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Aim  32 

We analyse how functional diversity varies across European natural forests to understand 33 

the effects of environmental and competitive filtering on plant trait distribution. 34 

Location  35 

Forest ecosystems in Europe from 11°W to 36°E and 29.5°N to 62°N. 36 

Taxon  37 

Pinaceae, Fagaceae and Betulaceae, Oleaceae, Tiliaceae, Aceraceae, Leguminosae 38 

(unspecific). 39 

Methods  40 

We adopted the existing Dynamic Global Vegetation Model Lund-Potsdam-Jena managed 41 

Land of flexible individual traits (LPJmL-FIT) for Europe by eliminating both bioclimatic limits 42 

of plant functional types (PFTs) and replacing prescribed values of functional traits for PFTs 43 

with emergent values under influence of environmental filtering and competition. We 44 

quantified functional richness (FR), functional divergence (FDv) and functional evenness 45 

(FE) in representative selected sites and at Pan-European scale resulting from simulated 46 

functional and structural trait combinations of individual trees. While FR quantifies the 47 

amount of occupied trait space, FDv and FE describe the distribution and abundance of trait 48 

combinations, respectively, in a multidimensional trait space. 49 

Results  50 

LPJmL-FIT reproduces spatial PFTs and local trait distributions and agrees well with 51 

observed productivity, biomass and tree height of European natural forests. The observed 52 

site-specific trait distributions and spatial gradients of traits of the leaf- and stem-resource 53 

economics spectra coincide with environmental filtering and the competition for light and 54 

water in environments with strong abiotic stress. Where deciduous and needle-leaved trees 55 

co-occur, e.g. in boreal and mountainous forests, the potential niche space is wide (high 56 

FR), and extreme ends in the niche space are occupied (high FDv). We find high FDv in 57 

Mediterranean forests where drought increasingly limits tree growth, thus niche 58 

differentiation becomes more important. FDv decreases in temperate forests where a cold 59 

climate increasingly limits growth efficiency of broadleaved summergreen trees, thus 60 

reducing the importance of competitive exclusion. Highest FE was simulated in wet Atlantic 61 

and southern Europe which indicated relatively even niche occupation and thus high 62 

resource-use efficiency.  63 

Main conclusions  64 

We find functional diversity resulting from both environmental and competitive filtering. Pan-65 

European FR, FDv and FE demonstrate the influence of climate gradients and intra- and 66 

inter-PFT competition. The indices underline a generally high functional diversity of natural 67 

forests in Europe. Co-existence of functionally diverse trees across PFTs emerges from 68 

alternative (life-history) strategies, disturbance and tree demography.  69 
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1. INTRODUCTION 70 

Functional diversity (FD) is a key control of the stability and adaptability of ecosystems under 71 

climate change (Yachi and Loreau, 1999). Abiotic conditions (e.g. climate, soil) as well as 72 

biotic processes (e.g. competition) determine plant community assembly (Kunstler et al., 73 

2016; Ratcliffe et al., 2017; Ruiz-Benito et al., 2017), and thus the functional diversity of 74 

communities (Lavorel & Garnier, 2002a; Cadotte et al., 2011; Naeem et al., 2012). 75 

Ecosystem FD has been measured based on the diversity of morphological and/or 76 

physiological plant traits (Villeger et al., 2008), which are linked to plant productivity, 77 

transpiration or nutrient cycling, and thus to ecosystem functions (cf. Lavorel & Garnier, 78 

2002b). For instance, specific leaf area (SLA) and leaf nitrogen content have been linked to 79 

plant productivity, and stem traits such as wood density (WD) to carbon storage and 80 

evapotranspiration (Funk et al., 2017) and, among others, determine species tolerance of 81 

environmental stresses (Hallik et al., 2009) and control competitive interactions between 82 

individual plants (Kunstler et al., 2016).  83 

Under given climate conditions, the distribution of multiple individual traits results from 84 

community assembly rules and opens a multi-dimensional trait space of functionally related 85 

traits (Wright et al., 2004; Mason et al., 2005; Chave et al., 2009; Díaz et al., 2016). To 86 

quantify how environmental and competitive filtering influence niche complementarity, 87 

multidimensional indices of functional diversity are required to quantify occupation and 88 

overlap of niches (Mason & de Bello, 2013). In addition, these indices should be scale-89 

independent and applicable at regional scale to investigate changes in FD along climatic 90 

gradients (Carmona et al., 2016).  91 

Climatic conditions are the most important drivers of community assembly and generally 92 

constrain the relations between traits globally (Butler et al., 2017; Šímová et al., 2018). 93 

Strong gradients in trait expression, associated to climatic conditions, have been found at 94 

global scales (Díaz et al., 2016; Wright et al., 2017) and at the European scale by 95 

extrapolating site-specific plant trait-data (Butler et al. 2017) and using forest inventories 96 

(Ruiz-Benito et al. 2017). Recent studies investigate a mix of globally important physiological 97 

traits (e.g., SLA, WD, seed mass and leaf nitrogen content) and morphological traits 98 

(including maximum plant height and basal area) (Ratcliffe et al., 2016; Ruiz-Benito et al., 99 

2017), or separate the effects between those trait types (e.g. Madrigal-Gonzalez et al., 2016; 100 

Schneider et al., 2017). They advance our understanding of spatial pattern of plant traits at 101 

the landscape and continental scale.  102 

Many different indices have been used to describe the size of trait spaces, the distribution 103 

and the clustering of their trait combinations (e.g. Ratcliffe et al., 2016; Schneider et al., 104 

2017). Villéger et al. (2008) suggested to describe these FD aspects using three 105 

independent indices: functional richness (FR), divergence (FDv) and evenness (FE). While 106 

FR quantifies the amount of occupied trait space, FDv and FE describe the distribution and 107 

abundance of trait combinations in a multidimensional trait space (Mason et al., 2005; 108 

Villeger et al., 2008). While FR describes the size of potentially available, functional space, 109 

in which niches can be occupied by plants, FDv quantifies the distribution of trait values, thus 110 
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the degree of niche differentiation, likely the result from competitive exclusion (Mason et al., 111 

2005; Garnier et al., 2016). FE describes the regularity of trait distribution and points to 112 

resource-use efficiency within the occupied trait space. Lower FR could relate to lower 113 

capability of an ecosystem to buffer environmental stress, whereas lower FE and FDv could 114 

indicate reduced ecosystem resilience (Mason et al., 2005). 115 

By dividing functional diversity into richness, divergence and evenness, the mechanisms that 116 

link biodiversity to ecosystem function and describe community assembly can be described 117 

(Mason et al., 2005; Mason et al., 2013). Computing scale-independent FD indices from trait 118 

distributions (Carmona et al., 2016) allows investigating FD from community to meta-119 

community scale and extrapolating them to the regional or continental scale. Huge efforts 120 

are under way to explore links between plant traits, vegetation composition and climate 121 

based on site data (Díaz et al., 2016; Wright et al., 2017; Bruelheide et al., 2018). They are 122 

complemented by dynamic global vegetation models (DGVM) with flexible or adaptive 123 

individual traits (e.g., Sakschewski et al., 2015; Langan et al., 2017) which explore and map 124 

the mechanisms between functional diversity and ecosystem function from local to regional 125 

scales. The interplay between flexible morphological and physiological traits within plant 126 

functional types (PFT, Lavorel et al., 2007; Prentice et al., 2007) in combination with the 127 

physiology and biogeochemistry of a DGVM allows analysing the effect of community 128 

assembly on ecosystem function, e.g. productivity and carbon storage, in forest ecosystems. 129 

