĀT . Let �g ∈ L∞(S; Rn+1). We claim that T̄ ∗(�gLn+1) is a 
LĀT -harmonic (vector valued) function. This would imply the maximum principle

sup
x∈S

T̄ ∗(�gLn+1)(x) = sup
x∈∂S∩supp ν

T̄ ∗(�gLn+1)(x). (11.25)

Observe that, because of Lemma 11.5, the same equality holds with FS(x) in place of 
T̄ ∗(�gLn+1)(x). Let ϕ ∈ C∞

c (S \ supp�g) be a test function. To prove the claim, apply 
the definition of T̄ ∗ together with Fubini’s theorem together with the fact that Ē(x, y) =
EAT (y, x):
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ˆ
ĀT∇T̄ ∗(�gLn+1) · ∇ϕ =

ˆ
ĀT∇x

( ˆ
∇yĒ(y, x) · �g(y)dy

)
· ∇ϕ(x)dx

=
ˆ

∇y

(ˆ
ĀT∇xĒ(y, x) · ∇ϕ(x)dx

)
· �g(y)dy

=
ˆ

∇y

(ˆ
ĀT∇x EĀT (x, y) · ∇ϕ(x)dx

)
· �g(y)dy

=
ˆ

∇ϕ · �g = 0.

(11.26)

Notice that for every z ∈ Rn+1 we have the elementary relation

|z|2 = sup
β≥0,e∈Sn

2〈e, z〉 − β2,

so that, choosing z = T̄ ν(x) − FS(x), it reads∣∣T̄ ν(x) − FS(x)
∣∣2 = sup

β≥0,e∈Sn

2〈e, T̄ ν(x)〉 − 2〈e, FS(x)〉 − β2. (11.27)

We want to show that the argument of the supremum in the right hand side of (11.27)
differs from a LĀ-harmonic function possibly by a small term. This will allow to apply 
the maximum principle on the strip and to finish the proof.

For a fixed e ∈ Sn and x ∈ supp ν, we split

〈e, T̄ ν(x)〉 = −T̄ ∗(νe)(x) +
(
T̄ ∗(νe)(x) + 〈e, T̄ ν(x)〉

)
and consider that, claiming that the dominated convergence theorem applies,

T̄ ∗(νe)(x) + 〈e, T̄ ν(x)〉 = lim
r→∞

ˆ (
K̃r(x, y) + K̃r(y, x)

)
· e dν(y). (11.28)

To prove that the previous identity holds, set CS � KS to be chosen later. By the 
triangle inequality, the antisymmetry of ∇1 Θ(x, y; Ā(x)) and the linear growth of ν, we 
have

ˆ

|x−y|<CS�(Q0)

∣∣K̃r(x, y) + K̃r(y, x)
∣∣dν(y)

�
ˆ

|x−y|<CS�(Q0)

∣∣K̄(x, y) −∇1 Θ(x, y; Ā(x))
∣∣dν(y)

+
ˆ

|x−y|<CS�(Q0)

∣∣K̄(y, x) −∇1 Θ(y, x; Ā(x))
∣∣dν(y)

�
ˆ 1

|x− y|n−α̃
dν(y) �

(
CS�(Q0)

)α̃
.

(11.29)
|x−y|<CS�(Q0)
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So, to bound (11.28) we have to estimate the integral on its rights hand side for 
|x − y| > CS�(Q0). As before, by the periodicity of MS we can assume that xH ∈
[−3�(Q0), 3�(Q0)]n×{0}. Hence, using arguments analogous to the ones in Lemma 11.7, 
it is possible to prove that for y ∈ Q0 and zP such that |x − y− zP | > CS�(Q0), we have

∣∣K̄(x, y + zP ) + K̄(x, y − zP )
∣∣ � (KS�(Q0))α̃

|zP |n+α̃ + |x|n+α̃
,

hence, calling MS the subset of P ∈ M such that |x − y − zP | > CS�(Q0) for every 
y ∈ Q0, we have

∑
P∈MS

ˆ

Q0

|K̃r(x, y + zP ) + K̃r(x, y − zP )|dν(y) �
(KS

CS

)α̃

. (11.30)

