
This is the accepted version of the article:

Altabella, Teresa; Ramirez-Estrada, Karla; Ferrer, Albert. «Phytosterol
metabolism in plant positive-strand RNA virus replication». Plant Cell Reports,
(October 2021). DOI 10.1007/s00299-021-02799-x

This version is available at https://ddd.uab.cat/record/251480

under the terms of the license

https://ddd.uab.cat/record/251480


 1 

Phytosterol metabolism in plant positive-strand RNA virus 
replication 

Teresa Altabella1,2,*, Karla Ramirez-Estrada3, and Albert Ferrer1,4,* 

 

  1) Plant Metabolism and Metabolic Engineering Program, Centre for Research in 
Agricultural Genomics (CRAG), CSIC-IRTA- UAB-UB, 08193 Cerdanyola, Barcelona, 
Spain. 

2) Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and 
Food Sciences, University of Barcelona, 08028 Barcelona, Spain. 

3) Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of 
Nuevo León, San Nicolás de los Garza, NL 66451, México. 

4) Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, 
University of Barcelona, 08028 Barcelona, Spain. 
 
* Corresponding authors e-mail addresses: albertferrer@ub.edu 

taltabella@ub.edu 

 

Authors’ ORCID number: 

Teresa Altabella: 0000-0002-6915-5823 

Karla Ramirez-Estrada: 0000-0002-7840-7981 

Albert Ferrer: 0000-0002-0741-2388 

 

 

Acknowledgments: We apologize to all colleagues whose work could not be cited because 
of space limitations 

  



 2 

Abstract 

The genome of most plant viruses consists of a single positive-strand of RNA (+ssRNA). 
Successful replication of these viruses is fully dependent on the endomembrane system 
of the infected cells, which experiences a massive proliferation and a profound reshaping 
that enables assembly of the macromolecular complexes where virus genome replication 
occurs. Assembly of these viral replicase complexes (VRCs) requires a highly 
orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal 
microenvironment for efficient assembly and functioning of the virus genome replication 
machinery. It is now widely accepted that VRC formation involves the recruitment of 
high levels of sterols, but the specific role of these essential components of cell 
membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs 
are still poorly known. In this review we intend to summarize the most relevant 
knowledge on the role sterols in (+)ssRNA virus replication and discuss the potential of 
manipulating the plant sterol pathway to help plants fight these infectious agents. 
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Introduction 

The living nature of viruses has been a matter of debate since the first evidence of their 
existence was obtained in the late 19th century (Villarreal and Witzany, 2010; Artenstein, 
2012). However, it is now widely accepted that viruses cannot be considered mere non-
infectious disease-causing chemical agents, but pathogenic organisms responsible for 
causing a variety of diseases in many different hosts, including plants (Balloux and van 
Dorp, 2017; Fermin, 2018). In the past recent years, plant sterols, also known as 
phytosterols, have emerged as important players in the plant adaptive response to biotic 
stress induced by bacteria, fungi, nematodes and insects (Wang et al., 2012; Zhang et al., 
2018; Castillo et al., 2019; Cabianca et al., 2021). However, virtually nothing is known 
about the role that these compounds might play, if any, in the plant defensive responses 
against virus infection, which cannot be entirely ruled out since depletion of sterol 
biosynthesis has been proposed as an antiviral defense strategy in algae and human cells 
(Blanc et al., 2011; Rosenwasser et al., 2014). This review is aimed at providing an 
overview of the role of phytosterols in the replication of single positive-strand of RNA 
(+ssRNA) plant viruses, and discusses the potential role of the phytosterol biosynthetic 
pathway as a new target to implement broad-spectrum plant virus disease control 
strategies.   

