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First we study the planar continuous piecewise differential systems separated by the straight
line z = 0 formed by a linear isochronous center in = > 0 and an isochronous quadratic center in
x < 0. We prove that these piecewise differential systems cannot have crossing periodic orbits,
and consequently they do not have crossing limit cycles.

Second we study the crossing periodic orbits and limit cycles of the planar continuous piecewise
differential systems separated by the straight line x = 0 having in x > 0 the general quadratic
isochronous center & = —y + 2% — 2, § = x(1 + 2y) after an affine transformation, and in x < 0
an arbitrary quadratic isochronous center. For these kind of continuous piecewise differential
systems the maximum number of crossing limit cycles is one, and there are examples having one
crossing limit cycles

In short for these families of continuous piecewise differential systems we have solved the exten-
sion of the 16th Hilbert problem to themselves.

Keywords: Limit cycles, isochronous quadratic centers, continuous piecewise linear differential
systems, first integrals

1. Introduction

In the qualitative theory of planar differential systems a limit cycle is an isolated periodic solution in the
set of all periodic solutions, which remained the most sought solutions when modeling physical systems in
the plane. As far as we known the notion of limit cycle appeared in the year 1885 in the work of Poincaré
[Poincaré, 1928|.

Most of the early examples in the theory of limit cycles in planar differential systems were commonly
related to practical problems with mechanical and electronic systems, but periodic behavior appears in all
branches of the sciences. To determine the existence of non—existence of limit cycles is one of the more
difficult objects in the qualitative theory of planar differential equations. A large amount of references
deals with the subject of limit cycles, many of them motivated for the famous second part of the Hilbert’s
16th problem, which ask for the maximum number of limit cycles that the planar polynomial differential
systems of a given degree can exhibit, see for details [Hilbert, 1900; Ilyashenko, 2002; Li, 2003].

Since 1930’s the study of the limit cycles also became important in the continuous and discontinuous
piecewise differential systems separated by a straight line, due to their applications to mechanics, electrical
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circuits, ... see for instance the books [Andronov et al., 1966; di Bernardo et al., 2008; Simpson, 2010] and
the references therein.

As usual a center p of a planar differential system is a singular point for which there is a neighborhood
U such that U \ {p} is filled with periodic orbits. When all the periodic orbits surrounding a center have
the same period this center is called isochronous. The centers started to be studied by Poincaré [Poincaré,
1881] and Dulac [Dulac, 1908], but the notion of isochronocity goes back to Huygens [Huygens, 2002] in
1673.

In this paper we consider continuous piecewise differential systems separated by the straight line x = 0
having in x < 0 and in # > 0 linear or quadratic isochronous centers, and we want to study the non-
existence, and the existence of crossing periodic orbits and of crossing limit cycles, and in this last case we
want also to know the maximum number of crossing limit cycles for these systems.

Here a crossing periodic orbit or a crossing limit cycle is a periodic orbit or a limit cycle which intersects
exactly in two points the discontinuity line z = 0.

The continuity of a piecewise differential system separated by the straight line x = 0 formed by two
centers means that the vector fields defined by these two centers (linear or quadratic) coincide on the line
of discontinuity x = 0. So a continuous piecewise differential system is a continuous differential system in
R? and is an analytic differential system in R?\ {z = 0}.

1.1. Linear centers

It is well known that the linear differential centers are isochronous and that the general expression of such
centers is as follows, see for a proof [Llibre & Teixeira, 2018].

Lemma 1. A linear differential system having a center can be written in the form

462 4+ w?

=—pa 4o

y+6,  g=oaz+Py+7, (1)
with o > 0 and w > 0.
The linear differential system (1) has the first integral

Hi(z,y) = 4(ax + By)* + 8a(yz — dy) + w’y>.

1.2. Quadratic isochronous centers

We consider the quadratic polynomial differential systems having an isochronous center. This kind of centers
were classified by Loud in the paper [Loud, 1964]. Those systems after an affine change of coordinates
become one of the following four systems:

i=—y+a? y=z(1+y), (3)
42 16

Py — = (1 - — 4

& ¥ Y x( 3y>, (4)
16 4 8

i‘:—y—i—?xQ—gy?, y:$<1+3y>. (5)

We are interested in the general expressions of the quadratic isochronous centers. So we transform
their normal forms (2), (3), (4) and (5) through the following general affine change of variables

(z,y) = (@12 + by + c1, a2 + bay + c2), (6)
with
a1b2 - a2b1 75 0. (7)
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Generalized isochronous system (2). Using the change of variables (6) the quadratic system (2)
becomes

= (- bZC% + bic1 + 2bjcacy + bzcg + baco

+ (2agbic1 + 2a1bica — 2a1bacy + 2azbacy + arby + azbs) x

+ (Qb%CQ + 2b3cy + b2 + bg) Y+ (2@21)? + 2@21)3) Ty

+ (a% (—b2) + 2a2a1b1 + a%bz) z? + (b§ + b%b2) y2) /(a2b1 — a1bs),
Y= (GQC% —ajcy — 2a1c9c1 — agcg — ascy + (—20,%02 — 2a§cz — a% — a%) T

+ (2a2bic1 — 2a1b1c9 — 2a1bacy — 2agbaca — arby — agba) y

+ (-2&%()2 — 2a%b2) Ty + (—a%’ — a%ag) 2

+ (agbf — 2a1b9b1 — agbg) y2) /(a2by — aibs).

Since (22 +42)/(2y + 1) is a first integral of system (2), doing to it the change of variables (6) we get
the following first integral of the generalized isochronous quadratic system (8)

(a1z + by + c1) 2 + (agx 4 bay + ¢2) 2
2 (agl‘ + boy + 02) +1

Hy(z,y) =

Generalized isochronous system (3). System (3) is equivalent to the following generalized isochronous
system after the linear change of variables (6)

T = (bgc% —bicy — bicacy — bacs

+ (—agbicg — arbico + 2a1bacy — arby — asghe)

+ (b% (—c) + babicp — b3 — b%) y+ (a1biby — agb%) Ty

+ (a%bg - alagbl) $2) /(a1by — asgby), (9)
y = (asci — arcr — ajeacs — ases + (af (—c2) + asarcy —ai —a3) x

+ (2a2b1c1 — arbica — ajbacy — arby — agba) y

+ (alagbl — a%bg) Ty + (agbf — alblbg) y2) /(a1be — agby).

The quadratic system (3) has the first integral (z? + y2)/(y + 1)?. Therefore a first integral of system
(9) is

(a1 + by + 1) + (agz + boy + ¢2)?

Hs(x,y) =
3{59) (a2z + boy + c2 + 1)

Generalized isochronous system (4). The quadratic system (4) is equivalent to the following general-
ized quadratic system after the linear change of variables (6)

& = (4byc? + 3biey — 16bycacy + 3bacy
+ (—16a2b1c1 — 16a1b1ca + 8aibacy + 3a1by + 3aghs) x
+ (—16bjcz — 8bobicy + 3bT + 3b3) y + (—16a2b7 — 8arbaby) xy
+ (4aibs — 16aiasby) x° — 12b7bay?) /3 (azby — a1bs),
y=(— 4(126% — 3ajcy + 16a1cac; — 3ascs (10)
+ (16a%02 + 8asaici — Ba% — Ba%) T
+ (—8agbic1 4+ 16a1byca + 16a1becy — 3a1by — 3agbe) y
(16@%()2 + 8a2a1b1) ry + 12a%a2x2

+
+ (16a1b1b2 — 4a2b%) y2) /3 (a2b1 — a1b2) .
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Since (3222 — 24y +9)2/(3 — 16y) is a first integral of system (10), then a first integral of system (10)
is
(32 (a1m + by +c1) % — 24 (agw + boy + c2) + 9) 2
3—16 (agx + boy + CQ) '

Generalized isochronous system (5). Doing the affine change of variables (6) the generalized
isochronous system for the quadratic system (5) is

H4(1’, y) =

@ = (— 16bact + 3bict + 8bicacy + 4bacs + 3bacy
+ (8agbicy + 8ajbica — 32a1bacy + 8agbaca + 3arby + 3azbs)
+ (8bica — 24bbyicy + 8b3ca + 3b7 + 3b3) y
+ (8a2b% — 24a1boby + 8a2b%) Ty + (716a%b2 + 8asai1by + 4a§b2) z?
+ (463 — 8bTba) y°) /3 (azby — aybs),
7= 16&26% —3aq1c1 — 8ajcocy — 4a203 — 3agcy
+ (—SCL%CQ + 24asa1c1 — 8a302 — 3a% — 3a§) T
+ (32a2b1c1 — 8agbica — 8aibacy — 8agbaca — 3arby — 3azbs)y
+ (—8a%bz + 24asa1b1 — 8&%52) xy + (8a%a2 — 4a§’) x2
+ (16a2b? — 8aiboby — 4ash3) y®) /3 (asby — arbs).

The quadratic system (5) has the first integral (—256x2 + 128y% + 96y + 9)/(8y + 3)*, which gives the
following first integral for system (11)

(11)

Hs(z,y) —256 (a1x + by + c1) 2 + 128 (agxw + boy + 62)2 + 96 (a2 + bay + c2) +9
5\4, = .
(8 (a2 + boy + c2) + 3)"

1.3. Statement of the main results

It has been proved in [Llibre & Teixeira, 2018] that continuous piecewise linear differential systems separated
by one straight line formed by two linear centers have no crossing limit cycles. Now we shall see that this
result extends to continuous piecewise linear differential systems separated by one straight line formed by
one linear center and one quadratic isochronous center have no crossing limit cycles.

Theorem 1. The continuous piecewise differential systems formed by a linear differential center (which
is isochronous) and an isochronous quadratic center separated by the straight line x = 0 have no crossing
periodic orbits, and consequently no crossing limit cycles.

Theorem 1 is proved in section 2.

In what follows we characterize the existence and non-existence of crossing periodic orbits and crossing
limit cycles for continuous piecewise linear differential systems separated by one straight line formed by
two quadratic isochronous centers.

Theorem 2. The following statements hold for the continuous piecewise differential systems formed by two
generalized 1sochronous quadratic centers separated by the straight line x = 0.

If the generalized centers are (8) and (8), then the piecewise differential systems can have crossing periodic
orbits but they cannot have crossing limit cycles.

If the generalized centers are (8) and (9), then the piecewise differential systems can have crossing periodic
orbits but they cannot have crossing limit cycles.

If the generalized centers are (8) and (10), then the piecewise differential systems has at most one crossing
limit cycle and there are systems realizing this limit cycle.

If the generalized centers are (8) and (11), then the piecewise differential systems has at most one crossing
limit cycle and there are systems realizing this limit cycle.
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Theorem 2 is proved in section 3. So in particular Theorems 1 and 2 solve the 16th Hilbert problem
extended to these piecewise differential systems.

This a relatively long paper for this reason we have left the study on the maximum number of
crossing limit cycles of the continuous piecewise differential systems of the type (i)-(j) with (i) and (j)
€ {(9),(10), (11)} for a future new article.

2. Proof of Theorem 1

The first objective is to study periodic orbits and limit cycles of continuous piecewise differential systems
formed by a linear center (1) and a generalized quadratic system (2), (3), (4) or (5). To find the crossing
periodic orbits and the crossing limit cycles of such piecewise differential systems, we must solve the
following algebraic system

Hk(07 yl) - Hk’(ova) = Oa HL(O7y1) - HL(Oa yQ) = 07 (12)

where Hy(x,y) and Hp(z,y) are the first integrals of the quadratic isochronous center and of the linear
center respectively, and (0,y1) and (0,y2) with y; # y2 are the two intersection points of the crossing
periodic orbits with the straight line z = 0.
In order that we have a continuous piecewise differential system (1)-(8), we impose that both systems
coincide on x = 0, and then both systems must verify the following algebraic system
Bp —&ple=0=0, Uk —Yrlz=0 =0, (13)
where &, 1, 1 and 9 are the derivatives with respect to time ¢ of « and y for linear system and quadratic
system, respectively. Thus we get the following algebraic system
—a2b15 + ale(S — bQC% + bicy + 2bycacy + bQC% + by =0
dasby B2 — 4a1byf? 4 asbiw? — arbaw?® + 404()% + 4ozb% + 8ab? fca + 8ab202
by (12 + 1) =0,
—agb1y + a1byy + axc? — aje; — 2aica¢1 — azcl — asey = 0,
—agﬁbl + alﬂbg + 2(12[)101 - 2a1b162 - 2a1b261 - 2(12b202 - a1b1 - agbg = 0,
agb% — 2@11)2()1 — agbg =0.
Since when we evaluate agsb; — a1be in all real solutions (See supplementary section 5.1) for this alge-
braic system we obtain zero, we get a contradiction with (7). Therefore there are no continuous piecewise
differential systems (1)-(8).
In order that the piecewise differential systems (1)-(9) be continuous they must coincide on = = 0,
then the algebraic system (13) must be satisfied, which gives the following algebraic system
—agb10 + a1bad — bQC% + b1cy + bicaey + baco = 0,
4a2b152 — 4a1b252 + a2b1w2 — a1b2w2 + 4ab% + 40éb% — 4abibycy + 40[[)%62 =0,
—agb1y + arbyy + azc} — ajey — arcacy — azes, = 0,
—azfby + a1 bz + 2azbic1 — a1bica — arbacr — a1by — azbs = 0,
by =0.

All solutions (See supplementary section 5.2) of this algebraic system give asby — a1bs = 0, except the

. . . 4a%c¥+8a2alcl+a%w2+4a§ _ ajcitas o 7a2c1+a1c1+alcgcl+a202 c% c2
following solution {« = Ta1hs B = Ry = i ,0 = ,bp = 0}

for which a2b1 — a1b2 = —a1b2.
Solving the algebraic system (12) for the values of the solution s4 we get y; = y2. So the continuous
piecewise differential system(1)-(9) with the values of s4 has no crossing periodic orbits.
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The piecewise differential systems (1)-(10) is continuous if and only if system (13) is verified, i.e.

—3a2b10 + 3a1bad + 4bac? + 3bicy — 16bycacy + 3baca = 0,
12a2b1 8% — 12a1b98? + 3asbiw? — 3a1bow? + 12ab? + 12ab3 — 32abibacy — 64abica2ce = 0,
—3asBby + 3a18by — 8asbic1 + 16a1bico 4+ 16a1bacy — 3a1b1 — 3asbs = 0,
—3asb1y + 3ai1bay — 4@20% —3aic1 + 16a1coci — 3ascy = 0,
—4b; (a2by — 4a1be) =0,
—4b2by = 0.
But all real solutions (See supplementary section 5.3) of this algebraic system give asb; — a1by = 0,

1024&%6%—384a2a101+9a%w2+36a§ ﬁ _ 3as—16aicy o 4a20%+3a101—16a10201+3agcg 5 —
36a1bs ) - 3a1 Y= 3a1bs L

,b1 = 0} which gives asb; —a1by = —a1b2. By solving system (12) for the values of this solution we

except the solution {a =

74c§7302
3ay

get y1 = ya. Therefore the continuous piecewise differential systems (1)-(10) cannot have crossing periodic

orbits.
To get a continuous piecewise differential system we impose that both systems (1)-(11) coincide on
x = 0 by using (13), and we obtain the following algebraic system
—3a9b10 + 3a1b2d — 16b26% + 3b1c1 + 8bicecy + 4b26% + 3bycy = 0,
12a9b1 8% — 12a1b28% + 3agbiw? — 3aibaw? + 12ab? + 12ab3 — 96abybacy + 32ab3ca + 32abdes = 0,
—3a2b1y + 3a1b2y + 16a20% —3aicy — 8ajcacy — 4@20% — 3ascy =0,
—3asBb1 + 3a18bs + 32a9b1¢1 — 8a1bico — 8arbaci — 8asbocy — 3a1by — 3asby = 0,
4 (4&2()% - 2a1b2b1 - agb%) == O,
—4by (b3 — 2b3) = 0.
Since all solutions (See supplementary section 5.4) of this algebraic system give agb; —a1by = 0, then there

are no continuous piecewise differential systems (1)-(11).
In summary Theorem 1 is proved.

3. Proof of Theorem 2

In what follows we consider in one side of the straight line z = 0 the generalized isochronous systems of (2)
and in the other side a generalized isochronous system (2), (3), (4) and (5). In the first generalized systems
(8) we rename the parameters ag, bo and ¢y by aq, 81 and 71, respectively; and in the second generalized
systems (j) for (j=8, 9, 10 or 11) we rename the parameters aj, b1, c1, az, by and ¢y by ag, ba, c2, ag, B2
and 72, respectively. Doing this condition (7) becomes

Oélbl - alﬁl 75 0 and OéQbQ — a2/82 75 0. (14)

In order to study the crossing periodic orbits and limit cycles of a piecewise differential system (8)-

(j) formed by two generalized isochronous systems with (j) € {(8,9,10,11}, we must solve the following
algebraic system

H5(0,y1) — H2(0,y2) = 0, H;(0,y1) — H;(0,92) = 0, (15)

where Hy and Hj are the first integral of the generalized systems (8) and (j).

Proof.  [Proof of statement (a) of Theorem 2] In order that the piecewise differential systems (8)-(8) be
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continuous, they must coincide on z = 0, which means the following algebraic system must be satisfied.

—2asb1 Bayicy + 2a1baBicays — agbyBacy + arbaBica — aaf Bay? + a1B1Bays — azBiBem
+a1 818272 + a2B1 8263 — a1 18263 + b2 173 — arbi B2vs + arbaBiy — aby Baye
+aq (—bg) B1c3 + a1by Bac3 + 21 b1bayicr — 2a1bibacaye + arbibacy — arbibacs = 0,

—2a382b371 + 241638172 — a2B20% + a1b3 B — 2a2 87 Bay1 + 2a1 818372 + a18185 — ax i Be
—201 83b17y2 + 201028391 — a1 B5b1 + 1ba B3 + 201 babiy1 — 201 b3b1ya + 1 bob?