Analogously, one can prove

∑
P∈MS

ˆ

Q0

|K̃r(y + zP , x) + K̃r(y − zP , x)|dν(y) �
(KS

CS

)α̃

, (11.31)

so, gathering (11.29), (11.30) and (11.31) and letting r → ∞, we can use the dominated 
convergence theorem and we estimate (11.28) as

∣∣T̄ ∗(νe)(x) + 〈e, T̄ ν(x)〉| � (CS�(Q0))α̃ +
(KS

CS

)α̃

. (11.32)

We are now ready to proceed with the calculations for the maximum principle. Indeed, 
taking x ∈ S, an application of (11.27) and (11.32) gives∣∣T̄ ν(x) − FS(x)

∣∣2 + 4T̄ ∗((T̄ ν)ν)(x)

= sup
β≥0,e∈Sn

2〈e, T̄ ν(x)〉 − 2〈e, FS(x)〉 − β2 + T̄ ∗((T̄ ν)ν)(x)

� sup
β≥0,e∈Sn

−2T̄ ∗(νe)(x) − 2〈e, FS(x)〉 − β2 + T̄ ∗((T̄ ν)ν)(x)

+ (CS�(Q0))α̃ +
(KS

CS

)α̃

.

Then, using the maximum principle (11.25) we have

|T̄ ν(x) − FS(x)|2 + 4T̄ ∗((Tν)ν)(x)

� sup
β≥0,e∈Sn

2 − T̄ ∗(νe + (T̄ ν)ν
)
(x) − 2〈e, FS(x)〉 − β2 + (CS�(Q0))α̃ +

(KS

CS

)α̃

≤ sup sup
n

−2T̄ ∗(νe + (T̄ ν)ν
)
(z) − 2〈e, FS(z)〉 − β2
z∈∂S∪supp ν β≥0,e∈S
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+ (CS�(Q0))α̃ +
(KS

CS

)α̃

.

So, another application of (11.27) and (11.32) concludes the proof of the lemma. Indeed, 
recalling the estimate (11.24) on ∂S ∪ supp ν,

|T̄ ν(x) − FS(x)|2 + 4T̄ ∗((Tν)ν)(x)

� sup
z∈∂S∪supp ν

sup
β≥0,e∈Sn

2〈e, T̄ ν(x)〉 − 2〈e, FS(x)〉 − β2

+ T̄ ∗((T̄ ν)ν)(x) + (CS�(Q0))α̃ +
(KS

CS

)α̃

� sup
z∈∂S∪supp ν

|T̄ ν(z) − FS(z)|2 + 4T̄ ∗((T̄ ν)ν)(z) + (CS�(Q0))α̃ +
(KS

CS

)α̃

� λ1/2 + 1
K2α̃

S

+ 1
Kϑ

S

+ (CS�(Q0))α̃ +
(KS

CS

)α̃

. �
11.2. The conclusion of the proof of the Key Lemma

To simplify the notation, set

Err(KS , CS , �(Q0)) := 1
K2α̃

S

+ 1
Kϑ

S

+ (CS�(Q0))α̃ +
(KS

CS

)α̃

.

Notice that if x ∈ 2Q0, Lemma 11.6 together with Lemma 11.8 allows to majorize 
|T̄ ν(x)|2 as∣∣T̄ ν(x)

∣∣2 � |T̄ ν(x) − FS(x)|2 + |FS(x)|2 + 4T̄ ∗((T̄ ν)ν)(x) − 4T̄ ∗((T̄ ν)ν)(x)

� λ1/2 + Err(KS , CS , �(Q0)) + |FS(x)|2 − T̄ ∗((T̄ ν)ν)(x)

� λ1/2 + Err(KS , CS , �(Q0)) − T̄ ∗((T̄ ν)ν)(x).

