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Abstract: The commercial flightdeck is a naturally multi-tasking work environment, one in which
interruptions are frequent come in various forms, contributing in many cases to aviation incident
reports. Automatic characterization of pilots” workloads is essential to preventing these kind of
incidents. In addition, minimizing the physiological sensor network as much as possible remains both
a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations
with specific cognitive and mental states, such as workload. However, there is not enough evidence
in the literature to validate how well models generalize in cases of new subjects performing tasks
with workloads similar to the ones included during the model’s training. In this paper, we propose
a convolutional neural network to classify EEG features across different mental workloads in a
continuous performance task test that partly measures working memory and working memory
capacity. Our model is valid at the general population level and it is able to transfer task learning to
pilot mental workload recognition in a simulated operational environment.

Keywords: cognitive states; mental workload; EEG analysis; neural networks; multimodal data fusion

1. Introduction

A fundamental aspect of multiple task management is to attend to new stimuli and
integrate associated task requirements into an ongoing task set—that is, to engage in
interruption management [1]. Interruptions often negatively affect human performance.
Specifically, most laboratory and applied experiments demonstrate that interruptions
increase post-interruption performance times [2] and error rates [3], increase perceived
workload [4], and motivate compensatory behavior [5].

The commercial flightdeck is a naturally multi-tasking work environment, one in
which interruptions are frequent and of various forms. Further, interruptions have been
cited as a contributing factor in many aviation incident reports. External and aircraft events,
and interactions with other operators, compete for pilots” attention and require pilots
to integrate performance requirements associated with these unexpected prompts with
ongoing flightdeck tasks.

For that, the study of workload is essential to prevent accidents, since it could compro-
mise human task performance [6]. Since workload involves cognitive, neuro-physiologic,
and perceptual processes to resolve a task, it is affected by individual capabilities, motiva-
tion, and physical and emotional state [7]. Although this multifaceted nature of workload
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prevents one from studying workload directly, it is feasible to infer it from various quan-
tifiable variables [8]. There exist many proposals for recognizing workload based on
physiological features, such as hearth rate, eye movement and dilation, electroencephalo-
gram (EEG), and electrocardiogram (ECG) [9,10]. The recent emergence of low cost EEG
headsets has driven new researches (such as interaction with home devices, teaching-
learning educative methods, and mentally control robotic arms) further than the medical
screening of neurological disorders. In the particular case of cognitive state assessment,
EEG alone is becoming the preferred sensor for addressing its characterization [11-13].
However, there is not enough evidence in the literature to validate how well models gener-
alize to new subjects performing tasks of a workload similar to the ones included during
the model’s training.

The goal of this study was to characterize the mental workloads of airplane pilots in
the cockpit from the analysis of EEG signals.

The remainder of this paper is organized as follows: Section 2 summarizes the state-
of-the-art related work. Section 3 details the ground truth generation. Section 4 explains
the models used to recognize the different levels of workload. Section 5 presents the
experimental design. Section 6 is devoted to the experimental results. Finally, Section 7
outlines the conclusions and future work.

2. Related Work

The most generalized mechanisms to measure workload can be split into two main
categories [9,14,15]: subjective measures based on the subject perception and objective
scores based on physiological responses.

On the one hand, subjective measures are still the most used to assess mental workload,
the NASA Task Load Index (TLX) [16] being the most prominent test used to gain insights
about the perceived workload levels while a subject works with various human-machine
interface systems [17,18]. This questionnaire measures the mental workload based on
a weighted average of six sub-variables: mental demand, physical demand, temporal
demand, performance, effort, and frustration. It is widely used in aviation to assess mental
workload of pilots while interacting with plane controls [19,20].

On the other hand, physiological measures provide more reliable data of workload
by measuring physiological dynamic changes which cannot be controlled consciously,
so they have been becoming more popular among researchers in recent years [21-23].
The most common sensors/measurements used to record physiological data are: electro-
cardiogram (ECG) to register heart electrical activity, electromyograph to read skeletal
muscles” electrical activity, electroencephalogram (EEG) to detect electrical activity in the
brain, photoplethysmography to register volumetric changes in the blood flow, respiration
rate sensors, electro-dermal activity (EDA) to read skin surface temperature, oxygen density
in the blood in the brain, and eye movement trackers, among others [24]. TLX surveys
allow one to assess the perceived workload [16], but it is highly subjective. However,
physiological data occur spontaneously, and together with TLXs, provide more reliable
information [9,17,21].