Because these flexible-trait DGVMs vary plant traits for individual trees that belong to a 130 

specific PFT, inter-PFT as well as the intra-PFT trait diversity are captured which allows 131 

investigating effects of niche complementarity along climatic gradients. 132 

The overall aim of this study is to investigate the interaction between climate, ecosystem 133 

function and pattern of FD of forest ecosystems. We focus on European natural forests 134 

ranging from broadleaved evergreen vegetation in the Mediterranean basin, to temperate 135 

forests and to boreal forests in northern Europe. Here, natural forests are defined as 136 

potential natural forests whose compositions and ecosystem functions (see Mitchell, 2002; 137 

Hooper et al., 2005; Geller et al., 2017 for definition) results from climate and soil conditions. 138 

Forests and other wooded land are usually defined following the percentage of woody cover 139 

(FAO, 2018). However, we denote forests hereafter as vegetation with a significant amount 140 

of biomass (>50 gC/m²), at least 5% coverage of woody PFTs and a minimum mean tree 141 

height of 2m. For this study we adapted the DGVM LPJmL-FIT to PFTs growing in strongly 142 

seasonal European climatic conditions, while the model previously has been successfully 143 

applied to tropical rainforests (Sakschewski et al., 2015). We break down the overall aim of 144 

the study into the following research questions:  145 

1. What is the role of environmental and competitive filtering on trait distributions and 146 

productivity of Mediterranean, temperate and boreal natural forests? 147 

2. How does functional diversity emerge from climate and plant competition at the local 148 

and pan-European scale? 149 

3. How does functional diversity vary between and across European natural forests? 150 

In order to address these research questions, we check the validity of the adapted LPJmL-151 

FIT model by assessing to what degree the model reconstructs observed (a) productivity and 152 
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biomass, (b) trait distribution and (c) distribution of PFTs as a result of environmental and 153 

competitive filtering. We quantify for selected sites and on a Pan-European scale FR, FDv 154 

and FE of simulated physiological and morphological traits (cf. Villeger et al., 2008; 155 

Schneider et al., 2017). We expect functional diversity to be generally high in natural forests 156 

and climatic stressors considered in LPJmL-FIT to be a strong environmental filter.  157 

Our analysis of functional diversity in natural forests can provide a reference state for 158 

restoring highly managed or degraded ecosystems and increase their diversity and stability 159 

in face of climate change (Liang et al., 2016; Mori et al., 2017). We focus here on the 160 

interaction of physiological and morphological plant traits with community assembly 161 

processes at the local and Pan-European scale to understand how functional diversity 162 

emerges from those interactions.   163 

2. MATERIALS AND METHODS 164 

We connect the leaf and stem economics approach as implemented in LPJmL-FIT 165 

(Sakschewski et al., 2015) with a phenology model (Forkel et al. (2014) to simulate potential 166 

natural vegetation in Europe under current climatic conditions. Herbaceous PFTs (C3 and C4 167 

grasses) are simulated as in LPJmL (Schaphoff et al., 2018b). To allow for environmental 168 

and competitive filtering to take full effect within and across PFTs, we removed the 169 

bioclimatic limits that are used in most DGVMs to emulate biogeographic limitations of PFT 170 

occurrence (Sitch et al., 2008; Schaphoff et al., 2018b). Phenology, leaf-economics (LES) 171 

and stem-economics (SES) traits (cf. Wright et al., 2004; Chave et al., 2009) are assigned to 172 

each individual tree sapling at establishment allowing any trait combination (everything-is-173 

everywhere-approach, see Fig. 1 for trait-selection algorithm) whose competitiveness in a 174 

given climate then determines its survival and growth. Physiology, growth and mortality of 175 

trees within the forest patch are as described in Sakschewski et al. (2015). Applying this 176 

simulation framework to current European climate, environmental and competitive filtering 177 

result in site-specific trait distributions, productivity, biomass and in tree height.  178 

2.1 Adjusted LPJmL-FIT model 179 

LPJmL-FIT combines flexible individual traits with gap dynamics and plant physiology, 180 

hydrology and biogeochemistry. Being structured into vertical leaf layers every two meters, 181 

trees compete for light and water as they grow in size. The trait combination of each tree 182 

determines its competitive strength under given climate conditions at a given site, where 183 

several plant strategies can co-exist and form diverse communities in forest ecosystems. 184 

The competitive interactions between individual trees through the suitability of their trait 185 

combinations to the given climate, spatial distribution of traits change along respective 186 

climatic gradients (Sakschewski et al., 2015). In general, the model approach of LPJmL-FIT 187 

allows all tree strategies to establish everywhere at any time (“everything is everywhere”). 188 

However, in equilibrium only those trees survive that are best adapted to the local 189 

environmental conditions (climate and soil). 190 
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LPJmL-FIT was originally developed for Amazonian rainforests (Sakschewski et al., 2015). 191 

Adapting it to climatic conditions which are strongly seasonal and with a high intra-annual 192 

variability requires a number of adaptations and implementations for multiple, co-occurring 193 

PFTs to describe Mediterranean, temperate and boreal natural forests in Europe. The LES 194 

and SES approach, as implemented in LPJmL-FIT, has therefore been adapted to 195 

accommodate four tree PFTs, namely “broad-leaved summergreen” (BL-S), “broad-leaved 196 

evergreen” (BL-E), “temperate needle-leaved” (T-NL) and “boreal needle-leaved trees” (B-197 

NL). Each PFT is based on an earlier implementation of these PFTs in LPJmL-4 (Schaphoff 198 

et al., 2018b) which has been extensively evaluated (Schaphoff et al., 2018a). To account 199 

for the phenology of the Mediterranean, temperate and boreal forests under the influence of 200 

light, water and temperature stress, we implemented the phenology model of Forkel et al. 201 

(2014) into LPJmL-FIT. This model couples the phenological status of a tree, which ranges 202 

between zero (complete senescence) and one (fully leafed), to the local climate. The actual 203 

value of the phenology status is determined by the product of four phenology functions, 204 

which depend on a set of PFT-specific parameters and the daily temperature, water stress 205 

and radiation. We calibrated the phenology parameter (Table S1) to yield a best possible 206 

PFT distribution that matches the spatial distribution of European natural vegetation from 207 

Bohn et. al (2007). Additionally, leaf senescence now occurs immediately if the phenological 208 

status of a tree drops below 0.2, forcing a tree to rebuild the complete canopy leaf area in 209 

the next simulation year. Given the climate influence on leaf phenology, BL-S trees imply a 210 

continuous spectrum to winter-deciduous trees.  211 

The algorithm to combine the PFT parameter set of the LES and SES-related traits with the 212 

phenology parameter is implemented as follows: When a new sapling is established, the 213 

selection of the trait combination occurs in three steps. First, the PFT type is randomly 214 

chosen out of the four possible PFT independent of its climate suitability or the present PFT 215 

composition (Fig. 1). Second, the selected PFT type defines the set of phenology 216 

parameters that are assigned to the tree sapling (see Suppl. Table S1), and it defines the 217 

SLA range from which the SLA value is drawn from a uniform distribution. The SLA range 218 

differs for BL-E, T-NL, B-NL and BL-S (see Table S2). The functionally related plant traits 219 

leaf longevity (LL), leaf N and Vcmax (maximum carboxylation rate of Rubisco per leaf area) 220 

are assigned in a third step to the sapling following the LES approach as in Sakschewski et 221 

al. (2015), see Fig. 1. Both, SLA and WD are drawn from a continuous uniform distribution 222 

for each individual tree for which the PFT-specific range is derived from the TRY v4.0 223 

database (see https://www.try-db.org/ Kattge et al., 2011) considering only sites located 224 

inside our study area. Hence, the parameter set of each newly established sapling in the 225 

forest patch contains trait values drawn from the LES and SES as well as the phenology 226 

parameters. Grasses are integrated in the model as homogeneous layers using the 227 

remaining radiation at the bottom of every forest patch for photosynthesis. C3 and C4 grasses 228 

compete with trees for water only. The establishment rate of grass is anti-proportional to the 229 

actual tree cover and the mortality rate depends on carbon balance by the end of every year 230 

