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1. Introduction

Codes over finite rings were studied in the early 1970s, and this study has grown 
enormously since the seminal work of Hammons et al. [11], where it is shown in that 
some of the best nonlinear codes over F2 can be viewed as linear codes over Z4.

Linear complementary dual or LCD codes are linear codes that intersect with their 
dual trivially. LCD cyclic codes have applications in data storage. Due to a newly 
discovered application in cryptography [6,9], interest in LCD codes has increased 
again.

An LCD code defined over a finite field Fq which is also known as reversible code 
was first introduced by Massey in [17]. Following his first study, Massey also showed the 
existence of asymptotically good LCD codes. Furthermore, Yang and Massey in [20] pro-
vided a necessary and sufficient condition under which a cyclic code has a complementary 
dual. In [15], Liu and Liu studied LCD codes over finite chain rings and provided a nec-
essary and sufficient condition for a free linear code to be LCD. In [14], Lina and Nocon 
give parameters of some LCD codes using generator matrices and give some methods to 
construct new LCD from previous ones. Recently, in [5], existence conditions are given 
for LCD codes over F2 which are images under the Gray map of additive codes over 
Zα

2 × Zβ
4 . Finally, in [7], the authors proved that there are no non-free LCD codes over 

finite commutative local Frobenius rings. It was also shown that a free cyclic code C
over any finite chain ring is LCD code if and only if C is reversible when the length n of 
the code is relatively prime to the characteristic of a finite chain ring. Several types of 
equivalence between codes can be defined, but here we only consider monomial equiva-
lence. Two codes C and C ′ are called monomially equivalent if there exists a monomial 
permutation which sends C to C ′. Isodual codes are codes which are monomially equiv-
alent to their duals. The class of isodual codes is important in coding theory because 
it contains the self dual codes as a subclass. In addition, isodual codes are contained 
in the larger class of formally self dual codes. In [1,3,4] the authors gave some specific 
constructions of self dual and isodual codes over finite fields and finite chain rings. The 
purpose of this paper is to examine linear codes with complementary duals and isodual 
codes over finite chain rings. We give necessary and sufficient conditions for which all 
codes are LCD, and generalize the result given in [2] by giving condition on the existence 
of non trivial self dual codes. Some of the codes obtained are both isodual and LCD, 
and so are called LCD-isodual codes. The paper is organized as follows, the necessary 
background material on codes over finite chain rings is given in Section 2. In Section 3, 
we give the first part of the main results of this paper. Based on algebra number theory 
properties, we provide conditions under which all free cyclic codes over finite chain rings 
are LCD. In Section 4, we generalize the result given in [2] of the existence of non trivial 
self dual codes when the nilpotency index of the maximal ideal of the finite chain ring 
considered is even. In Section 5, the structure of cyclic codes of length 2am over finite 
chain rings is given along with conditions on the existence of isodual cyclic codes. Using 
these results, several constructions of isodual are given.
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2. Preliminaries

We begin with some definitions and properties about finite chain rings. Let R be a 
finite commutative ring with identity. A commutative ring is called a chain ring if the 
lattice of all its ideals is a chain. It is well known that if R is a finite chain ring, then R
is a principal ideal ring and it has a unique maximal ideal 〈γ〉. Its chain of ideals is

{0} = 〈γe〉 � 〈γe−1〉 � . . . � 〈γ〉 � R,

where 〈γi〉 (with i ∈ {1, · · · , e}) is the ideal of R generated by γi. The integer e is 
called the nilpotency index of 〈γ〉. The nilradical of R is 〈γ〉, so all the elements of 〈γ〉
are nilpotent. Therefore, the elements of R\〈γ〉 are units. We denote this group by R∗. 
Since 〈γ〉 is maximal, the residue ring R/〈γ〉 is a field with q elements which we denote 
by Fq.

Let |R| denote the cardinality of R, then |R| = |Fq| · |〈γ〉| = |Fq| · |Fq|e−1 = |Fq|e = qe. 
Moreover, from [19],

|〈γi〉| = |Fq|e−i = qe−i for i = 1, 2, . . . , e− 1

The natural surjective ring morphism is given by

− : R −→ Fq

a �−→ ā = a mod γ
(1)

The map given in (1) extends naturally to a map from R[x] −→ Fq[x]. A polynomial 
f(x) of R[x] is called basic irreducible if f(x) is irreducible in Fq[x]. Two polynomials 
f1(x) and f2(x) in R[x] are called coprime if 〈f1(x) +f2(x)〉 = R[x] or equivalently there 
exist λ1(x) and λ2(x) in R[x] such that λ1(x)f1(x) +λ2(x)f2(x) = 1. A polynomial f(x)
of R[x] is a unit if and only if f(x) is a unit and also f is a zero divisor if and only 
if f(x) = 0. Hensel’s lemma is an important tool for studying finite chain rings, which 
can lift the factorization into a product of pairwise coprime polynomials over Fq to such 
factorization over R.

Lemma 1. [18, Hensel lifting, Theorem XIII.4] Let g(x) in R[x] be monic. Assume 
that there are monic, pairwise coprime polynomials f1(x), f2(x), . . . , fk(x) in Fq[x]
such that g(x) =

∏i=k
i=1 fi(x), then there are monic pairwise coprime polynomials 

g1(x), g2(x), . . . , gk(x) in R[x] such that g(x) =
∏i=k

i=1 gi(x) and gi(x) = fi(x), for all 
0 ≤ i ≤ k.

Lemma 2. [19, Theorem 2.7] If f(x) is a monic polynomial over R such that f(x) is 
square free, then f(x) factors uniquely as product of monic basic irreducible pairwise 
coprime polynomials.
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Let R be a finite chain ring, Fq its residue field, and 〈γ〉 its maximal ideal with 
nilpotency index e. A linear code C of length n over R is a submodule of Rn. A linear 
code C of length n over R is called cyclic if (cn−1, c0, c1, . . . , cn−2) is in C whenever 
(c0, c1, . . . , cn−1) is in C. Each codeword c where c = (c0, c1, ..., cn−1) is customarily 
identified with its polynomial representation c(x) where c(x) = c0 + c1x + ... + cn−1x

n−1. 
In this way, any cyclic code of length n over R is identified with exactly one ideal of the 
ring R[x]/〈xn − 1〉 and xc(x) correspond to a cyclic shift of c(x).

A monomial transformation over Rn is an R-linear homomorphism τ such that there 
exist scalars λ1, λ2, ..., λn in R∗ and a permutation σ in Sn, where Sn is the group of 
permutation of {1, 2, ..., n}, such that for all (x1, x2, ..., xn) in Rn, we have

τ(x1, x2, ..., xn) = (λ1xσ(1), λ2xσ(2), ..., λnxσ(n)).

Recall that two codes are called equivalent if there is a monomial permutation which 
sends one to the other. In this paper, whenever we say that two codes are equivalent, we 
mean that they are monomially equivalent. Suppose that f(x) = a0 + a1x + ... + arx

r

is a polynomial of R[x] of degree r such that f(0) = a0 is a unit in R. The monic 
reciprocal polynomial of f(x) is defined by f∗(x) = f(0)−1xrf(x−1). If f∗(x) = f(x), 
the polynomial f(x) is called self reciprocal.

A code C over R is reversible if for each code word (c0, c1, ..., cn−1) in C implies that 
the code word (cn−1, cn−2, ..., c0) is also in C. It is known that a cyclic code C is reversible 
if and only if its generator polynomial is self reciprocal. We attach the standard inner 
product to Rn

x · y =
n∑

i=1
xiyi, for each x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) in Rn.

The Euclidean dual code C⊥ of C is defined as

C⊥ = {x ∈ Rn : ∀y ∈ C;x · y = 0}.

A code C is said to be self dual if C = C⊥, it is isodual if C = τ(C⊥), where τ
is a monomial transformation, and it is called LCD or linear complementary dual if 
C ∩ C⊥ = {0}.

A code C over a finite chain ring and its dual satisfies the following

|C||C⊥| = qen = |R|n and (C⊥)⊥ = C.