(11.33)

Let ϕ be a smooth function such that χQ0 ≤ ϕ ≤ χ2Q0 and ‖∇ϕ‖∞ � �(Q0)−1. Set 
ψ := ĀT∇ϕ and observe that it verifies

T̄ ∗[ψLn+1](x) = T̄ ∗[ĀT∇ϕLn+1](x) =
ˆ

∇1 EĀ(y, x) · ĀT (y)∇ϕ(y)dy

=
ˆ

Ā(y)∇1 EĀ(y, x) · ∇ϕ(y)dy = ϕ(x),

the last equality being a consequence of the definition of fundamental solution.
The choice of ϕ ≥ χQ0 , together with Cauchy-Schwarz’s inequality, gives

ν(Q0) ≤
ˆ

ϕdν =
ˆ

T̄ ∗(ψLn+1)dν =
ˆ

T̄ ν · ψdLn+1

≤
( ˆ

|T̄ ν|2|ψ|dLn+1
)1/2(ˆ

|ψ|dLn+1
)1/2

.

(11.34)
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Now, observe that

‖ψ‖∞ ≤ ‖ĀT ‖∞‖∇ϕ‖∞ � �(Q0)−1 (11.35)

and
ˆ

|ψ|dLn+1 � 1
�(Q0)

Ln+1(2Q0) � �(Q0)n. (11.36)

We claim that
ˆ

|T̄ ν|2|ψ|dLn+1 � �(Q0)n.

Applying (11.33) and (11.36), we can write
ˆ

|T̄ ν|2|ψ|dLn+1

�
(
λ1/2 + Err(KS , CS , �(Q0))

)ˆ
|ψ|dLn+1 +

∣∣∣ ˆ T̄ ∗((T̄ ν)ν
)
|ψ|dLn+1

∣∣∣
�

(
λ1/2 + Err(KS , CS , �(Q0))

)ˆ
|ψ|dLn+1

+
∣∣∣ ˆ T̄ ∗(χ(30Q0)c(T̄ ν)ν

)
|ψ|dLn+1

∣∣∣ +
∣∣∣ ˆ T̄ ∗(χ30Q0(T̄ ν)ν

)
|ψ|dLn+1

∣∣∣
�

(
λ1/2 + Err(KS , CS , �(Q0))

)
�(Q0)n +

∣∣∣ ˆ T̄ ∗(χ(30Q0)c(T̄ ν)ν
)
|ψ|dLn+1

∣∣∣
+
∣∣∣ ˆ T̄ ∗(χ30Q0(T̄ ν)ν

)
|ψ|dLn+1

∣∣∣
=

(
λ1/2 + Err(KS , CS , �(Q0))

)
�(Q0)n + I + II,

(11.37)

where I and II are defined by the last equality.
The estimate for I is an application of (10.8) with M̃ = 30. In particular, recalling (11.3),

∣∣T̄ ∗(χ(30Q0)c(T̄ ν)bη)
)
(x)

∣∣ � 1
�(Q0)n

ˆ

Q0

|(T̄ ν)b|dη

≤ ν(Q0)1/2

�(Q0)n
( ˆ
Q0

|T̄ ν|2dν
)1/2

≤λ1/2 ν(Q0)
�(Q0)n

,

which, together with (11.36), implies

I � λ1/2ν(Q0). (11.38)

For the estimate of II, recall that |K̄(x, y)| � |x − y|−n. This and (11.35) imply
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∣∣T̄ (|ψ|Ln+1)(x)
∣∣ =

∣∣∣ˆ K̄(x, y)|ψ|(y)dy
∣∣∣ � 1

�(Q0)

ˆ

2Q0

1
|x− y|n dy � �(Q0)

�(Q0)
= 1.

Then, by Cauchy-Schwarz’s inequality, the periodicity of T̄ ν and the localization (11.3),

II ≤
∣∣∣ ˆ

30Q0

T̄ (|ψ|Ln+1) · T̄ νdν
∣∣∣ � ν(Q0)1/2

( ˆ

30Q0

|T̄ ν|2dν
)1/2

� λ1/2ν(Q0). (11.39)

So, gathering (11.34), (11.37), (11.38) and (11.39), we have

ν(Q0) �
(
Err(KS , CS , �(Q0)) + λ1/2)1/2ν(Q0). (11.40)

Choosing KS big enough, KS/CS small enough, CS�(Q0) and λ small enough, we have

Err(KS , CS , �(Q0)) + λ1/2 � 1,

so (11.40) brings us to the contradiction

ν(Q0) � ν(Q0).