The combination of several physiological sensors to classify workload states gives
better results than using a single one. The approach proposed in [25] combines EEG,
ECG, and electrooculography (EOG); and results show the best predictive power for
their combination (80%) rather than the analysis of each one independently (70%). In
addition, the study in [10] reports an accuracy average of 85.2 (£4.3%) combining EEG,
ECG, respiration rate, and EDA to classify four mental states. The work in [26] still shows
better results combining EEG, ECG, and EDA than using only EEG signals from classifying
four mental states, although results from the single sensor are promising (86.66%).

Deep learning (DL) approaches are gaining ground over more classical machine learning
techniques due to their ability to automatically extract features [24,27,28].
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The application fields fall into five general groups: emotion recognition [29], motor im-
agery [30], seizure detection [31], sleep scoring [32], and mental workload. Saadati et al. [33]
combined functional Near Infrared Spectroscopy (fNIRS) and adapted a CNN architecture
to allow fNIRS-EEG input to the CNN with promising results (89/5 of correct classification).
The study in [6] proposed a concatenated structure of deep recurrent and 3D convolutional
neural networks to combine both raw and spectral EEG data and assess two degrees of
mental workload, reporting an average accuracy of 88.9% in a cross-task assessment. In the
same fashion, Kwak et al. [34] proposed a LSTM based temporal attention technique to
simultaneously extract EEG features containing both local and global structure informa-
tion, obtaining an accuracy of 90.8% on their own dataset. Chakladar et al. presented a
new framework using the grey wolf optimizer algorithm and deep BLSTM-LSTM neural
model for estimating different levels of mental workload, achieving 86.33% and 82.57%
classification accuracy for “No task” and “multitasking activity” experiments, respectively.
None of them transfer learning to another type of task.

Contributions

Al methods characterizing WL from EEG signals must face several challenges. First,
in order to properly be trained and tested, it is mandatory to have data with unambiguous
annotations (known as ground truth, GT). The collection of this annotated data is complex
because the concept of WL itself is multifaceted and difficult to determine in an objective,
systematic manner. Second, for optimal performance of the system, it should properly
combine the signals recorded from the different EEG electrodes. Finally, a main issue that
a machine learning (ML) system involving humans should consider is its generalization
power, including reproducibility of results and the capability of transfer learning—that is,
to what extent a general model trained over a set of individuals can successfully predict
a new unseen individual performing a different task than the ones used for training the
system [35].

This work contributes to the three challenges as follows:

1.  Unambiguous Annotated Dataset. In order to generate data with unambiguous an-
notation, we have designed serious games and flight scenarios in an A320 simulator.
The serious game was a modified n-back-test [36] with increasing memory demand.
The level of difficulty of the test is our GT for training models. Such level of diffi-
culty was cross-checked with the difficulty perceived by the player assessed using
NASA TLX questionnaire. Models were trained using n-back-test data recorded
from a population that did not include pilots. The task and population transfer of
systems were validated in cockpit simulation exercises designed to have different
levels of complexity, and unexpected unsaved situations known to substantially drop
pilots” performance.

2. Models able to recognize two levels of workload with high generalization capabil-
ity. Two different architectures are proposed for the fusion of EEG sensor signals
(channels) at two different levels [37]: input data (labeled input projector model) and
convolutional feature (labeled feature projector model) models. Both architectures
consist of an input unit managing fusion at the input level, a convolutional unit, and
an output unit for fusion of convolutional features. For each architecture, several
classification problems (including an increasing number of WL classes) were trained
on n-back-test data using a one-subject-out scheme and tested in binary problem for
detection of WL on flight simulations.

The results show that between the two models, projecting convolutional feature
channels achieved higher performance, with 76.25% sensitivity and 87.81% specificity in
WL detection in n-back-test leave-one-out subject evaluation, and good task transfer with
the detected WL increasing with the number of interruptions.
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3. Data Annotation and Ground Truth Generation

In this paper, we provide two different automatically annotated datasets that served to
train, validate, and verify the learning and population transfer of models. The first dataset
was recorded from a group of non-pilot subjects playing a memory demanding, serious
game with an increasing WL. The second dataset was recorded from pilots flying scenarios
of different complexity on an A320 flight simulator.

