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1. Introduction

Codes over finite rings were studied in the early 1970s, and this study has grown
enormously since the seminal work of Hammons et al. [11], where it is shown in that
some of the best nonlinear codes over 5 can be viewed as linear codes over Z4.

Linear complementary dual or LCD codes are linear codes that intersect with their
dual trivially. LCD cyclic codes have applications in data storage. Due to a newly
discovered application in cryptography [6,9], interest in LCD codes has increased
again.

An LCD code defined over a finite field F, which is also known as reversible code
was first introduced by Massey in [17]. Following his first study, Massey also showed the
existence of asymptotically good LCD codes. Furthermore, Yang and Massey in [20] pro-
vided a necessary and sufficient condition under which a cyclic code has a complementary
dual. In [15], Liu and Liu studied LCD codes over finite chain rings and provided a nec-
essary and sufficient condition for a free linear code to be LCD. In [14], Lina and Nocon
give parameters of some LCD codes using generator matrices and give some methods to
construct new LCD from previous ones. Recently, in [5], existence conditions are given
for LCD codes over Fy which are images under the Gray map of additive codes over
7§ x Zf . Finally, in [7], the authors proved that there are no non-free LCD codes over
finite commutative local Frobenius rings. It was also shown that a free cyclic code C
over any finite chain ring is LCD code if and only if C is reversible when the length n of
the code is relatively prime to the characteristic of a finite chain ring. Several types of
equivalence between codes can be defined, but here we only consider monomial equiva-
lence. Two codes C and C’ are called monomially equivalent if there exists a monomial
permutation which sends C' to C’. Isodual codes are codes which are monomially equiv-
alent to their duals. The class of isodual codes is important in coding theory because
it contains the self dual codes as a subclass. In addition, isodual codes are contained
in the larger class of formally self dual codes. In [1,3,4] the authors gave some specific
constructions of self dual and isodual codes over finite fields and finite chain rings. The
purpose of this paper is to examine linear codes with complementary duals and isodual
codes over finite chain rings. We give necessary and sufficient conditions for which all
codes are LCD, and generalize the result given in [2] by giving condition on the existence
of non trivial self dual codes. Some of the codes obtained are both isodual and LCD,
and so are called LCD-isodual codes. The paper is organized as follows, the necessary
background material on codes over finite chain rings is given in Section 2. In Section 3,
we give the first part of the main results of this paper. Based on algebra number theory
properties, we provide conditions under which all free cyclic codes over finite chain rings
are LCD. In Section 4, we generalize the result given in [2] of the existence of non trivial
self dual codes when the nilpotency index of the maximal ideal of the finite chain ring
considered is even. In Section 5, the structure of cyclic codes of length 2%m over finite
chain rings is given along with conditions on the existence of isodual cyclic codes. Using
these results, several constructions of isodual are given.
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2. Preliminaries

We begin with some definitions and properties about finite chain rings. Let R be a
finite commutative ring with identity. A commutative ring is called a chain ring if the
lattice of all its ideals is a chain. It is well known that if R is a finite chain ring, then R
is a principal ideal ring and it has a unique maximal ideal (). Its chain of ideals is

{0}=()ctrHs...CNECR,

where (v%) (with i € {1,---,e}) is the ideal of R generated by ~'. The integer e is
called the nilpotency index of (). The nilradical of R is (%), so all the elements of (v)
are nilpotent. Therefore, the elements of R\(vy) are units. We denote this group by R*.
Since (7) is maximal, the residue ring R/(7) is a field with ¢ elements which we denote
by F,.

Let |R| denote the cardinality of R, then |R| = [F,|- |(7)]| = [F,|- |[F,|¢7! = |Fy|¢ = ¢°.
Moreover, from [19],

(V)] = |Fg|* " = ¢ fori=1,2,...,e~1
The natural surjective ring morphism is given by

—:R— T,

(1)

a+— a=a mod v

The map given in (1) extends naturally to a map from R[zr] — Fy[z]. A polynomial
f(x) of R[z] is called basic irreducible if f(x) is irreducible in F,[z]. Two polynomials
fi(z) and fo(z) in R[x] are called coprime if (f1(z) + f2(x)) = R[z] or equivalently there
exist A1(z) and Aa(z) in R[x] such that A;(z)f1(x) + A2(x) f2(z) = 1. A polynomial f(z)
of R[z] is a unit if and only if f(x) is a unit and also f is a zero divisor if and only
if m = 0. Hensel’s lemma is an important tool for studying finite chain rings, which
can lift the factorization into a product of pairwise coprime polynomials over F, to such

factorization over R.

Lemma 1. [18, Hensel lifting, Theorem XIII.4] Let g(z) in R[z] be monic. Assume
that there are monic, pairwise coprime polynomials fi(x), fa(z),..., fu(x) in Fylx]
such that Wx) = Hilf fi(x), then there are monic pairwise coprime polynomials
91(x),92(x), ..., gx(x) in R[x] such that g(x) = HZ’; gi(z) and g;(z) = fi(x), for all
0<i<k.

Lemma 2. [19, Theorem 2.7] If f(z) is a monic polynomial over R such that f(x) is
square free, then f(x) factors uniquely as product of monic basic irreducible pairwise
coprime polynomials.
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Let R be a finite chain ring, F, its residue field, and (y) its maximal ideal with
nilpotency index e. A linear code C of length n over R is a submodule of R™. A linear
code C of length n over R is called cyclic if (¢p—1,c0,¢1,...,Cn—2) is in C' whenever
(co,€1y...,¢n—1) is in C. Each codeword ¢ where ¢ = (cg,c1,...,¢cn—1) is customarily
identified with its polynomial representation c(x) where c(r) = co+c1x+...+c, 12" L.
In this way, any cyclic code of length n over R is identified with exactly one ideal of the

ring R[x]/(z™ — 1) and zc(z) correspond to a cyclic shift of ¢(z).

A monomial transformation over R™ is an R-linear homomorphism 7 such that there
exist scalars A1, Ag, ..., A\, in R* and a permutation ¢ in S,,, where .S,, is the group of
permutation of {1,2,...,n}, such that for all (x1, 2, ...,2,) in R", we have

T(T1, 22, s Tn) = (MTo(1), X2Tg(2)s s AnTo(n))-

Recall that two codes are called equivalent if there is a monomial permutation which
sends one to the other. In this paper, whenever we say that two codes are equivalent, we
mean that they are monomially equivalent. Suppose that f(z) = ag + a1z + ... + arz”
is a polynomial of R[z] of degree r such that f(0) = ag is a unit in R. The monic
reciprocal polynomial of f(z) is defined by f*(x) = f(0)~ta" f(x=1). If f*(x) = f(x),
the polynomial f(z) is called self reciprocal.