Virus replication relies on infected host cell endomembranes 

Plant diseases caused by viruses represent a major threat to agriculture worldwide (Jones 
and Naidu, 2019). Nearly all plant viruses have a genome made of RNA, and most of 
these genomes consist of a single positive-strand of RNA (Carbonell et al., 2016). Upon 
viral infection, the primary metabolism of host cells experience a massive reprogramming 
to meet the increasing demand of energy needed to fuel cell defense responses against 
virus infection and sustain efficient virus multiplication. Rewiring of cellular lipid 
metabolism is an important part of this global metabolic response, not only because lipids 
serve as a source of energy and are involved in multiple defense signaling cascades, but 
also because they are the principal components of cell membranes (Llave, 2016; Zhang 
et al., 2019), which are critical for virus intracellular multiplication. Indeed, successful 
replication of (+)ssRNA viruses, including those infecting humans, animals and plants, is 
completely dependent on subcellular membranes (Strating and Kuppeveld, 2017). Host 
cells infected by a (+)ssRNA virus experience a massive proliferation and a profound 
rearrangement of the endomembrane system that result in the formation of novel 
organelle-like intracellular structures, referred to as replication compartments, that 
display different morphologies and may reach a size of 4 µm (Bassi et al., 1986; Cotton 
et al., 2009). These virus-induced membranous compartments have a unique composition 
of proteins and lipids (Jin et al., 2018a), and include a variable number of membrane 
invaginations or spherules (Figure 1), ranging between 30 to 200 nm in diameter, that are 
connected to the cytoplasm by narrow neck-like channels (Rubino et al., 2001; Schwartz 
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et al., 2002; Kopek et al., 2007; Cao et al., 2015; Wang et al., 2021). These invaginations 
serve as platforms for the assembly of the membrane-bound macromolecular complexes, 
the so-called viral replicase complexes (VRCs), where virus genome replication takes 
place to produce large amounts of (+)RNA genome copies. Moreover, there is increasing 
evidence suggesting that VRCs are also important for viral RNA translation, intracellular 
and possibly intercellular virus movement, and protection of the viral replication 
machinery from host defense mechanisms (Laliberté and Sanfaçon, 2010; Laliberté and 
Zheng, 2014; Nagy, 2016a; Jin et al., 2018a). The membranes of almost every organelle 
of infected plant cells, including the ER (Lee and Ahlquist, 2003), Golgi (Tilsner et al., 
2012), peroxisomes (McCartney et al., 2005), mitochondria (Rubino et al., 2001), 
chloroplasts (Jin et al., 2018b), and the tonoplast (Wang et al., 2021), can be used as pre-
assembly platforms for replication compartment formation and VRC assembly. 
Membrane origin as well as VRCs composition and organization varies depending on the 
type of virus, although different viruses exhibit some promiscuity in the selection of 
subcellular membranes for VRC assembly (Jonczyk et al., 2007; Laliberté and Zheng, 
2014; Xu and Nagy, 2014), to the extent that plant +ssRNA virus replication has been 
demonstrated in isolated organelle membranes, yeast cells (S. cerevisiae), and yeast cell-
free extracts. In fact, these alternative experimental systems have proven extremely 
helpful to unravel the specific roles of the different viral and co-opted host cell factors 
involved in viral multiplication (Nagy 2008; Xu et al., 2012; Nagy et al., 2016b). 
However, the reason why different viruses prefer specific subcellular membranes for 
replication and the underlying mechanisms still remain open questions. 