3.1. Dual N-Back Test

N-Back-tests are memory demanding games requiring the resolution of tasks according
to a stimulus presented N trials before. We used three variants of the n-back-tests to induce
low, medium, and high mental workloads:

1. Position 1-back for low workload. A square appears every few seconds in one of eight
different positions on a regular grid over the screen. Players must press a keyboard
key when the position of the square on the current screen is the same as the square of
the previous grid.

2. Arithmetic 1-back for medium workload. An integer between 0 and 9 appears every
few seconds on the screen while an audio message says an arithmetic operation (plus,
minus, multiply, or divide). Players have to solve this operation using the current
number and number that appeared prior.

3. Dual arithmetic 2-back for high workload. This test combines the two previous ones.
An integer between 0 and 9 appears every few seconds in one of eight different
positions on a regular grid. At the same time, for each number that appears on screen,
an operator is presented with an audio message. As before, players have to solve
this operation using the current number and the number that appeared two instances
before. In addition, players have to press a key if the position of the current number is
the same as the position of the number shown two screens before.

The neurophysiological response of a subject against mentally demanding tasks de-
pends on his baseline state, which is prone to vary across time. In order to account for
differences in the baseline states of subjects, prior to the n-back-tests, participants watched
a relaxing video for 10 min. For each experiment (1—low, 2—medium, and 3—high work-
load), we had a video watching stage, a baseline phase, and the n-back-test, the workload
phase. Thus, we call BL1, BL2, and BL3 the baseline phases of the experiments; and WL1,
WL2, and WL3 are devoted to the workload phases of the experiments.

After the game, participants answered a TLX questionnaire to collect their subjective
perceptions of game difficulty and workload. Results presented in [38] showed that the
level of difficulty of the games was correlated to the performance of players and also to the
subjective perception of WL computed using NASA-TLX questionnaire.

A total of 20 subjects participated in the experiment. Subjects were adults between
20 and 60; all of them were healthy without any condition that might have caused an
imbalance in the data recorded. The sequence of tasks was randomly assigned to subjects,
and recording of each session was on different days and hours.

3.2. Flight Simulations

The experiments were designed considering the importance of collecting experimental
data that could be useful to quantifying the impact of a task load increment to pilots
through operational interruptions by an air traffic controller (ATC), cabin crew (TCP), and
electronic centralized aircraft monitor (ECAM) warnings, in order to assess to what extent
the system presented to discriminate between low and high workload can be transferred to
a more complex environment.

Four scenarios with different levels of complexity were designed, all of them assuming
pilot monitoring (PM) incapacitation in order to check how interruptions can overload pilot
flying (PF).
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e Flight 1. It is based in a nominal standard flight. This experiment is used to take
reference parameters. Thus, nominal flight without considering any interrupting
event from abnormal procedures due to system failure nor ATC vectoring instructions.
In this scenario, ATC provides a minimum number of instructions which the pilots
are used to. This scenario the lowest complexity and is considered as the BL class.

e  Flight 2. It also relies on the approach phase and it is modified from the nominal sce-
nario, by three different interruptions which increase the PF workload. This scenario
has an overall high WL demand.

¢  Flight 3. This scenario is based on the previous experiment with similar interruptions,
but they are slightly advanced or delayed to times at which the PF workload is low
and the pilot can attend the interruption without a negative performance impact.
Given that interruptions were issued at the most appropriate times, this scenario has a
lower level of WL demand than Flight 2.

e  Flight 4. This last scenario is based on the previous experiment with the same inter-
ruptions, but they are fired at times in which PF is attending to concurrent actions,
considerably increasing the workload and impacting the PF performance. This sce-
nario has a similar or greater WL than Flight 2.

The functional resonance analysis method (FRAM) [39] is an agent based modeling
framework to identify those factors that affect the performance of the pilot in cockpit
functionalities considering different socio-technical operational conditions. According to
this agent, the impact of an interruption on the PF workflow depends largely on the time
at which the interruption occurs. Consequently, FRAM provides a reliable measure of
the workload that will be faced by the pilot, and thus, it was used to design simulation
scenarios with interruptions triggered at times when the pilot had a low and high WL
peaks, and thus to provide realistic flying situations of controlled difficulty. In addition,
FRAM output (both, number of tasks and its complexity) was used to assess the ability
of ML models to detect WL peaks associated with highly demanding tasks. In this case a
single pilot flew the 4 scenarios.