The following theorem gives the structure of a cyclic code and its dual over a finite 
chain ring.
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Lemma 3. [8, Theorem 3.8] Let R be a finite chain ring with maximal ideal γ with 
nilpotency index e and residue field Fq. Let C be a cyclic code over R of length n such 
that gcd(n, q) = 1, where p is the characteristic of R̄. Then there exists a unique family 
of pairwise coprime polynomials Fi(x), 0 ≤ i ≤ e in R[x] satisfying F0(x)F1(x)...Fe(x) =
xn − 1 such that

C =
〈
F̂1(x), γF̂2(x), ..., γe−1F̂e(x)

〉
, C⊥ =

〈
F̂ ∗

0 (x), γF̂ ∗
e (x), ..., γe−1F̂ ∗

2 (x)
〉
,

where F̂i(x) = xn − 1
Fi(x) for 0 ≤ i ≤ e. Moreover, we have that the ring R[x]/ 〈xn − 1〉 is 

a principal ideal ring.

In particular, when the code is free as a submodule, we have the following statement.

Lemma 4. [10, Theorem 4.16] Let C be a cyclic code of length n over a finite chain ring 
R with residue field Fq such that gcd(n, q) = 1. Then, C is a free cyclic code with rank 
k if and only if there is a monic polynomial f(x) in R[x] such that f(x) divides xn − 1
and f(x) generates C. In this case, we have k = n − deg(f). Further the dual code of C

is also free and it is generated by 
〈(

xn − 1
f(x)

)∗〉
.

3. On LCD cyclic codes over finite chain rings

The aim of this section is to present some new constructions of LCD cyclic codes, and 
provide necessary and sufficient conditions for the existence of non trivial LCD cyclic 
codes over finite chain rings.

Let n be a positive integer and q a prime power coprime to n. We denote by ordn(q)
the multiplicative order of q modulo n. This is the smallest integer l such that ql ≡ 1
mod n.

To process cyclic codes of length n, we have to study the factorization into irreducible 
polynomials of xn− 1 over Fq. To this end, we need to introduce the q-cyclotomic cosets 
modulo n. Note that xn − 1 has no repeated factors over Fq if and only if gcd(n, q) = 1. 
For any s in {0, 1, 2, ..., n − 1}, the q-cyclotomic coset of s modulo n is defined by

Cs =
{
s, sq, sq2, ..., sqls−1} ,

where ls is the smallest positive integer such that s ≡ sqls( mod n), and is the size of 
the q-cyclotomic coset. The smallest integer in Cs is called the coset leader of Cs. Let 
Pn,q be the set of all the coset leaders. We have then Cs ∩ Ct = ∅ for any two distinct 
elements s and t in Pn,q, and

⋃
Cs = {0, 1, 2, ..., n− 1}.
s∈Pn,q
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Hence, the distinct q-cyclotomic cosets modulo n partition {0, 1, 2, ..., n − 1}.
The cyclotomic coset Cs is said to be reversible if and only if Cn−s = Cs if and only 

if n − s is in Cs.

Lemma 5. [2, Lemma 4] If C1 is reversible then Cs is reversible for all s in Pn,q.

Let r = ordn(q), and let α be a generator of (Fqr)∗. Put β = α
qr−1

n , then β is a 
primitive n-th root of unity in Fqr . The minimal polynomial ms(x) of βs for s in Pn,q

over Fqr is given by

ms(x) =
∏
j∈Cs

(
x− βj

)
,

which is irreducible over Fq, and hence the factorization of xn−1 into irreducible factors 
over Fq is given by

xn − 1 =
∏

s∈Pn,q

ms(x).

The following lemma is well known in literature.

Lemma 6. [13, Lemma 5] The minimal polynomial ms(x) is self reciprocal if and only if 
the cyclotomic coset associated Cs is reversible.

3.1. Some properties of positive integers

In this section, we give some properties of positive integers which will be needed later.

Lemma 7. Let q be a prime power, p an odd prime number coprime to q, then we have

(i) If ordp(q) is even then for all k in N∗, ordpk(q) is even.
(ii) If there is k in N∗ such that ordpk(q) is even, then ordp(q) is also even.

Proof. Since p divides pk, we have qordpk
(q) ≡ 1 mod pk implies that qordpk

(q) ≡ 1
mod p. Hence ordp(q) | ordpk(q), therefore if ordp(q) is even then ordpk(q) is even 
too.

To prove (ii), assume that there is k in N∗ such that ordpk(q) is even, and by way 
of contradiction we suppose that ordpk−1(q) is odd. Therefore, there exist some in-
teger i and there exists m in N, such that q2i+1 = 1 + mpk−1. Since p is a prime 
number, it divides the binomial coefficient 

(
p
j

)
for all 1 ≤ j ≤ p − 1. Hence we get 

(q2i+1)p =
(
1 + mpk−1)p ≡ 1 mod pk. It follows that ordpk(q) | (2i +1)p. Since (2i +1)p

is odd, this leads to a contradiction. So that ordpk−1(q) must be even, and by descending 
recurrence we get that ordp(q) is even. �
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Lemma 8. Let q be a prime power and p an odd prime number such that gcd(p, q) = 1. 
The three following statements are equivalents.

(i) There exits l in N, such that ql ≡ −1 mod p.
(ii) For all k in N, there exists lk in N, such that qlk = −1 mod pk.
(iii) There is i in N∗ such that ordpi(q) is even.

Further, if ql ≡ −1 mod p, then l = 1
2(1 + 2m)ordp(q) for some m in N.

Proof. Suppose that (i) is satisfied and we prove (ii) by induction. For k = 1 we have 
ql ≡ −1 mod p. Assume qlk−1 ≡ −1 mod pk−1 for k ≥ 2. Since p is odd, we can write

pk−1−1∑
i=0

(−qlk−1)i = (−qlk−1)pk−1 − 1
(−qlk−1) − 1 = qlk−1p

k−1 + 1
qlk−1 + 1 .

On the other hand, we have

pk−1−1∑
i=0

(−qlk−1)i =
pk−1−1∑

i=0
(−1)i(qlk−1)i ≡

pk−1−1∑
i=0

(−1)i(−1)i mod pk−1 ≡ 0 mod pk−1,

which means that pk−1 |
∑pk−1−1

i=0 (−qlk−1)i. Since p | pk−1 | qlk−1 + 1, it follows that

pk | (qlk−1 + 1)(
pk−1−1∑

i=0
(−qlk−1)i) = qlk−1p

k−1
+ 1.

Thus, for lk = lk−1 · pk−1, we have that qlk ≡ −1 mod pk. Note that when ql ≡ −1
mod p, then lk = lk−1 · pk−1 = lk−2 · pk−2 · pk−1. We obtain that lk = l · p k(k−1)

2 .
Conversely, if the statement (ii) holds, then the statement (i) follows immediately for 

k = 1.
Assume that (iii) is satisfied. Lemma 7 shows that the integer ordp(q) is also even. 

We have, qordp(q) ≡ 1 mod p if and only if p | (q 1
2ordp(q) − 1)(q 1

2ordp(q) + 1). Since p is 
prime it must divide one of the factors and it can not divide (q 1

2 ordp(q) − 1) because of 
the definition of the order of q, thus q 1

2ordp(q) = −1 mod p.
Conversely, if (ii) is satisfied, then by Lemma 8 there exits l in N∗ such that ql ≡

−1 mod p, which means q2l ≡ 1 mod p, so that ordp(q) | 2l. If ordp(q) is odd, then 
ordp(q) | l, which contradicts the fact that ql ≡ −1 mod p. Hence ordp(q) must be even 
and (iii) holds.