A code C over R is reversible if for each code word (cg, ¢1, ..., ¢p—1) in C implies that
the code word (¢;—1,¢n—2, ..., o) is also in C. Tt is known that a cyclic code C'is reversible
if and only if its generator polynomial is self reciprocal. We attach the standard inner
product to R"™

n
Ty = Z:ciyi, for each = = (x1,x2,...,x,) and y = (y1, Y2, .-, Yn) in R™.

i=1
The Euclidean dual code C* of C is defined as
Ct={zeR":VyeC;x-y=0}
A code C is said to be self dual if C = C4, it is isodual if C = 7(C*t), where T
is a monomial transformation, and it is called LCD or linear complementary dual if

cnet ={o}.

A code C over a finite chain ring and its dual satisfies the following
ClIC*] = ¢ = |R|" and (C1)* = C.

The following theorem gives the structure of a cyclic code and its dual over a finite
chain ring.
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Lemma 3. [8, Theorem 3.8] Let R be a finite chain ring with maximal ideal v with
nilpotency index e and residue field Fy. Let C be a cyclic code over R of length n such
that ged(n, q) = 1, where p is the characteristic of R. Then there exists a unique family
of pairwise coprime polynomials F;(x),0 < i < e in R[x] satisfying Fo(z)F1(x)...Fe(z) =
™ — 1 such that

C= <F1(x),7ﬁ’2(x), ...,76_1Fe(3§)> ot = <ﬁ'8‘(x),7ﬁ’;(x), ...,76_1F5(x)>,

z" —1

Fi(z)
a principal ideal ring.

where Fy(z) = for 0 < i < e. Moreover, we have that the ring R[x]/ (x™ — 1) is

In particular, when the code is free as a submodule, we have the following statement.

Lemma 4. [10, Theorem 4.16] Let C be a cyclic code of length n over a finite chain ring
R with residue field F, such that ged(n,q) = 1. Then, C is a free cyclic code with rank
k if and only if there is a monic polynomial f(x) in R[x] such that f(x) divides ™ — 1
and f(x) generates C. In this case, we have k =n — deg(f). Further the dual code of C

n_1 *
1s also free and it is generated by <(xf()> >
T

3. On LCD cyclic codes over finite chain rings

The aim of this section is to present some new constructions of LCD cyclic codes, and
provide necessary and sufficient conditions for the existence of non trivial LCD cyclic
codes over finite chain rings.

Let n be a positive integer and ¢ a prime power coprime to n. We denote by ord,,(q)
the multiplicative order of ¢ modulo n. This is the smallest integer ! such that ¢! =
mod n.

To process cyclic codes of length n, we have to study the factorization into irreducible
polynomials of ™ — 1 over [F,. To this end, we need to introduce the g-cyclotomic cosets
modulo n. Note that 2™ — 1 has no repeated factors over F, if and only if ged(n,q) = 1.
For any s in {0,1,2,...,n — 1}, the ¢g-cyclotomic coset of s modulo n is defined by

CS = {Svstbsqzv“'asql'gil} ’

where [ is the smallest positive integer such that s = s¢'*( mod n), and is the size of
the g-cyclotomic coset. The smallest integer in Cj is called the coset leader of C. Let
P, 4 be the set of all the coset leaders. We have then C; N Cy = () for any two distinct
elements s and ¢ in P, 4, and

U ¢.={01,2,...n—1}.

s€Py 4
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Hence, the distinct g-cyclotomic cosets modulo n partition {0,1,2,...,n — 1}.
The cyclotomic coset C is said to be reversible if and only if C,,_; = C; if and only
if n —sisin Cs.

Lemma 5. /2, Lemma 4] If Cy is reversible then Cs is reversible for all s in P, 4.

Let r = ord,(q), and let « be a generator of (Fy)*. Put § = a%, then f is a
primitive n-th root of unity in F,-. The minimal polynomial mg(z) of 5* for s in P, 4
over [Fyr is given by

ms(x) = H (.’E _51) )

JjeCs

which is irreducible over IF,, and hence the factorization of ™ —1 into irreducible factors
over [F, is given by

" —1= H ms(x).

s€Py, 4

The following lemma is well known in literature.

Lemma 6. /15, Lemma 5] The minimal polynomial ms(x) is self reciprocal if and only if
the cyclotomic coset associated Cs is reversible.

3.1. Some properties of positive integers

In this section, we give some properties of positive integers which will be needed later.
Lemma 7. Let g be a prime power, p an odd prime number coprime to q, then we have

(i) If ordy(q) is even then for all k in N*, ord,x(q) is even.
(ii) If there is k in N* such that ord,x(q) is even, then ord,(q) is also even.

Proof. Since p divides p*, we have qordp’“(q) = 1 mod p* implies that ¢° %" @ =
mod p. Hence ordy,(q) | ordy:(q), therefore if ord,(q) is even then ord,:(q) is even
too.

To prove (ii), assume that there is & in N* such that ord,x(q) is even, and by way
of contradiction we suppose that ord,c-1(q) is odd. Therefore, there exist some in-

2+l — 1 4+ mp*~1. Since p is a prime

teger ¢ and there exists m in N, such that ¢
number, it divides the binomial coefficient (‘;’) for all 1 < j < p — 1. Hence we get
()P = (1+mp*~1)" =1 mod p*. It follows that ord,(q) | (2i+1)p. Since (2i+1)p
is odd, this leads to a contradiction. So that ord,:-1(¢) must be even, and by descending

recurrence we get that ord,(g) is even. O



A. Benyettou et al. / Finite Fields and Their Applications 79 (2022) 101993 7

Lemma 8. Let q be a prime power and p an odd prime number such that ged(p,q) = 1.
The three following statements are equivalents.

(i) There exits | in N, such that ¢ = —1 mod p.
(ii) For all k in N, there exists I, in N, such that ¢"* = —1 mod p*.
(ili) There is i in N* such that ordyi(q) is even.

Further, if ¢ = —1 mod p, then | = %(1 + 2m)ord,(q) for some m in N.

Proof. Suppose that (i) is satisfied and we prove (ii) by induction. For k = 1 we have

¢' = —1 mod p. Assume ¢"*-* = —1 mod p*~! for k > 2. Since p is odd, we can write
! k=1 k—1
p Z (_qlk71>i _ (_qlk—l)p _ 1 _ qlkflp + 1
1=0 (7qlk71) -1 qlk—1 +1 '

On the other hand, we have

k—1_1 k—1_1 k—1_1

p p

Yoo(=dEi= Y (FD)He ) = (=1)'(=1)" mod p*"' =0 mod p* 1,

=0 =0 =0

k—1_q

which means that p*~1 | Y7~ (—¢'*-1)%. Since p | p*~1 | g'*=1 + 1, it follows that

P11
. k-1
O D O A D e
i=0
Thus, for I, = lp_1 - p*~!, we have that ¢’* = —1 mod p*. Note that when ¢’ = —1

k(k—1)
2

mod p, then Iy, = l_1 - pF¥~1 =l - p*~2 - pF~1. We obtain that I, =1-p

Conversely, if the statement (ii) holds, then the statement (i) follows immediately for
k=1.