(see Schaphoff et al. 2018 for details). Grasses are assigned phenology parameters (see 231 

Table S1), but are simulated without individual trait flexibility following the LPJmL4 modelling 232 
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approach (Schaphoff et al., 2018b). Therefore, in this study model simulations will be used to 233 

evaluate trait distributions and functional diversity regarding trees only. 234 

Different to the LPJmL-FIT version of Sakschewski et al. (2015), the trade-off between SLA 235 

and LL has been adopted from LPJmL4 (Schaphoff et al., 2018b):  236 

  𝐿𝐿 =  10
𝛽0−log10(

𝑆𝐿𝐴
∝

∙𝐷𝑀𝑐)

𝛽1    (1) 237 

where 𝐷𝑀𝑐 denotes the dry matter carbon content of leaves (𝐷𝑀𝑐 = 0.4763) and the 238 

parameter ∝ = 2 ∙ 10−4. The parameter 𝛽1 is set to 0.4 and 𝛽0 to 2.2 for broadleaved PFTs, 239 

while 𝛽0 =  2.08 for both, T-NL and B-NL. All parameters in equation (1) were obtained from 240 

Kattge et al. (2011). The parameters 𝛽1and ∝ influence the steepness of the SLA-LL 241 

relation, whereas 𝛽1 alters the offset. 242 

The mortality mortWD is coupled to its wood density WD by using the equation from King et 243 

al. (2006): 244 

𝑚𝑜𝑟𝑡𝑊𝐷  =  10𝛼1+𝛼2/𝑊𝐷   (2) 245 

and assigned to each tree individual at establishment (Sakschewski et al., 2015). Because 246 

no general mortality-WD relationship for tree species of temperate forests is currently 247 

available in the literature, we calibrated 𝛼1 and 𝛼2 to the locally observed biomass. 248 

Calibration was carried out at European sites still containing natural forests (Hainich National 249 

Park (NP) and Bialowieza NP), because the model simulates natural vegetation only. 250 

Following this calibration, we set the parameter 𝛼1to -4.5 and 𝛼2 to -2.66 for the broadleaved 251 

trees, and 𝛼1 = −2.66 and 𝛼2 = 0.255 for needle-leaved trees. The term mortWD is used as 252 

the maximum of the growth-efficiency mortality in LPJmL-FIT, meaning that trees with a low 253 

growth efficiency resulting from low productivity under unfavourable climate conditions have 254 

a higher mortality risk (Sakschewski et al., 2015). 255 

Additionally, we reduced the tree allometry parameter kep to 1.5 (1.6 in Schaphoff et al., 256 

2018b) for needle-leaved trees to simulate realistic tree shapes and growth pattern of 257 

needle- in comparison to broadleaved saplings: 258 

𝐶𝐴 ~ 𝐷𝑘𝑒𝑝      (3) 259 

where kep mediates between crown area (CA) and stem diameter (D). The lower kep, the CA 260 

for needle-leaved trees is reduced which then affects LAI:  261 

𝐿𝐴𝐼 =  
𝐶𝑙𝑒𝑎𝑓∙𝑆𝐿𝐴

𝐶𝐴
     (4), 262 

where 𝐶𝑙𝑒𝑎𝑓 is whole plant carbon investment in leaves (kg per tree) (cf. Sitch et al., 2003). 263 

Because of the lower SLA, needle-leaved trees then have to invest more leaf carbon in their 264 

first years to reach the same LAI compared to broadleaved trees. 265 

Fire is an important natural disturbance in European forest ecosystems (Naveh, 1990; 266 

Tinner, 1999). We applied the simple Glob-FIRM model (Thonicke et al., 2001) as 267 

embedded in LPJmL4. Here, fire probability depends on soil moisture in the top soil layer 268 
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and a fuel load threshold modelled by an exponential probability function calculated by the 269 

end of every year. We apply this probability to each patch separately. If a patch is burnt, 270 

every tree is ignited and survives with a PFT-specific fire resistance probability (cf. Thonicke 271 

et al., 2001) which is the same for all individuals that belong to the same PFT. In the patch 272 

burnt, all litter carbon is combusted completely. 273 

In boreal forests, evergreen trees exhibit water stress in spring, when relatively high air 274 

temperature increases evaporative demand, while the soil is still frozen and thus limits the 275 

water availability in the soil. This water stress forces evergreen trees to shed their needles 276 

and making them less competitive against BL-S trees which might have their bud burst later 277 

in the year. To correctly balance competition between B-NL and BL-S in boreal forests, we 278 

increased the root-distribution factor 𝛽𝑟𝑜𝑜𝑡 for B-NL trees from 0.943 (Schaphoff et al., 279 

2018b) to 0.965, which allows B-NL to reach deeper, non-frozen layers during spring thereby 280 

preventing them from leaf senescence. 281 

2.2 Model input data, simulation protocol and validation sites 282 

Climate and soil data input 283 

LPJmL-FIT uses air temperature [°C], precipitation [mm/d] and radiation (short-wave down 284 

and long-wave net radiation [W/m²]) of the combined dataset of the WATCH (Weedon, 2011) 285 

and WFDEI (Weedon, 2014) datasets at daily resolution on a 0.5° x 0.5° longitude-latitudinal 286 

grid. This climate data set is based on the reanalysis of ERA-Interim, where precipitation 287 

was bias-corrected using the Global Precipitation Climatology Centre data set (GPCC, 288 

Schneider et al., 2011). The climate data range from 1901 to 2013 with WFD covering 1901 289 

to 1978 and WFDEI-GPCC is used from 1979 onwards. The atmospheric CO2 concentration 290 

is held constant at 296 ppm over the whole time period.  291 

Soil texture is needed as model input and was taken from the Harmonized World Soil 292 

Database (HWSD) version 1.2 (Nachtergaele & Montanarella, 2009). The soil depth was 293 

kept constant at 2m for all grid cells. Our simulation domain covers Europe from 11°E to 294 

36°W and 29.5°N to 62°N.  295 

Simulation protocol 296 

Model simulation starts from bare-ground and simulates a spin-up period of 500 years by 297 

recycling the first 30 years of the climate data set (1901-1930) to bring natural vegetation 298 

composition (here individual trees with their individual trait combinations) and all living and 299 

dead carbon fluxes into equilibrium with the spin-up climate. We then performed a transient 300 

run simulating potential natural vegetation until the end of 2013, i.e. without land use. For the 301 

European simulation domain, 1000 forest patches being equivalent to 10 ha of forest area 302 

are simulated in each grid cell where all patches receive the same climate data and the 303 

same soil data as model input. Respective model output is then aggregated over all 304 

simulated patches within a grid cell.  305 
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To allow for a detailed analysis of plant trait distribution, functional diversity and productivity, 306 

we chose six different sites across Europe with near-natural forest stands and which cover a 307 

broad range of climates (Table S4). Site-specific simulations follow the same protocol as 308 

described above and were performed with 2500 patches at each site to ensure a higher 309 

spatial coverage. 310 

Model validation 311 

Simulated seasonal and intra-annual GPP is validated against observed and remotely 312 

sensed GPP data at six sites (Table S3) covering a climatic gradient (Table S4). We used 313 

monthly MODIS remote sensing data (MOD17A2H) for the years 2004-2013 (Running, 314 

2015) at six sites (see Table S1) and respective flux tower measurements from the Euroflux 315 

network for the Laegeren (CH-Lae, D'Odorico, 2014; Paul-Limoges, 2018) and Hainich NP 316 