—Oélb%bl = 0,
—agb?BafB1 + a1b3faB1 — azBeffs + a18381 + ar1ba 53 + a1biba Sy — b1 B3 — arbib3Be = 0,
asan Bay? — a10a B17s + agan fayr — aron Biy2 — 2a1anbayicr + 2a2a1bicays — ajarbacy (16)

2 2
+asabica — asa Bact + aja Bics + 2ar1azB271¢1 — 2a1a2B1¢2772 + arazBact — arazBice
2 2 2 2 2 2 2 2 2 2 _
—aibyyi + aibrys — ajbeyr + ajbiye + ajbeci — ajbic; =0,

2a9001 815271 — 2a101 81 Bay2 — a1 B1 P2 + azai 1 P2 — 2a1a1bibayr + 2a2001b1b27y2
—a1a1b1by + azanbibe + 2a1a2b182y1 — 2a1a2b28172 — arazbaB1 + ajazbi B2
—2a101baB1c1 + 2a11b281¢2 — 2az001b1 Bact + 2a2a1b1 B2c2 4 2a1a281 B201

—2a1a21B2c2 — 2032 S171 + 2a3b1 f2v2 — afbaff1 + afbifBa + 203bibact — 203b1bacy = 0,

—a1a1 165 + agan 282 — asan Bob? — 2a1a1baBrby + 2a2011baBaby + a1 b3 By
+2a1a28182b1 — 2a1a2b251 B2 + i B3b1 — aba BT + aibab? — afb3by =0,

together with conditions (14).
From the sixth equation of (16) we get

o (agfBa (=bf + 2baby + B7) + b1 83 — cba (87 + b1 (b2 — b1)))
B1 (2az (by — b1) Ba + 233 + a2 (2b1 — b) b) ’

if the denominator of a1 is non-zero. If it is zero then 31 = 0 or 2ag (by — by) B2+ 285+ ag (2b1 — ba) by = 0.
This last equation is equivalent to the following solution

—2as2by — 283 + b3
2 (cby — azf2) '

by neglecting all solutions (See supplementary section 5.5) which do not satisfying conditions (14). So it
remains to study this solution.

If the denominator of (17) is non-zero and «; = 0, then from (17) we obtain that a; = 0, and
consequently a1b; — a1 51 = 0, which is a contradiction with first condition in (14).

In summary for solving system (16) we consider the following cases.
Case 1: Suppose that by # (—2asB2b2 — B3 + agb3)/2 (qobs — azfs), B1 # 0 and a; # 0. Since ap is
defined in (17). From the fifth equation of (16), we get

c1 = (b1(2y1 + 1) (a2ba — azfa) + ba(20281c2 — a2 (26172 — 4P2v1 + 1 — 262)) + Ba(aa(—25172
+26271 — B1 + B2) — 2a281¢2) + b3 (— (20271 + a2))) /261 (2by — azfa).

Now we solve simultaneously the second and the third equations of (16), and we obtain the only solution
{Bl — a1,32(b§;5-ﬁ§)
2az(ba—b1)P2+aaf3+a2(2b1—b2)bs’
_ 2ba(271+1)(a2B2+a2br)+B2(B2(202y1 —a1+az) —2a2(2b1y1+b1))+b3(— (2271 +a1+a2))
== 201 (03-+63) g
among all rteal solutions (See supplementary section 5.6) for which b1 # (—2a2B2by — o33 +
agb3)/2 (agbs — azfla), B1 # 0, a1 # 0 and conditions (14) are satisfied.

Solving now simultaneously the first and the fourth equations of (16). The only real solutions (See
supplementary section 5.7) for which by # (—2azf2b2 — 32 + ab2)/2(agby — azfa), B1 # 0, a1 # 0 and
conditions (14) are satisfied are solutions
S§1 — {bl = bg, o] = —Oég} and S9 = {bl = b2, a1 = 042}.

Then we must discuss these two solutions s; and ss in the following subcases to detect whether the
continuous piecewise differential systems (8)-(8) have or do not have limit cycles.

(17)

a)p =

dy = {by =
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Subcase 1.1: Consider s;. Solving system (15) we get y; = ya, or the following solution

201 (2vie2 +c2) + b3 (2v1y2 +y2) + B2 (263 — 2v1 (v + 1) + y2 (2B2m1 + B2))
(b3 + B3) (—2v1 + 2B2y2 — 1)
Since in order to have a crossing periodic orbit we must have y; # ys. Therefore these continuous piecewise

differential systems have a continuum of crossing periodic orbits and then no limit cycles.
Subcase 1.2: Now we consider sy, so system (15) gives y; = ya, or

o 2b (2mac2 + c2) + 0T (21 + o) + Ba (=265 + 271 (1 + 1) + y2 (262 + S2))
. (b2 + B3) (2v1 + 2B2y2 + 1) '

As in the previous subcase no limit cycles.
Case 2: We suppose that by = (—2as2bs — o33 + a2b3) /2(azby — az32) and B1 # 0. With this value for b
the sixth equation of (16) gives the only following four real solutions s; = {a1 = 0}, s2 = {a2 = 0, ay = 0},
sg ={ba =0, B2 =0} and s4 = {aa = 0, B2 = 0}. The only solution that satisfying conditions (14) is s1,
which is equivalent to a; = 0. Now from the third equation of (16), regarding all the real solutions (See
supplementary section 5.8), the only solution verifying (14) is
 daganboB3+253 (23 (b3+87) —a3b3 ) —dasanba Ba (34257 ) +a3 Ba+adb3 (b3+452)
- 4B2 (b3+63 ) (azB2—azbs)

By solving the fifth equation of (16) we obtain from all real solutions (See supplementary section 5.9)

the following solutions s1, so and sg

= {y = 2a262(25271*,31+52)+04252(252’Y1*251+52)+4a25152(01*02)+b§(*(204271+a2))+4a251b2(62*61)}
S1 =172 = 481 (az2b2+a2B2) ’

sy ={ag = —aaB2/ba, c2 = —2b2’y1-217621-|-45101 }, and

s3={b2 =0, c2 = c1, aa =0},

which satisfying (14). Then we divide case 2 into the following three subcases.

Subcase 2.1: We consider the solution s;. Solving the second equation of (16) we get the following real

solutions

2 — bo—
Uy = {’71 — 61(61()262;%?_25%2) azf2) %}’ Uy = {02 =c1, ag = 0} and uz = {OQ = O’ ﬁl = O}

But u; and ugy are the only solutions satisfying (14) which must be studied separately into two subcases.
Subcase 2.1.1: Consider u;. Solving simultaneously the first and the fourth equations of (16), we get the
only real solution 8; = 0, in contradiction with the hypothesis of Case 2.

Subcase 2.1.2: Consider ug. Then all equations of (16) are verified except the first one, which becomes

a2 (B% — ,8%) (*4b2ﬁ101 (2’}/1 + 1) + (2[)2’}/1 + bg) 2 + ﬁ% (46% + 1)) = 0.
Solving this equation we obtain the following set of real solutions v = {ag = 0}, va = {f2 = 0}, v3 =
{B2 = —p1} and v4 = {B2 = f1}.
The solutions for which conditions (14) are verified are vs and v4. Now we must discuss these two subcases
as follows.
Subcase 2.1.2.1: Consider v3. Then we have a continuous piecewise differential system. We prove that
there are a continuum of crossing periodic orbits and no limit cycles, because solving the algebraic system
(15) we get y; = yo, or the solution

26 (21t ) + b3 (271y2 + y2) + B1 (—2¢ + 271 (v + 1) + y2 (28171 + B1))
(03 + B7) (271 + 2B1y2 + 1)

Subcase 2.1.2.2: Consider v4. Then we get a continuous piecewise differential system. Solving the algebraic
system (15) we obtain y; = ya, or
) 2by (27101 + ¢1) + b3 (2712 + y2) + B1 (=261 + 271 (11 + 1) + 52 (26171 + 1))
1= = :
(b3 + B%) (2v1 + 2B1y2 + 1)

This gives a continuum of crossing periodic orbits.

Subcase 2.2: Assume that solution sy holds. Solving the second equation of (16) we get the following
sets of solutions {ag = 0}, {y2 = (26271 — B1 + 52)/(251)} and {B1 = 0,71 = —1/2}. The only solution

Y1

a

Y1 =
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for which conditions (14) are satisfied is v2 = (26271 — 81 + B2)/(261). The remaining unsolved equations
of (16) are the first and the fourth equations, we solve them simultaneously and we get only one real
solution ap = 0, but this solution gives a contradiction with (14). Then there are no continuous piecewise
differential systems (8)-(8) in this case.

Subcase 2.3: Consider the solution s3. Then the remaining unsolved equations of system (16) are the
first, the second and the fourth equations. Solving these three equations simultaneously we get one of the
following sets of real solutions t; = {as = 0}, to = {81 = 0}, t3 = {f2 = —P1, 72 = —7 — 1} and
ta={B2=P1, 12 =mn}

The sets of solutions t3 and t4 are the only for which conditions (14) are verified. We now have a continuous
piecewise differential system (8)-(8). Consider these two cases t3 and t4 separately.

Subcase 2.3.1: Consider solution ¢3. Then for showing whether the piecewise differential system (8)-(8)
has a limit cycle or not, we solve the algebraic system (15). Here we get y; = yg, or

28 =2y (1 +1) — 42 (26171 + B1)

a B1 (271 +2B1y2 + 1)

We have then a continuum of crossing periodic orbits.

Subcase 2.3.2: Consider the solution ¢4. I In a similar way solving the algebraic system (15). We get
Y1 =Yz, Or

U1

2¢2 — 21 (y1 + 1) —y2 (2611 + B1)

b1 (2v1 + 2612 + 1) '
Then we get a continuum of crossing periodic orbits.
Case 3: Assume that by # (—2a282b2 — @283 + ab3) /2 (aaby — agBs), f1 = 0. The third equation of (16)
becomes —a1 by 5o (b% + ,8%) = 0, and since #; = 0 we must have Sy = 0, because by = 0 or a1 = 0 gives
biag — a1f1 = 0. Solving the five remaining equations of (16), the only solutions from all real solutions
(See supplementary section 5.10) for which (14) and by # (—2a282ba — @285 + a2b3) /(2 (abs — az32)) are
verified are s1, So, s3, s4 and s5 given as follows
51 =1{by = b2, c1 = c2, 71 = —1/2, 2 = —1/2},
so={az =a1, by =by, c1 =2, 1 = —2, 71 = —72 — 1},
s3={b1=0by, c1 =c2, 0 = —va, 71 = —1/2, 7o =—-1/2},
sg ={az = a1, by = by, c1 =c2, 1 =2, 71 =2} and
ss ={b1 =by, c1 =2, oy = a2, 11 =—1/2, 2 =—1/2}.
For these five cases we have a continuous piecewise differential systems (8)-(8). Now we discuss these five
subcases.
Case 3.1: Consider the solution s;. Then the first integrals of systems (8)-(8) are

Y1 =

Hi(z,y) = [8aibizy + 8aicix + 4a%x2 + 8bic1y + 4b%y2 + 40% + 40[%332 —4agz + 1]/[8az ],
and
Hi(2,y) = [8agbiwy + 8agcix + 4ada® + 8bicry + 4b3y* + 4c? + 4asx? — dagx + 1]/[8aq],

respectively. So they are not defined on the y-axis, and consequently we cannot have continuous piecewise
differential systems.

Case 3.2: Consider the solution sy. Then solving the algebraic system (14) we obtain y; = y2, or y; =
—y2 — 2¢1/b1. We conclude that there is a continuum of crossing periodic orbits.

Case 3.3: Consider the solution s3. Then the first integrals of systems (8) are

Hy(z,y) = —[8aibyzy + 8ajcox + 4a3x? + 8bycoy + 4b3y* + 4c3 + 4a3z? + danx + 1]/[8aqx],
and
Hi(z,y) = [8agbary + Sascox + 4ada? 4 8bacoy + 4b3y* + 4ca + 4adx? — danx + 1]/[8anx].

The same conclusion than in case 3.1.
Case 3.4: Consider the solution s4. Now solving the algebraic system (14) we obtain y; = yo, or y; =
—y9 — 2¢2/by. There are a continuum of crossing periodic orbits.
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Case 3.5: Consider the solution s5. Then the first integrals of systems (8) are

Hi(2,y) = [8a1bary + 8ajcox + 4ata? 4 8bacoy + 4b3y* + 4cs + 4asx? — danx + 1]/[8asx],
and

Hi(z,y) = [8agbary + Sagcox + 4a3a® 4 8bacoy + 4b3y* + 4ch + 4adx? — danx + 1]/[8asx].

Again as case 3.1.
Case 4: Assume that by = (—2agB2bs — 285+ a2b3) /(2 (aebe — azB32)) and By = 0. Then the sixth equation
of (16) becomes

2
a1 (a2f2® 4 2asB2by — azbs?)
4(azP2 — abs)

Since we have 81 = 0 we cannot take cv; = 0 otherwise we get a contradiction with the first condition in
(14). So we must take aoBs% + 2asf2bs — aobe® = 0. By solving this equation, we obtain ay = (b2 —
a932%)/2b2 32, and by replacing as in by = (—2asBabs — 32 +b2) /(2 (agby — azfa)) we get by = 0, which
is a contradiction with the first condition in (14). Then we cannot have continuous piecewise differential
system int this case. W

=0.

Proof.  [Proof of statement (b) of Theorem 2] In order that the piecewise differential system (8)-(9) be
continuous they must coincide on = 0, so the following algebraic system must be satisfied

—2asfBabic1mi + a1Bi1bicaye + a1Bibica — axfabicr — azBiBayi — axfi o
+a181 8272 + a2B1 8263 — a1 81265 + a2B1b17F + azBibiyr — a1 Babiye
—agﬁlblc% + alﬂgblc% + 20[2()%01’71 — alb%CQ’}/Q + Oégb%Cl — alb%CQ = O,

—2a2B2b371 + a1 510372 + a181b3 — azBeb? — a1 B1B2bica — 2a283 Bay1 + a18153
—aaf3 B2 + 200 83b171 + a2 f8iby — a1 B3by + 2a0b3y1 — a1biya + agb?
—qu?l’ + 041,8213%02 =0,

—p1 (b1 +57) =0,

2a01 818271 + asa1 1 B2 — a1z B B + azabibays — 2a1a2b1bayr + asabibe (18)
—a1a2b1bg + 2a1a2b1 821 — arasbaBi1ye — ajazba B + arasbi B2 — 2a2a1b1 Pacy

+aga by faca — 2a1a2b2B1¢1 + 2a1000b2B1¢2 + 2a1a281 821 — arazBiPace

—20001b2 8171 — a1 baBr + asabi B2 + 2aa1bibact — 2a0a1b1bacy = 0,

2

a1 B277 + agan Bayr — a1 fBiy2 — 2ar10ebayicr + azanbicays — ajanbacy
2 2

+agarbica — azan Bact + aragfics + 2arazfayicr — arazficeye + arazfBacy
2 2 2

—ajazPica — apobayi — apoebayr + aranbiye + ajanbac] — apobics =0,

—2a181b1 + a1baB1 — a1 8 + a1b? — aybaby =0,
with
Otlbl — alﬁl 7& 0 and OéQbQ — agﬁg 75 0.

We see easily that a necessary condition for a continuous piecewise system is §; = 0 and this implies
that a; # 0 and by # 0, otherwise we have a contradiction with the condition a1b; —a1/51 # 0. Substituting
B1 = 0 into the last equation of (18) we obtain b;(by — b2)a; = 0, and consequently be = by, because by
and «ap cannot be zero. Now in all cases of this proof we take 81 = 0, bs = b1, a1 # 0 and by # 0.

Case 1: bjcy + P2 # 0, B2 # 0 and ~1(7y1 + 1) # 0. Then from the first equation of (18) we get
_ —2a3fc171 — agfacr + 2aabiciy — arbicy + agbier + o fac

2= aq (bica + B2) '

From the second equation of (18) we obtain

_ b2y +1) (b (2 — 1) + B2) (b1 — afa)
B (07 + 53) '

aq
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Using the fifth equation of (18) we have
a1 = —by(—agbi o — 2ab1 B2¢3 + 4aghy facica — 2ab1 facl? — 233 + azfer — azficy
—aiby facy + aby Baca + 20521)%0% + 20525%0% — 40&25%0102)/(ﬁ2(b% + 522))
Finally from the fourth equation of (18) we get

By = bi(cr — c2) (e — 2cact + B+ + 71 + 1)'
M +1)
With these values of the parameters the piecewise differential systems (8)-(9) are continuous.
Now we must solve the system

H2(07y1) - H2<073/2) = 07 H3(07 yl) - H3(07 y?) = 07 (19)

for studying the crossing periodic orbits and the crossing limit cycles of these continuous piecewise differ-
ential systems.
The first equation of (19) in this case is

bi(y1 — y2)(2c1 + biyr + b1ya)
1+ 2"}/1

—0. (20)

Since in order to have a crossing periodic orbit we must have y; # y2, we obtain that yo = —(2¢1 +b1y1)/b1.
Substituting y, into the second equation of (19) we get that y; = yo = —c1/b1. Therefore this piecewise
differential systems has no crossing periodic orbits.

Case 2: Assume that bycy + B2 # 0, B2 # 0 and v1(1 + 1) = 0. Then from the case 1 we have the same
values for 72, @1 and ay substituting in them ~; = 0 or 73 = —1. Then from the fourth equation of (18)
we should have co = ¢; otherwise we have non—continuous piecewise differential system. With these values
the piecewise differential systems (8)-(9) are continuous. Again from (20) we obtain yo = —(2¢1 +b1y1)/b1.
Substituting yo into the second equation of (19) we get that y; = y2 = —c1/b1. So no crossing periodic
orbits.

Case 3: bjcy + 52 # 0 and 2 = 0. Then ¢y # 0. Now as in the case 1, from first equation of system (18)
we obtain v2 = (cian(1 + 27v1) — caaq)/(c2c1). Then the second equation of (18) becomes

_b?(cz —c1)az(l 4 271)
2

= 0. (21)

Which ap and by cannot be zero from the condition of (14). So in this case we have three subcases satisfy
(c2 —c1)(1+27) = 0.