Assume that (iii) is satisfied. Lemma 7 shows that the integer ord,(q) is also even.
We have, ¢°"%(9) =1 mod p if and only if p | (q%‘"’dp(‘” — 1)(q%°7"dp(‘” + 1). Since p is
prime it must divide one of the factors and it can not divide (qéo’"dl’(’” — 1) because of
the definition of the order of ¢, thus q%”d?’(‘” = —1 mod p.

Conversely, if (ii) is satisfied, then by Lemma 8 there exits [ in N* such that ¢ =
—1 mod p, which means ¢? = 1 mod p, so that ord,(q) | 2. If ord,(q) is odd, then
ord,(q) | I, which contradicts the fact that ¢! = —1 mod p. Hence ord,(q) must be even
and (iii) holds.

It remains to prove that if there exists an integer [ such that ¢ = —1 mod p, then
I = (14 2m)ord,(q) for some m in N. By definition of order, the integers ¢°"%(? and
¢’ are distinct for all 1 < j{ord,(g). Since p is odd, we obtain that if I’ is the smallest
integer such that ¢" = —1 mod p, then on the one hand 1 < I"{ordy(q) and, on the
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other hand, ord,(q) | 2I'. This gives 2" = Xordy(q) and A > 1. Since '(ord,(q), then
= %ordp(q). Further, if [ is an integer that satisfies ¢ = —1 mod p, then by division
algorithm we can write | = sl’ + r with (. Hence, we get

¢ =¢"" =(d")¢ =(-1)°¢ modp=-1 mod p.
Which forces that s is odd and r = 0. Thus,
, 1
l=02m+ 1) = 5(2m + 1)ord,(q). O

Corollary 1. Let g be a prime power and p an odd prime number coprime to q. Let a be a
positive integer such that 2%||ord,(q). Then for all k € N* we have 2%|lord,x(q), where
the notation 2%||ord,(q) means that 2%|ord,(q) but 2°*1 t ord,(q).

Proof. Let a be a positive integer such that 2%||ord,(¢). From Lemma 8, there exists
! in N*, such that ¢/ = =1 mod p and | = (1 + 2m)ord,(q) for some m in N. On
the other hand, since ord,(q) is even, then ord,(q) is also even for all £ € N*. Hence,
from Lemma 8 again, there exists I in N*, such that ¢"* = —1 mod p* and [, =

1(1 + 2my,)ord,x (q) for some my in N. From the proof of Lemma 8, we have that
k(k—1)
2

le=1-p . Therefore

k(k—1)
2

1 1
b = 5 (14 2mg)ordy (q) = 5 (1 +2m)ordy(q) - p

k(k—1)

Since (1 +2m)p~ 2z and (1 + 2my) are both odd, we conclude that 2¢|ord,x(q). O

3.2. New constructions of LCD cyclic codes over finite chain rings

Recall that a cyclic code is an LCD code if it satisfies C N C+ = {0}. It was shown
recently in [7] that non-free LCD code don’t exist over finite commutative chain rings.

Lemma 9. [7, Theorem 2] Over finite commutative chain rings, any LCD code is free.

In [7] again, Bhowmick et al., generalized the characterization of LCD codes on finite
chain rings.

Lemma 10. /7, Theorem 6] Let C be a cyclic code over a finite chain ring R with residue
field Fy of length n such that ged(n,q) = 1. Let g be a generator polynomial of C. Then
C is an LCD code if and only if C' is reversible if and only if the polynomial g is self
reciprocal.

Liu and Wang generalized Massey’s criterion [20] for LCD codes over any finite field
of any length to finite chain rings.
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Lemma 11. [16, Theorem 25] A cyclic code C of length n over a finite chain ring R with
the residue field Fy is an LCD code if and only if C = (g(x)), where g(z) is a monic
divisor of ™ — 1 such that g(x) = g*(x), and g(z) and (z™ —1)/g(x) are coprime.

Let ¢ = p® and n = mp", where ged(m, p) = 1. Thus the polynomial ™ —1 is a monic
square free, hence it factors uniquely as a product of pairwise coprime monic irreducible
polynomials fi(z), ..., fi(z). Hence the factorization of ™ — 1 over F, is given by

1=am 1= (@™ - D) = fi(2) . fila)” @)

Denote the factors f;(x) in the factorization of 2™ — 1 which are self reciprocal by
91(2), ...gs(z), and the remaining f;(x) grouped in pairs by hi(x), hi(x), ..., he(z), b (z).
Hence | = s + 2t, and the factorization given in (2) becomes

2" — 1= g1(0)” g (@) go (@) ha(@)” B ()7 (@) B ()

Using Hensel’s Lemma and the properties of the reciprocal polynomial, we get a factor-
ization of ™ — 1 over R, which is given by

2" — 1= G1(x)Ga(x)...Gi(x)Hy (x)Hi (x)...Hy (x) H} (),
where G;(z), Hj(x) are monic coprime polynomials such that G;(z) = gfr (x),Hj(z) =
n (2).

By Lemma 11, we obtain a characterization of LCD codes over finite chain rings. Those

are codes generated by
C = <G1(x)k1G2(a:)k2...Gl(a:)lel(x)“Hf(x)“...Ht(x)”Ht*(x)”> ,

where k;,r; € {0,1} forall1 <i¢ <, 1 <j<t.

Now, using the algebraic properties of integers given in the section 3.1, and according
to the decomposition of n into product of powers of prime numbers, we give some new
constructions of LCD codes over R.

Theorem 1. Let R be a finite chain ring with residue field ¥y, and p* an odd prime
power coprime to q. Then, all free cyclic codes of length p* over R are LCD if and only
if ordy,(q) is even.

Proof. Let p* be an odd prime power coprime to ¢. From Lemma 10 we have that a
cyclic code C is an LCD code if it is generated by a self reciprocal polynomial g(z)
which divide zP° — 1. On the other hand, Lemma 8 shows that if ord,(q) is even, then
there exits [ in N*, such that ¢/ = —1 mod p*, which means that —1 is in the cyclotomic
coset Cy. Hence, C; = C_; mod p*. In other words, C; is reversible, and so all the other
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cyclotomic cosets are also reversible by Lemma 5. Therefore, all divisors of 2P — 1 are
self reciprocal.

Conversely, assume that all free cyclic codes of length p¥ are LCD, then all divisors of
zP" — 1 are self reciprocal. Hence all cyclotomic cosets are reversible and, in particular,
the cyclotomic coset C is reversible. This means that there is an integer [ such that
¢ = —1 mod p”. Finally, Lemma 8 shows that in such case ordp(q) is even. O

Example 1. Let R = Zg with residue field F3 and n = 49. We have ord7(3) = 6 and the
factorization into irreducible polynomials is given by:

2 —1=(x+8) (a8 +2® +at+ 23+ 2?2 + 2+ 1) (@2 + 23 + 2B + 2 + 2™ + 27 +1)
=g1(z)g2(z)g3(x)

So, all codes generated by <H§’:1 gf (az)>, where 0 < k; < 1, are LCD codes over Zg of
length 49.