This proves the Key Lemma and, hence, completes the proof of Theorem 1.2.

12. The two-phase problem for the elliptic measure

To the purpose of the application to the study of the elliptic measure, it is useful to 
reformulate Theorem 1.2 under slightly different hypothesis. The proof of the following 
closely resembles that of [9, Theorem 3.3].

Theorem 12.1. Let μ be a Radon measure in Rn+1 and let B ⊂ Rn+1 be a ball with 
μ(B) > 0. Assume that, for some constants C0, C1 > 0 and 0 < λ, δ, τ � 1 the following 
conditions hold:

(1) r(B) ≤ λ.
(2) Pμ,α̃(B) ≤ C0Θμ(B).
(3) There is some n-plane L through the center of B such that βL

μ,1(B) ≤ δΘμ(B).
(4) There is GB ⊂ B such that for all x ∈ GB

sup
0<r≤2r(B)

μ
(
B(x, r)

)
rn

+ T∗(χ2Bμ)(x) ≤ C1Θμ(B).

(5)
´

|Tμ(x) −mμ,GB
(Tμ)|2dμ(x) ≤ τΘμ(B)2μ(B).
GB
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There exists ϑ > 0 such that, if δ, τ and λ are small enough (depending on C0 and C1), 
there is a uniformly n-rectifiable set Γ such that

μ(B ∩ Γ) ≥ ϑμ(B).

The proof in the case A ≡ Id is based on a Tb theorem for suppressed kernels by 
Nazarov, Treil and Volberg. To replicate the proof of Azzam, Mourgoglou and Tolsa in 
the elliptic context, we define the suppressed kernel associated with K(·, ·) as

K̃Φ(x, y) = χ̃
( |x− y|2

Φ(x)Φ(y)

)
K(x, y),

where χ̃ : [0, +∞) → [0, 1] is a smooth, vanishes identically in [0, 1/2] and equals 1 in 
[1, +∞) and Φ is a 1-Lipschitz function to be chosen as in the proof of [9]. Then, one 
can split

K(x, y) = 1
2
(
K(x, y) + K(y, x)

)
+ 1

2
(
K(x, y) −K(y, x)

)
= K(s)(x, y) + K(a)(x, y),

apply the Tb theorem for suppressed kernels (see also [48, Section 5.12] and the references 
therein) to the antisymmetric part of K and exploit the L2-boundedness of the symmetric 
part guaranteed by the freezing technique of Lemma 2.2. We leave to the interested reader 
to check that there is no further difficulty in the proof Theorem 12.1.

The rest of the present section is devoted to show how to apply Theorem 12.1 to prove 
the two-phase problem for the elliptic measure.

After possibly splitting the set E, we can assume diamE ≤ 1
10 min

(
diam Ω1,

diam Ω2
)
. We choose the poles pi, i = 1, 2 such that pi ∈ Ωi ∩ 2B̃ \ B̃, where B̃ is 

a ball centered at E with radius r(B̃) = 2 diamE.
We are going to apply Theorem 12.1 to the measure ω1: we are going to prove that 

we can find an n-rectifiable set F ⊂ E such that ω1|F � Hn|F � ω1|F . In particular, 
we can suppose that Ω1 is such that

Hn+1(B̃ ∩ Ω1
)
≈ r(B̃). (12.1)

By the so-called Bourgain’s estimates (see [43, Section 12] for the statement in the elliptic 
case and [6] for a proof in the case A ≡ Id) together with (12.1), we can infer that there 
exists δ0 such that

ω1
(
2δ−1B̃

)
≈ 1, for 0 < δ < δ0.

Let a, ̃γ > 0 and i = 1, 2. We say that a ball B is a-Pωi,γ̃-doubling if

Pωi,γ̃(B) ≤ aΘωi
(B).