Phytosterols are key players in virus genome replication 

The assembly of VRCs is a very complex process that requires a highly orchestrated 
interplay of multiple virus and host cell factors, including the viral (+)ssRNA, virus-
encoded replication proteins, an increasingly growing number of host proteins playing a 
variety of housekeeping functions that may change when they are usurped by viruses, and 
membrane lipids such as sterols and phospholipids (Nagy, 2016; Jin et al., 2018a; Sasvari 
et al., 2018). The massive proliferation of intracellular membranes associated to VRC 
formation requires in turn an enhanced supply of their structural components to sustain 
the high rates of de novo membrane biogenesis (Carette et al., 2000; Lee and Ahlquist, 
2003), in particular of sterols (Figure 1). Compelling evidence that plant virus replication 
is dependent on sterols was provided by Sharma and co-workers (2010) using yeast cells 
and N. benthamiana plants infected with Tomato bushy stunt virus (TBSV). This 
prototype virus of the Tombusvirus genus has been intensively studied and, together with 
other scientifically important viruses (Table 1), has greatly contributed to the current 
understanding of the principles of (+)ssRNA virus-plant host interactions (Yamamura and 
Scholthof, 2005; Nagy and Feng, 2021). Pharmacological inhibition of 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGR) (Figure 2), the main regulatory enzyme of the 
sterol biosynthetic pathway (Hemmerlin et al., 2012), was shown to have a strong 
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inhibitory effect on TBSV RNA replication in yeast cells, and the same effect was 
observed when yeast sterol 4a-methyl oxidase (SMO) activity was depleted by means of 
chemical inhibition or by down-regulating the expression of the corresponding ERG25 
gene (Sharma et al., 2010). Yeast SMO catalyzes the removal of the two methyl groups 
at C4 position of the post-squalene sterol pathway intermediate 4,4-dimethyl zymosterol 
(Bard et al., 1996). Reduced virus genome replication concomitant to a delay in the 
appearance of infection symptoms was also observed in N. benthamiana upon both 
chemical inhibition of SMO activity and VIGS-mediated silencing of the corresponding 
SMO1 and SMO2 genes (Figure 2). Interestingly, the negative impact of sterol 
biosynthesis inhibition (SMO chemical inhibition) on virus replication in N. benthamiana 
protoplasts was reversed by exogenously added stigmasterol, and to a lesser extent by 
campesterol (Sharma et al., 2010). The differential complementation capacity of these 
two sterols might be due to the fact that stigmasterol is the most abundant sterol in tobacco 
cellular membranes (Cassim et al., 2019), and/or to the differential effects of these two 
sterols on membrane organization and biophysical properties (Grosjean et al., 2015). In 
contrast to other organisms, plants contain a mixture of sterols consisting of a variety of 
minor biosynthetic intermediates and three major D5-sterols, usually b-sitosterol, 
stigmasterol and campesterol (Moreau et al., 2002) (Figure 2), although cholesterol is 
also a major sterol in some members of the Liliaceae, Solanaceae and Scrophulariaceae 
families (Behrman and Gopalan, 2005) while D5-avenasterol is a major sterol in oats 
(Moreau et al., 2002) and D7-sterols are the predominant sterols in the Cucurbitaceae 
family (Akihisa et al., 1986; Fenner et al., 1989). Several studies have reported 
remarkable differences in the capacity of phytosterols to promote the formation of ordered 
domains in the membrane and organize their spatial distribution at the membrane surface. 
Campesterol has a strong ordering ability, which is in the same range of cholesterol and 
clearly higher than that of b-sitosterol, while stigmasterol has a much weaker ordering 
effect or may even lack this ability. Accordingly, cholesterol is also the most efficient 
sterol in modulating membrane stiffness/rigidity, thickness and molecular packing 
density, followed by campesterol, b-sitosterol, and stigmasterol. These differential effects 
on membrane properties have been attributed to the small variations in their structure 
(Shuler et al., 1991; Hodzic et al., 2008; Orädd et al., 2009; Grosjean, 2015; Fakih et al., 
2018). Stigmasterol and b-sitosterol are 24-ethylsterols that differ only in a double bond 
at position C22 in the C17 alkyl side-chain of stigmasterol, while campesterol is a 24-
methylsterol and cholesterol has no alkyl substituent at this position (Schaller, 2003) 
(Figure 2). Thus, subtle differences in the relative amounts of sterols can finely modulate 
plant membrane organization, biophysical properties, and biological function 
 