Subcase 3.1: 1 + 2v; # 0. Then ¢ = ¢; to verify equation (21). The fifth equation of (18) becomes
—(a1 — a)b?a2(1 + 27y1) = 0, so we must take as = a1, otherwise the piecewise differential system cannot
be continuous. Finally from the fourth equation of (18) we get ag = (a1 (1 +v1 +~3))/(1 + 271). With
these values of the parameters the piecewise differential systems (8)-(9) are continuous. Now the first and
second equation of (19) become

b1(y1 — y2)(2¢1 + bry1 + b1y2) _0 bi(y1 — y2)(2¢1 + biyr + b1y2)

-0,
14+2m 14+ +93)?

respectively. Since the numerator of both equations coincide we have a continuum of crossing periodic
orbits in this subcase.

Subcase 3.2: ¢z # ¢;. Then we must take 14 2v; = 0 to satisfy the equation (21). Using the fifth equation
of (18) we obtain 2b%(c; — c2)ajas = 0, we see that cannot verify this equation under the conditions of
this subcase. Then we cannot have continuous piecewise differential system in subcase.

Subcase 3.3: 1+ 297 = ¢ — ¢; = 0. Then the fifth equation of (18) is satisfied, and the fourth equation
of (18) becomes —3bjajas/4 = 0, which cannot be satisfied otherwise we have a contradiction with (14).
So in this subcase the piecewise differential system cannot be continuous.
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Case 4: bica+ 32 = 0 and ¢z # 0. The first equation of (18) gives a1 = (azcica+cran)(1+271)/(ca(1+c3)).
The second equation of (18) becomes

b3 (azca + o) (14 271)(c2 + 3 — e1(1 + 263 + 2))
co(1+¢3)

=0.

From the condition bjca + f2 = 0 of this case we get co = —2/b; and from the starting of the proof of this
statement we have by = ba, by substituting in asca + ae = 0 gives a2 82 — boao = 0; which is a contradiction
with second condition in (14). If 142y, = 0, from the above formula of a; we get ay = 0 and since 1 = 0
we obtain a1 81 — byay = 0; which is a contradiction with first condition in (14). So agco + ag and 1+ 29
cannot be zero, we must take

co+c3—ci(142¢2 + ) =0. (22)
Subcase 4.1: ¢; = 0. Then from the second equation of (18) we have

b?(GQCQ + 042)(1 + 2’71) =0,

Since asco + as and 14 27; cannot be zero as we have seen above this last equation cannot be satisfy, and
consequently the piecewise differential system cannot be continuous.
Subcase 4.2: ¢; # 0. Then from (22) we get 72 = (—c1 + c2 — 2¢1¢3 + ¢3) /c1. The fifth equation of (18) is
b3 (azca + az)(agca(l + 2¢3 — 3cica + ¢3) — ar(ca + c3) + c1(2¢1 — 3e2)az) (1 + 2y1)
ca(1+c3)

As we have seen in the previous case asco + as and 1 4 2y cannot be zero. So we should have

=0.

asca(1+2¢2 — 3crea + c2) — ar(ca + &) + c1(2¢1 — 3e2)az = 0.

Solving this equation we get

asco + 2(120%(:2 — 3azclcg + agcg + 20%(12 — 3c1ca0g

al =
! CQ(].-'-C%)

And solving the fourth equation of (18) we obtain

—c1 £ \/—01(301 +4ct — deg — 12¢% o + 12¢1¢3 — 4c3)
261 ’

=

We assume that the squareroot which appears in the expression of =y is real, otherwise the piecewise
differential system is not continuous.

With these values of the parameters we have satisfied all equations of system (18). Then the piecewise
differential systems (8)-(9) are continuous. Now the first equation of (19) becomes

bici(y1 — y2)(2¢1 + biyr + biya) _
V—c1(3c1 +4c} — deg — 123 ¢y + 12¢163 — 4cd)

In order to get crossing periodic orbits we need that 2¢; + byy1 + b1y = 0, or equivalently yo = (—2¢; —
b1y1)/b1. Substituting yo into the second equation of (19) we get
40‘;’(1 + C%)(Cl + blyl)s
A(=1+2ci100 — &+ biayr)2(1 + 2¢3 — 2c100 + 3 + biciyr)?

=0.

By solving this equation we get y; = —c1/b; and yield to yo = —c1/by1. Then in this case the piecewise
differential system cannot have crossing periodic orbits.

Case 5: bicy + 82 = 0 and c3 = 0. Then 32 = 0, and the first equation of system (18) becomes b?cjaa(1 +
271) = 0. Since by and ay cannot be zero, so we have the cases verify ¢1(1 + 2y1) = 0, otherwise we have
non-continuous piecewise differential system piecewise. Then we have the two following subcases.
Subcase 5.1: ¢; = 0 and 1 + 271 # 0. Then the second equation of system (18) becomes b3 (ag + 2a27y1 —
a1(1472)) = 0. Since by cannot be zero we have that e +2a9y1 —aq (14+72) = 0. By solving this equation we
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get y9 = (—a1 + ag + 2a97y1) /1. Thus system (18) is satisfied in this subcase and the piecewise differential
system is continuous.
Now the first and second equation of (19) become

b =)t g Hn—w)mn+ y)® _ 0
142y 14y +7%

respectively. This system has the two solutions y; = y2 and y; = —y2. The last solution means that the

piecewise differential system has a continuum of periodic orbits. Then no crossing limit cycles.

Subcase 5.2: ¢; # 0 and 1 + 2v; = 0. The second equation of system (18) becomes —b3ay(1 + 72) = 0.

Since b; and a; cannot be zero, we have that 5 = —1. The fifth equation becomes \/gb%ozlag = 0, but

this is a contradiction because all the parameters which appear in it are nonzero. Therefore the piecewise

differential system cannot be continuous.

Subcase 5.3: ¢; = 1+ 2v; = 0. The same proof and result as in subcase 5.2. W

Proof.  [Proof of statement (c¢) of Theorem 2| For studying the maximum number of limit cycles of the
piecewise differential systems (8)-(10), we must solve system (15). Solving the first equation of (15) with
respect to y; we obtain y; = yo and

_2b1 (2vic1 +c1) + b2 (27192 + y2) + B1 (—20% +2v1(m+1)+y2 (28171 + B1))

(07 + BT) 20 + 2B1y2 + 1) : (23)

Y1 =

In order that the piecewise differential systems (8)-(10) be continuous they must coincide on =z = 0,
which means the following algebraic system must be satisfied.

—6asby Bayic1 — 16a1b2B1c2v2 — 3azby Bect + 3a1bafica — 3azB1Bayi — 3azf1 o
+3a151 822 + 3a2B1 205 + 4a1B182c3 + 3aba 177 + 3azbeBiv1 — 3a1bi Baye
—30[2b2ﬁ16% — 40[1b1ﬁ20% 4 6ainbibayicr + 16ai1b1bacaye + 3anbibacy — 3abibace = 0,

—6azB2biy1 — 16a1b3 5172 — 3azB2b3 + 3a1b381 — 8aibeB1B2c2 — 6az B3 Bay1 + 3a1 5155
—30,2,3%52 + 6042()25%’)/1 — 30&1522[)1 + 30&2[)2,@% + 66%2[)2[)%’71 + 160&1[)3[)1’)/2 + 3042[)2[)%
—30411)%()1 + 8arrbo Babrcy = 0,

a2b?B2B1 + 4a1b3BaB1 + axB283 — asbe B — anb?bafy — 4anbib3 B = 0,

3aza1 Boyi + 3agan fay1 — 3araz B2 — 6ajazbayicr — 16asanbicays — 3aiasbacy (24)
+3asa1bica — 3azan fact — dajasBic3 + 6ajazBayict + 16arazBicaye + 3arazBecy
—3a1a26102 — 3a1agb2’y% — 3041042[7271 + 30410[2()1’)/2 + 30&1&2526% + 40[10(21)16% = 0,

6aga1 B182m1 + 3azan 8182 — 3arazfi Bz — 16aza1bibaya — 6ayaebibayr + 3azanbibe
—3ajcb1by + 6a1a2b16271 + 16&1&21)251’)/2 — 3aragbe 81 + 3aiasb1 By — 6asa b1 Bacy
—16aza1b1 fac2 — 6ajasbafic1 — BajagbaBicy + 6arazfB1fac1 + 16aiazBiBaca
—60[20[1()251’71 — 30[20&11)2,81 + 30&20&1[)1ﬁ2 + 6a2a1b1b201 + 80&20&11)1[)262 = 0,

3aza1 B2 By — 3asa1 Bob? — 6ajcnbaBiby — 16asanbafaby — dajasb3Br + 6aias B Baby
—|—16a1a2b26162 — 30[10421)26% + 30[10&21)2[)? + 40410[2[)%()1 = O,

together with conditions (14).
Solving the sixth equation of (24) we get

aza B2 (—3b3 — 16b2by + 367) + ayaaby (363 + 4bab1 — 357)
2a2b2 (3b1 + 2b2) B1 — 2a2 (3b1 + 8b2) 152 7

a; — (25)

except when denominator 2agbs (3b1 + 2b2) 51 — 2az (3by + 8b2) 5152 = 0. This denominator vanishes if and
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only if one of the following solutions holds:

dl = {Bl = 0}7 ( )
a2b2(3b14+2b
d2 = {52 = 22?31)13»8()2? }’
ds = {az = 0, by = —2by/3},
d4 == {CL2 == O, g = 0}, (26)

d5 == {bl = —8b2/3, Qo = 0},
de = {az =0, by = 0},
d7 = {b1 =0, by = 0}.

To continue solving the algebraic system (24) we must discuss all cases when 2agbs (3by + 2b2) 51 —
2a9 (3b1 + 8b2) ﬁlﬁz = 0 and 2a9by (3b1 + 2()2) ﬁl — 2a9 (3b1 + 8b2) ,Blﬁg 75 0.
Case 1: Assume that

209b9 (3b1 + 2b2) 81 — 2as (3b1 + 8b2) 5152 75 0. (27)

Using a1 given by (25) we solve the third equation of the algebraic system (24) and we obtain the following
solution

_ a2(3b1+8b2)B1 B2 —a2ba(3b1+2b2) B
a1 = 66252 )
the only allowed solution (See supplementary section 5.11) for which conditions (27) and (14) are verified,
then we take this value of a; and solve the second equation of (24) and we get the solution (See supple-
mentary section 5.12)

_ 3b3(8B2v1+B1+4B2)—8pB1B2baca+3B1 53
72 = lﬁbgﬁl )
which does not contradict conditions (27) or (14), so for this value of 9 solving the fifth equation of system
(24) we obtain

_ ba(8b2y1+b1(671+3)+4ba—681c1—8B1¢2)
52 - 3/, )
All real solutions (See supplementary section 5.13) are in contradiction with (27) or (14) except the so-
lution v;. Replacing 2 in the remaining equations of the algebraic system (24) and by solving the first
equation of this system we obtain the following allowed solutions (See supplementary section 5.14) w; and

w2

(15b1456b2) 81 (2v14+1)— 355 —3082¢1
b{+A7

wy = {ecg = 1277 } and
_ _ V38481 (b3487)(15b1(271+1)+56b2(271+1)—3081c1)
wy = {eg = B VO Yz (a2 b

whith

S = B2(b + 52)(3651b3c1 (21 + 1) + b2 (448(2boy1 + bo)? — 332(12¢2 + 1271 (71 + 1) + 31)) + 4B1b1c1 (271 +
1)(98% — 448b3) + 448b3537 (4c2 + 1) — 9b} (271 + 1)2 — 128%(3c2 + 7)).

Without solving the fourth equation of the algebraic system (24) to get a piecewise continuous differential
systems (8)-(10). We solve the algebraic system (15). In these two cases replacing the value of y; given by
(23) into the second equation of (15) its left hand side is equivalent to a long polynomial of second degree
with respect to ys.

Subcase 1.1: If we consider w;. Then the polynomial of second degree with respect to y9, after equating it
to zero (See supplementary section 5.15), we compute the two roots of this polynomial we get two different
values y21 and y929. By replacing y21 we get y11, and replacing yoo we get y12. Since we obtain that y11 = o9
and y12 = yo1, it follows that in this subcase the system has at most one limit cycle.

Subcase 1.2: If we consider wy. Then the polynomial of second degree with respect to y9, after equating it
to zero (See supplementary section 5.16), we compute the two roots of this polynomial we get two different
values 921 and yo0. By replacing yo1 we get y11, and replacing yoo we get y12. Due to the facts that y11 = yoo
and y12 = Y21, the system in this subcase has at most one limit cycle.

Case 2: Assume that 2asbs (301 + 2b2) 51 — 2a2 (3b1 + 8b2) $182 = 0. Here we consider the subcases dy, da,
ds, ds and d7 defined by (26) except d4 and dg because are in contradiction with (14).

Subcase 2.1: Consider the set d; of (26). In this case we have $; = 0. The third equation (24) becomes
4b2By = 0, this gives by = 0 or B2 = 0. by and B2 cannot vanish at the same time otherwise we get a
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contradiction with (14). If b = 0 and (B2 # 0, then the sixth equation of (24) becomes —3a2b; 82 = 0
which gives ag = 0 or by = 0, since ;1 = 0 and by = 0 we get a contradiction with (14). Then we have
no continuous piecewise differential systems (8)-(10) in this case. Finally if we have S = 0 and by # 0,
then the sixth equation of (24) becomes b (3b1 + 4b3)ay = 0, which gives by = 0, ag = 0 or 3by + 4by = 0,
and since P2 = 0, all these parameters give a contradiction with (14) except by = —3b; /4. Solving the
four remaining equation of (24) we get the only solutions (See supplementary section 5.17) s; and sg that
verify (14) as follows
s1 ={c1 = —4c2/3, 1 = —1/2, 7o =3/16} and

2
S9 = {ag = —3@1/4, Cc1 = —402/3, Y1 = —% — 1/2, Y2 = 3/16 — ;TQ%}.
Subcase 2.1.1: Consider the set s1. In this case we have ¢; = —4¢2/3, 71 = —1/2 and 2 = 3/16. Now
the algebraic system (24) is verified. But the first integrals of systems (8) and (10) are

Hy(z,y) = [T2a1b12y — 96a1c2 4 36atx? — 96b1coy + 36b3y* + 64c3 + 36atx? — 36a;2 + 9]/[7201 7],
and
Hs(z,y) = —[(—96a2b1zy + 128agcoz + 64a3x? — 96bycoy + 36b3y? + 64c3 — 48wz + 9) 2] /[64cna ],

respectively, note that they are not defined on the y-axis, which means that there are no continuous
piecewise differential systems formed by (8) and (10).

Subcase 2.1.2: Consider the set so. Which gives the parameters as = —3a1/4, ¢; = —4¢3/3, 11 =
—2a2/(3a1) —1/2 and v, = 3/16 — a2 /3a?. With these parameters we get continuous piecewise differential
systems (8)-(10). Solving the algebraic system (15) we obtain y; = yo or y; = 8¢a/(3b1) — y2, this provided
a continuum of periodic orbits.

Subcase 2.2: Consider the set dz of (26). In this case we have £ = aaba(3b1 + 2b2)/(a2(3b1 + 8b2)). Since
bo = 0 or ap = 0 is in contradiction with agfB2 — baocvs # 0, then we have either

52 =0 and bg = *3()1/2, (28)
or

o — as (351 + 8()2) 62
2 bo (3b1 + 2b2)

Using (28) the third and the sixth equations of (24) become —/; (b% + ﬁ%) =0 and —aq (b% + B%) =0,
respectively. Therefore either 1 = a3 = 0 or by = 81 = 0 and this contradicts (14). Then in this case we
cannot have a continuous piecewise differential system.

Now using the value of ap from (29). The sixth equation of (24) becomes —ay (b5 + 7) = 0. Since
b1 = 1 = 0 contradicts (14) we must take c; = 0. Solving now the fifth equation of (24), all solutions (See
supplementary section 5.18) give a contradiction with (14) except s; and s given as follows

o1 = {m = 2b2/51(*2B2b2(961+802)+b§(167273)71261)2?%1)512(1)3(,31(167273)76ﬁ2)+851ﬁ2b20273515§)} and

s9 ={b1 =0,c1 = %(762(1%22_3) — % —16¢2)}.

Then we must study these two cases separately.
Subcase 2.2.1: Consider the set s; of (30). By solving the third equation of (24), all solutions (See
supplementary section 5.19) give a contradiction with (14) except u; and us

(29)

(30)

up = {f1 = _\/2a1b2(?\)%—&\;;l;2)—3a2b%} and
\/2(11 b2(3b1+2b2)—3a2b% (31)
up = {p1 = NN }.