Example 2. Let R = Z4, n = 17, we have

217 — 1= (2 +3)(2® + 225+ 32° + 2% + 323 + 222 + 1) (2® + 27 + 32% + 32* + 322 + 2+ 1)
=g1(x)g2(x)gs(),

and it is easy to see that g1(z), g2(x) and gs(x) are monic basic-irreducible over Z4. Since

ordy7(2) = 8, then all cyclic codes generated by polynomials of the form <H?:1 gf (a;)>7
with 0 < k; < 1, are LCD codes.

Lemma 12. Let g and n be positive integers coprime such that n is odd and the irreducible
factorization of n is given by n = pfphz. plt with ordy, (q) even for 1 < i <t. Let a;
ordp, (q), with 1 < i <t. Then we have

be the positive integers for which 2%
a1 =ay = ...=a; = a if and only if there exists | € N*, such that ¢ = —1 mod n.
Further, 2%||ord,,(q).

Proof. Assume that a1 = ay = ... = a; = a. Recall that if 2%||ord,, (¢) then 2“||ordp;§-7¢ (q)
for all k; in N. Thus, we can write ordp;_ci (q) = 2°m,;, with m; an odd integer for 1 < i < ¢.

From Lemma 8 and Corollary 1, we deduce that there exits I; € N*, such that ¢t =
—1 mod pf The smallest integer I, satisfying this congruence is I = %ordpz;i (q) =

20 I, for 1 <i <t Letm = Hle m;. Since m is odd, we get ¢>° ™ = —1 mod Pl
Hence, pfi | qQG_lm + 1 for all 1 <4 < t. Therefore, n = H:lefi | qQa_lm + 1. In other

_1m _

words ¢2° —1 mod n.
Conversely, assume there is an integer [ such that ¢ = —1 mod n. Without loss of
generality, we suppose a1 # ag such that 2% |jord,, (¢) and 22||ord,, (q). Write ord,, (¢) =

2%'my and ordp, (¢) = 2*2my for odd integers my and mg. We have
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¢' = -1 mod n implies ¢ = =1 mod p; which give ¢* =1 mod p;, for 1 <i < t.
Hence, 2%1my | 21 and 2%2my | 21. Since both of a; and as are not null, we get 2%1~1m; | [
and 2927 tmy | I. Since a; # az, we can suppose that aj)as. Consequently, 2%2my | I. In
other words, ¢ =1 mod ps, which is a contradiction.

Further, we have n = p’flpgz...pff, SO

ord,(q) = lcm(ordpkl (q), ord i, (q),-..;ord r.(q)) = 2%(2k + 1), for some k € N
1 2 t
Thus, 2%||lord,(¢). O

Theorem 2. Let R be a finite chain ring with residue field Fy and n an odd integer
coprime to q such that the factorization of n is given by n = p’flpgz...pft with k; € N*
for1 <i <t. Assume that the numbers ordp,(q),1 < i <t are even and let a; € N* such
that 2%|lord,,(¢). Then all free cyclic codes of length n over R are LCD if and only if

a]; = az = ... = a = Q.

Proof. Assume that there is a positive integer a such that 2%||ord,,(¢),1 < i < t. From
Lemma 12, there exists an integer [ such that ¢! = —1 mod n. This means that the ¢
cyclotomic coset C1 is reversible. Hence, all the other cyclotomic cosets are reversible by
Lemma 5. Thus all divisors of the polynomial ™ — 1 are self reciprocal. Therefore, all
free cyclic codes of length n over R are LCD.

Conversely, suppose that all free cyclic codes are LCD. So that all divisors of 2™ — 1
are self reciprocal. We deduce that all cyclotomic cosets are reversible. In particular Cy
is reversible. Hence —1 is a power of ¢ mod n. The desired result follows immediately
from Lemma 12. O

As a corollary we construct LCD codes of oddly even length.

Corollary 2. Let R be a finite chain ring with residue field F, such that q is an odd
integer. Let n be an oddly even integer coprime to q such that the irreducible factorization
of n is given by n = 2p]f1p§2...pft with k; in N* for 1 < i < t. Assume that for all
1 < i <t the integers ordp,(q) are even. Let a; in N* such that 2%|lord,,(q). Then
a1 = as = ... = a; = a if and only if all free cyclic codes of length n over R are LCD.

Proof. On the one hand and according to Lemma 12, we have a1 = as = ... = a; = a if
and only if there exists [ in N*, such that Hlepfi ¢' + 1. On the other hand, since
q is an odd integer then 2 | ¢! + 1. Hence n = 2 Hlepfi ¢' + 1. This means ¢' = —

mod n. Thus the cyclotomic coset C is reversible, so according to Lemma 5 all the other
cyclotomic cosets are reversibles. Hence, all free cyclic codes of length n are LCD codes.

Conversely, assume that all codes of length n are LCD. Then, the cyclotomic coset
C| is reversible. Hence there is an integer [ such that ¢! = —1 mod n. It follows that
¢ = -1 mod HE:I pf Therefore, from Lemma 12, we get the desired result. O
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Example 3. Let R = Zy5, n = 2646 = 2 - 7% - 32. We have ord;(5) = 6 and ords(5) = 2.
Since 2||ord7(5) and 2|lords(5), so all free cyclic codes of length 2646 are LCD codes.

In the remainder of this section, we provide necessary and sufficient conditions for
cyclic codes to be LCD when the lengths are divisible by 4. The following lemmas are
needed.

Lemma 13. [12, Theorem 2°] The integer 2¥ has primitive roots for k = 1 or 2 but not
for k> 3. If k > 3, then {(—=1)?5%; a = 0,1 and 0 < b < 282} constitutes a reduced
residue system mod 2F. It follows that for k > 3, the group (Z/2*7)* is not cyclic; it
is the direct product of two cyclic groups, one of order 2, the other of order 282

Lemma 14. Let q be an odd prime power. Assume that there is an integer | in N* such
that ¢¢ = —1 mod 2% with k > 2. Then ¢ = —1 mod 2*. Further, the integer | is odd
and ordqyr (q) = 2.

Proof. Assume that there is an integer [ such that ¢/ = —1 mod 2*. If k)2, then from
Lemma 13, ¢ can be written as ¢ = (—1)*-57, with (4,5) in N2. Hence ¢! = (—1)* 5! =
—1 mod 2*, which requires that the integer il must be odd and that the order ordax(5)
of the integer 5 which equal to 252 must divide ji. Thus [ is odd and then 2¢~2 divides
j. Write j = 282§/, we get

2k—2 -/

g=(-1)"-5 =(-1)"-52 7 =(-1)" mod 2¥ = -1 mod 2*
For k = 2 and since ¢ is odd we have clearly that ¢¢ = —1 mod 4 leads to ¢ = —1
mod 4. Hence | must be odd. Further, ¢ = —1 mod 2* implies ordax(q) = 2. O

Theorem 3. Let R be a finite chain ring with residue field F,, and let n be a doubly even
integer coprime to q such that the factorization of n is given by n = 2k°plf1p§2...pft with
k; € N forall1 <i <t and kg > 2. Then the following statements are equivalent:

(i) 2|lordy,(q) for 1 <i <t and 2% | g+ 1.
(ii) All free cyclic codes over R of length n are LCD codes.