Phytosterols enrichment at virus replication sites  
 
A more direct link between sterols and (+)ssRNA viral replication has been reported by 
Xu and Nagy (2017). The TBSV (+)ssRNA genome contains five open reading frames, 
two of which are translated directly from the viral genome yielding proteins p33 and p92 
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that are essential to RNA viral replication. TBSV p92 is the RNA dependent RNA 
polymerase itself whereas p33 is an RNA chaperone that interacts with viral (+)ssRNA 
and recruits it to the site of replication. Both are integral membrane proteins anchored in 
intracellular membranes to form the interior protein layer of VRCs (Gunawardene et al., 
2017), where they play a primary role in building functional VRCs by establishing 
multiple interactions with a number of co-opted host factors. TBSV p33 and p92 have 
been found to interact with over 100 yeast proteins (Nagy et al., 2016a; Nagy and Feng, 
2021) and both have also the ability to directly bind cholesterol in vitro through the three 
CARC- and CRAC-like sterol recognition/binding motifs (Fantini and Barrantes, 2013) 
identified within or near their two transmembrane domains (Xu and Nagy, 2017). It is 
thus logical to assume that direct binding of sterols to p33 and p92 is one of the 
mechanisms responsible for sterol recruitment to create the sterol-rich microdomains 
required for fully functional VRC formation in infected cell membranes. But for these 
proteins to have access to sterols, a complex network of interactions between virus-
encoded and lipid-related host cell proteins has to be previously established. The p33 
protein has also been shown to interact with the ER-localized Sac1 protein in yeast and 
N. benthamiana prior to the formation of the extensive replication compartments. Sac1 is 
a phosphatidylinositol phosphate (PI4P) phosphatase involved in the formation of 
membrane contact sites (MCS) between ER and other organelles that facilitates the 
vectorial transfer of sterols from the ER donor membrane to the closely apposed acceptor 
membranes (Wu et al., 2018). This interaction also helps p33 to hijack the ER-resident 
SNARE proteins Ufe1p and Use1p present in the ERAS (ER Arrival Site) subdomains in 
order to assemble initial small replication compartments at MCS between the ER and 
other subcellular organelles. These early replication complexes serve as pre-assembly 
hubs for the formation of large fully functional replication complexes, a process that 
involves membrane proliferation as well as the establishment and stabilization of 
additional protein interactions that promote further formation of MCS and mediate non-
vesicular lipid transport between juxtaposed organellar membranes (Sasvari et al., 2018; 
Sasvari et al., 2020). Of particular relevance are the interactions of p33 with soluble 
oxysterol-binding (OSBP) related lipid transfer proteins (ORPs) like the yeast Osh3/5/6/7 
and the ER-resident VAMP-associated proteins (VAPs) ScS2p and VAP27 of yeast and 
plants, respectively (Barajas et al., 2014). VAPs physically link the ER with other 
organelles forming MCS and have the capacity to interact with OSBPs and ORPs (Peretti 
et al., 2008). The high concentrations of Sac1p, ORPs and VAPs at MCS facilitates the 
redistribution and local enrichment of sterols at the sites of viral replication. The actin 
filament network appears to play an important role in recruiting host cell proteins and 
lipids for VRC assembly. The p33 replication protein has been found to interact and 
inhibit the actin depolymerization factor Cof1p (Nawaz-Ul-Rheman et al., 2016) involved 
in the rapid cycles of actin filament assembly-disassembly required for normal cell 
morphogenesis and motility (Lappalainen and Drubin, 1997; Kovar and Staiger, 2000). 
According to the model proposed by Nawaz-Ul-Rheman et al. (2016), transient blocking 
of the dynamic actin-filament network would hamper normal cellular distribution and 