Then we must study these two cases separately.
Subcase 2.2.1.1: Consider the set u; of (31). Solving the second equation of (24) we get from the sets of
all real solutions (See supplementary section 5.20) the only allowed solution is

 3b1(8B2bacy + b3(1672 — 3) — 33) + 4ba(—16B2bacs + b3(1672 — 3) — 1233)
N 720332

C1
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The first equation of (24) gives the only allowed solution among the sets of real solutions (See supplemen-
tary section 5.21) which is given by

4b2a2(32,82b202(3 — 1672) + B3b5(256¢5 — 38449 + 153) + 38483bacy + b5 (3 — 1672)” +1445;) 2
9a1(3262b3¢a(3 — 1672) + 282b3(128¢2 + 2472 + 9) — 4883baca + b3(3 — 1672)2 + 955) 3

Solving the fourth equation of (24) gives from all real solutions (See supplementary section 5.22), the only
allowed solution is

a1 (32B2b3¢a (3 — 1672) + 8363 (32¢3 + 672 + 9) — 4883bacy + b3 (3 — 1672) 2 + 6353)
4 (32B2b3¢2 (3 — 1672) + B33 (256¢3 — 38472 + 153) + 38433baco + b3 (3 — 1672) 2 + 14453)

ba.

ag = —

Now we have a continuous piecewise differential systems (8)-(10). We solve the algebraic system (15)
with respect to y1 and gy, we get one of the following sets of solutions

N _ VRA48B2baco+b3(16v2—3) 352  VRA8B2baco+b3(16v2—3) 352
so={y1=— 246235 v Y2 = — 24623, 2
_ _ VR—8B2baca—16b3v2+3b3+3033 VR—8B2b2ca—16b372+3b3+3053
S1 = {yl - 2417%62 , Y2 = 241%/32 }7
— {y = 2783024 B2b4 (128¢2+9672—27) —/3vT —14452b3 co+8b5c2 (3—1672)
52 =1 = 863 (—16B2baca 163 (1672—3)+652) ’

_ 27B3b24B2b4 (128c2+9672—27)+V3VT — 144/32b3CQ+8ng(3—1672)}
- 8b3 (—1682b2ca+b2(1672—3)+65332) )
2783024 B2b4 (128¢2+9672—27)++/3vT —14452b3 co+8b3c2 (3—1672)

s3={y = 863 (—16B2baca b3 (1672—3)+652) g
_ 27B3b3+B2b4 (128c3+9672—27)— V3V T —14483b3co+8b5 ¢ (3— 1672)}

Y2 = 863 (—16B2baca+b2(1672—3)1652) :

Where

R = (8f2bacy + b3(1672 — 3) — 333)* — 48b3 52(5202(1672 —3) — B2(4¢5 + 372)) and

T = b3(—16Babaca + 203(8v2 — 3) + 352)(32B2b3ca(3 — 1672) + 262b3(128¢3 + 12072 — 27) — 24033baco +
b3(3 — 1672)? + 4533).

Here sy and s1 give y1 = y92; y1 of sg is equal to yo of s3, and ys of so is equal to y; of s3. Then the
continuous piecewise differential systems (8)-(10) can have at most one limit cycle.

Numerical example.

_ _ 4395 _ 370 _ 1 _ 4022 _ 1 _ _ 465 _
ap = =1, ag = 555, b1 = 557, b2 = =5, a = [, @ = —5, a0 =0, aa =~ f=

~& (4/) B =1 9 = 14283/ 58— § and 5, = 10,

Flgure 1 shows the crossing limit cycle in thls case. Here the points of intersection with the y—axis are
y1 = —9.83073.. and yo = —15.1693...

Fig. 1. Crossing limit cycle formed by systems (8) and (10).
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Subcase 2.2.1.2: Consider the set uz of (31). We follow the same steps as in Subcase 2.2.1.1 (See
supplementary section 5.23). We get a continuous piecewise differential systems (8)-(10). We solve the
algebraic system (15) with respect to y; and y2, and we get one of the same sets of solutions sg, s1, s2 and
s3 as in Subcase 2.2.1.1. Then the continuous piecewise differential systems (8)-(10) can have at most
one limit cycle.

Subcase 2.2.2: Consider the set sy of (30). Solving the second equation of (24) we get as = 4a1b3/(33%),
then we solve the third equation of (24) and we get, among all sets of solutions (See supplementary section
5.24), the only allowed solution

352(85271 + B1 + 42) — 831 B2baca + 35152
16623,

Then for this value of 75 solving simultaneously the first and the fourth equation of (24) we get the only
one real solution S = 0, which gives a contradiction with (14). Then there are no continuous piecewise
differential systems (8)-(10) in this case.

Subcase 2.3: Consider the set d3 of (26). In this case we have a; = 0 and by = —2by/3. With these
parameters the sixth equation of (24) becomes ay (4b§ + 95%) = 0. Solving now the third and the fourth
equations of (24) we conclude that all sets of real solutions (See supplementary section 5.25) give a
contradiction with (14) except the following one

B 042(413%4-95%) - 6620171+3b201+46102
{ﬁZ_W’ Y2 = — 35 2}~

Then for these values of B2 and 7, solving the first, the second, and the fifth equations of (24) all obtained
solutions are complex. Then we have no continuous piecewise differential systems (8)-(10) in this case.
Subcase 2.4: Consider the set ds of (26). Here we have ay = 0 and by = —8ba/3. The sixth equation of
(24) becomes oy (64b§ + 96%) = 0. Since ag = 0 we must have by # 0, otherwise we get a contradiction
with (14), which yields to a; = 0. Solving now the third and the fourth equations of (24) simultaneously,
all real solutions (See supplementary section 5.26) give a contradiction with (14) except the following one
982 2
s1={a1 = %az(*% —64), 12 = 1%(1 — o %17012-1-,82))}’
2
sg ={a1 = %C@(—% —64), c2 =0, m =—1/2} and (32)

2
S3 — {a1 = %CLQ(—% — 64), Cc1 = O, Cy = O},

which must be discussed separately in the following subcases.

Subcase 2.4.1: Consider the set s1 of (32). We solve now the remaining equations, the first, the second
and the fifth equations of (24). All real solutions (See supplementary section 5.27) give a contradiction
with (14) except the following two solutions

s = for = —8eyy3, VAR (I0A195)  _ am(ogros) 3} and
1=1{c = 2/3, 128623, —953 P = 8\/175»3?(12853*959(16}’5*95%) noe (33)
\/b 587 (128b3—957 ) (16b3+957 ) _ 367 (1605 +957) biea |

U = {Cl —862/3 52 — 7}.

9B~ 1283 C T S R (e og) (1R tos) | 2 2
Then this case is divided into two other subcases.

Subcase 2.4.1.1: Consider the set u; of (33). We have now a continuous piecewise differential systems
(8)-(10). Solving the first equation of (15) with respect to y; and ys we get y2 = y; which does not give
limit cycles for the piecewise differential systems (8)-(11) in this subcase (See supplementary section 5.28).
Subcase 2.4.1.2: Consider the set ugy of (33). We have now a continuous piecewise differential systems (8)-
(10). As in Subcase 2.4.1.2 we get y2 = y; which does not give limit cycles for the piecewise differential
systems (8)-(11) in this subcase (See supplementary section 5.29).

Subcase 2.4.2: Consider the set so of (32). Solving now the remaining equations, the first, the second
and the fifth equations of (24) simultaneously. All solutions (See supplementary section 5.30) give a
contradiction with (14). Then we have no continuous piecewise differential systems in this case.

Subcase 2.4.3: Consider the set s3 of (32). We solve the remaining equations, the first, the second and
the fifth equations of (24). All sets of solutions (See supplementary section 5.31) give a contradiction with
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(14) except the sets uj and us.

(8 1631 b4+933b2 —365§b§+3\/b§5§(10085%b§+2048b§—815;1)+512bg
Ul = 92 = 1= —
\/0352(12863-957) (1663+953) v 1024b5—7263 57 ’
54b2 9
"2 = 962_128172 + TG})
712803 (34)
_(p = \/6362(12863-957) (1663+953) _ 368703+3, /6367 (12863957 ) (1663+97 ) —512b
U2 =1P2 = 963128026, » M= 802 (12862 —9537) '

_ 543 9
V2 = g5z qosng 16

Then two other subcases bifurcate from this case.

Subcase 2.4.3.1: Consider the set u; of (34). Now we have a continuous piecewise differential systems (8)-
(10). Solving the algebraic system (15) we get y1 = yo, then there are no periodic orbits, and consequently
no limit cycles.

Subcase 2.4.3.2: Consider the set ug of (34). By solving the algebraic system (15) we get y; = y2, then
there are no periodic orbits in this case.

Subcase 2.5: Consider the set d7 of (26), which means b; = by = 0. By solving the algebraic system (24).
All sets of real solutions (See supplementary section 5.32) give no continuous piecewise differential systems
can be found, because all solutions give a contradiction with (14). W

Proof.  [Proof of statement (d) of Theorem 2] In order that the piecewise differential systems (8)-(11) be
continuous they must coincide on z = 0, so these systems must satisfy the following algebraic system

—6asbi Bayicr + 8arbaBicays — 3asbi Pact + 3arbafica — 3az B ey + dai B1B2v3
—3a2B1Bov1 + 3a151 8272 + 3azB1B2cd — 16a1 818265 + 3aabaS177 — dabi Baya
+3a2b2B171 — 3a1b1 Baya — 3anbaBict + 16a1by Bacs + 6asbibayicr — 8aibibacays
+30ézblb261 — 30[1()1()262 = 0,

—6a2 820371 + 8a1b3 8172 — 3azB2b? + 3a1b3B1 — 24a1ba 1 Baca — 6a2B3Bav1 + 8a1 818572
+3a18135 — 3a253 B2 — 8a13b172 + 6aobaBiy1 — 31 B3b1 + 3anba B3 + 6agbabivy
—8041[)%[)1’}/2 + 30[21)2()% - 30[1()%1)1 + 241 by Bobico = 0,

—3asb?BoB1 — 8a1b3B281 — 3aa BB} + 4a1 B3 B + 3anba B3 + 3abiba By — by B3
+8a1blb§[32 =0,

3asa Bay? — dajasfiy? + 3asan fayr — 3a1aaBiys — 6ayaabayicy + Sasabicays (35)
—3a1a2b261 + 3@2@1[)102 — 30,2041526% + 16&10&2510% + 6a1a2527101 — 8a1a2610272

+3arazfBac1 — 3arazfica — 3onagboyi + dajanbivs — 3anasboyr + 3o asbiye

+3a1a2b2cf — 160416!2[)16% = 0,

6asa B1271 — 8araaB1 Baya + 3asa f12 — 3aiae P12 + Bazaibibays — 6ajcabibeyy
+3a2a1b1by — 3aiabibe + 6aazby Boy1 — 8arazbaS1v2 — 3arazbaB1 + 3aiasbi B2
—6aga by Bacy + 8agaby Pace — 6aiasba iy + 32a1ab2B1c2 + 6aiasf1P2c1 — 8aias S faco
—6asa1ba 171 + 8 by Bays — 3asai by B + 3asan by Bo + 6aa bibacy — 32aiabibacsy = 0,

—4dayaaB183 + 3agan B3 B2 — 3azan B2b? — 6aianbaB1by + 8aganbaBaby + 16a1 b3 By
+6a1a21B2b1 — 8aazbeBi B2 + daian83by — 3arasbeB7 + 3aanbab? — 16a1cib3by = 0,

together with conditions (14).
Solving the second and the fifth equation of (35). Regarding the sets of all real solutions (See supple-
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mentary section 5.33), the only allowed solutions which do not contradict (14) are the following

51 = {e1 = [=3b3(271 + 1) (4anby — agBa) + b1(9a1Baba(27y1 + 1) + a1 35 (872 + 3)
+401b3(8v2 + 3)) — S1(3(271 + 1)(—agfeBr + dasba By — 3arbaf3a)
+a1(8y2 + 3)(4b3 + 533))]/[18b2B2(1by — a1 B1)] if b2 # 0,
_ (=3b2(2v1+1) (a2ba—a282)— B1(3B1 (271 +1) (a2ba—a282) +a1 (8v2+3) (b3+82))+ a1 b1 (872+3) (b3+52)
€2 = (24b2 B2 (a1b1—a1B1) b
a @ A 1(11 e’ 2 (20271 +02)+8a1 Babrc
S2 = {bQ =0, = 18201 (671+3)—3 251(25171+51)+»/3165;2((a§b102;;6ﬁ?)171+3 1)—3b 271+a2 182b1 2 (36)

_ —3a2(2y1+1)(b2+52)
2= 852(041171—(11&)1 o 3/8} and

s —{C —3a2(271+1) (b2+82)+a1b2 (b1 (671+3) —32B1 c2)+a1b2(32b1 c2+668171+361) B —0
3= - 6b2(a1b1—a1p1) » P2 =
3(B1(a2B1(271+1)+a1b2)+b2 (2a2y1 +az) —aibiba) }
72 = 8b2(a1b1—a11) ’

which are studied in the following three cases.
Case 1: Consider the set s1 of (36). Solving the third equation of (35) we get one of the following sets of
allowed real solutions (See supplementary section 5.34)

_ B (463 (a1by — a181) + 3a2bif1 + 8a1b361 + 3az 87 — 8 b1b3)

u = {az 32 (22 + 52) Fif b1 # 0,
={by = P2 , /1 =0} and (37)
ﬂ\f
:{b2:ﬁa 61: }7

which do not contradict (14) and baf2 # 0.
Subcase 1.1: Consider the set u; of (37). We solve the sixth equation of (35) to get one of the following
allowed real solution (See supplementary section 5.35)

_ 4,622 (al/Bl — Oélbl) + by (6&1,811)1 — 16(111)2/31 + 30&1ﬁ% — 3&1[)% + 160[1[)2[)1) } (38)
361 (b7 + B) ’

which does not contradicts (14), baf2 # 0 and by # 0. We solve the first equation of (35) to get one of
the following real solutions (See supplementary section 5.36)

_ (B1(8v2+3)—462)
{'Yl 1 2852 2

_9(= b%ﬂl%(9b%+32b%+9ﬁ%—16ﬁ§)<6§—2b§)(453(9b%—32b%+9ﬁ%)+b%(9b%—256b%+96%)—16ﬁ5‘))1/2}
863 (B3 —2b3)(—453 (967 —32b3+97) +b3 (—9b7+256b3 —957) +16/33) ’
{,7 (B1(872+3)—482)
= S
4 9(— b55152(9b2132b2+951—16,82)(62—2b2)(4ﬂ2(9b2 32b2+951)+52(9b2—256b2+96'f’)—16ﬂ§))1/2}
8B2(B2—2b3)(— 452(91;2 32b2+9/31)+b2( 962425663 —967)+16433) ’

z3={b = -3\ 20 967, by = (39)
a={b =55k 08l b= -2

:{blz—é 3262 — 962, —’82} and

={by = 3y 32362 —96%, by =

The only allowed solutions which do not contradict (14), b2f82 # 0 and by # 0. Again these solutions
gives six other different cases.
Subcase 1.1.1: Consider the set z; of (39). Now the remaining fourth equation of (35) becomes

Ba (b3 + B3) (br — a1B1) ? (12by (B3 — 6b3) + bo (1283 + 957 — 3263) + 9babT) = 0,

since (b% + B%) (a1by — a1 81) # 0, otherwise we have a contradiction with (14), and from b2 # 0, we have
B2 # 0. This last equation is equivalent to the following one

12by (B3 — 6b3) + bo (12863 + 987 — 32033) + 9b2bT = 0.
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From b9fs # 0 we have by # 0, then we can get the solution for this last equation by solving it with
respect to b1, and hence we get the solutions for the fourth equation of (35). In fact we have the two
solutions

£/~ (957 + 1653) b3 + 1664 + 454 + 1263 — 263
- 3by '

by

With every one of these two values for by we have a continuous piecewise differential systems (8)-(11).
Moreover, using all the parameters which provide the continuity of the system except the final value by, we
solve the algebraic system (15), we get only one pair (y1,y2) excluding y; = y2 and permutation between
y1 and ys. Then the continuous piecewise differential systems (8)-(11) can have at most one limit cycle.
Numerical example.

a1 =1, ap= \PMOVIBOBILIATNIZGT -y, — Lo (2308 — \/T3080), by = 3/2,

o = — 19(\/ 1303972308) . l\/6995470812*/13039+10285238052791 o — 3 95 _ 14\/254(5052\/13039+1718561)

1= 5040 76047982270 J 2 = 112 299401505 J
7(34487+/13039+7413985) 9 \/ 10(5052v/1303941718561)

ap =1 az= 477061618 » B =11/10, B2 =7/5, m = 133 (17231 7604798227 and

Y2 = 2.
The crossing limit cycle is shown in Figure 2.

100

-5}

-20r

-25¢+

Fig. 2. Crossing limit cycle formed by systems (8)-(11).

Zooming in the graph near the points of intersection y; = —0.493173 and yo = 0.58115 with the
y—axis, we get the graph as shown in Figure 3.

X

y
0.2

-0.49317

Fig. 3. Zooming in the graph of crossing limit cycle formed by systems (8)-(11).
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Subcase 1.1.2: Consider the set z3 of (39). The remaining fourth equation of (35) becomes
Ba (b3 + B3) (12b1 (85 — 6b3) + b (128b3 + 987 — 3233) + 9bob?) (arby — a1 ) ? =0,
This last equation is equivalent to the following one
12b1 (B3 — 6b3) + bo (12863 + 957 — 32/3) + 9bab] = 0.

From bofy # 0 we have b # 0, then we can get all solution for this last equation by solving it with
respect to b1. Hence we get the two solutions for the fourth equation of (35)

£/~ (967 + 163) b3 + 1664 + 454 + 1263 — 253
- 3by ‘

With every one of these two values for b; we have a continuous piecewise differential systems (8)-(11).
Again using all parameters which provide the continuity except the final value by, we solve the algebraic
system (15), and we get only one pair (y;,y2) excluding y; = y2 and permutation between y; and y2. Then
the continuous piecewise differential systems (8)-(11) can have at most one limit cycle.

Subcase 1.1.3: Consider the set z3 of (39). Here we do not need to solve the fourth equation of (35) to
get a continuous piecewise differential systems (8)-(11), because solving the algebraic system (15) we get
only one pair (y1,y2) except a permutation between y; and y, which are

y1 = [B3(— (70479 (472 + 3) + 639)) (80072 (42 + 3) + 693) + 168234(271 + 1)(872 + 3)(3126475(4ys + 3) +
27549) — 6727 (390472 (4v2 + 3) +2601) (28271 + f2)* + 37427257 (872 + 3) (20271 + B2)® — 31129631 (2271 +
B2)4+12v/6(2y1 +1)VR]/[2481 (3281 B (B (8792 +3) — 4(2Ba1 + 52)) (7 (16472 (472 +3) +153) — 82828 (27 +
1)(872 + 3) + 164(2627m + B2)%) — V6VR)] and

Y2 = [VOVR + 8B182(—483 (872 + 3)(16472(4y2 + 3) + 153) + 95252(2v1 + 1)(64072 (472 + 3) + 387) —
912031 (872 +3) (26271 + B2)* +512(26271 + 82)®)] /[4857 55 (87 (70472 (472 +3) +639) — 3523231 (271 +1) (872 +
3) + 704(262m1 + $2)?)],

where

R = — 18387 (22472(472 + 3) + 207) — 11263251 (271 + 1) (8y2 + 3) + 224(28271 + 2)?) (87 (5127242 + 3) +
531) — 2560281 (2m + 1)(8y2 + 3) + 512(26271 + f2)?)*.