(DE-Hai) (for general information, see Reichstein et al., 2005; Papale et al., 2006). 317 

Simulated maps of vegetation height and biomass were evaluated against remotely sensed 318 

products (Lefsky, 2007; Thurner, 2014). Details on the validation of GPP, vegetation height 319 

and biomass are described in the SI. Simulated plant trait distributions were compared 320 

against observed plant trait data from the TRY data base (Kattge et al., 2011), see SI for 321 

methods.  322 

2.3 Computation of functional diversity indices 323 

We quantified three complementary indices on multi-dimensional traits to describe FD, 324 

namely functional richness (FR), functional divergence (FDv), and functional evenness (FE) 325 

following Villéger et al. (2008) and Schneider et al. (2017), where each point represents one 326 

tree individual (higher than 2m) with its unique trait combination. In this study, this 327 

multidimensional trait space is based on SLA, LL, WD and tree height. While SLA, LL and 328 

WD influence productivity and biomass (Reich, 2014) and therefore point to competitive 329 

exclusion, tree height is regarded to describe niche differentiation (Garnier et al., 2016). We 330 

calculated the FD indices across and within PFTs to capture assembly processes across 331 

meta-communities.  332 

FR describes the extent of the occupied trait space and is calculated by the convex hull 333 

volume including all points in that trait space, which is normalized by the maximum possible 334 

trait volume. However, it implies that FR reacts strongly to outliers. FDv describes how far 335 

environmental niches are separated and indicate the intensity of competitive interactions, 336 

where FDv = 0 indicates convergent trait distribution due to strong environmental and 337 

competitive filtering (Mason et al., 2005; Villeger et al., 2008). To measure FDv in a 338 

multidimensional trait space, a sphere with radius 𝑑𝐺̅̅̅̅  centred in the trait cloud is calculated. 339 

FDv then quantifies how points (trait combinations of trees) scatter relative to the surface of 340 

the sphere (see eqs. 5-7 in SI and Fig. S1). If all points are located on the sphere, FDv 341 

becomes unity independent on the respective distribution on the sphere. The more the index 342 

decreases, the wider the points are spread around (inside and outside) the sphere. FDv 343 

therefore quantifies how the occupied niches are separated. FE describes how regularly 344 

points are distributed in the trait space, i.e. how efficient available resources are used 345 
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through niche occupation. FE is based on the minimum spanning tree (MST) linking all 346 

points in the trait space in such a way, that the sum of all branches becomes minimal (see 347 

equ. 11-13 in SI and Fig. S1). Therefore, FE increases when a) the points are evenly 348 

distributed, i.e. having equal branch length; or b) the trait combinations of the trees are 349 

equidistant in the trait space (Villeger et al., 2008). Further details on FE, FDv and FR 350 

quantification are provided in the SI.  351 

Each index was computed by considering all trees as evenly weighted. Before calculation, 352 

traits were normalized to their minimum and maximum observable values in the TRY sites in 353 

Europe, thus ranging between 0 and 1. For each grid cell we checked that no dimensional 354 

reduction was required by using the function “dbFD” of the R-package “FD” performing a 355 

principal coordinates analysis (Laliberté, 2014). Due to constrained computation capacity, 356 

we calculated all FD indices separately in groups of 50 patches in each grid cell (for which 357 

1000 patches were simulated in total) and aggregated them to the grid level by using the 358 

arithmetic mean. To visualize the stochastic uncertainty of the model, we calculated the 359 

coefficient of variation (COV) of each index in a grid cell out of the groups of 50 patches 360 

(n=20). Since all of these groups in a cell received the same climate data, the COV can be 361 

seen as a measure for the stochastic uncertainty of the model. 362 

3. RESULTS 363 

3.1 Climate influence on trait distribution, productivity and tree 364 

height 365 

Environmental and competitive filtering allows those trees to establish and survive whose 366 

trait combinations are suitable for local climate conditions in the forest patches simulated by 367 

LPJmL-FIT. Unsuitable or less suitable trait combinations lead to a low growth efficiency and 368 

are therefore outcompeted. The combination of climate suitability and competiveness has 369 

the effect that the continuous, uniform distribution with which the model is initialized results 370 

in a normal trait distribution at the local scale. The resulting trait distributions therefore 371 

emerge from the LPJmL-FIT modelling framework (Fig.1). We compare simulated SLA and 372 

WD against TRY observations for BL-S, BL-E trees and needle-leaved evergreen, i.e. B-NL 373 

and T-NL trees (Fig. 2). Simulated mean trait distributions match the TRY observation 374 

reasonably well for both, SLA and WD, for BL-S, BL-E and the two needle-leaved PFTs 375 

(dashed lines in Fig. 2). Simulated ranges of SLA, however, are smaller than the original trait 376 

range (see Table S2) and smaller than observed SLA (Fig.2). LPJmL-FIT simulates a mean 377 

SLA of 16.11 with a standard deviation of +-1.25 mm²/mg for BL-S compared to 14.95 +- 378 

6.09 documented in TRY. The simulated range for SLA is also smaller for BL-E (LPJmL-FIT: 379 

9.31 +- 1.13 mm²/mg; TRY: 6.95 +- 2.72 mm²/mg) and the needle-leaved evergreen 380 

(LPJmL-FIT: 6.11 +- 0.95 mm²/mg; TRY: 6.95 +- 2.72 mm²/mg). Simulated ranges for WD 381 

are quite close to observed ranges in TRY for BL-S, slightly smaller for BL-E, but broader for 382 

the needle-leaved PFTs (Fig. 2, bottom row).   383 
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The combined effects of environmental filtering and plant competition for light and water in 384 

LPJmL-FIT also result in reasonable seasonal and interannual productivity (gross primary 385 

productivity, GPP) as observed on six selected sites. The model quality is shown by a high 386 

Pearson’s R (≥0.89) and low NMSE (0.03 to 0.29; see Table S3, Fig. S2 and SI for details on 387 

the evaluation methods and results, sites are described in Table S4). The simulated 388 

competition between tree individuals results in closed forest cover and corresponding high 389 

biomass storage in temperate and boreal forests (Fig. S3). We found simulated vegetation 390 

height and biomass to compare well against remotely sensed observations and local in-situ 391 

data, although the comparison of natural forest and actual vegetation is limited as remote-392 

sensing products detect properties of actual vegetation cover which are influenced by 393 

current land-use and forest management (see SI for details on the evaluation method and 394 

results). Centuries of land clearing, agricultural and forestry have greatly changed land cover 395 

and reduced natural forests to few remaining small areas (Ellis et al., 2013), which further 396 

complicates the evaluation of simulated potential natural vegetation.  397 

3.2 Climate influence on trait distributions within and across 398 

PFTs 399 

Spatial distribution of simulated fractional cover of each PFT result from the PFT-specific 400 

phenology and functional trait combinations, which determine the suitability of each 401 

parameter set to the climate and soil conditions in a given grid cell (cf. Fig.1). Tree 402 

individuals with trait combinations adapted to current climate are the most competitive and 403 

most productive in sites with limited environmental stress severity (while their productivity 404 

may decrease at stressed sites (Zhang et al., 2018), and thus cover larger proportions of a 405 

given grid cell (Fig. S4). The most suitable combination, to shed leaves under cold and/or 406 

dry climate conditions, results in BL-S dominating central Europe, even though it also occurs 407 

- albeit at much smaller fractions- in the boreal and the Mediterranean forests. B-NL 408 

dominates northern Europe, and T-NL the Mediterranean basin, where it co-occurs with BL-409 