Figure 1 illustrates a volunteer during a session for the dual n-back test task (a) and a
pilot during a simulated flight session (b).

(b)

Figure 1. Data collection with Emotiv Epoc+ headset. (a) A volunteer during a n-back-test and (b) a

pilot during simulated flight session.

4. Workload Recognition

In this section, we present our models, able to recognize between two levels of work-
load. Each method consists of two stages: First, raw input data are extracted from EEG
signals and preprocessed to obtain the proper input data. Later, these signals are fed into
the network model to automatically extract the features that will be further combined in a
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classifier step to discriminate among the number of classes previously determined (baseline
vs. workload in our case).

4.1. Extracting Input Data from EEG Signals

For EEG recording, an EMOTIV EPOC+ headset [40] was used, which has 14 electrodes
placed according to the 10/20 system. This sensor provides both raw data and power
spectra for the main brain frequencies (6, &, Bow, Prigh, and 7). Given that proposed n-back
tasks are memory demanding stressing games and baseline phases consist in watching a
relaxing video, the theta wave [41] is the best candidate for discriminating the different
mental loads of our experimental phases. In this work, we used the power spectrum of
theta wave (4-8 Hz) sampled at 8 Hz.

Eye blinking and sudden head movements introduce abrupt sharp peaks of large
amplitude in the power spectra wave that should be filtered before using them as predictors
of a mental state [21]. In particular, we used an interquartile range (IQR) [42] filtering
strategy to detect outlier values associated with muscular movement wave peaks. Our IQR
filtering was based on setting the value of the 99% percentile of the distribution to all points
above it.

To ensure a high quality of signals, we further filter data according to the quality of
the EEG during recordings provided by the headset itself. For each sensor and recorded
sample, Emotiv reports the quality of the recording in a discrete scale with values in the
range 0—4 indicating how good the contact between sensor and head is: 4 for optimal—O0 for
none. For the sake of data with the highest possible quality while keeping a reasonable
sample size, signals with a 25% of bad recordings were discarded (<3). Further, since there
is no evidence about what are the most discriminating sensors that best correlate with the
detection of mental workload, the whole phase was discarded if the signals of two or more
of the sensors were low quality. Finally, a subject was discarded if either all its base line
or its workload phases were discarded, since, in this case, there were not enough data to
define the binary classification. After this quality filtering, only 16 of the 20 subjects were
selected for models training and testing.

In order to feed data to models, 6 signals were cut in temporal windows. Notice that
the size and overlap of the temporal windows might be a critical issue in order to properly
include workload peaks [43]. For that we have used several window widths with different
overlaps, obtaining the best results with 40 s windows overlapped 30 s. Thus, the input
data of the networks were the concatenations of 40 s windows for the 14 EEG sensors
(14 x 40 = 560-dimensional feature space). In order to account for the difference in units
and magnitudes, input data were standardized using the mean and standard deviation of
the training set.

4.2. Network Architectures

The spatio-temporal representation of EEG signals is an issue that any classification
ML system has to face. The simplest question is when to combine the signals: before or after
extracting features? As Figures 2 and 3 show, we propose two architectures that differ in the
moment when EEG sensor signals (channels) are projected: one projects input EEG sensors
(input projector model) and the other one projects the convolutional features extracted from
each EEG sensor (feature projector model). Each model has one input unit projecting EEG
channels (if applicable), a convolutional unit equal for both models, and an output unit
projecting the convolutional features extracted from each EEG sensor (if applicable). This
output unit has a fully connected layer with sigmoid activation and output the number
of classes. To account for different window lengths, we apply an average pooling before
the classification layer. All convolutional layers use kernels of size 3 and stride 1 and have
Relu activation.
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The convolutional unit has 3 blocks consisting of one convolutional layer with max
pooling and having 16, 32, and 64 neurons for each convolutional layer, respectively.
The classification layer has 256 neurons. For the input projector model, the projection unit
has one convolutional layer with 16 neurons. For the feature projector model, the output
unit has 2 blocks consisting of one convolutional layer before the classification layer.
The first one has 64 neurons, the second one projects convolutional features also using
64 neurons.
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Figure 3. Architecture of the feature projector model.