It remains to prove that if there exists an integer l such that ql ≡ −1 mod p, then 
l = 1

2 (1 + 2m)ordp(q) for some m in N. By definition of order, the integers qordp(q) and 
qj are distinct for all 1 ≤ j〈ordp(q). Since p is odd, we obtain that if l′ is the smallest 
integer such that ql′ ≡ −1 mod p, then on the one hand 1 ≤ l′〈ordp(q) and, on the 
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other hand, ordp(q) | 2l′. This gives 2l′ = λordp(q) and λ ≥ 1. Since l′〈ordp(q), then 
l′ = 1

2ordp(q). Further, if l is an integer that satisfies ql ≡ −1 mod p, then by division 
algorithm we can write l = sl′ + r with r〈l′. Hence, we get

ql = qsl
′+r = (ql

′
)sqr ≡ (−1)sqr mod p ≡ −1 mod p.

Which forces that s is odd and r = 0. Thus,

l = (2m + 1)l′ = 1
2(2m + 1)ordp(q). �

Corollary 1. Let q be a prime power and p an odd prime number coprime to q. Let a be a 
positive integer such that 2a‖ordp(q). Then for all k ∈ N∗ we have 2a‖ordpk(q), where 
the notation 2a‖ordp(q) means that 2a|ordp(q) but 2a+1 � ordp(q).

Proof. Let a be a positive integer such that 2a‖ordp(q). From Lemma 8, there exists 
l in N∗, such that ql ≡ −1 mod p and l = 1

2 (1 + 2m)ordp(q) for some m in N. On 
the other hand, since ordp(q) is even, then ordpk(q) is also even for all k ∈ N∗. Hence, 
from Lemma 8 again, there exists lk in N∗, such that qlk ≡ −1 mod pk and lk =
1
2 (1 + 2mk)ordpk(q) for some mk in N. From the proof of Lemma 8, we have that 
lk = l · p k(k−1)

2 . Therefore

lk = 1
2(1 + 2mk)ordpk(q) = 1

2(1 + 2m)ordp(q) · p
k(k−1)

2 .

Since (1 + 2m)p
k(k−1)

2 and (1 + 2mk) are both odd, we conclude that 2a‖ordpk(q). �
3.2. New constructions of LCD cyclic codes over finite chain rings

Recall that a cyclic code is an LCD code if it satisfies C ∩ C⊥ = {0}. It was shown 
recently in [7] that non-free LCD code don’t exist over finite commutative chain rings.

Lemma 9. [7, Theorem 2] Over finite commutative chain rings, any LCD code is free.

In [7] again, Bhowmick et al., generalized the characterization of LCD codes on finite 
chain rings.

Lemma 10. [7, Theorem 6] Let C be a cyclic code over a finite chain ring R with residue 
field Fq of length n such that gcd(n, q) = 1. Let g be a generator polynomial of C. Then 
C is an LCD code if and only if C is reversible if and only if the polynomial g is self 
reciprocal.

Liu and Wang generalized Massey’s criterion [20] for LCD codes over any finite field 
of any length to finite chain rings.
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Lemma 11. [16, Theorem 25] A cyclic code C of length n over a finite chain ring R with 
the residue field Fq is an LCD code if and only if C = 〈g(x)〉, where g(x) is a monic 
divisor of xn − 1 such that g(x) = g∗(x), and g(x) and (xn − 1)/g(x) are coprime.

Let q = ps and n = mpr, where gcd(m, p) = 1. Thus the polynomial xm−1 is a monic 
square free, hence it factors uniquely as a product of pairwise coprime monic irreducible 
polynomials f1(x), ..., fl(x). Hence the factorization of xn − 1 over Fq is given by

xn − 1 = xmpr − 1 = (xm − 1)p
r

= f1(x)p
r

...fl(x)p
r

(2)

Denote the factors fi(x) in the factorization of xm − 1 which are self reciprocal by 
g1(x), ...gs(x), and the remaining fj(x) grouped in pairs by h1(x), h∗

1(x), ..., ht(x), h∗
t (x). 

Hence l = s + 2t, and the factorization given in (2) becomes

xn − 1 = g1(x)p
r

g2(x)p
r

...gs(x)p
r

h1(x)p
r

h∗
1(x)p

r

...ht(x)p
r

h∗
t (x)p

r

Using Hensel’s Lemma and the properties of the reciprocal polynomial, we get a factor-
ization of xn − 1 over R, which is given by

xn − 1 = G1(x)G2(x)...Gl(x)H1(x)H∗
1 (x)...Ht(x)H∗

t (x),

where Gi(x), Hj(x) are monic coprime polynomials such that Gi(x) = gp
r

i (x), Hj(x) =
hpr

j (x).
By Lemma 11, we obtain a characterization of LCD codes over finite chain rings. Those 
are codes generated by

C =
〈
G1(x)k1G2(x)k2 ...Gl(x)klH1(x)r1H∗

1 (x)r1 ...Ht(x)rtH∗
t (x)rt

〉
,

where ki, rj ∈ {0, 1} for all 1 ≤ i ≤ l, 1 ≤ j ≤ t.
Now, using the algebraic properties of integers given in the section 3.1, and according 
to the decomposition of n into product of powers of prime numbers, we give some new 
constructions of LCD codes over R.

Theorem 1. Let R be a finite chain ring with residue field Fq, and pk an odd prime 
power coprime to q. Then, all free cyclic codes of length pk over R are LCD if and only 
if ordp(q) is even.

Proof. Let pk be an odd prime power coprime to q. From Lemma 10 we have that a 
cyclic code C is an LCD code if it is generated by a self reciprocal polynomial g(x)
which divide xpk − 1. On the other hand, Lemma 8 shows that if ordp(q) is even, then 
there exits l in N∗, such that ql ≡ −1 mod pk, which means that −1 is in the cyclotomic 
coset C1. Hence, C1 = C−1 mod pk. In other words, C1 is reversible, and so all the other 
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cyclotomic cosets are also reversible by Lemma 5. Therefore, all divisors of xpk − 1 are 
self reciprocal.

Conversely, assume that all free cyclic codes of length pk are LCD, then all divisors of 
xpk − 1 are self reciprocal. Hence all cyclotomic cosets are reversible and, in particular, 
the cyclotomic coset C1 is reversible. This means that there is an integer l such that 
ql ≡ −1 mod pk. Finally, Lemma 8 shows that in such case ordp(q) is even. �
Example 1. Let R = Z9 with residue field F3 and n = 49. We have ord7(3) = 6 and the 
factorization into irreducible polynomials is given by:

x49 − 1 = (x+8)(x6 +x5 +x4 +x3 +x2 +x+1)(x42 +x35 +x28 +x21 +x14 +x7 +1)
= g1(x)g2(x)g3(x)

So, all codes generated by 
〈∏3

i=1 g
ki
i (x)

〉
, where 0 ≤ ki ≤ 1, are LCD codes over Z9 of 

length 49.

Example 2. Let R = Z4, n = 17, we have

x17 − 1 = (x+3)(x8 +2x6 + 3x5 +x4 + 3x3 + 2x2 +1)(x8 +x7 + 3x6 + 3x4 +3x2 +x+1)
= g1(x)g2(x)g3(x),

and it is easy to see that g1(x), g2(x) and g3(x) are monic basic-irreducible over Z4. Since 

ord17(2) = 8, then all cyclic codes generated by polynomials of the form 
〈∏3

i=1 g
ki
i (x)

〉
, 

with 0 ≤ ki ≤ 1, are LCD codes.

Lemma 12. Let q and n be positive integers coprime such that n is odd and the irreducible 
factorization of n is given by n = pk1

1 pk2
2 ...pkt

t , with ordpi
(q) even for 1 ≤ i ≤ t. Let ai

be the positive integers for which 2ai‖ordpi
(q), with 1 ≤ i ≤ t. Then we have

a1 = a2 = ... = at = a if and only if there exists l ∈ N∗, such that ql ≡ −1 mod n.

Further, 2a‖ordn(q).

Proof. Assume that a1 = a2 = ... = at = a. Recall that if 2a‖ordpi
(q) then 2a‖ord

p
ki
i

(q)
for all ki in N. Thus, we can write ord

p
ki
i

(q) = 2ami, with mi an odd integer for 1 ≤ i ≤ t. 
From Lemma 8 and Corollary 1, we deduce that there exits li ∈ N∗, such that qli ≡
−1 mod pki

i . The smallest integer l′i satisfying this congruence is l′i = 1
2ordpki

i
(q) =

2a−1mi, for 1 ≤ i ≤ t. Let m =
∏t

i=1 mi. Since m is odd, we get q2a−1m ≡ −1 mod pki
i . 