And since from 219 of (39) we have by = —/S/3, with S = 3233/3 — 947. This provided that S > 0 and
R > 0 which are verified if and only if 81 = 0, this value of 3 is not allowed because we have already from
(38)

b1

483 (a1B1 — anby) + by (6a181b1 — 16a1b281 + 30 57 — 3o bi + 1601 baby)
361 (b3 + 57)

This proves that the possible continuous piecewise differential systems (8)-(11) have no limit cycles.
Subcase 1.1.4: Consider the set z4 of (39). This case follows in a similar results to Subcase 1.1.3. Then
we have no limit cycles for the possible continuous piecewise differential systems (8)-(11).

Subcase 1.1.5: Consider the set z5 of (39). Again this case gives similar results to Subcase 1.1.3.
Subcase 1.1.6: Consider the set zg of (39). Also this case gives similar results to Subcase 1.1.3.
Subcase 1.2: Consider the set uy of (37). Before solving the remaining equations of (35) to get a continuous
piecewise differential systems (8)-(11), we solve the algebraic system (15) by using only one parameters
B1 = 0 to get four pairs (y1,y2) as follows

a2

S0 ={yn = T, yo = YHgea),
S = {n = gt o = — g,
Sy = {yn = — YA,y = BRI,
Sy = {y1 = YR, gy = —Egea ),

where

R1 = [2048¢3(B2 — 2b2) B3 + 256b1c2 (4(8v2 + 3)b2 + 16c2B2b2 — 333 (82 + 3)) B3 + 16b2c1(B2(256¢3 +
9672 (472 +3) +63) — 128baca(8v2 +3)) B3 — 23 (82 +3) ((256¢2 + 3272 (472 +3) +27) 32 — 96baca (872 +3) B2 +
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4b2 (8 +3)%) Ba — 2b1[ B3 (b1 (872 + 3) — 8c182) 2 (512¢3(2(3272 (42 + 3) + 9)b3 — 64coB2(872 + 3)ba + (256¢3 +
9)53)85 — 128b1c1 (872 + 3)(2(3272(4y2 + 3) + 9)b3 — 64c2B2(8v2 + 3)ba + (256¢3 + 9)33) B3 + b3 ((256¢5 +
9)(256¢3 + 12872 (42 + 3) + 81) B3 — 128baca (872 + 3)(256¢3 + 6472 (42 + 3) + 45) B3 + 8b3 (872 + 3)%(768¢3 +
(1672 +3)(1672 +9)) 83 — 512b3c2 (872 + 3)® B2 + 16b3 (872 + 3)4))]1/2] /(B3 (8c1 B2 (BF — 2b3) + by (4(872 + 3)b3 —
16¢2 8202 — 622(8’)/2 + 3)))] and

Ro = [1024c¢3(85—2b3) 85 +8b3 ¢t (B2(2563+9672 (472+3)+63) —128bac2 (872+3) ) B35 — b3 (872+3) (2563 +
3272 (47y2+3)+27) 82 —96baca (872 +3) o +4b3 (872 +3)?) Bo+(128¢3 (4(872+3) b3+ 16c2 8202 — 353 (8v2+3) ) B +
[33(b1(872+3) —8c132)%(512¢3(2(3272 (472 +3) +9)b3 — 642 B2 (8v2 + 3)ba + (2563 +9) 55 ) B3 — 128b1c1 (872 +
3)(2(32y2(47y2 + 3) +9)b3 — 64caB2(872 + 3)ba + (256¢3 +9)55) B3 + b2 ((256¢3 + 9)(256¢3 + 12879 (4y2 + 3) +
81)83 — 128baca (872 + 3)(256¢3 + 642 (4y2 + 3) + 45) B3 + 863 (872 + 3)2(768¢3 + (1672 + 3) (1672 + 9)) 83 —
512b3¢2(87243)% Bo + 1665 (8v2+3)*))]Y/2)b1] /83 (8c1 B2 (B3 — 2b3) +-b1 (4(842+3)b3 — 16¢2 faba — 53 (872 +3)))].

Since y1 (y2) of Sy is equal y2 (y1) of Si, and y; (y2) of Sa is equal to y2 (y1) of S, then we can choose
two pairs Sp and Ss. This proves that the possible continuous piecewise differential systems (8)-(11) can
have at most two limit cycles in this case, but in what follows we will prove that they cannot have limit
cycles because R; < 0 and Rq < 0.

Return now to the continuity condition. Solving the sixth equation of (35) we get one allowed solution
which does not contradict (14), then we have 3y = —3b1/(4v/2) (See supplementary section 5.37).

Now the first equation of (35) becomes equivalent to

b2 (448ag002 (271 + 1) +216a1 (271 +1)2(V2a2 + ) — 64v/2(2a971 +a2)? + vV 2(256 (2071 +a2)? —81a3)) = 0,

and since f; = 0 we must have b; # 0, otherwise they contradict (14). Solving this last equation with
respect to a; we get two following values

2
o) = ig\/(271 +1)2 (56\/5&2(12 +27V2a 09 — 16a% + bdaiag + 640%). (40)

Without solving the fourth remaining equation of (35), we use all parameters we always obtain Ry < 0
and Rs < 0.
Subcase 1.3: Consider the set uz of (37). Working as in Subcase 1.2 the piecewise differential system
has no limit cycles in this subcase.
Case 2: Consider the set sg of (36). Solving the third and the sixth equation of (35) we get the only one
solution {a; = 3az(b? + B%)/(435) + a1b1/B1, aa = 3azb1/(2B2) + 182/ B1} which verify the condition (14)
(See supplementary section 5.38).

Then solving the first and the fourth equation of (35) simultaneously, The solutions for which the
condition (14) is verified are two (See supplementary section 5.39)

up = {by =0, B1 = —4PBa1/64c3 +9/(31/256¢3 +9)} and
ug = {by =0, B = 4B21/64c3 +9/(3/256¢3 + 9)}.
For any of these solutions we have now a continuous piecewise differential systems (8)-(11).

Subcase 2.1: Consider the set u; of (41). Here we consider the first integrals for (8)-(11) which are given
respectively as follows

(41)

(a1 + b1y +c1) 2+ (v + a1z + Bry) 2 — Ky (42)
2(n +arx+ Bry) +1 ’

and
—256 (azl' + boy + CQ) 2 + 128 (’}/2 + asx + 52y) 2 + 96 (’)/2 + asx + Bzy) +9
(8 (72 + o + Pay) + 3)*
where k1 and ko are two arbitrary constants.

The points of intersections of orbits of system (8) with the y—axis is given by solving equation (42) with
respect to y, then we get the set of solutions as follows

3B24/64c3+94/256c3+9(k1—v1)+ \/,8§ (—64c3—9)(256c3+9) (16¢3—9k1 (k1+1))

483 (64c3+9) ’

= ko, (43)
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B2+/64c3+9+/256c3+9(v1— k1)+\/62 (—64c3—9)(256c3+9) (163 —9k: (k1+1))

y= 483 (64c3+9) ¥

To obtain the points of intersections of orbits of system (9) with the y—axis, we solve equation (43) with
respect to y, then we have the following solutions

Y9 — {y _ 34/256c349(2n+1) 1 [1-4/—256c3ko—9ko+1

Bar/64c2+9 8
(3 256c§+9(271+1)+ 17w/725ﬁc§k2 9k2+1>

B21/64c3+9 Sha

y=3

_ 34/256c3+9(2m+1) \/ —256¢3ka—9ka+1+41

862+/64c3+9 B3 k2 ’
y = 1 [ 34/256c3+9 25602+9 2’y1+1) —256(:51@ 9ko+1+1
8 B2+/64c3+9

All possible cases for which the orbits of (8) coincide with the orbits of (11) on the y— axis to forme a
closed orbits are given by solving, with respect to k1 and ko, the algebraic system formed by connecting
the two points of Y'1 together with any possible two points of Y'2. All such cases give the following different
pairs (k1, k2) as follows

_ _ 1 _ 3
Kl—{k‘l——ga kz__%TngE)}’
K2:{k1:

(—/64c2 + 9 — 3), ’“2:W1§+9} and
K3:{k1: (\/6402+ ) k;Q @}

Using all these three pairs, Y1 becomes:
For K1: Y1 is given by

Vi { \/,82 (64c3+9)2) (256¢349) —3B2+/64c3+94/256¢3+9(271+1)
= y:

833 (64c3+9) ’

D= O

9

y= 833 (64c3+9)

3821/64c3+91/256¢3+9(271 +1) +\/62 (64c2-+9) )(256c§+9)}

which are complex.
For K2: Y1 is given by
V26549((/61c3T9+67143) /2563 +9(/64c3+9+671+3)
821/643+9 e 8621/643+9 ’
which gives only one element.
For K3: Y1 is given by

/256349 (/643196713 V/2563+9( (/64319671 -3) }
)

8621/643+9 T 8621/643+9
which gives only one element.
This provided no limit cycle for the piecewise differential system (8)-(11) in this subcase.
Subcase 2.2: Consider the set ug of (41). Working as in Subcase 2.1. Again this provided no limit cycles.
Case 3: Consider the set s3 of (36). Solving the third and the sixth equation of (35) we get the following
set of real solutions {b2 = 3b;/16, B; = 0} for which the condition (14) is verified (See supplementary
section 5.40).

Solving the first equation of (35) we obtain one of the following sets of real solutions (See supplementary
section 5.41)

u; = {az = 3a1/16} and
Uz = {’71 = _1/2}7

for which the condition (14) is verified. For any of these solutions we have now a continuous piecewise
differential systems (8)-(11).

(44)
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Subcase 3.1: Consider the set u; of (44). We shall solve the fourth equation of (35) which now is
aoby (256 (2a971 + a2) 2 _ 904% (’y% +v1 + 1)) =0.

Since by # 0 and ag # 0 (because 1 = 2 = 0), this equation has two solutions

—9a2 + 102403 F 31/3072a3a2 — 27af
18a2 — 204803 '

=

Subcase 3.1.1: For 7; we have a continuous piecewise differential systems (8)-(11). We solve the algebraic
system (15). The first two equations become

(3041 — 32042) (30&1 + 320(2) b1 (y1 — yg) (3b1y1 + 3b1y2 + 3262)

=0,
9v/3\/—0? (903 — 102403)
(30&1 — 320(2) 2 (3041 + 32042) 2b1 (y1 — y2> (3b1y1 + 3b1ys + 3262) —0
1592524805 '
From these equations we get y1 = yo or y; = —332;12 —yo. Then this provided a continuum of periodic orbits

and then no limit cycles.
Subcase 3.1.2: For 7;". We again have a continuous piecewise differential systems (8)-(11). We solve the
algebraic system (15) its two first equations become

(3041 — 320{2) (3a1 + 32&2) b1 (yl — yg) (3b1y1 + 3b1ys + 3202)

9v/3,/—a? (903 — 102403)
(30&1 — 320[2) 2 (30&1 + 320&2) 2b1 (yl — yg) (3b1y1 + 3b1ys + 3202) —0
159252485 ’
From these equations we get y; = yo or y; = _332;12 —1y5. Then this provided a continuum of periodic orbits

and then no limit cycles.

Subcase 3.2: Consider the set ug of (41). Then the fourth equation of (35) becomes —27aja9b; = 0. This
equation has ay = 0, ag = 0 or by = 0 but all these solutions are not allowed because they contradict (14).
Then in this subcase there are no continuous piecewise differential systems (8)-(11). M

4. Conclusion

First we have studied the planar continuous piecewise differential systems formed by a quadratic isochronous
center and an isochronous linear center separated by the straight line x = 0, and we have proved that they
cannot neither crossing periodic orbits, nor limit cycles, see Theorem 1.

Second we study the crossing periodic orbits and limit cycles of the planar continuous piecewise dif-
ferential systems separated by the straight line x = 0 having in > 0 the quadratic isochronous center
(8), and in = < 0 an arbitrary quadratic isochronous center, i.e. one of the systems (8), (9), (10) or (11).
We remark that these last four quadratic polynomial differential systems are all the quadratic polynomial
differential systems having an isochronous center. For these four families of continuous piecewise differential
systems the maximum number of crossing limit cycles is one, and there are examples having one crossing
limit cycles. See Theorem 2.

In short for the eight different families of planar continuous piecewise differential systems here studied
we have proved the extension of the 16th Hilbert problem to them.
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5. SUPPLEMENTARY INFORMATION FOR REVIEW ONLY

5.1. SECTION

All real solutions
S1 = {az = O,bg = O,CQ = —1/2},

so={b1 =0,bp =0,c1 =

- \/(2a1 ca+ar1)?+4az(azcd+azces ) +2a1ca+ar

|2

2a2

\/(2a1 ca+a1)?+4az(azc3+agces ) +2a1co+a1

83:{191:0,()2:0,01:
sqg ={a1 =0,a2 =0,b; =0,by =0},
55:{a2:0,b1 :0,b2=0,61=0},
86:{a2:0,b1 :0,b220762:—1/2} and
87:{a:0,a1 :0,a2:0,b2:0,01 :0}.

2a2

5.2. SECTION

The algebraic system has the following real solutions
S1 = {bl - 07 b2 = 0702 = Cl(GQCl—al)}’

aici+tag

82:{a1:Oaan:O?bl:OabQ:O}?
s3 ={az =0,b; =0,bp = 0,c; =0},

}7

4a3c2+8asa;ci+aiw?+4a3 g = wata o _ —asc+aicifaicacitazcs
B = =

S4 = {O[ = 4a1 by al Y
ss ={a=0,a; =0,a3 =0,b; = 0,co = c3}.

5.3. SECTION

The algebraic system has the following real solutions

51 ={b1 =0,bp =0,c0 = 4611(64;12;1j§521)}>
SS9 = {CLQ = O,bg = 0,62 = 3/16},

S3 = {al :O,CLQ :O7b1 :07b2 :0}7
s4={az = 0,b; = 0,b = 0,c1 = 0},

S5 = {az :O,bg :O,Cl :O,CQ :3/16},

o 4a20§ +3ai1c1—16aicac1+3a2c2

c2—c
,5: 1 2,b1 :O} and

a1bs ai

2
c]—3c2

1024a2c? —384aza1 c1+9a3w?+36a3 8= 3as—16a1cy
B =

S6 = {Oé = 36a1b2 3a1 Y

0},

s7={a=0,a1 =0,a2 =0,b; :0702:_40%/3}7
sg ={a=0,a1 =0,a2 =0,by =0,¢; =0} and
s9g ={a1 =0,a2 =0,by =0,¢1 =0,co = 3/16}.

54. SECTION

The algebraic system has the following real solutions
S1 = {ag = O,bQ = O,CQ = —3/8},

S9 = {a1 = O,CLQ = 0,b2 = 0,02 = —3/8},

83 = {a1 = 0,&2 = 0,b1 = O,bz = 0},

Sq4 = {ag = O,bl = 0,()2 = O,Cl :O},

S5 = {ag = O,bl = 0,[)2 e 0, Cy = —3/8},

S6 = {a = O,a1 = 0,&2 = O,bg = 0,01 = 0},

87:{b1:07b220701:

— \/(Salcz +3a1)2+64a2 (4agc§+3a2 02)—4-8(11 co+3aq

3a1b2

32as9

\/(Sal c2+3a1)?+64az (4agc% +3a202)+8a1 co+3aq

2

Sg = {bl = 0, b2 = 0701 = 32a9

12

(5:74

3ai

sg={a=0,a; =0,a2 = 0,by = —by/\/2,c1 = (—/288¢3 + 216¢2 + 9/2 — 4v/2¢c5 — 3/1/2)/32},

s10={a=0,a1 =0,a2 = 0,by = —ba/\/2,c1 = (\/288¢3 + 216¢ca + 9/2 — 4v/2c2 — 3/+/2)/32},

,b1:



s11={a=0,a1 =0,a2 = 0,b; = by/V/2,¢c1 = (—/288¢3 + 216¢ca + 9/2 + 4v/2¢2 + 3/+/2)/32} and
s12={a=0,a1 =0,a2 = 0,by = by /2,1 = (1/288¢3 + 216¢2 + 9/2 + 4v/2co + 3/+/2) /32}.

5.5. SECTION

d1 = {az = 0,9 = 0},
d2 = {bQ = 0762 = 0}7
d3 = {OQ == 0762 == 0}7

_ _ —2apB2ba—aB5+ bl
dg = {bl - 2(04252—112%2) 2}'

5.6. SECTION

All real solu2tioﬁnl§ B
_ __ 2a2P2b2+02f5 —a2bs _
r= {bl - 2a22—2ai2b2 » A1 = 0}’

ry = {by =0, B2 =0},

r3 ={a;1 =0, f1 =0, y1 = —1/2},
7’4:{0,2:0, 041:(), O[QZO},

rs = {b1 = b2/2, B2 =0, v2 =—1/2},
re = {b1 = b2/2, a1 =0, B2 =0},
r7={a1 =0, ap =0, B =0},

_ _ _ _ 2a2b1(271+1)7b2(2a271+a1+a2)
Tg_{ﬁl _07 /82_07 Y2 = 201 ba },

_ _ 182 (b3+53)
10 = {51 T 2a9(ba—b1)BatazB5+az(2b1—ba)bs’
. 2b2(2”/1+1)(a252+0¢2b1)+52(52(206271—Oé1+a2)—2a2(217171+b1))+b§(—(206271+a1+042))}
2 201 (03+53) '

5.7. SECTION

All real solutions
s1 = {as = agby/Ba, a1 = —\/a3(=b3 + b3 + B2)/Ba},
so = {az = agba/Ba, a1 = \/a3(—b} + b3 + B3)/Ba},

o o OtQﬂS—azb%-‘rQalebQ o
s3 = {az = 2b1B2—2b2 B2 , a1 =0},

S4 = {bl = bg, o] = —Ozz},

S5 = {bl = bg, o] = 012},

s¢ = {ba =0, a1 =0},

sy ={ba =0, B2 =0},

sg = {b1 = ba/2, > = 0},

sg = {b1 = by, [ = 0},

510 = {b2 = 0, B2 =0},

s11 ={ag =0, P2 =0},

s12 =1{B2 =0, 11 = —1/2},

513 ={a1 =0, 11 = —1/2},

si={az =0, by =0, a1 = —\/a3(B3 — b7)/ B},
s15 = {ag =0, by = 0, a1 = \/a3(85 — b7)/PBa},
S16 — {bl = bg, o] = O, a9 = 0} and

s;7={a1 =0, ag =0, 1 = —1/2}.