Although our main problem is a binary one, to ensure generalization capabilities of the
classifier (including task transfer), we increased the diversity of the classifier by increasing
the number of classes used to train the network. That is, our architecture was trained as a
classifier to discriminate between a BL and WL classes using 4 different grouping of the
data recorded from the 3 n-back tests:

1.  Binary problem (noted BLs-WL2) given by BL = (BL1, BL2, BL3) and WL2. That is,
the BL class is defined by aggregating the baselines for the 3 games and WL class
defined by the workload phase of the second experiment.

2. Three class problem 1 (noted BLs-WL2-WL3) given by BL = (BL1, BL2, BL3), WL2 and
WL3. That is, a BL class defined as before and two WL classes given by the workload
phase of the second and third experiments.

3. Three class problem 2 (noted WL1-WL2-WL3) given by WL1, WL2 and WL3. That is,
a BL class defined by the workload phase of the first experiment and two WL classes
given by the phase 2 of the second and third experiments.

4. Four class problem (noted BLs-WL1-WL2-WL3) given by BL = (BL1, BL2, BL3), WL1,
WL2 and WL3. That is, a BL class defined as in the first configuration and also defined
by the workload phase of the first experiment and two WL classes given by the
workload phase of the second and third experiments.

Unlike binary problems, in multiclass settings, the classifier does not predict the
probability of belonging to each class. It rather gives a score of belongingness. It follows
that the class predicted is not the one having a score above 0.5 (as is the case in binary
problems), but the one having the largest value of the score predicted by the classifier.
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In our case, since the final class prediction is binary, we compute the binary class labels
in the multiclass settings by binarizing first the output probabilities and then taking the
maximum between the two as the final class label. The transformation between classifier
output and BL-WL classes scores is as follows:

1.  BLs-WL2-WL3: The probability of BL is directly the probability of the train BL class,
whereas the probability of the class WL it is the maximum of the probabilities of the
WL2 and WL3 classes.

2. WL1-WL2-WL3: The probability of the class BL is given the probability of the class
WL1, whereas for the class WL it is the maximum of the probabilities of the WL2 and
WL3 classes.

3. BLs-WL1-WL2-WL3: The probability of the class BL is the maximum probability of the
BL and WL classes, whereas for the class WL it is the maximum of the probabilities
of the WL2 and WL3 classes.

5. Experimental Design

In order two validate the proposed models, two experiments were conducted:

5.1. Training and Validation Using N-Back-Test Data

To assess to what extent a model trained over a set of individuals can successfully
predict a new unseen individual, we have used a generalist population model, where a
single model using all subjects was trained to assess whether inter subject variability can be
properly modeled. The validation of the capability for modeling a population was tested
using a leave-one-out scheme to allow statistical analysis. Models were trained using a
batch size of 750, a weighted cross-entropy loss to compensate unbalances between baseline
and workload phases, Adam [44] as optimization method, 100 epochs, and a learning rate
of 0.0001.

The performances of the different approaches for detection of mental workload were
assessed using the accuracy (or sensitivity) for each class:

e TP
Sensitivity = TP+ N

where TP = number of true positives and FN = number of false negatives. Sensitivity
measures the ability of the system to detect BL and WL classes. Since we have a binary
classification problem with WL the positive class, the sensitivity for BL corresponds to the
specificity of the model.

5.2. Task Transfer Verification Using Flight Simulator Data

To assess the capability of our model for transfer learning, experiments were devoted
to showing that the model trained to detect WL in a memory demanding task (n-back
test) can detect an increase of WL associated with multitask procedures with interruptions
decreasing performance.

The EEG signals of the flight dataset explained in Section 3 are intended to assess:

1.  Correlation of WL recognition with the number of tasks carried out by the pilot. Since
we expected that the proportion of samples classified by our model as medium-high
WL would be higher in the intervals where the PF performed more tasks, we show the
percentages of predictions for BLs and each WL in correspondence with the number
of tasks demanded.

2. Correlation of WL recognition to flight complexity. Flights 2 and 4 were designed to
have higher workloads than Flight 3 (Flight 1 is considered the baseline) so that the
hypothesis is that the proportion of samples classified by the model as medium-high
WL will be higher than in flight 3.
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6. Results

In this section, we show and discuss the results obtained.

6.1. Training and Validation Using N-Back-Test Data

Tables 1 and 2 summarize the recalls of baseline (BL) and workload (WL2) for the
binarized models trained on different class problems for, respectively, the input and feature
projector models. Tables show ranges for WL and BL detection computed for the 16
subjects after removing three outlying cases (80% of population) that all approaches failed
to correctly predict.