E. Several PFTs co-occur in the Mediterranean forests (3 tree PFTs and C3 grasses) while 410 

temperate forests in lowland Europe are dominated by just one tree PFT (Fig. S4). Note that 411 

in all cases, the tree individuals still vary in their trait combination within each PFT.  412 

Abiotic conditions, here aggregated to MAT [°C] and MAP [mm], are strongly linked to tree 413 

establishment (Fig. 3). The climate space occupied by trees across all PFTs converges 414 

towards higher MAT and lower MAP. Intra-PFT variation in SLA values decreases with 415 

warmer and drier conditions. Most SLA variation, however, happens between PFTs that 416 

occupy different parts of the climate space (Fig. 3a). The SLA of BL-S varies from values 417 

around 13 mm²/mg under warmer and drier climate conditions to >20 mm²/mg in colder 418 

climate conditions (<7°C) with a wide range in precipitation (500 to >2000 mm MAP). BL-S 419 

co-exists with B-NL in cold/wet climate conditions, with BL-E in warmer and increasingly 420 

drier climate conditions (>10°C MAT and 300 to 2000 mm MAP). Although many trait 421 

combinations are possible under the “everything-is-everywhere” approach of LPJmL-FIT, 422 

BL-S with SLA values lower than 13 mm²/mg do not occur despite a possible minimum of 7 423 

mm²/mg (see Table S2). BL-E cover a similar temperature range as BL-S, but occur across 424 
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a wider SLA range between a MAT of 8 to 17°C, although the possible SLA range of BL-E is 425 

among the smallest of all simulated PFTs. Again, this realized trait space separates these 426 

PFTs clearly from the two needle-leaved PFTs, T-NL and B-NL, where T-NL increasingly 427 

dominates at MAT>10°C and MAP<1000mm with SLA ranging from 5 to 8 mm²/mg, whereas 428 

B-NL shows lowest SLA values at a MAT below 10°C (see Fig. 3a; Fig. S5 shows PFT-429 

specific SLA maps).  430 

Simulated mean WD clearly separates along climate gradients across all PFTs (Fig. 3b). 431 

Low WDs are simulated in cold climate conditions, and WD increases with increasing MAT 432 

and decreasing MAP. B-NL and BL-S cover the WD space between 0.5 and <0.7 g/cm³ 433 

below 10°C MAT. WD around 0.7 g/m³ are found in cold (<10°C MAT) and drier climate 434 

conditions (<1000 mm MAP), with similar WD values found in warmer (10-12°C MAT) and 435 

wetter (>1000 mm MAP) climate conditions. Highest WD values (>1.1 g/cm³) are simulated 436 

for T-NL, BL-S and BL-E with >15°C MAT and <1000 mm MAP (Fig. 3b). Higher WD allows 437 

slow plant growth and lowers tree mortality risk (eq. 2 in 2.1) which explains why high WD 438 

are simulated across all PFTs under dry climate conditions (see also Fig. S6 for PFT-specific 439 

WD maps).  440 

3.3 Functional diversity emerging from climate and plant 441 

competition 442 

The calculation of all diversity indices is based on the initial 4-dimensional trait space out of 443 

SLA, LL, WD and tree height. However, for visualisation, we remapped the trait space from 444 

four dimensions to a three dimensional trait space composed of SLA, WD and tree height. 445 

We plot the position of each tree individual in the trait space for the climatological different 446 

sites Seitseminen, Laegern and Dundo (Fig. 4, left column). The occupied trait space forms 447 

the hypervolume, i.e. the FR (shown in grey-blue in Fig. 4, 2nd column) for each site. The 448 

sphere around the centre of gravity (grey surface and green cross, respectively shown in 449 

Fig. 4, 3rd column) illustrates site-specific FDv, while FE is quantified from the minimum 450 

spanning tree (Fig. 4, last column). Table S4 shows the site-specific FD indices for the six 451 

sites.  452 

The wide bi-modal distribution of SLA between BL-S and B-NL trees in Seitseminen 453 

increases the trait space, i.e. FR, whereas in Laegern and Dundo simulated SLA 454 

distributions show narrower bi-modal distributions or even converge (see density distribution 455 

in Fig. 4, left column). Niche separation (FDv) and regularity of niche occupation (FE) are 456 

more comparable across the three sites (Table S4). FDv is highest in Dundo, because points 457 

in trait space lay closer to the surface of the sphere compared to Seitseminen and Laegern 458 

(notice points outside the sphere in Seitseminen and Laegern). Compared to Laegern, we 459 

find slightly higher FDv in Seitseminen, because of the divergent SLA distribution. Niche 460 

occupation is less regularly distributed (FE) in Dundo compared to Seitseminen and 461 

Laegern, because the trait space of B-NL trees is less occupied in Dundo, leading to larger 462 

path length in between points of this PFT (SI, Fig. S1). This leads to more irregular distances 463 

in between points, which lowers FE.   464 
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When calculating the FD indices for each PFT trait space separately and for each site, FDv 465 

and FE are similar to the corresponding across-PFT values (Table S5 and SI for 466 

computation of within-PFT FD indices). Within each PFT, diverse functional strategies co-467 

exist, i.e. the intensity of plant competition and regularity of niche occupation is comparable 468 

to the one across PFTs. Specifically, FDv is high at Seitseminen for B-NL trees compared to 469 

the overall FDv, because the point cloud is clearly separated along the tree-height niche axis 470 

and shows a wider WD distribution compared to the other sites (Fig. 4, left column). 471 

However, intra-PFT FR is three orders of magnitude lower than FR across PFTs. This is 472 

mainly caused by a much lower realized trait space for LL (e.g. BL-S) and SLA (e.g. B-NL, 473 

see Fig. 4), while the intra-PFT range of tree heights and WDs is similar to that between 474 

PFTs. In summary, environmental and competitive filtering influence niche occupation in a 475 

similar way within as well as across PFTs.  476 

3.4 Functional diversity at the European scale 477 

At the European scale, spatial gradients in FD indices are relatively small and a few spatially 478 

distinct patterns stand out (Fig. 5). FR increases with the number of PFTs present through 479 

which the size of the trait space increases (Fig. 5a, compare Fig. S4). Higher FR is found in 480 

mountain areas throughout the continent, in boreal forests but also on the British Isles. 481 

Where B-NL and BL-S occupy distant parts of the trait space, FR reaches its maximal values 482 

of 0.03 to 0.04, very much alike in the Seitseminen site (compare Fig.4, top row). In contrast, 483 

lowest FR values are computed for areas where one PFT is dominant, especially in the 484 

lowland areas of temperate forests which are dominated by BL-S trees (Fig. 5a). The 485 

coefficient of variation (COV) for FR is high in temperate and alpine forests, where mean FR 486 

is low, because variability increases where the mean of a variable is close to zero. On the 487 

contrary, low values are found in Mediterranean and boreal forests (Fig. S7).  488 

Functional Divergence is high in natural forests reaching values between 0.68 and 0.82 (Fig. 489 

5b). Where needle-leaved and broad-leaved trees co-exist (cf. Fig. S4), FDv is higher, i.e. in 490 

boreal and mountain forests, and in southern Mediterranean forests. Where only one PFT 491 

dominates, FDv is lower (0.7-0.73 compared to >0.75), e.g. in lowland temperate and 492 

Mediterranean forests. In the transition zone to boreal forests or mountain forests, trait 493 

distributions of BL-S-dominated forests further converges (FDv ~0.68). Here, intensity of 494 

filtering increases (FDv converges) when climate conditions reduce growth efficiency of BL-S 495 

trees. Further north, growing conditions for B-NL are more suitable, allowing establishment 496 

of another plant strategy causing an increase in FDv (Fig. 5b). In contrast, in the southern 497 

Mediterranean forests, needle-leaved and broad-leaved trees are smaller (Fig. S3) and in 498 

competition with grasses for water, thus FDv is higher again (~0.76, see Fig. 5b). COV of 499 