5.8. SECTION

All real solutions

r1 = {41 =0},

T = {ag :O, a9 :0},



r3 ={b2 =0, 2 = 0},
ry ={az =0, B2 =0} and
dasonboB3+253 (203 (b3+B7) —adb3) —dasanbaBa (b3+287 ) +03B3+adb3 (b3+457)

s ={a1 = 463 (b3+03 ) (azBa—azbs) -
5.9. SECTION
All real solutions
= {7 = 2azb2(252’71—ﬂ1+ﬁ2)+a252(252’71—251+52)+4a25152(01—02)‘*‘1)5(—(20‘271+a2))+4a261b2(02_01)}
S1 =172 = 481 (a2b2+0a2B2) ’

2b9y1+ba+4,
so = {as = —asBa/ba, ¢ = M}

33:{a2—0 052—0}

s4={as = w By =0},

s5 =1{f1 =0, 1 =-1/2},

56 = {b2 = 0, P2 = 0},

57:{67/2:0) b2:07 042:()},
sg={ba =0, cg =1, g =0},

sg ={by =0, ap =0, B =0},
s10=1{b2 =0, f1 =0, vy = —1/2} and
s11 ={a2 =0, f1 =0, B2 =0}.

5.10. SECTION

er(F-mn+D)

51 = {a’l - 2vici+e1 , b= 0}’
az(c3—72(72+1)
SQZ{GQZ%a b _0}7

S§3 = {bl = 0, bg = 0},

S4 = {bg = 0, a1 = 0},

S5 = {a1 = 0, Qo = 0},

s¢ = {01 =0, y1 = —1/2},

S7 — {bl = 0, Q9 = 0},

S8 = {041 = 0, g = 0},

sg ={az =0, 72 = —1/2},
s10=1{b1 =0, c1 =0, 7y = —1},
S11 = {bl =0,c=0, 7= 0}7
s12={b2=0, 2 =0, 72 =—1},
513 =1{b2 =0, c2 =0, 72 =0},

S14 = {bl =0,c1=0, a1 = 0}7

s15 ={b1 =0, a1 =0, 1 = —1/2},
516 = {b1 = b2, oy =0, v = —1/2},
si7={b1 =0, by =0, a1 = 0},

S18 = {bl =0, 01 =0, ag = 0}7

519 = {b1 = b2, ap =0, o = —1/2},
590 = {b1 =0, by =0, ay = 0},

521 ={by =0, c2 =0, ay = 0},

532 ={b2 =0, az =0, 72 = —1/2},
593 = {b1 = b2, a1 =0, ap = 0},

sy =1{b1 =b2, c1 =co, 1 = —1/2, 2 =—-1/2},

N _ o2(2a1mtai+2aice) 201 _ — _ a1c2(27241)
525 = {(12 = 2a172+0n 2y1+1? b1 =0, b2 =0, c1 = 2otz }’
S96 = {a1 =0, b1 0, c1 = 0, Q] =

So8 = {bl = 0’ b2 0 a9 = O Y2 = _1/2}a
S99 = {a2 =0, b = 0, c2=0, g = 0}3




- _ @1a2(211+1) — — - -
s30 = {az = 520, b= 0,60 =0, ¢1 =0,c2 = 0},

s31 = {ag = —22«722?17 b1 =0, bp=0, cg=0, 71 =—1/2},
s32 = {a1 = _22’311—16-21a b1 =0, bp=0, c; =0, 7o =-1/2},
533 =1{b1 =0, bo =0, c1 =c2, 11 = —1/2, 72 =—1/2},
s34 ={a1 =0, by =0, by =0, ¢; =0, oy =0},

835 — {az =a, b1 = bg, Cl =C, 1 = —Q2, Y1 = —72 — 1},
536 = {bl = b227 1 = 202’ Ojrl :2—062, M= _1/27 T2 = _1/2}27 n
_ _ 2asc a17y1+a1—2002C2 _ _ _ 2C21C2 _
s37 = {az = F£2% — =S , b1 =0, b2=0, c1 = =252, a1 = —n},

s33 ={az = a1, by =be, c1 =c2, a1 = a2, N1 = Y2},
s30 ={b1 =b2, c1 =c2, a1 =g, M1 = —1/2, 72 =—1/2},

. _ 2a1y1+ai+2ascs 2a¢ _ _ __ 272catco _
S40 = {QQ - s 2y2+1 - 2»7124'_217 bl - 07 b2 - 07 1= 271_’_1 , 1 = CVQ},
s41 = {az = 07251 =+07 by =0, c2 =0, ag = 0},
a a
sig={az =509, b1 =0, b2=0, c1 =0, =0, o1 = —aa},

543 = {az = —223;?1), b1 = 0, b2 = 0, Cy = 0, o] = —Q2, Y1 = —1/2},

sap={a1 = 292% b =0, by =0, c; =0, a1 = —aa, 2 = —1/2},

s45 =1{b1 =0, bp =0, c; =2, 1 = —2, 71 = —1/2, 12 = —1/2},
846:{042:%7 b1:O> bQZO, 01:0, 62207 (11:0[2},
S47 = {GQ = —22?;22_’6_11, b1 = 0, bg = 0, Cy = 0, o] = G, Y1 = —1/2},

s48 = {a1 = _22;1124?17 b1 =0, bp=0, c; =0, a1 = a2, 72 = —1/2},

849:{b1 :0, b2:0, Cl =C2, X1 =02, 71 :—1/2, ’72:—1/2}.

5.11. SECTION

All real solutions are
r o= {Oll _ a2(3b1+81)2),31%2b§—;;2b2(3b1+2b2),31 },

Tro = {bl = 0, bQ = 0},

r3 = {by =0, B = 0},

ry = {by =0, B2 = 0},

rs = {1 =0, B2 =0},

16 = {b1 = —2b3/3, P2 = 0},
r7 ={a2 =0, B2 =0} and
rg = {a2 = 0, b2 = O}.

5.12. SECTION

All real solugtbiQO(gg ar+eﬂ ©48)— 85 Babacat 35152
812{’)/2: 5 (88271 +061 162()35112202 12},
S2 = {bQ = 07 /81 = 0},

s3 ={by =0, B =0},

sg ={f1 =0, 1 =-1/2} and

s5 = {f1 =0, B2 =0}.

5.13. SECTION

All sets of real solutions

v1 = {Bs = b2(8b271+b1(671+%)/B-5;4b2—66101—8,8102)}’
vy = {by =0, 51 = 0},

V3 = {bl = —4b2/3, 51 = O} and

Vg4 = {,81 = 0, Y1 = —1/2}.




5.14. SECTION

All sets of real solutions f
(15b1+56b2) 81 (271 +1)— 25, 30831

w1 = {02 = 11257 o )

wy = {cs = V3, S+/31(b%+,81)(151171225721(;11;5)61)2<2w+1) 30f31c1)}7
1

w3 = {a2 _ 2(8b2’71+b1(6’Y1+?:>3)/8-i1-4b2—6,3161—85102)}7

wy = {az =0, B = 0},

ws = {b1 =0, B1 = 0},

we = {b2 - _3b1/47 61 = 0}7

w7 = {b2 = —3b1/16, ﬁl = 0} and
wg = {1 =0, 1 = —1/2}.

whith

S = BE(b? + B7)(36B1b5c1 (271 + 1) + b3 (448(2bay1 + b2)? — 3B2(12¢% + 127y (1 + 1) + 31)) +4B1bica (2 +

1)(987 — 448b3) + 4486257 (4¢3 + 1) — 9b} (271 + 1)% — 12B1(3¢3 + 7).

5.15. SECTION

The polynomial of degree two of the Subcase 1.1 in the proof of statement (c) of Theorem 2 is

648¢3 85 4 19656¢1 55 +1296¢5 1 85 + 39312¢1 71 5? - 15120b2c‘11ﬁ17 - 972blc%ﬁI — 504b2c% By — 3888b1c171 Bl — 15120b20171 /31
393126177 87 +7056b273 7 —9828b1 57 +3528h, 51 —3888b1c2y18{ — 151201;2(:171 87 ~3931261m 87 +7056b271 BT +1296b7 ¢330 —
334656b3¢3 80 + 30240b1ba¢3 88 + 3888b7¢173BY + 30240b1boci3BY + 583203172 + 45360b1bac1y38Y + 39798b 016?
836641;5@15?

5O4b1b2c1[31 + 259207 cm ,81 = 6693121;2(;1%51 + 60480171132&;‘71 8%+ 815401;%(;1%5? - 167328b2c171 ﬁl + 16128b1b2c171,61
150528b201 57 - 15120b1b2c161 - 1296b171 BY — 15120b2bory 87 — 1973763 57 — 18816b3 ﬂl - 2592b171 87 — 30240b3bo73 ,31
418321 b337 —1944b c%/sl ;112896 c%ﬁl+5o1984b1b c%ﬁ 26964b2b20151—80568b171 7 —37632b 7%514—167328611)271 /31
TT76b3 3287 — 150528b3 6171 51 + 20079361)1192(:171 B — 120960b1b201fy1 By — 5292b21m1 B + 5166b2b2,31 - 79272b 7151
376320371 55 + 167328b1b371 87 — T776b5¢31 55 — 1505283 31 57 + 2007936b1 b3 c3y1 87 — 120960b3baci 1 B7 + 9828b%bay1 57

+

+

648b1ci 81 + 3010561 b3ct B — 334656b7bac BT + 3024007 bact B + TTT6bTc1yi BT + 301056b1b3 1y} B — 2007936b7b5¢177 B +

120960b7bac1 77 BT + 1332V3v/RiciBi + 11664bic17i B + 451584bibjcivi By — 3011904bibse1vi 81 + 181440b3byc1v7 By
252v/3vR181 — 504v/3y1vR181 + 20628b%c1 8} - 112896'blfr2‘c15§1 - 334656b%b§c1ﬁ;1 + 11844b{b2c1ﬁil + 1296'{;‘1%{715;l
602112b1 b3y B — 669312b§b§c§m,@% + 60480b1b2c1'y161 & 2664f VR 61 + 45144btey v 87 + 376320b1b2cw1ﬁ1

_|_

1673280b3b2c1v1 1 + 84168b1b2cw151 — 999007 ﬁl — 2592b3~1 51 - 15()528b2b271 B3+ 669312b3b2fy1 51 — 45360b1b2’y1 51 -

37632621)2/61 + 1848\/7\/ b261/81 — 5184b /Ylﬁl - 301056b2b ’7151 + 1338624b3b ’7?51 - 90720b1b2’)’151 + 83664(7162/31

9725187 — 263424b3b3 c%/sl + 501984b3 b3 c%ﬁl — 26460b1b20161 — 43200b 7%/31 — 338688b%b3 ot 283 + 1171296b3b2’yl 61 -

3888b161’}/%ﬁ1 — 1053696b1b2cl’71,81 + 20079361)3(7261’71 ,81 — 105840b4b261’}/151 — 577081)11)271,61 + 1848[\/ b26171/31
5328v/3b1c1v VR B — 1332\fb1c1x/ Ri153} — 5328\fblc171\/ 51 - 252b4b251 + 924\ﬁ/ bgclﬂl — 40608b7 7151

188160[)2172’)/151 + 501984b3b "}/1,61 — 3888b1C17161 — 1053696b1b201’}/1ﬁ1 20079361)1[7201’}/1/81 — 105840b1b201’}/1ﬁ1 -

12348b1b271ﬁ1 + 1848v/3V/R bgcmﬁl + 2664v/3 \/ Rib2~387 + 3888b1c1fy1 87 + 903168b1b2c17151 - 2007936b4b2c171 ,81
9072Oblb2017161 + 81f\/ b2 51 + 952\f\/ b2,81 b 1332f\/ 1b c%ﬁl + 3808v/3/R1b c%ﬁl + 39963/ R b2 71,81
5832b 1171 51 +1354752b1b2€1’)/1 61 —3011904b1b201’}/1 ,61 +136080b1b201’}/1 ﬁ% —1848\/§b1b2’)/%\/ 61 —2772fb1b20 \/ 61

2772\/§b1b2ﬁ\/R1B% — 462v/3b1b2/R1 57 — 5544v/3b1baciyi VRIS — 1848v/3b1bay1 VR1 Bf + 486b?c1 82 + 112896b{>b§c1 B2

250992613 ¢y 87 + 11340b3bocy 57 + 1494+/3/R1 b3y, B3 + 1904v/3/R1 b3y 8%

+

2664\/3\/}%1 b%c%l B2 +7616+/3vR1b3c3y1 57 + 291665 ¢1v1 57 + 677376b§’b§cm B2 — 15059521;‘1%5(:171 ﬁ% + 68040b3bocy 1 57 —

816781 — 1296b]~1 31 — 3010561)41)271 B1 + 669312065b3~1 61 — 30240blzm1 B1 — 18816b71b3 31 — 25920773 51 — 602112b4b271 B1
1338624?)56271 B — 60480611)271 b1+ 41832b5b2B1 — 1944b]~? b1 - 4515841;41)271 B1 + 1003968b5b271 B — 4536Oblb271 B1
7392v/3v/Ribibacin2 81 — 5328v/3b3c17iv/R1B1 — 15232v/3b1b3c17vivR1 81 — 1332v/3b3c1v/RiB1 — 3808v/3b1b3c1v/RiB1
5328v/3b3c1v1vVR1B1 — 15232v/3b1b3civiv/Rif1 — 189068bo31 + 1848v/3/Rib3baci By — 648b1~1 81 — 150528b1b3~1 51
334656b7b371 81 — 1512005bom1 81 + 7392v/3v/Ribibacim1 B + 333VBVR1b] + 2664v/3VR1biy; + 7616v/3v/Ribibsy;
952v/3y/R1b3b3 + (—15120b2¢3 87 + 7056b237 + 15120b1b2c15§ + 3024Ob1b2c171ﬂ§ — 376320387 — 1505281;3(;%,@{
30240b3bac? 8] — 1512003b2y3 51 + 1033203b2 57 — 15120b1b271ﬂ1 + 150528b1b2c161 + 30240b3b2c1ﬁ1 + 301056b1b2017161
60480b5bac1y1 B8 — 75264b363 87 — 150528b3b; c%ﬁl - 15120b1b2c151 — 150528b3b3~3 37 — 302401)1@71 B — 504bibaf37 +
1848¢§¢Eb2c16f - 1505281;%1)3715% - 3024Oblb27161 — 924/3, ble\ﬁ Bt — 1848\/ blbmf ﬁl + 150528b3b2c161
15120b1b20161 + 301056b1b201'ylﬁl + 3024Ob1b2017161 - 3763217‘1*17 B3 — 15052817%271 ﬁl - 1512()blzm1 B3 — 3780b6b261
1848v/3v/R1b3bacy B3 —150528b1b 7151 —1512068bay1 35 — 924+/3b5ba /Ry 57 — 1848+/3b3bay1 v/ R1 57 )y3 + 39961/3v/ R b~

Jr
+

Jr
+

+

11424v/3\/R1b3b3~43 — 36961/3b5bovi VR — 5544v/3b3bayiv/R1 — 462v/3b3bo/Ry — 2772v/3b3boyi/Ry + (1296¢3 5] +
39312¢1 87 — 1944b1c388 — 15120b2c2{5§ — 19656b1 87 + T056bo37 — 3888byc3y1 87 — 30240baciy1BF — 39312017187 +