Hence, pki
i | q2a−1m + 1 for all 1 ≤ i ≤ t. Therefore, n =

∏t
i=1 p

ki
i | q2a−1m + 1. In other 

words q2a−1m ≡ −1 mod n.
Conversely, assume there is an integer l such that ql ≡ −1 mod n. Without loss of 

generality, we suppose a1 �= a2 such that 2a1‖ordp1(q) and 2a2‖ordp2(q). Write ordp1(q) =
2a1m1 and ordp2(q) = 2a2m2 for odd integers m1 and m2. We have
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ql ≡ −1 mod n implies ql ≡ −1 mod pi which give q2l ≡ 1 mod pi, for 1 ≤ i ≤ t.

Hence, 2a1m1 | 2l and 2a2m2 | 2l. Since both of a1 and a2 are not null, we get 2a1−1m1 | l
and 2a2−1m2 | l. Since a1 �= a2, we can suppose that a1〉a2. Consequently, 2a2m2 | l. In 
other words, ql ≡ 1 mod p2, which is a contradiction.
Further, we have n = pk1

1 pk2
2 ...pkt

t , so

ordn(q) = lcm(ord
p
k1
1

(q), ord
p
k2
2

(q), ..., ord
p
kt
t

(q)) = 2a(2k + 1), for some k ∈ N

Thus, 2a‖ordn(q). �
Theorem 2. Let R be a finite chain ring with residue field Fq and n an odd integer 
coprime to q such that the factorization of n is given by n = pk1

1 pk2
2 ...pkt

t with ki ∈ N∗

for 1 ≤ i ≤ t. Assume that the numbers ordpi
(q), 1 ≤ i ≤ t are even and let ai ∈ N∗ such 

that 2ai‖ordpi
(q). Then all free cyclic codes of length n over R are LCD if and only if 

a1 = a2 = ... = at = a.

Proof. Assume that there is a positive integer a such that 2a‖ordpi
(q), 1 ≤ i ≤ t. From 

Lemma 12, there exists an integer l such that ql ≡ −1 mod n. This means that the q
cyclotomic coset C1 is reversible. Hence, all the other cyclotomic cosets are reversible by 
Lemma 5. Thus all divisors of the polynomial xn − 1 are self reciprocal. Therefore, all 
free cyclic codes of length n over R are LCD.

Conversely, suppose that all free cyclic codes are LCD. So that all divisors of xn − 1
are self reciprocal. We deduce that all cyclotomic cosets are reversible. In particular C1
is reversible. Hence −1 is a power of q mod n. The desired result follows immediately
from Lemma 12. �

As a corollary we construct LCD codes of oddly even length.

Corollary 2. Let R be a finite chain ring with residue field Fq such that q is an odd 
integer. Let n be an oddly even integer coprime to q such that the irreducible factorization
of n is given by n = 2pk1

1 pk2
2 ...pkt

t with ki in N∗ for 1 ≤ i ≤ t. Assume that for all 
1 ≤ i ≤ t the integers ordpi

(q) are even. Let ai in N∗ such that 2ai‖ordpi
(q). Then 

a1 = a2 = ... = at = a if and only if all free cyclic codes of length n over R are LCD.

Proof. On the one hand and according to Lemma 12, we have a1 = a2 = ... = at = a if 
and only if there exists l in N∗, such that

∏t
i=1 p

ki
i | ql + 1. On the other hand, since 

q is an odd integer then 2 | ql + 1. Hence n = 2 
∏t

i=1 p
ki
i | ql + 1. This means ql ≡ −1

mod n. Thus the cyclotomic coset C1 is reversible, so according to Lemma 5 all the other 
cyclotomic cosets are reversibles. Hence, all free cyclic codes of length n are LCD codes.

Conversely, assume that all codes of length n are LCD. Then, the cyclotomic coset 
C1 is reversible. Hence there is an integer l such that ql ≡ −1 mod n. It follows that 
ql ≡ −1 mod

∏t
i=1 p

ki
i . Therefore, from Lemma 12, we get the desired result. �
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Example 3. Let R = Z25, n = 2646 = 2 · 72 · 33. We have ord7(5) = 6 and ord3(5) = 2. 
Since 2‖ord7(5) and 2‖ord3(5), so all free cyclic codes of length 2646 are LCD codes.

In the remainder of this section, we provide necessary and sufficient conditions for 
cyclic codes to be LCD when the lengths are divisible by 4. The following lemmas are 
needed.

Lemma 13. [12, Theorem 2’] The integer 2k has primitive roots for k = 1 or 2 but not 
for k ≥ 3. If k ≥ 3, then {(−1)a5b; a = 0, 1 and 0 ≤ b ≤ 2k−2} constitutes a reduced 
residue system mod 2k. It follows that for k ≥ 3, the group (Z/2kZ)∗ is not cyclic; it 
is the direct product of two cyclic groups, one of order 2, the other of order 2k−2

Lemma 14. Let q be an odd prime power. Assume that there is an integer l in N∗ such 
that ql ≡ −1 mod 2k with k ≥ 2. Then q ≡ −1 mod 2k. Further, the integer l is odd 
and ord2k(q) = 2.

Proof. Assume that there is an integer l such that ql ≡ −1 mod 2k. If k〉2, then from 
Lemma 13, q can be written as q = (−1)i ·5j , with (i, j) in N2. Hence ql = (−1)il ·5jl ≡
−1 mod 2k, which requires that the integer il must be odd and that the order ord2k(5)
of the integer 5 which equal to 2k−2 must divide jl. Thus l is odd and then 2k−2 divides 
j. Write j = 2k−2 · j′, we get

q = (−1)i · 5j = (−1)i · 52k−2j′ ≡ (−1)i mod 2k ≡ −1 mod 2k

For k = 2 and since q is odd we have clearly that ql ≡ −1 mod 4 leads to q ≡ −1
mod 4. Hence l must be odd. Further, q ≡ −1 mod 2k implies ord2k(q) = 2. �
Theorem 3. Let R be a finite chain ring with residue field Fq, and let n be a doubly even 
integer coprime to q such that the factorization of n is given by n = 2k0pk1

1 pk2
2 ...pkt

t with 
ki ∈ N for all 1 ≤ i ≤ t and k0 ≥ 2. Then the following statements are equivalent:

(i) 2‖ordpi
(q) for 1 ≤ i ≤ t and 2k0 | q + 1.

(ii) All free cyclic codes over R of length n are LCD codes.

Proof. Suppose that (i) is satisfied. Proving (ii) is equivalent to proving the existence 
of an integer l such that ql ≡ −1 mod n. The assumption 2‖ordpi

(q) and Corollary 1
give that ord

p
ki
i

(q) = 2mi, with mi odd . Using Lemma 8, we get qmi ≡ −1 mod pki
i . 

Therefore, q
∏t

i=1 mi ≡ −1 mod pki
i . Hence, there exists l =

∏t
i=1 mi an odd integer such 

that ql ≡ −1 mod
∏t

i=1 p
ki
i . On the other hand, q ≡ −1 mod 2k0 implies ql ≡ −1

mod 2k0 . Consequently n = 2k0
∏t

i=1 p
ki
i divide ql + 1. Thus ql ≡ −1 mod n.

Conversely, assume that all free cyclic codes over R are LCD. This means that all 
cyclotomic cosets are reversible and, in particular, the cyclotomic coset C1. Hence there 
exists l in N∗ such that ql ≡ −1 mod n. Therefore
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ql ≡ −1 mod pki
i , for 1 ≤ i ≤ t (3)

and

ql ≡ −1 mod 2k0 (4)

Equation (3) and Lemma 8 give that l = 1
2(1 + 2mi)ordpi

(q), for some integers mi. 
Equation (4) and Lemma 14 give q ≡ −1 mod 2k0 and that the integer l must be odd. 
It follows that 2l = (1 +2mi)ordpi

(q). Which means that 2‖ordpi
(q). This completes the 

proof. �
Example 4. Let R = Z9, n = 3724 = 22 · 72 · 19. We have ord7(3) = 6, ord19(3) = 18. 
Note that 2‖6, 2‖18 and 22 | 4. So all free cyclic codes of length n = 3724 are LCD 
codes.