The following lemma is important for the applicability of the doubling condition.
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Lemma 12.1. Let γ̃ ∈ (0, 1). Let Ω1, Ω2 be Wiener regular domains in Rn+1 and let 
E ⊂ ∂Ω1 ∩ ∂Ω2 be a set on which ω1|E � ω2|E � ω1|E. Then there exists a constant 
a = a(γ̃, n) big enough such that for ω1|E-almost every x ∈ Rn+1 we can find a sequence 
of a-Pωi,γ̃-doubling balls B(x, ri) with ri → 0 as i → ∞.

Proof. Let i = 1, 2. Let m ∈ Z, m ≥ 1 and denoting

Zm :=
{
x ∈ ∂Ωi : for all j ≥ m, B(x, 2−j) is not a-Pωi,γ̃-doubling

}
it suffices to prove that ωi|E(Zm) = 0 for every m. Arguing as in [11, Lemma 6.1] we 
have that, for x ∈ Zm, we can estimate the elliptic measure of B(x, r) as

ωi(B(x, r)) ≤ C(m)rn+γ̃ for r ≤ 2−m.

Then

ω|E(A) ≤ ω(A) ≤ C(m)Hn+γ̃(A) for any A ⊂ Zm.

We recall that the dimension of ω|E can be defined as

dimω|E := inf
{
s : ∃F ⊂ ∂Ω s.t. Hs(F ) = 0

and ω|E(F ∩K) = ω|E(∂Ω ∩K) ∀K ⊂ Rn+1 compact
}

First let us bound dimω|E from below. Let F ⊂ ∂Ω be such that Hn+γ̃(F ) = 0. For K ⊂
Zm compact and such that ω|E(K) > 0, we have ω|E(F ∩K) ≤ C(m)Hn+γ̃(F ∩K) = 0. 
This in turn implies

dimω|E ≥ n + γ̃. (12.2)

Conversely, [8] gives that dimω|E = n, which gathered with (12.2) tells that

n ≥ n + γ̃.

Being γ̃ > 0, this brings to a contradiction and, in particular, this proves that ω(Zm) = 0
for every m. �

Let i = 1, 2. Denote by ui(·) = Gi(pi, ·) the Green function associated with Ωi with 
pole at pi. We understand that ui is extended by zero to Ωc

i . As a corollary of [5, Theorem 
1.5], which was formulated under weaker assumptions on the regularity of the matrix A, 
we can state the following monotonicity formula.

Lemma 12.2 (Monotonicity formula). Let Ωi and ui be as above and let R > 0. Suppose 
that As(ξ) = Id for ξ ∈ ∂Ω1 ∩ ∂Ω2. Then, setting
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γ(ξ, r) =
(

1
r2

ˆ

B(ξ,2r)

|∇u1(y)|2
|y − ξ|n−1 dy

)
·
(

1
r2

ˆ

B(ξ,2r)

|∇u2(y)|2
|y − ξ|n−1 dy

)
,

we have that, for some c > 0,

γ(ξ, r) ≤ γ(ξ, s)ec(s
α−rα) < ∞ for 0 < r ≤ s < R.

We remark that Azzam, Garnett, Mourgoglou and Tolsa proved their result under the 
hypothesis A(ξ) = Id. However, the same proof works under our assumption.3

The following lemma is crucial to prove the elliptic variant version of the blowups.

Lemma 12.3. Let Ω1 be a Wiener regular domain and denote by ω1 = ωp1
1 its associated 

elliptic measure with pole at p1 ∈ Ω1. Let B be a ball centered at ∂Ω1 and such that 
p1 /∈ 10B. Assuming that ω1(8B) ≤ Cω1(δ0B) and Hn+1(B \ Ω1) ≥ C−1r(B)−1, we 
have

Hn+1(Ω1 ∩ 2δ0B) � r(B)n+1. (12.3)

Moreover

Hn+1(2δ0B \ Ω1) ≈ Hn+1(2δ0B \ Ω2) ≈ r(B)n+1. (12.4)

Proof. Denote r = r(B). Let us first prove (12.3). Consider a smooth function ϕ ≥ 0
such that ϕ ≡ 1 on δ0B and suppϕ ⊂ 2δ0B. In particular, suppose that ‖ϕ‖∞ � (δ0r)−1. 
Then, recalling that, by the properties of Green’s function and being x1 outside of the 
support of ϕ,

ˆ
ϕdω1 = −

ˆ
AT∇u1 · ∇ϕ,

we use the ellipticity of the matrix A and write

ω1(2δ0B) ≤
ˆ

ϕdω1 ≤
ˆ

|∇u1 ·A∇ϕ|

�
ˆ

|∇u1||∇ϕ| =
ˆ

Ω1∩2δ0B

|∇u1||∇ϕ| � 1
δ0r

ˆ

Ω1∩2δ0B

|∇u1|.