141120971 85 + 2592b3¢38] — 669312b3¢3 57 + 3888b1c1fylﬁ1 + 60480b1b2c1fyl,81 + 795963 clﬂl — 167328b201ﬁ1
1512Ob1b2c1B17 +3888b%cmﬂf +60480b1b2c171,61 — 39474b3 89 — 3763263 35 — 1296b171 B8 — 30240b1b2'y 8% + 83664b1b3 55 —
3888b c%ﬂl — 150528b c%ﬁl + 1003968613 ciﬁl — 30240b2b2c151 — 1944b3 71/31 - 45360b1b271ﬁ1 + 10332b2b251 -
79596b171ﬁ1 — 75264b3 fylﬂl + 167328b1b371 8 — 7776b1c17151 — 301056b20171ﬂ1 + 2007936b1b2c17151 - 60480b1b2c17161
5544b1b271 B9 + 1296b1c1 87— 669312b2b2c161 +2664f 3vVRich 51 +7776b1c171 87 4 602112b1byc1 i BT — 2007936b2b2c171 51 +
120960blb2cw1 51 — 504v/3\/R W 51 + 41256b}c1 B9 o 150528b1b2c1B1 - 669312b2b2c1,81 ha 30240b3b2c1ﬁ1 + 7776b1cm[31
602112b1b5c171 87 — 2007936b1b20171ﬂ1 + 120960b1b20171ﬁ1 — 1998065 81 — 75264623 51 — 2592633 81 — 301056b7b3~3 51 +
669312b3b27{’51 - 60480b1b271 BT + 167328636357 — 1944b c%ﬁl - 150528b2b 5c2B1 + 1003968b3b3¢3 31 — 15120b4b2c161
3888657387 — 451584b2b;3 71,31 + 10039681)%271/31 - 90720b1b271/31 - 2664f blcl\ﬁ [31 - 5328f blcmf 51
5o4b4b251 1848\/ F bgclﬁl — 41256b9~1 8 — 301056b3b3~1 51 + 669312b1b27161 - 3888b10171ﬂ1 - 301056b1b2c1fy151
2007936b1b2c17161 - 3024Ob1b2c17151 — 31248b1bay1 81 + 3696v3V/R F bgcw161 + 162v3\/R F b? 51 + 1904v/3\/R F szl
2664+/3v/R1bici B + T6161/3v/R1b3cs 53 + 2664+/3/R1b3 7%51 + 3888b5c1vE B3 + 6021126563 cyylﬁl - 2007936b1b201'yl/31
604801)?1)2(:171%% - 3696\/§b1b2fy1 VRSB — 924V/3 blbgf B — 3696f b1b271mﬁf + 97205¢1 83 + 150528b3b3¢1 B}
5019841)1172@;31 + 1512Ob1b2c1,81 + 2664\f 3vR1 bﬂlﬁl + 388805 c1y1 87 + 602112b3b2c17151 - 2007936b‘11b§c1716§’
60480b5boc1y1 B3 — 1620753 — 37632b16367 — 1296b171 P 301056b4b271 7+ 669312b51m1 7 — 3024008boy3 B3
83664b5b261—1944b1’yl 51—4515841;4@1 ﬂl+1003968b5b 73 2 — 453606 bory? 51—2664\f blclf ﬁ1—7616\/§b1b§cl\/RTﬁ%
53283 blcmf 82 — 15232[ 3b1b3ciy1vVRLBZ — 3780b6b261 + 1848v/3VR f b2bge1 B2 — 972b]y1 37 — 225792b4b2'y161
5019841)11)27151 — zzesoblbmﬁl + 3696\f 3V R1b3bac171 87 + 66613V R1bif1 + 1904v/3y/R1b3b351 + 2664v/3/ Ry bm B1+
7616+/3v/ Ry ble’yl B1 — 3696v/3b3boy? F B1 — 92443 bleF B1 — 3696v3b3boyivVRif1 + 2664v3VRibivif1 +
7616v/3v/R1b3b371 81 )y2 + 1998v/3v/R1biy1 + 57123/ R1b3b3~y, =

where

Ry = B(bF + B1)(—9(271 + 1)*b1 +36¢181 (271 + 1)b] + (448(271ba +b2)® — 387 (1265 + 1271 (71 + 1) + 31))b7 + 41 81957 —
448b3) (271 4 1)by — 12(3¢F + 7) BT + 448b3 (4cf + 1)B7).

il

5.16. SECTION

The polynomial of degree two of the Subcase 1.2 in the proof of statement (c) of Theorem 2 is

—648@}’,8% —19656¢, 85— 1296(;%1 liy 3931217, ,Bf + 15120@&{5{ +972b1c%5{ +504b2c% BY +3888blc%y% BT+ 15120bzc%yf BT+
39312bw1 B8] —7056b273 ,6’1+9828bl/31 3528b2ﬁ1+3888b1c171ﬁ1+15120b201'ylﬂ1+39312b1'ylﬂl 7056b27151 1296blcffﬁ?+
334656b cifﬁl — 3024010263 8% — 3888b7c1viBY — 30240b1baciyiBY — 583207c1viBY — 45360b1baciyiBY — 39798b3¢1 B¢ +
83664b2c161 -
504b1b261/31 — 25921)161’}/151 + 669312b201’71ﬂ1 — 60480b1b261’ylﬁ1 . 81540b 01’71/31 -‘r— 167328b3 Cl’ylﬁl — 16128b1b201’ylﬂ1
150528b c%ﬁl + 15120b2b2c161 + 1296637187 + 1512062bo71 87 + 197376387 + 18816b3 /31 + 2592b1’y1 ﬁl + 302401;11;271 /31 -
41832b1b 61+1944b 3¢2 87 +112896b3¢2 7 —501984b; b c%ﬁl+26964b2b2c151+80568b1y1 ,814—376321) V263 — 167328b1b271 51+
777661c171 Bl + 150528b§c%y%ﬂ{’ - 2007936b1b§c§7%51 + 120960b2bo 32 37 + 5292b3bayi 7 — 5166b7bo 37 + 79272651 87 +
37632b271 83— 1673281)11)271 B7 4 7T76b3 3y, /31 +150528b3 31 87 — 2007936b1 b3 31 57 + 12096063 bacy1 37 — 9828b3bory1 57 —
648b1c3 81 — 301056b1 b3c3 51 + 334656b2b2c1 BT — 30240b3bac3 81 — TT76bTe1v3 BT — 301056b1 b3c1~7 B + 2007936b2b5c1 3 BT —
120960b3bac1 73 81 + 1332v/3v/Raca B — 11664biciviBT — 451584b1b3c1vi BT + 3011904b3b3c1~: B — 18144003 bacyvi BT
252¢§¢Eﬂ% - 504\/371\/1?25;* — 20628bjc1 8 — 112896b1b§c1511 + 334656b%b§c1[3;1 - 11844b§’b2c1[3;1 - 1296b%c§’716%
602112b1b2c1’7161 & 669312b2b2c17151 - 60480b1b2c1'y151 & 2664\f 3vRz cmﬁl — 45144btey v B — 376320b1b2c1’7161
1673280b1b2c171B1 - 84168b1b2017151 + 9990b 283 + 2592b3~1 83 + 150528b2b3~1 37 — 669312b3b3 7%,31 + 45360bTboi B}
37632b3b3 37 + 1848v/3v/Rabaci B3 + 518465 ?[31 + 301056b3 b3 i”ﬁl - 1338624b3b27151 + 90720b1b2’y1 B3 — 836641;11)25%
972b c%ﬁl + 263424b2b2c1ﬁ1 — 501984b3b c%ﬂl + 26460bTbaci B7 + 43200b 1 283 + 338688b2b271 B3 — 1171296b3b271 B3
388807 ¢33 51 + 1053696b2b3c2~2 37 — 2007936b3b§c%y%51 + 105840b1b2c171 B} + 57708bFbay3 37 + 1848f 3vRa. bac17i 5f
5328v/3by 173 F B8 — 1332\/ 3bicivVR25 — 5328\f 3bi1c1y1vR2 5} + 252b4b251 + 924v/3v/Raboci B3 + 4060857 'ylﬁl
1881606253 7151 — 501984b3b3v, 53 + 3888b3 31 37 + 1053696b2b cmﬁl — 2007936b3b3c371 87 + 105840b1b2c171[31
12348b1b27151 + 1848v/3/Ra. bgcl'ylﬁl + 2664v/3v/R F b3pE — 3888b10171 B? — 903168bib§cwi/31 + 200793661620171 5%
90720b1b2c1’yl,61 + 81\/Fb Bl + 952ffb /31 - 1332f\ﬁb c%ﬂl + 3808[Fb2c1ﬁ1 + 3996[Fb171/31 -
583205171 57 — 135475265 b3 c1v1 B7 +3011904bT b3 17 B7 — 13608065 bac1 i 57 — 1848v/3b1bayi v/ Ra ﬁ172772\f bibaci/Ro, ,617
2772v/3b1boy? /R 33 — 462v/3b1bo/Ro 33 — 55441/3b1bociy1/Ro B3 — 1848v/3b1byy1/Ra 33 — 486bY ¢ 37 — 112896636201 51 +
250992b3‘b§c15%—11340b§>b2clﬁ%+1494\/:§\/R7b%71/312+1904\/§\/R7b%v1ﬁ%+2664\/§F b%c%71617+ 7616+/3v/Ra bchlﬂl
2916bSc1y1 87—  677376b3b3cim 7+ 1505952b%b3civ 87 — 68040b1b2cmﬂ1 + BB+ 1296bn1 +
301056b4b271 B1 — 669312630371 61 + 30240b6b271 Bi + 18816b4b2ﬁ1 + 259267381 + 60211261b271 51 - 1338624616271 51 +
60480611)271 61—4183%562,61—1—19441) 73 B1 +451584b1b3~3 61—1003968b5b2'y1 B1 +4536Ob1b2'yl B147392v/3/Rab3bacivif1 —
5328V/3b3c1v2/Raf1 — 15232v/3b1b3c1v2/Raf1 — 1332v/3bieiv/Raf1 — 3808v/3bibiciv/RafB1 — 5328v3biciyiv/Raf1 —
15232v/3b1b2ciyi VR2B1 + 189065ba81 + 1848v/3v/RabZboci B + 648b{7161 + 150528b% 034181 — 3346566027181 +
1512009boy1 81 + 7392v/3v/Rabibacivif1 + 333v3v/Rab] + 2664\f F bivd + 7616f 3V R2b3b373 + 952v/3v/R F 6262
(15120ba¢3 B — 7056b2 3 — 15120b1 bacy 55 73024Ob1bgcm15§ + 376326337 + 15()528b2c1 51 +3O240b2b201 Bl + 15120b2byy3 37 —
10332630287 + 151201;21;27151 - 150528b1b2c161 — 3024063 bac1 88 — 301056b1b3¢1y1 87 — 60480b3bocyv1 S + 75264676387 +
150528b3b3¢1 87 + 1512061 bact BT + 150528b2b 57387 4 30240b7ba3 B + 504612 37 4 1848v/3v/Rabact 57 + 150528b3b31 57 +
30240b‘11b271ﬁ1 — 924+/3b1bav/ RS — 1848\f biboyiv/Rafi — 150528b3b3c1 BT — 15120b3boc1 BT — 301056b5b3c1v1 8T —

RSy



302406562c17151 +37632b4b2ﬂ1 +150528b7b3 7%[31 + 151201;61;271 B3 +3780b6b2/31 +1848+/3v/Rab3bocy B3 + 15052861 b3 m B3+
1512065 b1 7 —924+/3 blbzf 51—1848f blbmf B7)y3 +3996v/3y/ Rabini +11424v/3 /Ry b2b2v1—3696f blbmf
5544ﬁblb271\/7 - 462f blbgﬁ — 2772V/3, blbmf + (—1296¢3 67 — 39312187 + 1944b1c3 Y + 15120b9c5 85 +
19656()161 - 7056b2,61 + 3888b1c1'y1ﬂ1 + 30240b2c3y1 85 + 39312b1v1 87 — 14112bo7y1 85 — 2592b3¢3 87 + 669312b3¢3 5] —
:sssgblcn1 Bl — 60480b1b2cwl ﬂl - 79596b%c15I + 167328b§c15{ — 1512Ob1b2c1617 - 3888b%cmﬁf - 6048Ob1b2017161 +
394746389 4 376326339 + 1296b3~3 8% + 30240b2b2’yl By — 836646162/31 + 3888b cfﬂl + 150528b c%ﬁl — 10039686155 cfﬁl +
3024062b2c1ﬂ1 + 1944b171ﬁ1 + 45360b1b27161 - 10332611)261 -+ 795961717151 + 75264b271ﬂ1 — 1673280137187 +
77766331 ﬂl + 301056b2c171 61 - 2007936b1b2c171 8%+ 60480b1b2c17161 - 5544b1bﬂ151 — 1296b7c3 7 + 66931262023 37 +
2664v/3v/Raca 37 — TT76biciviB) — 602112b1b20171[31 + 2007936b1b2c171ﬁ1 - 120960b1b2cmﬁ§’ - 504\&\/37,3{’ —
412561)‘1*(;15?—15052817117301/31 +669312b1b2c151 30240b1b2c1[31 TT76b3c1y1 87 — 60211261 b3¢1 1 57 +2007936b1b2cmﬁ1
120960b1b2c1'y161 + 199806781 + 75264b3b3 87 + 2592034351 + 301056b7b3 71“’51 — 6693126353 7%61 + 60480b7ba7} 51 -
167328b7b3 81 + 1944b5¢2 81 + 150528b%b5¢1 31 — 1003968b5b3c3 31 + 15120b1b2c1B1 + 3888b9~1AT + 451584b7b3~7 51 -
1003968b3b2fyl,61 + 90720b4b271 Bt — 2664f blclf ﬂl - 5328f blcmf ,@1 + 5o4b4b251 1848f F bgclﬂl
41256b171 ih +301056b2b271 iy —669312b1b271 Bt +3888b1c171 Bt +301O56b1b2c171 ity —2007936171132(;171 BE+30240bTboc2y1 B+
31248blb271/51 + 3696ffbgcm,31 + 162v/3y/Rab? 51 + 1904f\ﬁb [31 + 2664[Fb1c1 P+ 7616\f\ﬁb2c1,31 +
2664+/3/Rabi~? 37 — 3888bSc17E B — 602112b3b3¢1~7 87 + 200793661 b3¢177 B3 — 60480b3baci 87 — 3696+/3b1boyi+/Ra 37 —
924+/3b1ba/ RSy —  3696V3biboyivVRafr —  97208¢1 85— 150528bibsci By + 501984b‘1*b§c15{> -
1512Oblb2c1ﬁ1 + 2664f 3V Rz bmﬂi - 3888b1r:171/6'1 - 6021126'162c1715'1 + 2007936b1b2c171ﬁi - 6048051b2c17151 +
16267 87 + 37632076357 + 1296b i) 387 + 301056b703 2 362 — 669312b5b271 [31 + 302401;1bﬂ1 B2 — 83664b5b2ﬂ1 + 1944b7~2 61
451584b4b271 B2 — 1003968b5b2'y1 B2 +45360b6b271 B2 — 2664\f blclf B2 — 7616\f blbzclf 2 — 5328/3 blcmf ﬂl
152323 b1b2cmf 87 + 3780b6b2,6’1 + 1848v3VR F b3bac1 B2 4+ 97201y157 + 225792b1b27151 - 501984blb271ﬁ1 +
22680b1b271ﬁ1+3696f VRa b1b2c1v1,61+666\f VR2b /31+1904f VR b2b2/31+2664f VR2b1Yif1+7616v/3 F bb3~E B —
3696v/3 blbmf B1 — 924v/3b3boy/Raf — 3696\f 3bibayivVR2B1 + 2664v3V/Rablvif1 + T616v/3vRabib3viB1)y2 +
1998v/3v/Rabiy1 + 5712v/3/Rabab3~; = 0.

where

Ro = B2(b3 + B3)(=9(271 + 1)2bT + 36¢1 81 (271 + 1)b3 + (448(271ba + b2)? — 387(12¢3 + 1271 (71 + 1) + 31))b3 + 4¢1 51 (967 —
448b3) (271 + 1)by — 12(3¢2 + 7)B1 + 448b3(4cF +1)57).

5.17. SECTION

All sets of real solutions
s1 = {bl = /81}5
s2 = {a1 = f1, a2 = p1},
53 ={a1 = f1, 1 = —1/2},
54 = {az = f1, 72 = 3/16},
s5 ={c1 = —4c2/3, v1 = —1/2, 9 =3/16} and
2
s6 = {ag = —3a1/4, c1 = —4ca/3, y1 = —322 —1/2, yo = 3/16 — ;T?}.

5.18. SECTION

All solutions are
s1 ={a1 =0},

- 2b251(—2,32172(901+8Cz)+b§(1672—3)—12ﬂ§)+3b1(bg(ﬂl(1672—3)—662)+861sz202—3,31,33)}
f2=m = 36616382 ’
s3={b1 =0,c1 = £g(2UG=8 1202 _16c,)},
s5 = {b2 = 0,81 = 0},
s¢ = {b2 = 0,82 = 0},
s7 ={b1 = 0,61 = 0},
sg = {p1 =0,62 =0},
sg = {b1 = —2b2/3, B2 = O} and

0 =1{B2 = 0,72 = 3/16}.

5.19. SECTION

All solutions are

up = {f1 =0},
2a1b2(3b1+2b2)—3a b
up = {1 = — bl ) Sl
_ \/2a1b2(3b1+2b2) 30,26
{/81 f\/ﬁ }



us = {a2 = 0,b; = —2b3/3} and
ug = {a2 =0,bp = 0}.

5.20. SECTION

All solutions are
v1 = {a1 =0},
vy = {a2 — 2a1b2(311;1+2b2)}

vy = {b2 = —361/2}
_ 3b1 (882baca+b3 (1672 —3)—382)+4bo(—16F2baca+b3 (1672 —3)—1283)
v ={a = 726265 b

vy = {b1 = —4ba/3, B2 = 0} and
v = {B2 =0, y2 = 3/16}.

)

5.21. SECTION

All solutions are
wy = {az _ 2(2a1b2+3a1b1b2)}

wo = {a1 =0,b1 = O},

’LU3:{b1—O bQ—O}

wa = {by = 4baaz(32B2b3 ca (3—16v2)+/85b3 (256¢3 —3847y2+153)+38435 baca+b3 (3—1672)°+14483) 2y }
4= - 9a1(32B2b3¢2 (3—162)+2B2b2 (128c2+2475+9) —48B83bsca+b3 (3—1672)2+987) 39215

ws = {a1 = 0,az = 0},

we = {a1 = 0,by = 0},

wy = {ba =0, B2 = 0} and

wg = {f2 = 0,72 = 3/16}.

5.22. SECTION

All solutions are )

21 = {ag = — 3a1(32B2b5c2 (3—1672)+8B3b3 (32¢5+672+9) —48B5baca+bs (3—1672)°+6353) }
L= 92 = T 4328503 2 (3— 1672 )+ B2b2 (25602 — 38472+ 153) +38483 by ca+b3 (3—1672)2+14453) ) *

z9 = {ba = 0},

Z3 = {b2 = O,ﬂg = 0} and
z4 = {B2 = 0,72 = 3/16}.