FDv is generally very low with maximum values found in some mountainous and boreal 500 

transitional areas (Fig. S7).  501 

Functional Evenness follows a different spatial pattern across Europe than the other two 502 

indices (Fig. 5c). Lower FE values (~0.72) are found in lowland temperate forest in central 503 

and eastern Europe as well as in the transition zone to the boreal forest in north-eastern 504 

Europe, where BL-S dominate but still grow in competition with B-NL trees (Fig. S3). FE 505 
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increases where only one NL-PFT dominates (e.g. British Isles, Norway) and is high in wet 506 

Atlantic and in southern Europe, where high environmental stress results in efficient 507 

resource use. Here, COV of FE corresponds to the spatial gradient of mean FE, maximum 508 

COV is found where mean FE is lower (Fig. S7).  509 

4. DISCUSSION 510 

4.1 Effect of environmental and competitive filtering on trait 511 

distribution and productivity  512 

The adapted LPJmL-FIT model is capable of reproducing observed GPP with a small 513 

modelling error and high correlation with observed data (see SI). Biomass and plant height 514 

follow spatial distribution of previous publications (Thurner, 2014; Healey et al., 2015), 515 

although the comparison is limited by the long-term land-use history in Europe which 516 

restricts the comparability between simulated and observed data and may explain the 517 

discrepancy found. Simulated SLA and WD are in close agreement with observed TRY data. 518 

These results show that the new version of LPJmL-FIT reproduces the spatial PFT and local 519 

trait distributions as well as the productivity and biomass of European natural forests. Even 520 

though a preference for measuring short-lived, broad-leaved species can influence 521 

measured trait data which could overestimate, e.g., SLA (Sandel et al., 2015), such bias is 522 

found to be small for European trees and should have little influence on our results because 523 

LPJmL-FIT clearly separates between broad-leaved and needle-leaved trees and focuses on 524 

trees only. The model is capable of simulating potential natural vegetation without 525 

prescribing the spatial extent of PFTs via bioclimatic limits and without prescribing the 526 

functional traits in question (e.g. SLA, LL, WD). Therefore, it enables to investigate the 527 

interaction between environmental and competitive filtering in European natural forests in an 528 

unprecedented manner.  529 

Simulated ranges for SLA (BL-S and BL-E) and WD (BL-E and needle-leaved trees) are 530 

smaller than observed (Fig. 2 and Table S2). Heat and drought stress as well as light 531 

availability (seasonal, vertical canopy structure) influence growing conditions of trees. These 532 

climate factors act as environmental filter favouring plant strategies that are adapted to the 533 

local climate. Tree growth efficiency influences tree competiveness and its capacity to reach 534 

the top-layer in the canopy and gain most light in temperate and boreal forests. Therefore, 535 

competitive filtering is the second driver of trees surviving and growing in a forest patch. 536 

Additional processes not yet explicitly captured by LPJmL-FIT might explain the remaining 537 

trait variability and include: i) dispersal and adaptive responses (incl. phenotypic plasticity of 538 

traits), ii) nutrient availability (e.g. nitrogen limitation), iii) variable rooting strategies and 539 

disturbances other than fire (Douma et al., 2012; Van Bodegom et al., 2012), and iv) trade-540 

offs between different trait combinations and species capacities to tolerate multiple 541 

environmental stresses simultaneously (Niinemets & Valladares, 2006; Laanisto & 542 

Niinemets, 2015). While the influence of adaptive responses on trait distribution is perhaps 543 

difficult to measure, including nutrient availability would introduce another niche axis and 544 
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perhaps differentiate the trade-off with SLA in the LES better. Variable rooting strategies 545 

could alleviate water stress in seasonally dry environments and increase growth efficiency, 546 

hence tree height of Mediterranean forests (cf. Fig. S3). We have included fire disturbance in 547 

LPJmL-FIT, which simulates high fire activity in the Mediterranean forests, less in boreal and 548 

low fire activity in temperate forests, but other disturbance agents such as wind-throw or 549 

frost could also further diversify plant strategies, and thus increase the width of the simulated 550 

trait distribution. Implementing these disturbances into LPJmL-FIT would be expected to 551 

decrease the competitiveness of the BL-S trees in boreal and mountainous forests, and thus 552 

further restricting their spatial extent.    553 

Specific model functions determine the model outcome. The phenology parameter (Table 554 

S1) influence GPP, growth efficiency, and thus the performance of a tree in the forest patch. 555 

In exchange with climate conditions, the phenology parameters determine the spatial 556 

distribution of the PFTs, including grasses. The trade-off between SLA and LL defines the 557 

carbon cost for leaves (or needles) under specific climate conditions which then determine 558 

the length of the growing season, and thus vegetation productivity. With more SLA and LL 559 

measurements available for temperate forests this relationship could be adjusted and 560 

contribute to further reduce modelling error of the simulated trait distribution (Fig.2). The 561 

WD-dependent mortality function (see equ. 2) influences simulated biomass, more data on 562 

WD and tree mortality would help to improve parameterisation of this function. Further 563 

reductions in the model error of simulated WD distribution, tree height and biomass could be 564 

expected.  565 

Plant-trait validation would profit from more and better resolved plant trait measurements in 566 

natural forests in Europe. In this study, we had to aggregate several TRY sites and also to 567 

merge T-NL and B-NL to validate simulated trait distribution. Ideally, trait measurements at 568 

FLUXNET sites, where we can evaluate both productivity and plant traits, would allow high 569 

resolution and in-depth model evaluation. With these consistently measured data available, 570 

model evaluation could be extended to water fluxes and biomass as well as stand structure 571 

and their related plant traits. Alternatively, remotely sensed traits which are already available 572 

at the Laegern site (cf. Schneider et al., 2017) or emerging from global remote-sensing 573 

mission (cf. Jetz et al., 2016) could be used in the future. However, cross-validation 574 

experiments are required to compare spatially continuous traits observed from remote 575 

sensing to traits simulated by DGVMs using flexible-individual traits, but approaches are 576 

underway (cf. Garonna, 2018; Lausch, 2018). Simulated trait maps for SLA and WD can be 577 

validated against interpolated observed trait maps (Butler et al., 2017; Šímová et al., 2018), 578 

even though observed trait distributions include those from highly managed forests. 579 

Interpolated trait maps, which combine plant trait data with actual species’ presence data, 580 

can lead to a potential bias in data-model comparison because species are planted in 581 

managed forests. Generating trait maps which use potential natural species distribution 582 

would improve such data-model comparison because they would be closer to the spatial trait 583 

distribution that would result from environmental and competitive filtering. Model-data 584 

comparison could be improved with a) more trait data being extracted in natural vegetation 585 

and extrapolated using species distribution data to the continental scale; and b) allowing for 586 

a better overlap of observed vs. simulated plant traits such as leaf N (observation available 587 



 

16 
 

but simulated map missing) or wood density (observation missing, but simulated map 588 

available). 589 

4.2 Community-assembly effects on traits and functional 590 

diversity across Europe 591 

Community assembly at a site results from dispersal or migration, environmental filtering of 592 

trait combinations adapted to local climate and finally plant competition (Bernard-Verdier et 593 

al., 2012). In the adapted LPJmL-FIT model, trait combinations are drawn from observed 594 

ranges for SLA and WD. It principally means that any conceivable trait combination can 595 

establish everywhere at any time for every PFT without explicitly considering trait inheritance 596 

or seed dispersal. Currently, surviving trait combinations in the model represent those trees 597 

whose traits are best suited to local climate and the competitive conditions in the established 598 

tree community. Therefore, environmental filtering interacts with competitive filtering and 599 

reproduces observed trait distributions and productivity of natural forests. Scaling up to the 600 

whole study region, SLA and WD gradients emerge along climatic gradients and reflect 601 

variability in trait ranges.  602 

Simulated SLA cover a wide temperature and precipitation range, separated by SLA ranges 603 

as observed for the 4 PFTs in Europe. Where cold temperatures and light increasingly limit 604 

productivity, i.e. in the boreal zone, simulated SLA for BL-S increases, meaning trees with 605 

extremely high SLA and short LL survive cold winters and grow in short summers. The shift 606 

towards higher WD in southern Europe indicates a local adaptation to seasonally dry 607 