Then applying, in order, Hölder’s and Caccioppoli’s inequalities,

3 It suffices to define the matrix D in [5, Appendix A.1] as D = A(ξ) − A and observe that LA(ξ) =
LAs(ξ) = Id.
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1
δ0r

ˆ

Ω1∩2δ0B

|∇u1| ≤
Hn+1(Ω1 ∩ 2δ0B)1/2

δ0r

( ˆ

2δ0B

|∇u1|2
)1/2

� Hn+1(Ω1 ∩ 2δ0B)1/2

δ0r

1
δ0r

( ˆ

4δ0B

|u1|2
)1/2

,

so

ω1(2δ0B) � Hn+1(Ω1 ∩ 2δ0B)1/2 (δ0r)(n+1)/2

(δ0r)2
sup
4δ0B

|u1|.

At this point, recalling that (see [43, Section 12])

sup
y∈4δ0B

u1(y) �
ω1(8B)
rn−1 ,

we have

ω1(δ0B) � Hn+1(Ω1 ∩ 2δ0B)1/2 (δ0r)(n−3)/2

(δ0r)n−1 ω1(8B)

which, since we suppose ω1(8B) ≤ Cω1(δ0B), concludes the proof of (12.3).
The second estimate in the statement of the lemma is a direct application of the first 

one (see also [11, Lemma 3.4]). �
The following lemma provides the connection between the function γ in Lemma 12.2

and elliptic measure.

Lemma 12.4. Let i = 1, 2 and Ωi, pi be as above. Let 0 < R < mini dist(pi, ∂Ωi). Then, 
for 0 < r < R/4 and ξ ∈ ∂Ω1 ∩ ∂Ω2 we have

ω1(B(ξ, r))
rn

ω2(B(ξ, r)
rn

� γ(ξ, 2r)1/2. (12.5)

Moreover, if r < δ0R/8 and ωi(B(ξ, 8r)) � ωi(B(ξ, δor)),

γ(ξ, r)1/2 � ω1(B(ξ, 16δ−1
0 ))

rn
· ω2(B(ξ, 16δ−1

0 ))
rn

. (12.6)

The proof of (12.5) is analogous to that for the harmonic measure in [29]. The proof 
of (12.6) is an application of Caccioppoli’s inequality together with Lemma 12.3 (see also 
[11, Lemma 3.5]).

The blowup technique for the elliptic measure developed in [8] is crucial to prove 
the next lemma. We remark that the authors formulated this result under more general 
assumptions on the matrix A then the ones of the present work.
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Lemma 12.5. Let Ω1, Ω2 and E be as above. Let ε < 1/100 and, for m ≥ 1, define Em

as the set of ξ ∈ E such that for all ξ ∈ E, 0 < r < 1/m and i = 1, 2 the following 
properties hold:

(E1) ωi(B(ξ, 2r)) ≤ m ωi(B(ξ, r)).
(E2) Hn+1(B(ξ, r) ∩ Ωi) ≥ 1

mrn+1.
(E3) βω1,1(B(ξ, r)) < εr−nω1(B(ξ, r)).

The sets Em cover E up to a set of ω1-measure 0, i.e.

ω1

(
E \

⋃
m≥1

Em

)
= 0.

The proof follows by known results in the literature. However, we think that it may 
be useful to the reader to dispose of precise references.

Sketch of the proof. Set

E∗ =
{
ξ ∈ E : lim

r→0

ω1(E ∩B(ξ, r))
ω1(B(ξ, r)) = lim

r→0

ω2(E ∩B(ξ, r))
ω2(B(ξ, r)) = 1

}
.