 7 

function of pro-viral host factors, which might then become more accessible for 
redirection to the sites of virus replication and VRC formation.  
Sterol enrichment at virus replication sites can be further promoted by the interaction of 
Ufe1p with sterol biosynthetic enzymes, like the ER-resident squalene synthase 
(Busquets et al., 2008), which was localized near the replication compartments in both 
yeast and plant cells infected with TBSV (Sasvari et al., 2018). Whether other ER-bound 
sterol biosynthetic enzymes are recruited close to viral replication sites requires further 
investigation, as it is also the case of the origin of sterols that accumulate at virus 
replication sites. Virus replication inhibition time-course experiments provided evidence 
that TBSV replication in yeast and plants is more dependent on newly formed sterols than 
on the preexisting ones, particularly at early stages of infection (Sharma et al., 2010), and 
more recently it has been shown that wheat plants infected with Barley yellow dwarf virus 
(BYDV) show significantly increased levels of total sterols (Porras et al., 2018). The 
proposed involvement of Sac1, ORPs and VAPs in selective enrichment of sterols at 
replication compartments and the recruitment of sterol biosynthetic enzymes nearby these 
structures suggests that sterols required for the assembly and functioning of virus 
replication machinery are indeed synthesized de novo in the ER. It is generally accepted 
that sterols are synthesized at the ER and then rapidly exported to the PM where they 
primarily accumulate (Hartmann, 1998; Benveniste, 2004; Hartmann, 2004), although the 
possibility that some steps of the post-squalene segment of the pathway (Figure 2) 
localize into the PM cannot be completely ruled out (Silvestro et al., 2013). However, a 
more recent report showed that sterol levels in both total cellular membranes and the 
detergent resistant membrane (DRM) fractions of yeast and plant cells infected with 
TBSV, remain essentially unchanged, thus suggesting that virus-induced recruitment of 
sterols at sites of replication involves rapid transport from existing cellular pools of sterols 
rather than induction of de novo biosynthesis (Xu and Nagy, 2017). This observation is 
somewhat surprising since active membrane biogenesis would be expected to require an 
extra supply of their primary structural components. In fact, phospholipid biosynthesis in 
TBSV-infected yeast and plant cells is clearly enhanced (Sharma et al., 2010; Xu and 
Nagy, 2017). Thus, it is reasonable to speculate that de novo sterol biosynthesis in the ER 
acts in close coordination with internal redistribution of pre-existing sterol pools, such as 
PM sterols (Lin et al., 2021) or even the esterified sterols accumulated in the cytoplasmic 
lipid bodies (Bouvier-Navé et al., 2010; Lara et al., 2018) (Figure 2), in order to meet the 
enhanced demand of these compounds triggered by virus replication. To establish the 
origin of these sterols is certainly an interesting subject for further studies, but either case 
it is clear that efficient virus replication in infected cells requires an active intracellular 
trafficking of these compounds. 
 