Mediterranean-type climate. Generally, the increasingly dry climate filters higher WD for BL-608 

E and T-NL which indicates better adaptation to drought. 609 

The identified spatial FD patterns reflect the combined effect of environmental and 610 

competitive filtering. The influence of climate on surviving plant strategies and their 611 

coexistence are reflected in the occupied trait space. FR is high where trait clusters of 612 

different PFTs are distant and thus cover a large volume of the trait space, which is the case 613 

in high-elevation areas and the boreal zone, where BL-S and B-NL co-exist. Here, BL-S 614 

adapt to high SLA values and lower LL, because of shorter vegetation periods leading to a 615 

wider functional gap in these two traits between BL-S and B-NL trees. FR is small where 616 

only BL-S trees dominate the patches of temperate forests (Fig. 5). Here, trait variation is 617 

small in each of the traits used, specifically LL, thus resulting in a small trait space, whereas 618 

the ranges of WD and tree height do not change substantially. In the Mediterranean region, 619 

where the trait space covered by each PFT is larger, FR is comparable to temperate forests. 620 

Although the coexistence of up to 4 PFTs would lead to a relatively high FR in leaf traits in S-621 

Europe, lower tree heights limit trait space and counteract the effect of diverse leaf 622 

strategies. In the southern Mediterranean, where tree growth reaches its limits, FR 623 

decreases because few niches can be occupied under the dry climate conditions.  624 

Functional divergence describes the diversity of co-existing functional strategies. A high FDv 625 

illustrates a high degree of niche differentiation, thus high competitive exclusion or intense 626 

competitive interaction (Mason et al., 2005; Villeger et al., 2008; Garnier et al., 2016). The 627 
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larger the influence of environmental filtering through abiotic stress, the more the trait 628 

distribution converges (Bernard-Verdier et al., 2012). Maps of FDv (Fig.5) therefore illustrate 629 

the relative strength of environmental vs. competitive filtering on trait composition. Where 630 

climate allows needle- and broad-leaved trees to co-exist (in mountains, boreal forests, wet 631 

temperate and Mediterranean forests), FDv is high because of the distant SLA distribution of 632 

BL-S and B-NL. In Mediterranean and temperate climates, SLA distributions converge more, 633 

and FDv declines slightly to values around 0.7 (Fig.5b). Interestingly, FDv declines further in 634 

the transition from temperate forests to boreal and to mountain forests, respectively. Being 635 

dominated by BL-S, the performance of these trees declines as climate gets colder, thus the 636 

abiotic stress increases which leads to a less divergent distribution. Further north (or at 637 

higher elevation) the growing conditions for B-NL improve, thus their dominance increases 638 

and increases FDv again. Physiological traits (SLA, WD, LL) converge at the transition from 639 

temperate to boreal forests, indicating competitive exclusion. In contrast, in southern 640 

Mediterranean forests, increasing drought stress reduces tree height and favours a wide 641 

SLA range and higher WD (Fig. 3, S5). In the northern mountain ranges, T-NL, BL-S and B-642 

NL co-exist, each with different SLA and WD. T-NL and B-LE with SLA and WD close to 643 

each other dominate the lowland and coastal area, resulting in lower FDv. The distributions 644 

diverge again further south with increasing drought stress, promoting co-occurring 645 

alternative strategies (Fig. 5b, S3). We find that such bi-modal changes in FDv reflect shifts 646 

between competitive exclusion, linked to physiological traits (SLA, WD, LL), and niche 647 

differentiation, linked to morphological traits (tree height).  648 

Functional evenness quantifies the regularity of the distribution in the trait space, i.e. niche 649 

occupation (cf. Mason et al., 2005; Villeger et al., 2008) and could be interpreted as a lower 650 

utilization of resources due to the more irregular occupation of the trait space, i.e. 651 

environmental niches (cf. Mason et al., 2005). However, there are few studies which have 652 

investigated the changes of FE along climatic gradients. Recent studies focussed on 653 

changes in FE along disturbance gradients ( e.g., Mouillot et al., 2013) and at the local scale 654 

(Pakeman, 2011). We find high FE in areas where dry and cold climate conditions limit tree 655 

growth and under wet (Atlantic) conditions. Increasing disturbances (fire) and climatic stress 656 

(drought) increase resource-use efficiency as suggested by Pakeman (2011). In highly 657 

stressed environments, no strategy can dominate, thus functional traits are more evenly 658 

distributed. Low FE is found in mixed temperate forests and in the transition from temperate 659 

to boreal forests, where BL-S and B-NL occupy distant parts of the trait space. At the Pan-660 

European scale, FE does not follow a unique climatic gradient which could be interpreted as 661 

habitat filtering as suggested by Pakeman (2011). In our study, it is rather a combination of 662 

environmental and competitive filtering within and across PFTs.  663 

We computed FR, FDv and FE from four traits following the approach of Villeger et al. (2008) 664 

as implemented for the Laegern site in Schneider et al. (2017). The FD indices change with 665 

the traits considered and the dimensionality of the trait space. At the Laegern site, we 666 

compute FR values one order of magnitude lower than published in Schneider et al. (2017) 667 

because we calculate FR for a 4- instead of a 3-dimensional trait space. In contrast, we 668 

derived comparable FDv and slightly lower FE values for the Laegern site (Schneider et al., 669 

2017). A direct comparison between remotely sensed and simulated FD based on 3 traits is 670 
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of interest and relies on directly comparable trait spaces and indices. Quantification of FD 671 

indices strongly depend on the type of traits (physiological vs. morphological) and the 672 

context of their interpretation, e.g. niche differentiation or ecosystem function to which the 673 

considered traits relate. Comparing site-specific FD indices based on similar traits where 674 

also trait observations are available would be a great step forward to evaluate site-specific 675 

FD and its changes along climatic gradients at the regional as well as continental scale. 676 

Model-data comparison can help to further investigate the importance of spatial scale or 677 

abiotic gradients at the landscape scale, where DGVMs with flexible individual traits such as 678 

LPJmL-FIT can be used to test and explore respective FD hypotheses to advance 679 

biodiversity-ecosystem function theory (Hisano et al., 2018).  680 

Trees occupy trait ranges within each PFT allowing different PFTs to co-exist as a result of 681 

functional diversity, tree demography and disturbance in all biomes. Site-specific water 682 

availability and temperature have been shown to influence functional composition in 683 

temperate forests emphasizing the importance to investigate functional diversity along 684 

climate gradients (Zhang et al., 2018).  685 

We find high functional diversity in European natural forests not only for temperate forests as 686 

found by Liebergesell et al. (2016) but also for boreal and Mediterranean forests. The 687 

simulated community assembly of European biomes can be explained by the interplay 688 

between environmental and competitive filtering: I) In the boreal zone and in high-mountain 689 

areas (e.g. Carpathian Mountains, Alps or the Pyrenees) the growing season is short, and 690 

needle-leaved trees (low SLA) which keep their leaves longer (high LL) but grow relatively 691 

fast due to low WD, are the dominant tree growth strategy mostly as a result of 692 

environmental filtering. B-NL trees have high resistance to cold temperatures and their 693 

evergreen strategy allows them to fully exploit the short growing season (see Table 1). In 694 

contrast, broadleaved trees (BL-S), which are more prone to cold temperatures and have to 695 

unfold their thin, short-lived leaves at the start of the growing season, have a disadvantage 696 

under this climate. Nevertheless over a wide range within the boreal zone, B-NL trees are 697 

accompanied by BL-S trees. This means, in this range environmental and competitive 698 

filtering are not strong enough to select for B-NL trees only and both growing strategies can 699 

co-exist. Competitive filtering though pushes BL-S towards lower LL and higher WD as in the 700 

temperate zone, which minimizes the overlap of trait values between the two PFTs (Fig. 1). 701 