One can see that ωi(E \ E∗) = 0, i = 1, 2. Now, for ξ ∈ E∗, set h(ξ) = dω1
dω2

(ξ),

Λ =
{
ξ ∈ E∗ : 0 < h(ξ) < ∞

}
and

Γ = {ξ ∈ Λ : ξ is a Lebesgue point for h with respect to ω1}.

By Lebesgue differentiation theorem, ωi(E \ Γ) = ωi(E∗ \ Γ) for i = 1, 2. Then, in order 
to prove the lemma it suffices to show that for ω1-almost every ξ ∈ Γ:

(P1) ω1 is locally doubling, i.e.

lim sup
r→0

ω1(B(ξ, 2r))
ω1(B(ξ, r)) < ∞.

(P2) For i = 1, 2

lim inf
r→0

Hn+1(B(ξ, r) ∩ Ωi)
rn+1 > 0

(P3) We have the flatness estimate

lim βω1,1(B(ξ, r)) rn = 0.

r→0 ω1(B(ξ, r))
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The condition (P1) holds because of the flatness of the tangents Tan(ωi, ξ), see [8, The-
orem 1.3], which is known to imply the locally doubling condition ([42, Corollary 2.7]).

The property (P2) follows by the arguments in [11] together with (12.4).
To prove (P3), it suffices to argue as in the end of [11, Section 5]. �
Now consider m ≥ 1 such that ωi(Em).

Lemma 12.6. Let δ > 0. For ω1-almost every x ∈ Em there is rx > 0 such that, given an 
a-Pγ̃,ω1-doubling ball B(x, r) with r ≤ rx, there exits a set Gm(x, r) ⊂ Em∩B(x, r) such 
that

ω1(B(z, t))
tn

� ω1(B(x, r))
rn

for every z ∈ Gm(x, r), 0 < t ≤ 2r.

In particular,

ω1(B(x, r) \Gm(x, r)) ≤ δω1(B(x, r)), (12.7)

and, if we denote by Ẽmδ the set of points where (12.7) is verified, we have

ω1
(
Em \ Ẽm,δ

)
= 0.

This lemma can be proved arguing as in [11, Lemma 6.2] and more precisely combining 
the locally doubling property of the elliptic measure ensured by the blowup argument 
together with Lemma 12.4.

We also point out that their argument relies on the monotonicity formula of Alt, 
Caffarelli and Friedman. So, to prove it in the elliptic case we have to invoke Lemma 12.2, 
whose hypothesis include the assumption As(x) = Id. This, of course, is not true in 
general. However, one can argue via the change of variable in Lemma 5.3 to achieve this 
property. For a more detailed treatment of how the elliptic measure varies under that 
transformation we refer to [5, Corollary 2.5]. We omit further details.

From now on fix γ̃ = α̃. The following lemma contains an estimate of the potential of 
ω1 which is needed to recollect the property (4) in Theorem 12.1.

Lemma 12.7 (cfr. [11, Lemma 6.3]). Let 0 < c � 1 to be chosen small enough. For 
m ≥ 1 and δ > 0, let Ẽm,δ and rx0 be as in the previous lemma. Consider x0 ∈ Ẽm,δ

and take

0 < r0 < min
(
rx0 , 1/m,dist(p1, ∂Ω1)

)
.

Assume, moreover, that B0 = B(x0, r) is an a-Pω1,α̃-doubling ball. Then, for all x ∈
Gm(x0, r0) we have

T∗(χ2B0ω1)(x) � Θω1(B0).
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Proof. Suppose As(x0) = Id. Indeed, if this is not the case, one can argue via a change 
of variable as mentioned before. Also, without loss of generality, we can consider only 
the case r ≤ r0/4.

Let ε > 0. The proof relies on the estimates for the smoothened potential

T̃εω1(z) :=
ˆ

K(z, y)ϕε(z − y)dω1(y), z ∈ Rn+1,

where ϕ : Rn+1 → [0, 1] is a smooth radial function whose support is contained in 
Rn+1 \B(0, 1), equals 1 on Rn+1 \B(0, 2) and ϕε denotes the dilate ϕε(z) = ϕ(ε−1z).