4. Self dual cyclic codes over finite chain rings

Let R be a finite chain ring with maximal ideal 〈γ〉. If the nilpotency index e of 〈γ〉
is even, the cyclic code 〈γ e

2 〉 is self dual and is called the trivial self dual code. The 
following result gives a necessary and sufficient conditions for the existence of non trivial 
self dual cyclic codes of length n over R.

Lemma 15. [8, Theorem 4.4] Let R be a finite chain ring with maximal ideal 〈γ〉, even 
index of nilpotency e, and residue field Fq. Then non trivial cyclic self dual codes of 
length n over R exist if and only if there is no positive integer i, such that qi ≡ −1
mod n.

Cyclic codes of length n which is not divisible by the characteristic of R are called 
simple root cyclic codes. It was proven that there are no simple root self dual cyclic codes 
over finite chain rings when the nilpotency index of the generator of the maximal ideal 
is odd.

Theorem 4. [2, Theorem 12] Let R be a finite chain ring where 〈γ〉 is the maximal ideal 
with nilpotency index e and Fq is the residue field. If e is odd, then there are no non 
trivial self dual cyclic codes of length n over R when gcd(n, q) = 1.

In [2], authors introduce a simple criterion for the existence of non trivial self dual 
codes over R when the length is an odd prime power and the nilpotency index of the 
maximal ideal of the ring is even.

Lemma 16. [2, Theorem 6] Let R be a finite chain ring with maximal ideal 〈γ〉, even 
index of nilpotency e and residue field Fq. If n is an odd prime power coprime with q, 
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then there exists a non trivial cyclic self dual code of length n over R if and only if 
ordn(q) is odd.

Using Lemmas 12 and 15, we will generalize this result and provide conditions on the 
existence of non trivial self dual codes of arbitrary length over R.

Theorem 5. Let R be a finite chain ring with maximal ideal of even index of nilpotency 
e, and residue field Fq. Let n be an odd integer coprime to q such that the factorization 
of n is given by n = pk1

1 pk2
2 ...pkt

t , with ki in N∗ for all 1 ≤ i ≤ t and t ≥ 2. Denote by 
ai the integers of N such that 2ai‖ordpi

(q), for all 1 ≤ i ≤ t. Then a non trivial self 
dual cyclic codes of length n exist if and only if one of the following statements holds:

(i) There exists at least i0, 1 ≤ i0 ≤ t such that ai0 = 0.
(ii) For all 1 ≤ i ≤ t, ai �= 0, and there exist two distinct integers i1, i2 with 1 ≤ i1, i2 ≤ t

such that ai1 �= ai2 .

Proof. Assume that there exits i0, 1 ≤ i0 ≤ t such that ai0 = 0. This means that 
ordpi0

(q) is odd. Lemma 8 guarantees that there is no integer l such that ql ≡ −1
mod pi0 . Hence, for all i in N we can’t have qi ≡ −1 mod n. Thus, from Lemma 15, a 
non trivial self dual cyclic code over R exists.

Assume now that (ii) is satisfied. Therefore, all ordpi
(q), for 1 ≤ i ≤ t, are even. 

Lemma 12 shows that if there exist two distinct integers i1, i2, 1 ≤ i1, i2 ≤ t such that 
ai1 �= ai2 , then there is no integer l such that ql ≡ −1 mod n. Hence, a non trivial self 
dual codes over R exist.

Conversely, assume that a non trivial self dual codes exist. So there is no integer l
such that ql ≡ −1 mod n. We need to prove that either there exists i0 such that ai0 = 0
or every ai is different to zero and at least two of them are distinct. Suppose that for all 
1 ≤ i ≤ t, ai �= 0. This implies that ordpi

(q) is even for all 1 ≤ i ≤ t. Since there is no 
integer l such that ql ≡ −1 mod n, by Lemma 12, we have that there exists i1, i2 with 
1 ≤ i1, i2 ≤ t such that ai1 �= ai2 . �
Example 5. Let R = Z4 and n = 3 · 5. We have ord3(2) = 2 and ord5(2) = 4, and hence 
21‖ord3(2) and 22‖ord5(2). So there exist non trivial self dual codes over Z4 of length 
15. The factorization of x15 − 1 over Z4 is given by

x15 − 1 = f1(x)f2(x)f3(x)f4(x)f∗
4 (x),

where

f1(x) = x+3, f2(x) = x2+x+1, f3(x) = x4+x3+x2+x+1, and f4(x) = x4+2x2+3x+1.

Let g(x) = f1(x)f2(x)f3(x) and h(x) = f4(x). Then the following codes
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.

〈g(x)h(x), 2h(x)h∗(x)〉 and 〈g(x)h∗(x), 2h(x)h∗(x)〉

are non trivial self dual cyclic codes of length 15.

Example 6. Let R = Z16 and n = 21. We have ord3(2) = 2 and ord7(2) = 3. Then, there 
exist non trivial self dual cyclic codes over R of length 21. The factorization of x21 − 1
over R is equal to

x21 − 1 = f1(x)f2(x)f3(x)f∗
3 (x)f4(x)f∗

4 (x),

where

f1(x) = x−1, f2(x) = x2+x+1, f3(x) = x3+6x2+5x−1, f4(x) = x6−6x5−x4−x2+5x+1

Let x21 − 1 = g(x)h(x)h∗(x), where g(x) = f1(x)f2(x) is a self reciprocal polynomial 
and h(x) = f3(x)f4(x). Thus, for example, the code 〈g(x)h(x), 2h(x)h∗(x)〉 is self dual.

We give now the necessary and sufficient conditions for the existence of non trivial 
self dual codes when the length is an oddly even integer.

Theorem 6. Let R be a finite chain ring with maximal ideal of even index of nilpotency e, 
and residue field Fq. Let n be an oddly even integer coprime to q such that the irreducible 
factorization of n is given by n = 2.pk1

1 pk2
2 ...pkt

t , where t ≥ 2, and ki in N∗ for all 1 ≤
i ≤ t. Let ai ∈ N such that 2ai‖ordpi

(q). Then a non trivial self dual cyclic code of length 
n exists if and only if one of the following statements holds:

(i) There exists at least i0, 1 ≤ i0 ≤ t such that ai0 = 0.
(ii) For all 1 ≤ i ≤ t, ai �= 0, there exist two distinct integers i1, i2 with 1 ≤ i1, i2 ≤ t

such that ai1 �= ai2 .

Proof. Since gcd(n, q) = 1, then q must be an odd integer. Hence for all l in N∗ we have 
2 | ql + 1. If a1 = a2 = ... = at = a, and a �= 0, by Lemma 12, we know that there exists 
l in N∗ such that ql ≡ −1 mod

∏t
i=1 p

ki
i . Therefore, ql ≡ −1 mod n. Hence, there do 

not exist non trivial self dual codes on R by Lemma 15.
Conversely, assume (i) holds. Thus, from Lemma 8, there is no integer l such that 

ql ≡ −1 mod pi0 . Hence, there does not exist integer l in N, such that ql ≡ −1 mod n. 
This proves by Lemma 15 that non trivial self dual cyclic codes over R exist.