Due to the BL-S and B-NL co-existence a wide trait space (high FR) is covered in which trait 702 

combinations are mostly evenly spaced (high FE) and divergent (high FDv), allowing for 703 

relatively high resource-use efficiency. The same effect applies further South towards the 704 

temperate zone, where B-NL trees can still be found in mixed temperate forests. 705 

II) In the temperate zone, climate supports a longer growing season, higher productivity and 706 

biomass. Here, BL-S trees dominate due to competitive filtering. Their tolerance of warmer 707 

temperatures together with low carbon investment in short-lived and thin leaves (Table 1) 708 

makes this PFT very competitive along a large climate gradient. Moreover, towards warmer 709 

and drier climate conditions, the WD of BL-S trees increases in order to survive this climatic 710 

stress keeping this PFT dominant. The clear PFT dominance decreases FR, and leads to 711 

intermediate FE and FDv. Towards the Mediterranean zone new tree growth strategies (BL-712 
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E, T-NL) enter the forest community with milder winter and drier summer changing 713 

environmental filtering effects. 714 

III) In the Mediterranean zone forests are stressed by drought and warm temperatures, 715 

therefore limitations of growing conditions vary and environmental filtering plays an important 716 

role. BL-E and T-NL trees with low SLA and high WD are adapted to seasonally dry 717 

summers and can therefore co-exist in complementary and regularly spaced niches which 718 

confirms previous findings (Carnicer et al., 2013). Whereas BL-E trees tolerate warm 719 

temperatures and drought, T-NL trees are specialists for warm, dry and fire-prone 720 

environments (Table 1). Given those dynamic changes in niche occupation, FE and FDv are 721 

high in mountainous areas and in the semi-arid southern Mediterranean areas. Where T-NL 722 

dominate FDv is slightly lower, i.e. niche occupation being less diverse.  723 

5. Conclusion  724 

We introduce a new generation, large-scale vegetation model for Europe allowing to 725 

dynamically simulate functional diversity on a continental scale, alongside with productivity 726 

and tree demography. Approximating competition of individual trees with randomly selected 727 

functional trait combinations has proven successful to reproduce trait patterns, productivity 728 

and tree demography of natural forest ecosystems. Whereas some trait ranges are 729 

constrained by PFTs (SLA), others follow similar climatic gradients across all PFTs (WD). 730 

These results complement the current spatially non-contiguous data of trait distributions 731 

derived from earth observation data, and allow large-scale estimates of functional diversity 732 

across Pan-Europe. We demonstrate how functional richness, divergence and evenness 733 

vary strongly across Pan-Europe and emerge from environmental and competitive filtering 734 

alike. Co-existence of functionally diverse trees results from plant trait diversity, tree 735 

demography and disturbance under varying strength of environmental and competitive 736 

filtering. 737 
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Figures  754 

 755 

Figure 1 Conceptual scheme illustrating how flexible individual parameter are assigned to tree 756 
individuals belonging to a specific PFT, including LES (leaf–) and SES (stem–economics) plant traits in 757 
LPJmL-FIT. Parameter sets are assigned to individual trees at model initialization as well as gap opening. 758 
Climate, soil conditions and competition between individual trees within and across PFTs (environmental 759 
filtering) result in aggregated grid-cell trait distributions within patches. They are visualized as trait maps 760 
and are used to quantify diversity indices. 761 

 762 

 763 

Figure 2 Trait distribution of Specific Leaf Area (top panel) and wood density (bottom panel) for 764 
broadleaved summergreen PFT (BL-S, left column), broadleaved evergreen PFT (BL-E, central column) 765 
and both, boreal and temperate, needleleaved evergreen PFTs (NL, right column) as simulated by LPJmL-766 
FIT (light red) and observed by TRY data base entries (light cyan). Dashed vertical lines show the 767 
simulated (light red) and measured (light cyan) average trait values for each PFT.  768 
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 769 

Figure 3 Mean Specific Leaf Area (SLA) and Wood Density (WD) distribution for each PFT plotted against 770 
mean annual temperature (MAT) and mean annual precipitation (MAP). The colour of each dot represents 771 
a mean SLA (a) and WD (b) value and each panel belongs to a PFT. (Broadleaved summergreen: BL-S; 772 
Broadleaved evergreen: BL-E; Boreal needle-leaved evergreen: B-NL; and Temperate needle-leaved 773 
evergreen: T-NL) Mean trait values are averaged over the 2004-2013 time period for 1000 patches per grid 774 
cell.  775 

 776 

Figure 4 Distribution of simulated trees in a 3-dimensional trait space (Height, WD, and SLA). We plot 777 
density (far left) and functional diversity indices for 2’500 simulated patches (FR center left; FDv center 778 
right; and FE (far right) for three sites (Seitseminen (top row), Lägern (middle row) and Dundo (bottom 779 
row)). Ranges of the SLA and WD axes correspond to the maximum trait range across all PFTs used in 780 
the simulation (see Table S2). Seitseminen, Laegern and Dundo represent boreal, mixed temperate and 781 
Mediterranean-type forests, respectively. Each dot represents a trait combination of one tree larger than 782 
5m while the colour indicates its PFT type. Plant Functional Types are: Broadleaved summergreen (BL-783 
S), Broadleaved Evergreen (BL-E), boreal needle-leaved evergreen (B-NL); and temperate needle-leaved 784 
evergreen (T-NL).  785 
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 786 

Figure 5 Maps of functional richness (FR, panel a)), functional diversity (FDv, panel b)) and functional 787 
evenness (FE, c)). All three functional diversity indices are based on SLA, LL, WD and tree height 788 
averaged over all individual trees, which are at least 5m tall. Effects on FR, FDv and FE result from trait 789 
variability within and across PFTs present in 1000 patches in a grid cell. 790 

  791 
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Tables 792 

PFT Resistance to  Leaf strategy 

(SLA range, 

SLA-LL 

relation) 

Growth strategy Environment 

Cold 

temperature 

Warm 

temperature 

Drought Fire 

BL-S 
low medium low low Mostly thin and 

short-lived 
leaves 

flexible WD, 
low WD in north,  
high WD in south  

very flexible leaf strategy, but 
less specialized 
flexible growing strategy  
very competitive in temperate 
zone 

BL-E 
low high high medium moderate leaf 

cost 
intermediate 
leaf longevity 

high WD in dry 
environment 
lower WD under 
wet conditions 

less flexible leaf strategy 
conservative growing strategy 
competitive in warm temperate 
zones 

B-NL 
high low low low expensive and 

long-lived 
needles 

fast growth, due to 
lower WD 

conservative leaf strategy 
fast growing strategy 
specialist in cold climates with 
short growing season 

T-NL 
low high high high expensive and 

long-lived 
needles 

high WD in dry 
environment, 
fast-growing under 
colder climate, and 
thus  lower WD 

conservative leaf strategy 
conservative growing strategy 
specialist in warm, dry and fire-
prone environments 

Table 1 Overview of the PFT characteristics: phenology, fire sensitivity, leaf and growth strategy and environment793 
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