Role of phytosterols in virus replication compartments 
 
The precise role of sterol accumulation at virus-induced replication compartments 
remains unclear, but several possible functions have been suggested (Figure 1). Sterols 
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might help stabilize these organelle-like intracellular structures during all the time needed 
for efficient viral replication; for example, by limiting spontaneous lipid and protein 
diffusion in the membrane bilayer due to its rigidifying effect on cell membranes. Sterols 
have the capacity to interact with other membrane lipids containing saturated or relatively 
saturated acyl chains, such as sphingolipids and to a lesser extend phospholipids, thus 
promoting tighter lipid packing in membranes, which under extreme conditions may lead 
to liquid-ordered phase formation (Bigay and Antonny, 2012). In addition to membrane 
fluidity, sterols might also play a role in modulating membrane curvature, since the 
formation of the membranous compartments sustaining viral replication requires 
profound bending and deformation of subcellular membranes (Figure 1). The elastic 
properties of lipid bilayers forming eukaryotic cell membranes make them resistant to 
spontaneous deformation, so that active mechanisms are required to re-shape them. Even 
though sterols do not favor membrane curvature by themselves, they can modulate it by 
facilitating the local enrichment of other host lipids and proteins that contain domains or 
motifs that are specialized in sensing, generating or stabilizing membrane curvature, at 
the expense of other host components that are excluded from replication compartments. 
In fact, there are proteins that act directly by changing lipids, whereas others provide 
scaffolding and forces that impose tension on membranes (McMahon and Gallop, 2005; 
McMahon and Boucrot, 2015). Sterols in sterol-rich subdomains may also affect the 
topology, structure, oligomerization state and stability of the proteins embedded in the 
membranes with which they interact (Xu and Nagy 2017) with the consequent functional 
implications. In fact, sterols have been reported to be important for stabilization of TBSV 
p92 polymerase in yeast cells (Sharma et al., 2010), and changes in the relative 
proportions of membrane sterols are known to have an important effect on proper 
positioning and activity of membrane bound proteins (Carruthers and Melchior, 1986; 
Cooke and Burden, 1990; Grandmougin-Ferjani et al., 1997; Men et al., 2008; Mlayeh et 
al., 2010). The multiplicity of mechanisms through which sterol enrichment in VRCs may 
change membrane structure, dynamics and function strongly suggests a multifactorial 
contribution of sterols to create an optimal membrane environment for virus replication. 
Despite the growing evidence supporting a critical role of sterols in (+)ssRNA virus 
genome replication, almost nothing is known about the function that individual sterol 
species and/or specific fractions might play in this process. More than 250 different 
phytosterols have been described (Nes, 2011), with each plant species having a 
characteristic composition of sterols that may also vary depending on the organs and 
tissues, and their developmental stages (Grunwald, 1978; Fenner et al., 1989; Schrick et 
al., 2011). Furthermore, sterols can be present in free form (FS) and conjugated as steryl 
glycosides (SG), acyl steryl glycosides (ASG), and steryl esters (SE) (Figure 2). In 
general, the sterol species in the conjugated forms are the same as those present in free 
form although their relative proportions may be different (Duperon et al., 1984; Münger 
et al., 2015). SE accumulate in cytoplasmic lipid droplets and serve as an FS storage form, 
while SG and ASG localize together with FS in cell membranes and are enriched in 
DRMs along with FS, sphingolipids and proteins (Ferrer et al., 2017). Thus, the emerging 
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picture is that SG and ASG are also important players in determining membrane 
organization and functionality. In fact, SG and ASG have the same capacity to promote 
order in the lipid bilayer than FS, and effect that is enhanced when these different forms 
of sterols are combined in the bilayer (Moreau et al., 2002; Grosjean et al., 2015; Cassim 
et al., 2019). This is of particular importace in those plant species with high levels of 
glycosylated sterols. In fact, the relative proportions of free and conjugated sterols 
fractions may vary greatly depending on the species. In most plants, FS are by far the 
predominant form of sterols while SG and ASG are relatively minor components of the 
total sterol fraction ranging from 10 to 30% of the total sterol content. However, in plants 
of the Solanaceae family, SG and ASG are the predominant forms of membrane sterols. 
For instance, in leaves of tomato, potato and eggplant, glycosylated sterols may represent 
up to 80% of total sterols	(Duperon et al., 1984; Moreau et al., 2002; Furt et al., 2010; 
Nyström et al., 2012). It is important to bear in mind that the Solanaceae family includes 
widely cultivated crops of great economic importance, such as potato (S. tuberosum), 
tomato (S. lycopersicum), eggplant (S. melongena), pepper (C. annuum) or tobacco (N. 
tabacum), that can be infected by many (+)ssRNA viruses (Hančinský et al., 2020). 
 