Proof. Suppose that (i) is satisfied. Proving (i7) is equivalent to proving the existence
of an integer [ such that ¢/ = —1 mod n. The assumption 2||ord,,(q) and Corollary 1
give that ordp;ci (¢) = 2m;, with m; odd . Using Lemma 8, we get ¢ = —1 mod pf
Therefore, qm:1 mi = —1 mod pf Hence, there exists [ = H§:1 m; an odd integer such
that ¢/ = —1 mod []/_, p[*. On the other hand, ¢ = —1 mod 2 implies ¢! = —1
mod 2F0. Consequently n = 2% H§=1 pfi divide ¢! + 1. Thus ¢ = —1 mod n.

Conversely, assume that all free cyclic codes over R are LCD. This means that all
cyclotomic cosets are reversible and, in particular, the cyclotomic coset C7. Hence there
exists [ in N* such that ¢ = —1 mod n. Therefore
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¢'=-1 modpl, for 1 <i<t 3)
and

¢' = -1 mod 2 (4)

1
Equation (3) and Lemma 8 give that | = 5(1 + 2m;)ordp, (q), for some integers m;.

Equation (4) and Lemma 14 give ¢ = —1 mod 2*° and that the integer { must be odd.
It follows that 21 = (14 2m;)ord,, (¢). Which means that 2||ord,, (¢). This completes the
proof. O

Example 4. Let R = Zg, n = 3724 = 22 - 72 . 19. We have ord(3) = 6, ordio(3) = 18.
Note that 2||6, 2||18 and 22 | 4. So all free cyclic codes of length n = 3724 are LCD
codes.

4. Self dual cyclic codes over finite chain rings

Let R be a finite chain ring with maximal ideal (). If the nilpotency index e of (v)
is even, the cyclic code (v2) is self dual and is called the trivial self dual code. The
following result gives a necessary and sufficient conditions for the existence of non trivial
self dual cyclic codes of length n over R.

Lemma 15. [8, Theorem 4.4] Let R be a finite chain ring with mazimal ideal {7), even
index of nilpotency e, and residue field F,. Then non trivial cyclic self dual codes of
length n over R exist if and only if there is no positive integer i, such that ¢¢ = —1
mod n.

Cyclic codes of length n which is not divisible by the characteristic of R are called
simple root cyclic codes. It was proven that there are no simple root self dual cyclic codes
over finite chain rings when the nilpotency index of the generator of the maximal ideal
is odd.

Theorem 4. [2, Theorem 12] Let R be a finite chain ring where () is the mazimal ideal
with nilpotency index e and Fy is the residue field. If e is odd, then there are no non
trivial self dual cyclic codes of length n over R when ged(n,q) = 1.

In [2], authors introduce a simple criterion for the existence of non trivial self dual
codes over R when the length is an odd prime power and the nilpotency index of the
maximal ideal of the ring is even.

Lemma 16. [2, Theorem 6] Let R be a finite chain ring with mazimal ideal {7y), even
index of nilpotency e and residue field Fy. If n is an odd prime power coprime with g,
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then there exists a non trivial cyclic self dual code of length n over R if and only if
ord,(q) is odd.

Using Lemmas 12 and 15, we will generalize this result and provide conditions on the
existence of non trivial self dual codes of arbitrary length over R.

Theorem 5. Let R be a finite chain ring with maximal ideal of even index of nilpotency
e, and residue field F,. Let n be an odd integer coprime to q such that the factorization
of n is given by n = plflp§2...pf‘7 with k; in N* for all1 <i <t andt > 2. Denote by
a; the integers of N such that 2% |lordy,(q), for alll < i < t. Then a non trivial self
dual cyclic codes of length n exist if and only if one of the following statements holds:

(i) There exists at least ig, 1 < ig <t such that a;, = 0.
(ii) Foralll <i <t, a; # 0, and there exist two distinct integers i1,iq with 1 <iy,is <t
such that a;, # a;,.

Proof. Assume that there exits ip, 1 < iy < t such that a;, = 0. This means that
ordy, (q) is odd. Lemma 8 guarantees that there is no integer I such that ¢ = -1
mod p;,. Hence, for all 4 in N we can’t have ¢ = —1 mod n. Thus, from Lemma 15, a
non trivial self dual cyclic code over R exists.

Assume now that (ii) is satisfied. Therefore, all ordy,(q), for 1 < i < ¢, are even.
Lemma 12 shows that if there exist two distinct integers 41,49, 1 < 47,45 < t such that
a;, # a;,, then there is no integer  such that ¢ = —1 mod n. Hence, a non trivial self
dual codes over R exist.

Conversely, assume that a non trivial self dual codes exist. So there is no integer [
such that ¢ = —1 mod n. We need to prove that either there exists iy such that a;, = 0
or every a; is different to zero and at least two of them are distinct. Suppose that for all
1 <i<t, a; # 0. This implies that ord,,(¢) is even for all 1 < < ¢. Since there is no
integer I such that ¢ = —1 mod n, by Lemma 12, we have that there exists iy, with
1 <iy,i2 < tsuch that a;, #a;,. O

Example 5. Let R = Z4 and n = 3 - 5. We have ordz(2) = 2 and ords(2) = 4, and hence

2! |ords(2) and 22||ords(2). So there exist non trivial self dual codes over Z4 of length
15. The factorization of 21> — 1 over Z4 is given by

a!? =1 = fi(2) f2(2) f3(2) fa(@) fi (@),
where
fi(x) = 243, folz) = 2?+a+1, f3(z) = '+ 22 +o+1, and fi(z) = 2 +22% 43241,

Let g(x) = fi(x) f2(x) f3(x) and h(x) = fa(x). Then the following codes
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(9(x)h(x),2h(x)h" (x)) and (g(x)h"(x),2h(x)h"(z))
are non trivial self dual cyclic codes of length 15.

Example 6. Let R = Z16 and n = 21. We have ords(2) = 2 and ord7(2) = 3. Then, there
exist non trivial self dual cyclic codes over R of length 21. The factorization of 22 — 1

over R is equal to

et — 1= fi(w) fo(2) f3(2) f3 (@) fa(2) f1 (),

where
fix) =a—1, foz) = 2®+a+1, f3(x) = 234622 +50—1, fi(x) = 2625 —at—2?+5x+1.

Let 22t — 1 = g(z)h(x)h*(x), where g(z) = fi(x)f2(z) is a self reciprocal polynomial
and h(z) = f3(x)fa(x). Thus, for example, the code (g(z)h(x),2h(z)h*(x)) is self dual.

We give now the necessary and sufficient conditions for the existence of non trivial
self dual codes when the length is an oddly even integer.