Assume now that (ii) is satisfied. By Lemma 12, if there exist two distinct integers 
i1, i2, 1 ≤ i1, i2 ≤ t such that ai1 �= ai2 , then there is no integer l such that ql ≡ −1
mod

∏t
i=1 p

ki
i . Even if we have 2 divides ql +1 for all l ∈ N∗, we cannot find any integer

l such that ql ≡ −1 mod n. Hence by Lemma 15, non trivial self dual codes over R
exist. �
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Example 7. Let R = Z9 and n = 70 = 2 · 5 · 7. We have ord5(3) = 4, ord7(3) = 6, and 
hence 2‖ord7(3) and 22‖ord5(3). So there exist non trivial self dual cyclic codes of length 
70 over Z9. The factorization of x70 − 1 over Z9 is given by

x70 − 1 = f1(x)f2(x)f3(x)f4(x)f5(x)f6(x)f7(x)f∗
7 (x)f8(x)f∗

8 (x),

where

f1(x) = x + 1,
f2(x) = x + 8,
f3(x) = x4 + x3 + x2 + x + 1,
f4(x) = x4 + 8x3 + x2 + 8x + 1,
f5(x) = x6 + x5 + x4 + x3 + x2 + x + 1,
f6(x) = x6 + 8x5 + x4 + 8x3 + x2 + 8x + 1,
f7(x) = x12 + 4x10 + 6x9 + 8x8 + x7 + 3x6 + 4x5 + 5x4 + 7x3 + 5x2 + 8x + 1,
f8(x) = x12 + 4x10 + 3x9 + 8x8 + 8x7 + 3x6 + 5x5 + 5x4 + 2x3 + 5x2 + x + 1.

Let x70 − 1 = g(x)h(x)h∗(x), where g(x) = f1(x)f2(x)f3(x)f4(x)f5(x)f6(x) is 
a self reciprocal polynomial and h(x) = f7(x)f8(x). Thus, for example, the code 
〈g(x)h(x), 3h(x)h∗(x)〉 is self dual.

Example 8. Let R = Z49 and n = 30 = 2 · 3 · 5. We have ord3(7) = 1, ord5(7) = 4. We 
have that ord3(7) is odd, so there exist non trivial self dual cyclic codes of length 30 over 
Z49. The factorization of x30 − 1 over Z49 is given by

x30 − 1 = f1(x)f2(x)f∗
2 (x)f3(x)f∗

3 (x)f4(x)f5(x)f6(x)f7(x)f∗
7 (x)f8(x)f∗

8 (x),

where

f1(x) = x + 1, f2(x) = x− 19
f3(x) = x− 18, f4(x) = x− 1,
f5(x) = x4 + x3 + x2 + x + 1, f6(x) = x4 − x3 + x2 − x + 1,
f7(x) = x4 − 19x3 + 18x2 + x− 19, f8(x) = x4 − 18x3 − 19x2 − x + 18,

Let x30 − 1 = g(x)h(x)h∗(x), where g(x) = f1(x)f4(x)f5(x)f6(x) and h(x) =
f2(x)f3(x)f7(x)f8(x). Thus, for example, the code 〈g(x)h(x), 7h(x)h∗(x)〉 is self dual.

We determine now, necessary and sufficient conditions for the existence of non trivial 
self dual cyclic codes over R for doubly even lengths.

Theorem 7. Let R be a finite chain ring with maximal ideal of even index of nilpo-
tency e, and residue field Fq. Let n be a doubly even integer coprime to q, such 
that the irreducible factorization of n is given by n = 2k0pk1

1 pk2
2 ...pkt

t where ki in 
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N∗ for all 1 ≤ i ≤ t and k0 ≥ 2. Let ai in N such that 2ai‖ordpi
(q), for 1 ≤ i ≤ t. 

The following statements are equivalent:

(i) Non trivial self dual cyclic codes over R exist.
(ii) There exits i, 1 ≤ i ≤ t, such that ai �= 1 or 2k0 � (q + 1).

Proof. Assume that (ii) is not satisfied. This implies that a1 = a2 = ... = at = 1
and 2k0 | (q + 1). Then from Lemma 12, there is an odd integer l such that ql ≡ −1
mod

∏t
i=1 p

ki
i . Since q ≡ −1 mod 2k0 and l is odd, it follows that ql ≡ −1 mod 2k0 . 

Thus ql ≡ −1 mod n. Lemma 15 shows that non trivial self dual cyclic code over R
does not exist.

Conversely, suppose that it does not exist any non trivial self dual cyclic codes of 
length n over R. Then, by Lemma 15, there exist some positive integer l such that 
ql ≡ −1 mod n. Thus, ql ≡ −1 mod 2k0 . By Lemma 14, we have that q ≡ −1 mod 2k0

and that the integer l is odd. On the other hand ql ≡ −1 mod n implies again that 
ql ≡ −1 mod pi. Lemma 8 gives that 2l = (1 + 2mi)ordpi

(q), for some integers mi. 
Since l is odd, it follows that 2‖ordpi

(q). This means that ai = 1 for each 1 ≤ i ≤ t. �
Example 9. Let R = Z25 and n = 84 = 22 · 3 · 7. We have that 22 � (5 + 1). Then there 
are non trivial self dual cyclic codes of length 84 over Z25. The factorization of x84 − 1
over Z25 is given by

x84 − 1 =
10∏
i=1

fi(x)
15∏

i=11
fi(x)f∗

i (x),

where

f1(x) = x + 1,
f2(x) = x + 24,
f3(x) = x2 + x + 1,
f4(x) = x2 + 24x + 1,
f5(x) = x6 + 5x5 + 22x4 + 2x3 + 22x2 + 5x + 1,
f6(x) = x6 + 20x5 + 22x4 + 23x3 + 22x2 + 20x + 1,
f7(x) = x6 + x5 + x4 + x3 + x2 + x + 1,
f8(x) = x6 + 6x5 + 8x4 + 9x3 + 8x2 + 6x + 1,
f9(x) = x6 + 24x5 + x4 + 24x3 + x2 + 24x + 1,
f10(x) = x6 + 19x5 + 8x4 + 16x3 + 8x2 + 19x + 1,
f11(x) = x + 7,
f12(x) = x2 + 7x + 24,
f13(x) = x6 + 10x5 + 3x4 + 11x3 + 22x2 + 10x + 24,
f14(x) = x6 + 17x5 + 17x4 + 12x3 + 8x2 + 17x + 24,
f (x) = x6 + 7x5 + 24x4 + 18x3 + x2 + 7x + 24.
15
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Let x84 − 1 = g(x)h(x)h∗(x) where g(x) =
∏10

i=1 fi(x) and h(x) =
∏15

i=11 fi(x). Thus for 
example the code 〈g(x)h(x), 5h(x)h∗(x)〉 is self dual.

Example 10. Let R = Z81 and n = 140 = 22 · 5 · 7. We have that 22 | (3 +1), ord7(3) = 6
and ord5(3) = 4. Thus 21‖ord7(3) and 22‖ord5(3). Therefore, there exist non trivial self 
dual cyclic codes of length 140 over Z81. The factorization of x140 − 1 over Z81 is given 
by

x140 − 1 = f1(x)f2(x)f3(x)f4(x)f∗
4 (x)f5(x)f6(x)f7(x)f8(x)f9(x)

f10(x)f11(x)f∗
11(x)f12(x)f∗

12(x)f13(x)f∗
13(x)f14(x)f∗

14(x),

where

f1(x) = x + 1,
f2(x) = x− 1,
f3(x) = x2 + 1,
f4(x) = x4 − 20x3 − 3x2 + 20x + 1,
f5(x) = x4 + x3 + x2 + x + 1,
f6(x) = x4 − x3 + x2 − x + 1,
f7(x) = x6 + 13x5 + 3x4 + 13x3 + 3x2 + 13x + 1,
f8(x) = x6 + x5 + x4 + x3 + x2 + x + 1,
f9(x) = x6 − 13x5 + 3x4 − 13x3 + 3x2 − 13x + 1,
f10(x) = x6 − x5 + x4 − x3 + x2 − x + 1,
f11(x) = x12 − 24x11 + 9x10 − 17x9 + 5x8 + 31x7 − 4x6 + 11x5 − 12x4 + 4x3

− 8x2 + 37x + 1,
f12(x) = x12 + 24x11 + 9x10 + 17x9 + 5x8 + 50x7 − 4x6 − 11x5 − 12x4 − 4x3

− 8x2 + 44x + 1,
f13(x) = x12 − 9x11 + 4x10 + 15x9 + 53x8 + 19x7 + 12x6 + 49x5 + 23x4 − 2x3

− 13x2 + 8x + 1,
f14(x) = x12 + 9x11 + 4x10 − 15x9 + 53x8 − 19x7 + 12x6 + 32x5 + 23x4 + 2x3

− 13x2 − 8x + 1.