Phytosterol metabolism and virus management strategies  
 
The strong sterol dependence of (+)ssRNA virus replication in infected host cells makes 
the biosynthetic pathway of these compounds (Figure 2) a promising new target to 
develop broad-spectrum plant virus disease control strategies based on the modification 
of sterol profiles. In fact, this kind of plant disease management strategy is already being 
explored as a new way of insect pest control, since herbivore insects survival depends on 
diet-acquired plant sterols to synthesize their own preferred sterols (Jing and Behmer 
2020). A recent study has shown that altered sterols profiles in Arabidopsis plants may 
have a negative effect on aphid growth and reproduction (Chen et al., 2020). Interestingly, 
viruses appear to take advantage of host sterols not only for replication purposes but also 
for their subsequent dissemination. The increase of sterol content in wheat plants infected 
with BYDV has been correlated with enhanced feeding rates and fecundity of specific 
aphid vectors involved in its transmission, thus increasing the probabilities of virus 
acquisition and spread (Porras et al., 2018). The possibility to hamper or even block virus 
replication by completely removing plant cell sterols is not realistic because of the 
essential structural and functional roles of these primary metabolites. What does seem 
more plausible is the possibility to introduce relatively minor changes in the quantitative 
and/or qualitative profiles of free and conjugated sterols that might compromise to a 
greater or lesser extent virus replication without affecting the capability of sterols to 
continue fulfilling their essential biological roles, similarly to what has been done in the 
case of phospholipid metabolism (He et al., 2019). The key point for implementing this 
sort of approaches is to find the best trade-off between impaired virus replication and 
normal plant cell viability and performance, which necessarily requires a more detailed 
knowledge of the specific quantitative and qualitative requirements of sterols for efficient 
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virus replication. This approach, in combination with other prophylactic anti-viral 
measures, might contribute to enhance plant resistance against viral pathogens in an 
environmentally friendly way. 
 
Conclusions and future directions 
 
Over the past recent years our knowledge on the molecular events underlying plant 
(+)ssRNA virus replication has progressed impressively. It is now well established that 
building up the molecular machinery required for efficient virus genome replication relies 
on a highly complex and dynamic interplay between virus and plant host cell factors, 
including proteins and lipids, in which sterols appear to play a primary role in creating an 
optimal environment for virus genome replication. However, much work is still needed 
in order to establish the precise molecular and cellular mechanisms underlying the 
recruitment and the role of plant cell host sterols at virus replication sites. For instance, it 
is not yet clear whether these sterols are synthesized de novo or transferred to the virus 
replication sites from a preexisting pool of sterols, or even if both sterol sources are used 
in a timely regulated manner during virus genome replication. Minor changes in sterol 
structure may have a very different impact on membrane biophysical properties, which 
raises the question as to whether there is a preference for sterols with specific structural 
features or, on the contrary, sterol enrichment at virus replication sites is simply a matter 
of quantity. The role of glycosylated sterols in these sites is another aspect that has yet to 
be addressed, particularly in those plant species where these conjugated forms are the 
predominant membrane sterols, such as the Solanaceae. Answering these and other still 
open questions will further enhance our understanding of the role of sterols in (+)ssRNA 
virus genome replication, thus providing a knowledge base that can also be applied to the 
rational design of broad-spectrum virus management strategies based on altering the 
qualitative and/or quantitative profile of sterols to hinder or even block the virus genome 
replication process. 
 
Figure captions 
 
Fig. 1 Formation of virus replication compartments in infected plant cells involves a 
massive proliferation and a profound rearrangement of the targeted endomembrane 
system that results in the formation of novel organelle-like intracellular structures 
enriched in membrane sterols. These key components of cell membranes help to create 
an optimal environment for virus replication machinery, most likely acting at different 
levels. ER, endoplasmic reticulum; PM, plasma membrane; LB, cytoplasmic lipid bodies. 
 
Fig. 2 Schematic representation of the metabolic pathway leading to the synthesis of free 
and conjugated phytosterols. Solid arrows indicate single enzymatic steps whereas dashed 
arrows denote multiple steps. HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; SQS, 
squalene synthase; SMO1/2, sterol 4a-methyl oxidase 1 and 2; C22-des, sterol C22 
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desaturase; SGT, sterol glycosyltransferase; SGAT, sterol glycoside acyltransferase: 
ASAT, acyl-CoA:sterol acyltransferase; PSAT, phospholipid:sterol acyltransferase. 
Cholesterol has no alkyl substituent at position C24 , which is highlighted with a red dot. 
Campesterol is a 24-methyl sterol while b-sitosterol and stigmasterol are 24-ethyl sterols. 
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