5.23. SECTION

Solving the second equation of (24) we get one of the following sets of real solutions
v1 = {a1 =0},
vy = {(12 _ 2a1b2(3b1+2b2)}

vy = {b2 = —3b1/2},
—q _ 3b1(8B2baca+b3 (1672 —3)— 3B2)+4b2( 1682baco+b2 (1672 —3)— 1232)}
Ve =161 = 726285 ]

V5 = {b1 = —4by/3, B2 = 0} and
vg = {f2 =0, v2 = 3/16}.
The only allowed solution is vg then we have

_ 3b1(8B2baca + b3 (1672 — 3) — 365) + 4ba(—1682b2cs + b3(1672 — 3) — 1263)

7202 B2

The first equation of (24) gives one of the following sets of real solutions
2(2a1b2+3a1b1b

wy = {a2 — (2a1 23‘)’2;1 1 2)}7

we = {a; = 0,b; = 0},

ws = {b; = 0,b2 = 0},

wa = {by = 8b2a2(32ﬁ2b2cz(3 1672)+B3b3(256¢3 —384v2+153)+384B3baca+b3 (3—1672)°+144583) 2y, }

4= - 9(11(32,6'213302(3 1672)4-2,6’%1)2(128c2+24'yz+9) 48/3§b202+b4(3 16v2)2+9B4) 372

ws = {a1 = 0,a2 = 0},

wg = {a1 =0, by =0},

wy = {ba = 0,2 = 0} and




wg = {B2 = 0,72 = 3/16},
The only allowed solution is w4 for which the value of by is given as follows

8baag(32B2b3ca(3 — 1672) + B3b5(256¢5 — 384y + 153) + 38485bacy + by (3 — 1672)* + 144533) 2 )
9a1(3282b3c2(3 — 1672) + 262b3(128¢3 + 2472 + 9) — 48B3baca + b3(3 — 1672)2 + 953) 37
Solving the fourth equation of (24) gives one of the following sets of real solutions
3a1(32B2b5c2(3—1672)+8B5b3 (32¢5+672+9) —48B5 baca+b3 (3—1672)°+6353) }
32B2b3 ¢ (3—1672)+B2b3 (2562 —384y2+153)+38483baca+b5(3—1672)%+14483) 1’

21 = {ag = — i
z9 = {ba = 0},
z3 ={ba =0,82 =0} and
24 = {52 =0,72 = 3/16}.
The only allowed solution is 21, so the value of as is fixed.

Now we have a continuous piecewise differential systems (8)-(10). We solve the algebraic system (15) with respect to y;
and y2, and we get one of the same sets of solutions sg, s1, s2 and s3 as in Subcase 2.2.1.1. Then the continuous piecewise
differential systems (8)-(10) can have at most one limit cycle.

5.24. SECTION

All sets of solutions are

s1 = {a1 = 0}7
sog={by = O},2 .
s3 = {72 _ 3b2(8,3271+51+4fg;%—ﬂslﬁlﬁzbzcz+3ﬁlﬁz }7

S4 = {b2 = 07/61 = 0}7
s5 = {b2 = 0,52 = 0},
s6 ={f1=0,711=-1/2} and
s7 ={p1 =0, B2 = 0}.

5.25. SECTION

All sets of real solutions

s1 ={a1 = a2, B1 = a2},
sy = {ba = a2, f1 = a2},

s3 ={a1 = a2, ag = az},
sq4 = {by = a2, f1 = a2},

s5 = {c1 = a2, f1 = a2},

s6 = {01 = a2, 11 = —1/2},

az(4b3+962) 6bac1y1+3bac1 +461¢5
s1={B2=—35005, > V2=— 36, 2}
2
sg = {b2 = a2, ag = az, v2 = —4c3/3},
6bac +3bgcy +481¢2
so = {a1 = az, ag = ag, v = — 221 T bieay,

s10 = {c1 = az, b1 = ag, B2 = ¥},
s11={B1 = ag, B =2, 1 =-1/2},

s12 ={a1 = a2, ag = ag, B1 = a2, 71 = —1/2},
513 = {a1 = a2, ¢1 = a2, az = a2, f1 = az}.

5.26. SECTION

All solutions are
S1 = {(11 = 07 /81 = 0}7

2
so ={a1 = 3—%@(—% —64), y2=15(1— 761(2%111;’82))}7
s3 ={a1 =0, a2 =0},
s4 = {c1 =0, B1 =0},
s5 ={f1 =0, B2 =0},
s6 ={P1 =0, 11 = —1/2},
s7={a2=0, by =0, y2 = (1 - ALnHA2) )y

sg ={ba =0, ¢ =0, B1 =0},

s9 ={b2 =0, p1 =0, B2 =0},

510 ={b2 =0, B1 = 07271 = -1/2},

s11 = {a1 = %%(—% —64), 2 =0, 1 = —1/2},



9
s12 = {a1 = 35 2(*i —64), c1 =0, cg =0},
813 = {al = 316 ( bigl — 64)7 c2 = 07 /82 = 0}7
S14 = {al = 716042/9, /31 = 07 Y1 = 71/2}7
S15 = {al = —16@2/9, Ccl1 = 07 61 - 0}7
s16 = {a1 = —16a2/9, f1 =0, B2 = 0},
s17 ={a2 =0, bp =0, c; =0, c2 =0},
sig={a2 =0, by =0, c2 =0, f2 =0} and
s19={a2 =0, b =0, cg =0, 1 = —1/2}.

5.27. SECTION

All solutions are

\/b367 (12863 -957 ) (1663+953)

ulp = {CLQ = O},

ug = {f2 = 0},

uz={f1 =0, v1 =—-1/2},
ug = {c1 = —8¢a/3,

1286251 — 963 0 M=

367 (16b3+987)

us = {c1 = —8¢2/3, P2 = \/b2

B%(128b3—-957) (16b3+957)

ug = {c1 =

5.28. SECTION

967

—8¢2/3, f1 =0, 1 = —1/2}.

367 (16b3+957 )

a 8,/b357 (12863957 ) (1663-+957)

Bica 1
b~ 2h

/31 Cz

— 1}and

128625, N =

8,/b357 (12863957 (1603-+957)

Solving the first equation of (15) with respect to y2 after substituting in it only ¢1, we get

128b5 (27v1c2 + c2) + 64b3 (2y1y1 +y1) + B (—128c§ + 1871 (1 + 1) + 9y1 (268171 + /31))

Y2

Y1

Y1

Y1

1

(6463 + 987) (271 + 2B1y1 + 1)
Replacing this value of y2 into the second equation of (15) and solving it with respect to y2 after invoking the remaining
parameters B2 and 1, we get a polynomial of degree four which has the four roots

381 (16b3+987)

—13v3

1
12862932 +

3ﬁ1(16b2+961)

8\/b2ﬁ1 128b2—982) (16b2+952)

—33V3\ iz —amr + 5 Joami(

351(16b2+951)

2 \f\/ 128b2—9/31 8\/,)251

128b3—957)(16b3+952) a

361 (16b5+987)

Q\f\/ 128b2—951 8\/b 82(

(12863-98%)(1663+987)

128b2—93%2)(16b2+95%) -

c2

bs "

Replacing these values of y; into yo2, all cases give y2 = y1 which does not give limit cycles for the piecewise differential systems

(8)-(11) in this subcase.

5.29. SECTION

Solving the first equation of (15) with respect to y2 after substituting in it ¢1, we get

Y2

Y1 = -

Y1

Y1

Y1

(6463 + 957) (271 + 2B1y1 + 1)
Replacing this value of y2 into the second equation of (15) and solving it with respect to y2 after invoking the remaining
parameters B2 and 1, we get a polynomial of degree four which has the four roots

361 (16634987 )

13\/7Q/ 128172 952 8\/b2ﬂ2

361 (16b3+987)

12863 —952)(16b3+952)

13\/7’/128172 952 8\/b2ﬁ1

381 ( 16b2+951)

3
‘[\/ 128b2 952 8\/b261

128b2—93%)(16b2+98%)
351(16b2+961)

3 /
\f 128b2—9,81 8\/17251

12863 —957)(16b3+95%)

128b2—932)(16b2+952)

128b (27102 + c2) + 64b3 (27151 + 1) + A1 (*12805 + 1871 (v1 + 1) +9y1 (28171 + 51))

— &2

C2

-

C2

by *

Ea

C2

ba

and

Replacing these values of y; into y2, all cases cases give y2 = y; which does not give limit cycles for the piecewise differential

systems (8)-(11) in this subcase.



5.30. SECTION

All solutions are

51 = {az =0},

S92 = {ﬂl = 0}’

s3 = {B2 = 0,72 = 3/16},

s ={B1=—4%/b3 (12¢2 — 1), B2 = 0,72 = 3/16} and

s5 ={p1 = %W’BQ = 0,72 = 3/16}.

5.31. SECTION

All solutions are

up = {az = 0},

ug = {1 =0, 11 = —1/2},

ug = {B1 =0, B2 =0},

ug = {f2 =0, v2 = 3/16},

us = {1 =0, f2 =0, y2 = =971(mn1 +1)/16},
ug = {f1 =0, 1 = —1/2, y2 = 9/64},

(8 1661 b3+9502 , —36/3fb§+3\/bgﬂf(1008be§+2048b‘2%—815;‘)-&-51%3
U7 =1P2 = y V1 = — 151232 )
\/b362 (12803952 ) (163 +952) 102453720163
54b2
V2 = g-rher + 16}
\/b35% (12863957 (1603-+95) 366263+3 /0367 (12803 —957) (16b3+957) —512b3
={h= 9p7 —128b3 51 » M= 862 (12862 —952) ’
5463

72 = gp7= 128b2 + 16}
ug = {f1 = —8\[52/3, f2=0, v1 =1, v2 =3/16} and
uio = {B1 = 8v2ba/3, B2 =0, y1 =1, 72 = 3/16}.

5.32. SECTION

All solutions are
81 ={a1 =0, ag =0, B =0},
sp={a1=0, c; = =V +1, a1 =0,61 =0},
s3 ={a1 =0, 1 =vnvn+1, a1 =0, B1 =0} and
az (6aicy + 16aice + 6a1y1 + 3aq) _ _ Caa(—cd+ri+tmn) 46
3ar y B1 =0, B2 =0,72 = ” - 7}*

sq4 ={as =

5.33. SECTION
+3)(b3+53

All solutions are s; = {ag = agba /B2, ca = %}

sy = {b1 =0, 1 =0}, ,

s3 = {c1 = [=3b3(2v1 + 1)(dagbs — azBa) + b1 (9a1Baba(2y1 + 1) + a1 53 (872 + 3)
+ 41 b5 (872 + 3)) - 51(3(2% + 1)(—agB2p1 + 4azba 1 — 3a1b2B2)

+ a1 (872 + 3)(4b3 + B3))]/[18b2B2 (a1 by — a1 1)),

(=303 (271 +1) (cabz—azB2) —B1 (381 (271 +1) (azba —azB2)+ai1 (872+3) (b3 +83)) +or1 b1 (8v243)( 52+52)}
(24b2B2(a1by—a11)

Cc2 =

54 = {az = azb2 /P2, a1 = a181/b1},

s5 ={a1 = a1B81/b1, m = —1/2},

56 = {b2 = 0, f2 =0},

s7={a1 =0, a2 = azba/P2, a; =0},

sg ={a1 =0,a1 =0,7y1 = —1/2},

Sg = {a1 =0, ap = agbg/ﬁg, b1 = O},

s10 ={a1 =0, by =0, m1 = —-1/2},

512 ={b1 =0, b2 =0, B1 =0},

s13={a2 =0, ba =0, a1 = a151/b1},
s14 ={bp =0, oy = a181/b1, 11 = —1/2},
a1 B2b1 (6v143)—3281 (28171 +81)+B1P82(—8aica+6a1v1+3a1)— 3b2(204271+042)+80él,326102

s15={b2 =0, ¢c; =

_ =3a2(2v1+1)(B3+87)
V2 = 85, (anbi—a1 Br) 2 —3/8},

682 (a1b1—a1B1)




8y2+3) (b3453
s16 = {az =0, 62:%552;52), ag = 0},

si7={b1 =0, 1 =0, B2 =0},

s18 = {a1 = a181/b1, aa =0, B2 =0},
s19 = {a1 = a181/b1, B2 =0, v1 = —1/2},
sg0 ={a2 =0, B2 =0, v2 = —3/8},

591 = {e1 = —3a2(2v1+1) (b3+87)+a1ba (b1 (6v1+3) —32B1c2) +a1b2(32b1ca+668171+381) 3
21 = = 6b2(1b1—a161) » P2

_ 3(B1(a2B1(2y1+1)+aibs)+b3 (2ay1 +as)—aibiby) }
72 = 8b2(a1by1—a1f1) ’

522 = {a1 =0, a2 = asgba/fB2, b1 =0, a1 =0},

523 :{a1 =0,b6=0, a1 =0, 1 :—1/2}7

so5 ={a1 =0, b =0, a1 =0, 71 = —1/2},
526:{a1:0, a2 =0, by =0, b2:0},

827:{(11 =0,b6=0,b0=0, 7 :—1/2},

sa8 ={a1 =0, a1 =0, ag =0, B2 =0},

S29 :{a1 =0, a1 =0, f2=0, 11 :—1/2},

sz0 ={a1 =0, by =0, ag =0, B2 =0},

s31=4{a1 =0, by =0, B2 =0, 71 = —1/2},
532:{a1:0, a2 =0, by =0, by =0, (11:0}7

S33 :{a1 =0,b=0,02=0, ¢y =0, 71 = —1/2},
s34 ={a1 =0, b1 =0, a1 =0, ag =0, B2 =0} and
835 ={a1 =0, b1 =0, a1 =0, B2 =0, y1 = —1/2}.

=0,

5.34. SECTION
B2 (45% (a1b1 — a151) + 3a2b3B1 + 8a1b3 B + 3az63 — 8a151b§)
3b2f31 (b3 + %) ’

All solutions are u; = {ag =

3 b2+ 2
ug ={b2 =0, a1 = f—bll <4a1 - 7%(51% 61))},

ugz = {b1 =0, B1 =0},
B2

U4:{b2:7\/§, /81:0}7

B2
us {b2 \/57 131 0}7
ug = {a1 =0, f1 =0},
ur ={B1 =0, B2 =0},
ug ={b2 =0, B2 =0} and

2
40152 ) — 0, by = 0}.
362

ug = {ag =

5.35. SECTION

All solutions are

4/35 (a1B81 — a1b1) + b2 (6a1ﬁ1b1 — 16a1b351 + 3a1ﬂ% - 30(11)% + 16&162[)1)

ot 51 (7 + ) '

vg ={p1 = a;fl }s
vg = {f2 = 0},

vy = {B2 = —V2b2},

vs = {B2 = V2b2},

vg = {a1 =0, by = O},

vy ={a1 =0, a; =0},

vg = {b1 =0, B =0},

vg = {a1 =0, 1 =0},

V10 = {ﬂl = 07 52 = —\/bQ (16b2 — 3b1)/2} and
vi1 = {81 =0, B2 = \/ba (16b2 — 3b1)/2}.

5.36. SECTION

All solutions are z; = {81 =

2o ={y1 = (51(872823)*452)

a1by
al ?



9(=b357 5 (9b7+3205 +987 —1653) (55 —2b3) (453 (907 —32b3+957) +b3 (97 —256b5 4+967) ~1663)) '/

863 (B2 —2b3)(—4B3 (967 —32b2+957)+b3 (—9b3+256b3 —957 ) +1653)

— — (B1(8y2+3)—48s)
={y = %

9( b2 8% B5 (963 +32b3+987 —1662) (B3 —2b2) (4635 (9b3 —32b2+987)+b3 (967 —256b2 +957 ) — 16,64))1/2}

8BZ(B2—2b3)(—403 (967 —32b3+937) 1 b3 (— 962 + 25663 —962) + 1661
z4:{a1:0, b1 = 0},
z5 = {a1 =0, a1 = 0},

z6 = {b1 = —51/4B83 — 983, by = 0},
27 = {b1 = §,/483 — 98}, by = 0},

28:{62—_7 p1 = 0},
29:{b2:ﬁ7 ﬂl_ }a

/3232
z10 = {b1 = —% 3532 - 95%7 by = —f%}’
/322
z11 = {b1 = % fz - 95%7 by = —%‘%}7
32432
z12 = {b1 = f%\/ 352 — 96%, bo = By },

3242
z13={b1 = 3 362—9557 _ﬁ2}
4(4b%2+32
214 = {bl = *%7 B1 = 0}»
4(4b%24-52
215 = {bl = (b§7_~_4227 B :0}7

216 = {by = —%,/256b3 — 987, B2 = 0},
217 = {b1 = 3,/256b3 — 987, Bz = 0},
0

z18 = {b2 =0, B2 =0},

219 = {1 =0, B2 =0},

20={B2=0, 2 =—3},

w1 = {br = — 4 /560, bo =22, p1=0},
202 = {b1 = 41/3fa, bo = 22, B1 =0},

203 = {b1 = —31/5P2, ba = %, p1 =0} and

224 = {b1 = %\/gﬂ% by = 52, g1 =0}

5.37. SECTION

All solutions are v1 = {b; = 0},
v2 = {on = 0},

v3 = {a2 - _\/§CL2}7

veg ={f2 =0} and

vy = {f2 = 3b1 Nk

5.38. SECTION

All solutions are u; = {82 = 0},

up = {a1 = 3az(b] + B7)/(4B3) + a1b1/B1, az = 3azb1/(2B2) + a1B2/P1},
uz = {a1 = anb1/fB1, a2 =0},

ug = {b1 = 0,61 =0},

us = {01 =0, 81 = 0},

ug = {az =0, B2 = 0},

uy ={a2 =0,a1 =0,8; =0} and

ug = {ag2 = 0,61 =0, 82 = 0}.

5.39. SECTION

All solutions are u; = {ag = 0},

ug = {1 =0},

}7

)



uy = {b1 =0, f1 = —4f/64c3 +9/(3,/256c3 + 9)},

g ={b1 =0, B1 = 485,/64c3 +9/(3,/2563 + 9)},

us = {b1 = —485,/64c3 +9/(3,/2563 +9), f1 =0},

ug = {br = 4P2,/64c3 +9/(3,/256¢3 +9), f1 =0},

ur ={as =0, f1 = —\/1683(64c3 +9) — 963(256c3 +9)/(3,/256c3 + 9)} and
us = {as =0, f1 = /1653(64c3 + 9) — 963(256¢3 + 9)/(3/256¢3 + 9) .

5.40. SECTION

All solutions are u; = {by = 0},
ug = {ag = 0},

ug = {by =0, p1 =0},

ug = {b2 = 3b1/16, 1 =0} and
us = {ay =0, B =0}

5.41. SECTION

All solutions are u; = {az = 3a1/16},
ug = {b1 = 0},

uz = {ag =0} and

ug ={m = —-1/2}.