Let x140 − 1 = g(x)h(x)h∗(x) where g(x) =
∏10

i=1 fi(x)f∗
4 (x) and h(x) =

∏14
i=11 fi(x). 

Thus the code 〈g(x)h(x), 9h(x)h∗(x)〉 is self dual.

5. Construction of new isodual cyclic codes over finite chain rings

In this section and according to different factorizations of the polynomial xn − 1, we 
give some new constructions of isodual cyclic codes over finite chain rings as a general-
ization of those obtained in [1]. First, we recall the structure of cyclic codes of length 
2am given in [1].
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Lemma 17. [1, Lemma 4] Let R be a finite chain ring with residue field Fq such that q
is an odd prime power, and let m an odd integer coprime to q. Then there is a primitive 
2a-th root of unity ξ in R∗ if and only if q ≡ 1 mod 2a. Further,

1. x2a − 1 =
∏2a

k=1(x − ξk) in R[x],
2. ξm is also a primitive 2a-th root of unity,
3.

∏2a

k=1 ξ
k = 1, if a � 2.

Proposition 1. If R∗ contains a primitive 2a-th root of unity ξ, and xm−1 =
∏l

i=1 fi(x), 
where fi(x), 1 ≤ i ≤ l, are monic basic irreducible pairwise coprime factors in R[x], 
then

x2am − 1 =
2a∏
k=1

l∏
i=1

fi(ξkx).

Proof. Assume that xm− 1 =
∏l

i=1 fi(x). Let ξ be a primitive 2a-th root of unity. Then 
(ξkx)m−1 =

∏l
i=1 fi(ξkx). Thus xm−ξ−km = ξ−km

∏l
i=1 fi(ξkx). Since ξ is a primitive 

2a-th root of unity and 
∏2a

k=1 ξ
−km = 1, we get

x2am − 1 = (xm)2a − 1 =
∏2a

k=1(xm − ξk) =
∏2a

k=1(xm − ξ−km)

=
∏2a

k=1(ξ−km
∏l

i=1 fi(ξkx)) =
∏2a

k=1
∏l

i=1 fi(ξkx)) �
For the construction of isodual codes we need the following result given in [1]

Lemma 18. [1, Theorem 3] Let R be a finite chain ring, C a free cyclic code of length 
n over R generated by a polynomial g(x) and δ a unit in R such that δn = 1. Then the 
following holds:

(i) C is equivalent to the cyclic code generated by g∗(x).
(ii) C is equivalent to the cyclic code generated by g(δx).
(iii) C is equivalent to the cyclic code generated by g∗(δx) or (g(δx))∗.
(iv) If n is even, then C is equivalent to the cyclic code generated by g(−x).

Proposition 2. Let n be a positive integer. If f(x) and g(x) are polynomials in R[x] such 
that xn − 1 = g(x)f(x), then the cyclic code generated by g(x) is equivalent to the dual 
of the code generated by f(x).

Proof. Let C be a cyclic code generated by g(x) and C ′ a cyclic code generated by f(x). 
We have that the dual of C ′ is generated by g∗(x). By Lemma 18, C is equivalent to 
C ′ ⊥. �

The following theorem gives a natural construction for free cyclic isodual codes.
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Proposition 3. Let n be a positive integer such that there exists δ in R∗ verifying δn = 1. 
If xn−1 = αg(x)g(δx) or xn−1 = αg(x)g(δx)∗ for some α in R∗, then the code generated 
by g(x) is isodual.

Proof. Assume that xn−1 = αg(x)g(δx)∗. Let C be a code generated by the polynomial 
g(x). From Theorem 4, C is free code. From Proposition 2, C is equivalent to the dual 
of the cyclic code C ′ generated by αg(δx)∗. Up to normalization and since δn = 1 and 
α in R∗, we obtain that the code C ′ is equivalent to the code generated by g(x) which 
is C itself. Therefore C is isodual. With the same argument, we get the result for the 
second part. �

In the following, we take q is an odd prime power such that q ≡ 1 mod 2a with a ≥ 1
and m an odd integer with gcd(m, q) = 1. We next give new construction of isodual 
cyclic codes of length 2am over R.

Theorem 8. Assume that xm − 1 = f1(x)f2(x). Then the free cyclic codes of length 2am
generated by

2a−1∏
k=1

fi(ξ2kx)
2a−1−1∏
k=0

fj(ξ2k+1x), i,j ∈ {1, 2}, i �= j,

or

2a−1∏
k=1

f1(ξ2kx)f2(ξ2kx),

or

2a−1−1∏
k=0

f1(ξ2k+1x)f2(ξ2k+1x)

are isodual, where ξ is a primitive 2a-th root of unity.

Proof. Let xm − 1 = f1(x)f2(x). From Proposition 1, we have

x2am − 1 =
2a∏
k=1

f1(ξkx)f2(ξkx) =
2a−1∏
k=1

f1(ξ2kx)f2(ξ2kx)
2a−1−1∏
k=0

f1(ξ2k+1x)f2(ξ2k+1x).

Let

g(x) =
2a−1∏

f1(ξ2kx)
2a−1−1∏

f2(ξ2k+1x).

k=1 k=0
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Table 1
List of isodual codes obtained of length 36 over Z25.

Polynomial generator g(x) of the isodual code C
g(x) = x9 + (ξ − ξ2)x6 + (ξ2 − ξ3)x3 − 1
g(x) = ξ3x9 + (ξ − 1)x6 + (ξ3 − ξ2)x3 − 1
g(x) = ξ3x9 − (ξ2 − ξ)x8 + (ξ3 − 1)x7 − (ξ2 − 1)x6 + (ξ2 − ξ3)x5 −

(ξ − 1)x4 + (ξ − ξ3)x3 + (ξ3 − 1)x2 + (ξ − ξ2)x − 1
g(x) = x9 − (ξ2 − ξ3)x8 − (ξ − ξ2)x7 + (ξ2 − 1)x6 + (ξ − 1)x5 −

(ξ3 − 1)x4 + (ξ2 − 1)x3 − (ξ2 − ξ3)x2 − (ξ − ξ2)x − 1
g(x) = ξ2x9 − (ξ − 1)x8 − (ξ3 − 1)x7 − (ξ2 − ξ3)x6 − (ξ − ξ2)x5 +

(ξ − 1)x4 − (ξ3 − 1)x3 − (ξ2 − ξ3)x2 − (ξ − ξ2)x − 1
g(x) = ξx9 + (ξ3 − 1)x8 + (ξ − ξ2)x7 + (ξ3 − 1)x6 + (ξ − ξ2)x5 +

(ξ3 − 1)x4 + (ξ − ξ2)x3 + (ξ3 − 1)x2 + (ξ − ξ2)x − 1
g(x) = ξ2x9 − 1
g(x) = ξx9 − 1

Knowing that ξ2a = 1, we get

g(ξx) =
2a−1∏
k=1

f1(ξ2k+1x)
2a−1−1∏
k=0

f2(ξ2k+2x) =
2a−1−1∏
k=0

f1(ξ2k+1x)
2a−1∏
k=1

f2(ξ2kx).

In other words, we have that x2am−1 = g(x)g(ξx). Since ξ2am = 1, then from Theorem 3
the code generated by g(x) is isodual. A similar argument is employed to prove that codes 
generated by

2a−1∏
k=1

f1(ξ2kx)f2(ξ2kx)

or

2a−1−1∏
k=0

f1(ξ2k+1x)f2(ξ2k+1x)

are also isodual. �
Example 11. Let R = Z25 and n = 36 = 22 · 32, q = 5 ≡ 1 mod 22. We have

x9 − 1 = (x− 1)(x2 + x + 1)(x6 + x3 + 1).

Thus, we get the isodual codes given in Table 1, where ξ is a primitive 4-th root of unity.