For all cases, performance was more robust for the three-class problem, although speci-
ficity was better in the 2-class and 4-class problems. Regarding projection approaches,
models projecting features achieved higher performance. In particular, the binary class
feature projector model achieved an average detection of BL of 87.81% and a WL of 76.25%.

Table 1. Input projector model binarized.

All Population 80% of Population
BL 85.72+7.52 84.15+7.50
BL-WL2

WL 76.22 +17.64 82.81 +=11.73

BL 78.16 +10.83 75.5+10.29
BLs-WL2-WL3

WL 78.62 +16.59 84.35 + 10.87

BL 72.94 4+ 18.08 70.58 +19.29
WL1-WL2-WL3

WL 77.34 +16.72 82.85+11.48

BL 80.75 +9.87 79.42 +10.07

BLs-WL1-WL2-WL3
WL 76.44 4+ 16.81 80.96 +13.16
Table 2. Feature projector model binarized.
All Population 80% of Population
BL 87.81 +7.07 86.65 +7.33
BL-WL2

WL 76.25 +19.27 82.73 +14.85

BL 79.00 +£9.22 77.114+9.13
BLs-WL2-WL3

WL 80.94 + 16.21 85.96 + 11.68

BL 81.34 +15.76 81.27 +£15.21
WL1-WL2-WL3

WL 82.47 +15.78 86.54 +11.81

BL 84.75 + 8.88 83.96 +9.24

BLs-WL1-WL2-WL3
WL 76.34 +15.78 80.65 +12.49

6.2. Task Transfer Verification Using Flight Simulator Data

Barplots in Figures 4 and 5 show the percentages of WL detection as a function of
the number of interruptions (0, 1, or 2). The expected pattern was the percentage of
WL detection increasing with the number of interruptions. For both projection models,
the 3-class problem WL1_WL2_WL3 is the only model that does not follow the expected
increasing pattern. For the remaining problems, both architectures seem to behave equally.

Figures 6 and 7 show the barplots for the number of BL and WL predictions for the
four flights. The expected pattern was to have the most detections in Flight 1, Flight 2,
and Flight 4 (similar amounts of WL detected) and for Flight 3 to present a decrease in
detected WL with respect these flights. Only the feature projector model follows the pattern
expected. The most significant differences between flights are evident in the 3-class problem
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BLs_WL2_WL3, followed by the 4-class problem. The 3-class problem WL1_WL2_WL3
does not apparently detect any difference among Flight 3 and Flight 4.
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7. Conclusions

In this paper, we have presented two different approaches to the fusion of EEG sensor
signals. Models were trained and validated on self-designed games (one serious game and
one flight simulator with specific scenarios) to ensure unambiguous annotations. Models
were trained and validated on the serious game using a one-subject-out scheme; and
simulator data gathered from a subject not included in the training data were used to
evaluate transfer capability.

Results show that between the two models, projecting convolutional feature channels
achieved higher performance, with 76.25% sensitivity and 87.81% specificity in WL detection
in n-back-test leave-one-out subject evaluation and good task transfer with the detected WL
increasing with the number of interruptions. Although these results provide evidence of the
ability of the EEG sensor to discern between more and less demanding tasks—increasing
the evidence the robustness of the EEG and its ability to transfer tasks—the fact that the
3-class problem BLs_WL2_WL3 does not correlate with flight complexity suggests the
following improvements.

A delicate issue that has an impact on the performances of methods is the filtering of
signals required to remove muscular motion peaks and other artifacts. EEG pre-processing
approaches have not been standardized, and even small changes in the artifact removal
strategy may result in differences with large effects on particular portions of the signal.
In this study, we have adopted a filtering approach based on signal probabilistic distribution
for outlier removal in the temporal space. We consider that muscular motion could be
filtered calibrating muscular signals before test recording to set either the values or the
frequency ranges associated with muscular motion.

Some studies claim the importance of considering multiple aspects of a user’s state
when developing cognitive state detection algorithms [45]. Consequently, affective state
should be considered.

Given that the way EEG sensors are fused has a direct impact in performance of
models, alternative architectures should be further investigated. In this context, a direct im-
provement would be to consider ensemble models processing each sensor separately with
own-learned weights. Furthermore, more recent architectures such as convolutional/LSTM
and Lambda Nets that include attention modeling should be also studied.
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