Theorem 6. Let R be a finite chain ring with maximal ideal of even index of nilpotency e,
and residue field F,. Let n be an oddly even integer coprime to q such that the irreducible
factorization of n is given by n = 2.p’f1p§2...pft, where t > 2, and k; in N* for all 1 <
i <t. Let a; € N such that 2% ||ord,, (q). Then a non trivial self dual cyclic code of length
n exists if and only if one of the following statements holds:

(i) There ezists at least ig,1 < ig <t such that a;, = 0.
(ii) For all1 <1i <t, a; # 0, there exist two distinct integers i1,i9 with 1 < iy,i9 <t
such that a;;, # a;,.

Proof. Since ged(n,q) = 1, then ¢ must be an odd integer. Hence for all [ in N* we have
2| ¢ +1.Ifa; =as = .. =a; = a, and a # 0, by Lemma 12, we know that there exists
! in N* such that ¢/ = —1 mod H:Zl pif“. Therefore, ¢ = —1 mod n. Hence, there do
not exist non trivial self dual codes on R by Lemma 15.

Conversely, assume () holds. Thus, from Lemma 8, there is no integer ! such that
¢' =—1 mod Di,- Hence, there does not exist integer [ in N, such that ¢ =—1 mod n.
This proves by Lemma 15 that non trivial self dual cyclic codes over R exist.

Assume now that (i) is satisfied. By Lemma 12, if there exist two distinct integers

i1,%2,1 < i1,42 < t such that a;, # a;,, then there is no integer ! such that ql = -1
mod Hle pf’ Even if we have 2 divides ¢' +1 for all I € N*, we cannot find any integer
[ such that ¢ = —1 mod n. Hence by Lemma 15, non trivial self dual codes over R

exist. O
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Example 7. Let R = Zg and n = 70 = 2 -5 - 7. We have ords(3) = 4, ord;(3) = 6, and
hence 2||ord;(3) and 22|ords(3). So there exist non trivial self dual cyclic codes of length
70 over Zg. The factorization of 7% — 1 over Zg is given by

2™ —1 = fi(2) fa(2) f5(2) fa(@) f5 (@) fo () fr () f7 (@) f (@) f5 (),

where

z+1,

T+ 8,

3+t +a+1,

xt + 823 + 2% + 8z + 1,

S+t a2+ +1,

28 +82° + 2t + 823 + 2% + 82 + 1,

212 4+ 4210 + 62° + 828 + 27 + 326 + 425 + 5t + T3 + 52? + 82 + 1,
212 + 4210 + 329 + 828 + 827 + 325 4 525 + 5a* + 223 4+ 522 + 2 + 1.

[ V)

w
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I

@
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Il
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Il

P e it
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8

Let 270 — 1 = g(z)h(x)h*(z), where g(z) = fi(z)f2(2)fs(2)fs(x)fs(x)fo(x) is
a self reciprocal polynomial and h(xz) = f7(z)fs(x). Thus, for example, the code
(g(z)h(z),3h(z)h*(x)) is self dual.

Example 8. Let R = Z49 and n = 30 = 2- 3 - 5. We have ords(7) = 1, ords(7) = 4. We
have that ords(7) is odd, so there exist non trivial self dual cyclic codes of length 30 over
Z49. The factorization of 3% — 1 over Z.g is given by

o =1 = fi(2) fo(2) f5 () f3(2) f5 () fa(2) f5 () fo () Fr () f7 (2) fs (2) £ (),

where
filz) =z +1, fo(z) =2 —19
fs(x) =z - 18, fa(z) =z -1,
fs(@)=at+ 23+ 2% + 2+ 1, fo(x) =at — 23 + 2% -2+ 1,
fr(x) = 2% — 1923 + 1822 + 2 — 19, fs(x) = 2% — 1823 — 1922 — x + 18,

Let 230 — 1 = g(z)h(x)h*(x), where g(z) = fi(z)fi(z)f5(x)fe(x) and h(z) =
fa(x) f3(x) fz(x) fs(x). Thus, for example, the code (g(x)h(x), 7Th(x)h*(x)) is self dual.

We determine now, necessary and sufficient conditions for the existence of non trivial
self dual cyclic codes over R for doubly even lengths.

Theorem 7. Let R be a finite chain ring with mazimal ideal of even index of nilpo-
tency e, and residue field F,. Let n be a doubly even integer coprime to q, such
that the irreducible factorization of n is given by n = 2k0p]f1p§2...pft where k; in
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N* foralll < i < tand kg > 2. Let a; in N such that 2% |ord,, (q), for 1 < i < t.
The following statements are equivalent:

(i) Non trivial self dual cyclic codes over R exist.
(ii) There exits i, 1 <i <t, such that a; # 1 or 2k { (¢ +1).

Proof. Assume that (i) is not satisfied. This implies that a1 = a3 = ... = a; = 1
and 2% | (¢ +1). Then from Lemma 12, there is an odd integer [ such that ¢! = —
mod H§:1Pfi- Since ¢ = —1 mod 2*° and [ is odd, it follows that ¢/ = —1 mod 2%,
Thus ¢ = —1 mod n. Lemma 15 shows that non trivial self dual cyclic code over R
does not exist.

Conversely, suppose that it does not exist any non trivial self dual cyclic codes of
length n over R. Then, by Lemma 15, there exist some positive integer [ such that
¢ = —1 mod n. Thus, ¢ = =1 mod 2*°. By Lemma 14, we have that ¢ = —1 mod 2%°
and that the integer ! is odd. On the other hand ¢! = —1 mod n implies again that
¢ = —1 mod p;. Lemma 8§ gives that 21 = (1 + 2m;)ord,, (q), for some integers m.
Since ! is odd, it follows that 2||ord,, (¢). This means that a; =1 for each 1 <¢ <t¢. O

Example 9. Let R = Zas and n = 84 = 22 -3 - 7. We have that 22 { (5 + 1). Then there
are non trivial self dual cyclic codes of length 84 over Zss. The factorization of 28 — 1

over Zsos is given by

1= Hfi(l") H fi(z) fi (2),

=11

where

()
Ju(z) =2 +7,
fi2(x) = 2 + 7w 4 24,
fi3(x) = 25 4+ 102° + 32 + 1123 + 2222 + 102 + 24,
fra(x) = 28 +172° + 172% + 1223 + 822 + 172 + 24,
fis(x) = 28 + 725 + 242 + 1823 + 2% + Tx + 24.
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Let 2% — 1 = g(x)h(x)h*(z) where g(z) = H}il fi(z) and h(z) = Hill fi(x). Thus for
example the code (g(x)h(z), Sh(z)h*(z)) is self dual.