Corollary 3. Let pk be a prime power. Assume that xpk −1 = f1(x)f2(x). Then the cyclic 
codes generated by

f1(x)f2(−x) or f1(−x)f2(x) or xpk − 1 or xpk

+ 1
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Table 2
List of LCD-isodual codes obtained of length 50 over Z9.

Polynomial generator g(x) of LCD-isodual code C

g(x) = x25 − 2x20 + 2x15 − 2x10 + 2x5 − 1
g(x) = x25 + 2x20 + 2x15 + 2x10 + 2x5 + 1
g(x) = −x25 − 2x24 − 2x23 − 2x22 − 2x21 + 2x19 + 2x18 + 2x17+
2x16 − 2x14 − 2x13 − 2x12 − 2x11 + 2x9 + 2x8+
2x7 + 2x6 − 2x4 − 2x3 − 2x2 − 2x − 1
g(x) = x25 − 2x24 + 2x23 − 2x22 + 2x21 − 2x19 + 2x18 − 2x17+
2x16 − 2x14 + 2x13 − 2x12 + 2x11 − 2x9 + 2x8−
2x7 + 2x6 − 2x4 + 2x3 − 2x2 + 2x − 1
g(x) = x25 − 2x24 + 2x23 − 2x22 + 2x21 − 2x20 + 2x19 − 2x18 + 2x17−
2x16 + 2x15 − 2x14 + 2x13 − 2x12 + 2x11 − 2x10 + 2x9 − 2x8+
2x7 − 2x6 + 2x5 − 2x4 + 2x3 − 2x2 + 2x − 1
g(x) = x25 + 2x24 + 2x23 + 2x22 + 2x21 + 2x20 + 2x19 + 2x18 + 2x17+
2x16 + 2x15 + 2x14 + 2x13 + 2x12 + 2x11 + 2x10 + 2x9 + 2x8+
2x7 + 2x6 + 2x5 − 2x4 + 2x3 + 2x2 + 2x + 1
g(x) = x25 − 1
g(x) = x25 + 1

are isodual codes of length 2pk. Further, if ordp(q) is even, then these codes are LCD-
isodual codes.

Proof. The result follows from Theorem 1 and Theorem 8 for a = 1, m = pk and 
ξ = −1. �
Example 12. Let R = Z9 and n = 50 = 2 · 52. We have

x25 − 1 = (x− 1)(x4 + x3 + x2 + x + 1)(x20 + x15 + x10 + x5 + 1).

Further ord5(3) = 4. So we get the LCD isodual codes shown in Table 2.

Corollary 4. Let m be an odd integer such that the irreducible factorization of m is given 
by m = pk1

1 pk2
2 ...pkt

t and xm − 1 = f1(x)f2(x). Assume that there exists a in N∗ such 
that 2a‖ordpi

(q), for all 1 ≤ i ≤ t. Then, the cyclic codes generated by

f1(x)f2(−x) or f1(−x)f2(x) or xm − 1 or xm + 1

are LCD-isodual codes of length 2m.

Proof. The result follows immediately from Theorem 2 and Theorem 8 with ξ = −1. �
Another construction of isodual cyclic codes is given by the following theorem.

Theorem 9. Assume that we have the factorization xm − 1 = f1(x)f2(x)f∗
2 (x), such that 

the polynomial f1 is self reciprocal. Then the cyclic codes of length 2am over R generated 
by
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2a−1∏
k=1

f1(ξ2kx)
2a∏
k=1

f2(ξkx)

or

2a−1∏
k=1

f1(ξ2kx)
2a∏
k=1

f∗
2 (ξkx)

are isodual, where ξ is a primitive 2a-th root of unity.

Proof. Let xm − 1 = f1(x)f2(x)f∗
2 (x) then

x2am−1 =
2a∏
k=1

f1(ξkx)f2(ξkx)f∗
2 (ξkx) =

2a−1∏
k=1

f1(ξ2k)
2a−1−1∏
k=0

f1(ξ2k+1)
2a∏
k=1

f2(ξkx)f∗
2 (ξkx)

Let g(x) =
∏2a−1

k=1 f1(ξ2kx) 
∏2a

k=1 f2(ξkx). Since ξ2a = 1, we get

g(ξx) =
2a−1∏
k=1

f1(ξ2k+1x)
2a∏
k=1

f2(ξk+1x) =
2a−1−1∏
k=0

f1(ξ2k+1x)
2a∏
k=1

f2(ξkx).

Since the polynomial f1 is self reciprocal, we obtain the factorization x2am − 1 =
g(x)g(ξx)∗. The desired result follows from Theorem 3. The same result is obtained 
for the codes generated by

2a−1∏
k=1

f1(ξ2kx)
2a∏
k=1

f∗
2 (ξkx). �

Example 13. Let R = Z25 and n = 132 = 22 · 33. We have 5 ≡ 1 mod 22 and

x33 − 1 = (x− 1)(x2 + x + 1)(x5 − 8x4 − x3 + x2 − 9x− 1)
(x5 + 9x4 − x3 + x2 + 8x− 1)
(x10 − 9x9 + 7x8 + 11x7 + 9x6 − 4x5 − 7x4 − 6x3 − 10x2 + 8x + 1)
(x10 + 8x9 − 10x8 − 6x7 − 7x6 − 4x5 + 9x4 + 11x3 + 7x2 − 9x + 1)

Let x33 − 1 = f1(x)f2(x)f∗
2 (x), where f1(x) = (x − 1)(x2 + x + 1) and f2(x) =

(x5−8x4−x3+x2−9x −1)(x10−9x9+7x8+11x7+9x6−4x5−7x4−6x3−10x2+8x +1). 
Thus, for example, the codes generated by

〈
f1(x)f1(ξ2x)f2(x)f2(ξ2x)f2(ξ3x)

〉

or
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〈
f1(x)f1(ξ2x)f∗

2 (x)f∗
2 (ξx)f∗

2 (ξ2x)f∗
2 (ξ3x)

〉

are isodual, where ξ is a primitive 4-th root of unity.

Corollary 5. Let p be an odd prime number and k in N such that xpk − 1 =
f1(x)f2(x)f∗

2 (x). Assume that ordp(q) is even. Then the cyclic codes of length 2pk gen-
erated by

f1(x)f2(x)f2(−x) or f1(x)f∗
2 (x)f∗

2 (−x)

are LCD-isodual codes.

Proof. The result follows from Theorem 1 and Theorem 9 with ξ = −1. �
Corollary 6. Let m be an odd integer such that the irreducible factorization of m is given 
by m = pk1

1 pk2
2 ...pkt

t and xm − 1 = f1(x)f2(x)f∗
2 (x). Assume that there exists a in N∗

such that 2a‖ordpi
(q), for all 1 ≤ i ≤ t. Then the cyclic codes of length 2m generated by

f1(x)f2(x)f2(−x) or f1(x)f∗
2 (x)f∗

2 (−x)

are LCD-isodual codes.

Proof. The result follows immediately from Theorem 2 and Theorem 9 with ξ = −1. �
Example 14. Let R = Z27 and n = 70 = 2 · 5 · 7. We have x35 − 1 = f1(x)f2(x)f∗

2 (x), 
where

f1(x) = (x− 1)(x4 + x3 + x2 + x + 1)(x6 + x5 + x4 + x3 + x2 + x + 1)
f2(x) = (x12 − 9x11 + 4x10 − 12x9 − 3x8 − 7x7 + 12x6 − 5x5 − 4x4 − 2x3 + 14x2 + 8x+1).

So the cyclic codes of length 70 over Z27 generated by

g(x) = f1(x)f2(x)f2(−x)

or

h(x) = f1(x)f∗
2 (x)f∗

2 (−x)

are isodual.

6. Conclusion

In this work, cyclic codes over finite chain rings were studied. Conditions for which 
all these codes are LCD were given. In addition, necessary and sufficient conditions were 
given for the existence of non trivial self dual cyclic codes. Further, new constructions of 
isodual codes were presented and investigated when these codes are LCD-isodual codes.
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