Now take x ∈ Gm(x0, r0) and considering r ≤ r0/4 and define

vr(z) = E(p1, z) −
ˆ

E(z, y)ϕr(x− y)dω1(y),

z ∈ Rn+1 \[supp(ϕr(x− ·)ω1) ∪ {p1}]. (12.8)

Recall that As(x0) = Id and that Θ(·; A(x0)) = Θ(·; As(x0)). On the same range of z of 
(12.8) we consider

v̄r(z) = Θ(p1 − z; Id) −
ˆ

Θ(z − y; Id)ϕr(x− y)dω1(y).

As in [11, Lemma 6.3], to prove the lemma it suffices to show the validity of the estimate

|T̃rω1(x) − T̃r0/4ω1(x)| � Θω1(B0).

To this purpose, observe that

|T̃rω1(x) − T̃r0/4ω1(x)| = |∇vr(x) −∇vr0/4(x)|

=
∣∣∣ ˆ ∇1 E(x, y)

(
ϕr(x− y) − ϕr0/4(x− y)

)
dω1(y)

∣∣∣.
Now, using Lemma 2.2 and the Hölder continuity of A, it is not difficult (recall that 
r0 ≤ 1) to prove that

| ∇1 E(x, y) −∇1 Θ(x− y; Id)| � rα̃0
|x− y|n ≤ 1

|x− y|n ,

which in turn implies

|T̃rω1(x) − T̃r0/4ω1(x)|

� Θω1(B0) +
∣∣∣ˆ ∇1 Θ(x− y; Id)

(
ϕr(x− y) − ϕr0/4(x− y)

)
dω1(y)

∣∣∣
= |∇v̄r(x) −∇v̄r0/4(x)| + Θω1(B0). (12.9)
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We claim that |v̄r(x) − v̄r0/4(x)| � Θω1(B0), which would conclude the proof. To show 
this, notice that functions v̄r and v̄r0/4 are harmonic outside supp(ϕr(x − ·)ω1) ∪ {p1}, 
hence in particular in B(x, r). Then, an application of the mean value property gives

|∇v̄r(x) −∇v̄r0/4(x)| � 1
r

 

B(x,r)

|v̄r(z) − v̄r0/4(z)|dz. (12.10)

Another application of the freezing argument together with the Cα̃-continuity of A proves

|v̄r(z) − v̄r0/4(z) − vr(z) − vr0/4(z)| � rα̃0 rΘω1(B0), z ∈ B(x, r)

that, gathered with (12.9) and (12.10) gives

|T̃rω1(x) − T̃r0/4ω1(x)| � Θω1(B0) + 1
r

 

B(x,r)

|vr(z) − vr0/4(z)|dz

≤ Θω1(B0) + 1
r

 

B(x,r)

|vr(z)|dz + 1
r

 

B(x,r)

|vr0/4(z)|dz.

From this point on, the proof is analogous to that in [11]. �
The proof of Theorem 1.3 follows verbatim the footprints of that of [9] and [11]. More 

precisely, taking x0 ∈ Ẽm,δ and r0 as in Lemma 12.7, we split the set Gm(x0, r0) as a 
union of

Gzd
m (x0, r0) =

{
x ∈ Gm(x0, r0) : lim

r→0
Θω1

(
B(x, r)

)
= 0

}
and

Gpd
m (x0, r0) = Gm(x0, r0) \Gzd

m (x0, r0).

Then, using Lemma 12.7, the elliptic analogue of [11, Lemma 6.5] and Theorem 12.1, it 
is possible to infer that

ω1(Gzd
m (x0, r0)) = 0.

On the other side, [43, Theorem 1.3] ensures the existence of an n-rectifiable set 
F (x0, r0) ⊂ Gpd

m (x0, r0) of mutual absolute continuity of the elliptic measure ω1|F (x0,r0)
and the Hausdorff measure Hn|F (x0,r0) that covers Gm(x0, r0) up to a ω1-null set. This 
concludes the proof of Theorem 1.3.
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