Example 10. Let R = Zg; and n = 140 = 22-5-7. We have that 2% | (3+1), ord;(3) =6
and ords(3) = 4. Thus 2!|lord;(3) and 22|lords(3). Therefore, there exist non trivial self

dual cyclic codes of length 140 over Zg;. The factorization of 2'? — 1 over Zg; is given
by
a0 —1 = fi(x)fa(x) f3(2) fa(2) f5 (2) f5 (x) fo () fr (@) fs () fo ()
f10(@) fr1(@) f11(2) fr2(2) [ (@) fr3(@) fis (@) fra () f14 (@),
where
fi(z) r+1,
folx) = x—1,
fa(x) = 2% +1,
falx) = 2% — 2023 — 322 + 202 + 1,
fs(x)= 2*+a3+a2+x+1,
folx) = 2*—ad+a22—2+1,
fr(x) = 25+ 132° + 32* + 1323 + 322 + 132 + 1,
falx)= a5+ +at+ P+ +a+1,
fo(x) = 2% —132° + 32* — 1323 + 322 — 132 + 1,
fio(w)= 2 —ad+a* — a3+ 2% -2 +1,
fii(z) = 22 — 2421 4+ 9210 — 1729 4 528 + 3127 — 425 + 1125 — 122% + 423
— 822 + 37z + 1,
fiz(z) = 22 + 242 + 9210 41729 4 528 + 5027 — 425 — 1125 — 122 — 423
— 822 4 44x + 1,
fiz(z) = 22 — 9z + 4210 + 152° + 5328 + 1927 + 1220 + 492° + 232* — 223
— 1322 + 8z + 1,
fra(x) = 22 + 92 4+ 4210 — 152° + 5328 — 1927 + 1226 4 322° + 232* + 223
— 1322 — 8z + 1.

Let 210 — 1 = g(x)h(x)h*(z) where g(x) = 1‘[}21 filx) fi(x) and h(z) = H}iu filx).
Thus the code (g(x)h(x), 9h(x)h*(x)) is self dual.

5. Construction of new isodual cyclic codes over finite chain rings

In this section and according to different factorizations of the polynomial ™ — 1, we
give some new constructions of isodual cyclic codes over finite chain rings as a general-
ization of those obtained in [1]. First, we recall the structure of cyclic codes of length
2%m given in [1].
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Lemma 17. [1, Lemma 4] Let R be a finite chain ring with residue field Fq such that q
is an odd prime power, and let m an odd integer coprime to q. Then there is a primitive
2%-th root of unity £ in R* if and only if g =1 mod 2. Further,

a 2a .

1. 22" —1=T[_,(x — &) in R[z],

2. £€™ is also a primitive 2*-th root of unity,
3. Mo & =1 ifa>2.

Proposition 1. If R* contains a primitive 2%-th root of unity &, and ™ —1 = Hi=1 fi(x),
where fi(x), 1 < i < I, are monic basic irreducible pairwise coprime factors in Rz],
then

2a

!
22— 1= H Hf,({kx)

k=1=1

Proof. Assume that 2™ —1 = Hi:l fi(z). Let € be a primitive 2%-th root of unity. Then
(k)™ —1= Hi'=1 fi(€Fx). Thus o™ —¢=Fm = ¢=km H§=1 fi(€Fx). Since € is a primitive
2%-th root of unity and Hi:l E7Fm =1, we get

xQGm -1 = (xrn)2a 1= Hia:l(xnz _ £k> — Hia:l(xnl _ g—km)

2% fom T 2¢
= [Tii (€7 ITicy fi(€F2)) = [Tii [Tiey fi(€h2)) O
For the construction of isodual codes we need the following result given in [1]

Lemma 18. /1, Theorem 3] Let R be a finite chain ring, C' a free cyclic code of length
n over R generated by a polynomial g(x) and & a unit in R such that 6™ = 1. Then the
following holds:

(i) C is equivalent to the cyclic code generated by g*(x).
(it) C is equivalent to the cyclic code generated by g(dx).
(iii) C is equivalent to the cyclic code generated by g*(dx) or (g(dx))*.
(iv) If n is even, then C is equivalent to the cyclic code generated by g(—x).

Proposition 2. Let n be a positive integer. If f(x) and g(x) are polynomials in R[z] such
that ™ — 1 = g(x) f(x), then the cyclic code generated by g(x) is equivalent to the dual
of the code generated by f(x).

Proof. Let C be a cyclic code generated by g(z) and C” a cyclic code generated by f(z).
We have that the dual of C’ is generated by ¢g*(x). By Lemma 18, C' is equivalent to
c't. o

The following theorem gives a natural construction for free cyclic isodual codes.
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Proposition 3. Let n be a positive integer such that there exists § in R* verifying 0™ =
Ifz"—1 = ag(x)g(dz) ora™—1 = ag(x)g(dx)* for some a in R*, then the code generated
by g(x) is isodual.

Proof. Assume that " —1 = ag(x)g(dzx)*. Let C be a code generated by the polynomial
g(x). From Theorem 4, C is free code. From Proposition 2, C' is equivalent to the dual
of the cyclic code C’ generated by ag(éz)*. Up to normalization and since 6" = 1 and
a in R*, we obtain that the code C’ is equivalent to the code generated by g(x) which
is C' itself. Therefore C is isodual. With the same argument, we get the result for the
second part. O

In the following, we take ¢ is an odd prime power such that ¢ =1 mod 2% witha > 1
and m an odd integer with ged(m,q) = 1. We next give new construction of isodual
cyclic codes of length 2%m over R.

Theorem 8. Assume that ™ — 1 = fi(x) fo(x). Then the free cyclic codes of length 2°m
generated by

20,71 20,71_1

II 7€) I £ ), ij € {1,2},i #5,
k=1 k=0

or
I (&%) fa(¢*2),
k=1
or
2011
H f1(§2k-+1$)f2(£2k+1$)
k=0

are isodual, where & is a primitive 2*-th root of unity.

Proof. Let 2™ — 1 = fi(z) fo(x). From Proposition 1, we have
ga— 1 90— 1_1

1= H f1(€") fa(€F ) H f1(&%x) f2(% ) H FL(E L) fo (€2 ).

Let

ga—1 ga—1_1

H £2k H f2 (€2k+11})
k=1 k=0
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Table 1
List of isodual codes obtained of length 36 over Zss.

Polynomial generator g(z) of the isodual code C

glz) =2+ (£ - &)z’ + (& - ¢*)z® -1

g(z) = %% + (£ — 1)a® + (¢ — £%)2® — 1

g(x) = %27 — (&2 = a® + (&% — 1)a” — (&2 = )2’ + (&% — &%) —
-z + (- + (€@ -+ (- w1

glx) = 2% — (&% — %)a® — (£ — )T + (€2 — 1)a’ + (£ — )2’ —
(€ -Da* + (- Da® — (- — (£ -z — 1

g(z) = 52389 - (- 1)9@8 - (53 - 1)3@7 — (& - 53)x6 —(£-&)° +
(€ —1z* — (& - 1)2° f( 53)z —E-)r-1

g(z) = &x° +(£ —1):c + (g =€z + (€8 = Da® + (€ - €M)a" +
-+ (- + (- D+ (- )z -1

g(z) = &2° —1

g(z) = €a® — 1

Knowing that £2° =1, we get
20.7171 2:17171 24171

ga—1
1,) _ H f1(52k+1(£) H f2(§2k+2$) _ H fl(f2k+11') H f2(£2kx>
k=1 k=0 k=0 k=1

In other words, we have that 2" —1 = g(z)g(¢xz). Since £2"™ = 1, then from Theorem 3
the code generated by g(z) is isodual. A similar argument is employed to prove that codes
generated by

H £2k f2 52]9 )

or

20-1_1

H f §2k+1 (§2k+1 )

are also isodual. O
Example 11. Let R = Zys and n = 36 = 22 - 32, ¢ = 5 =1 mod 22. We have
2 —1=(x—-1)(2*+z+1)(%+2°+1).
Thus, we get the isodual codes given in Table 1, where £ is a primitive 4-th root of unity.

Corollary 3. Let p* be a prime power. Assume that 1= fi(x) fao(x). Then the cyclic
codes generated by

fi(z) fa(—z) or fr(—x)f2(z) or 2 —1ora? +1
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Table 2
List of LCD-isodual codes obtained of length 50 over Zg.

Polynomial generator g(z) of LCD-isodual code C

g(z) = 225 — 2220 1 2215 — 2210 1 225 — 1

g(z) = 225 4 2220 4 2515 4 2210 4 955 4 1

g(z) = g% x4t 928 | 9p22 9,21 4 9019 | 9,18 4 917

2216 — 221 — 2213 — 2212 — 2211 4 229 + 228+

227 + 22% — 22* — 22% — 227 — 22 — 1

g(z) = 225 — 2024 4 9z23 _ 2422 4 9zl _ 019 4 9p18 _ 917

226 — 22 4 2213 — 2212 4 221 — 22% 4 2285

227 + 226 — 2% + 22% — 22% + 22 — 1

g(z) = 225 — 2024 2223 _ 2222 4 2421 _ 9420 | 2519 _ 0518 4 9417
2216 4 2215 — 22 4 2518 — 2512 4 2zt — 2210 4229 — 22854

227 — 225 4 22° — 22* 4+ 22% — 227 + 22 — 1

g(z) = 225 + 2224 | 2023 | 2472 4 2271 | 2220 4 2219 4 2418 4 2,174
2216 4 2215 4 214 + 27183 + 2712 + 2zt + 2710 + 229 + 2m8+

227 +22% +22% —22* +22° + 222 + 22 + 1

glz) =22 -1

g(z) = 25+ 1

are isodual codes of length 2p*. Further, if ordp(q) is even, then these codes are LCD-
isodual codes.

Proof. The result follows from Theorem 1 and Theorem 8 for a = 1, m = pF and
E=-1. O

Example 12. Let R = Zgy and n = 50 = 2 - 52. We have
P —1=(z—Da*+22 + 22 + 2+ 1)@ +2'° + 219 + 25+ 1).
Further ords(3) = 4. So we get the LCD isodual codes shown in Table 2.

Corollary 4. Let m be an odd integer such that the irreducible factorization of m is given

by m = ppk2 pkt and a™ — 1 = fi(x)fo(x). Assume that there exists a in N* such

that 2%||ordy, (q), for all1 <i <t. Then, the cyclic codes generated by
fi(@) fo(—=z) or fi(—x)fo(z) orz™ —1 orz™ +1
are LCD-isodual codes of length 2m.
Proof. The result follows immediately from Theorem 2 and Theorem 8 with £ = —1. O
Another construction of isodual cyclic codes is given by the following theorem.

Theorem 9. Assume that we have the factorization 2™ — 1 = f1(x) fo(x) f5(x), such that
the polynomial f1 is self reciprocal. Then the cyclic codes of length 2*m over R generated

by
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20.—1 20
I 1€ a2) [T fal"o)
k=1 k=1

or

2a1

H fr(&%* ) H f5 (k)
are isodual, where & is a primitive 2*-th root of unity.

Proof. Let 2™ — 1 = fi(z)f2(x) f5 (x) then

9a ga—1 ga—-1_1q

2 m_1 Hfl £k f2(§k f2 fk H fl 2k H f 2k+1 Hf2 gk f2 (gk )

Let g(z) = Hk 1 fl( )Hk 1f2(§k )- Sincefzazl,we get

2471 -1

2a—1 2a
= [[ A1) I 26" 1) H h(E e Hf (¢*x)
k=1 k=1

Since the polynomial f; is self reciprocal, we obtain the factorization z2'™ — 1 =
g(x)g(&x)*. The desired result follows from Theorem 3. The same result is obtained
for the codes generated by

2{:,—1 2a,
[T n@a) I (k). o
k=1 k=1

Example 13. Let R = Zo5 and n = 132 = 22 - 33. We have 5 =1 mod 22 and

23— 1=

(x — )(m2+x+1)(x5—8x4—m3+x2—9x—1)
(25 + 92" — 23 + 2% + 8z — 1)
(219 — 929 4 728 + 1127 + 925 — 425 — T2 — 623 — 1022 + 8z + 1)
(219 + 829 — 102® — 627 — 725 — 425 + 92 + 1123 + 722 — 9z + 1)

Let 233 — 1 = fi(x)fa(x) f3(2), where fi(z) = (z — 1)(2® + = + 1) and fo(z) =
(25 —82* =3+ 2% —92—1)(210 - 92° + 728 + 1127 + 926 —42° — T2* — 623 — 1022 +8x +1).
Thus, for example, the codes generated by

(fi(2) f1(E2) fo(2) fo () fo(€72))

or
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(fr(@) fu(€2) f5 () f5 (€x) 5 (€72) 5 (€72))
are isodual, where £ is a primitive 4-th root of unity.

Corollary 5. Let p be an odd prime number and k in N such that -1 =
f1(z) fa(x) £ (). Assume that ord,(q) is even. Then the cyclic codes of length 2p* gen-
erated by

fi(@) fa(z) fa(=2) or fi(z)f5(z)f3(—x)
are LCD-isodual codes.

Proof. The result follows from Theorem 1 and Theorem 9 with £ = —1. O

Corollary 6. Let m be an odd integer such that the irreducible factorization of m is given
by m = prphe phtand o™ — 1 = f1(2) f2(x) f5(x). Assume that there exists a in N*
such that 2%||ord,, (¢), for all 1 < i <t. Then the cyclic codes of length 2m generated by

fi@) f2(z) fo(=2) or fi(2)f3 () f3(—2)
are LCD-isodual codes.

Proof. The result follows immediately from Theorem 2 and Theorem 9 with £ = —1. O

Example 14. Let R = Za; and n = 70 = 2-5- 7. We have 2% — 1 = f1(x) f2(2) f5 (),
where

@) =@-DE*+22+ 22+ + D@8+ 25+t + 22 + 22+ + 1)
fo(x) = (212 — 921t + 4210 — 1229 — 328 — 727 + 1220 — 52° — 42* — 223 + 1422 + 8z + 1).

So the cyclic codes of length 70 over Zs7 generated by
g(x) = fi(@) f2(2) fo(—2)
or
h(z) = fi(z)f3 (2)f3 (—=)

are isodual.
6. Conclusion

In this work, cyclic codes over finite chain rings were studied. Conditions for which
all these codes are LCD were given. In addition, necessary and sufficient conditions were
given for the existence of non trivial self dual cyclic codes. Further, new constructions of
isodual codes were presented and investigated when these codes are LCD-isodual codes.
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