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Abstract. In this paper we develop an arbitrary order Melnikov function to study limit

cycles bifurcating from a periodic submanifold for autonomous piecewise smooth differen-

tial systems in Rn with two zones separated by a hyperplane. This result not only extends
some of the known results on the Melnikov theory in dimension and order but also com-

pensates for some defects of the averaging theory in studying the limit cycle bifurcation

of autonomous systems from a periodic submanifold. To demonstrate the application of
our theoretical result and its superiority for some systems to the existing averaging theory,

we study the maximum number of limit cycles bifurcating from an n-dimensional peri-
odic submanifold caused by non-smooth centers of the fold-fold type, providing an upper

bound for any order piecewise polynomial perturbations of degree m. Concerning the pla-

nar case of the unperturbed system, a piecewise Hamiltonian system, we obtain a better
upper bound for piecewise polynomial Hamiltonian perturbations up to order two. The

realizability of these upper bounds is also discussed.

1. Introduction and statement of the main results

Qualitative theory of piecewise smooth (PWS) differential systems has become one of the
most booming research objects of ordinary differential equations in recent years. With the help
of such systems, we can better model and analyze discontinuous phenomena in nature, such as
the switching of circuit systems, the impact of mechanical devices, the activity of neurons in
the central nervous system, the vibration of oscillators with dry friction, see [3,12,25,44]. On
the contrary, an in-depth understanding of these discontinuous phenomena also has inspired
the investigation of PWS systems.

Consider the n-dimensional PWS system

(1) ẋ =

{
f+(x; ε) if x ∈ Σ+,

f−(x; ε) if x ∈ Σ−,

where x ∈ Rn, n ≥ 2, ε ∈ R is a perturbation parameter, f± : Rn × R → Rn are analytic
functions,

Σ+ = {x ∈ Rn : πx > 0}, Σ− = {x ∈ Rn : πx < 0}
are two zones separated by the hyperplane Σ = {x ∈ Rn : πx = 0}, usually called discontinuity
boundary or switching boundary [3]. We denote by π : Rn → R the projection onto the first
coordinate and by π⊥ : Rn → Rn−1 the projection onto the last n − 1 ones. For system (1)
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we can define its solution with the Filippov convention, refer to [16] or [31]. In this case, all
points in Σ are classified into

• crossing set: Σc = {x ∈ Σ : πf+(x; ε) · πf−(x; ε) > 0}, and
• sliding set: Σs = {x ∈ Σ : πf+(x; ε) · πf−(x; ε) ≤ 0}.

A typical periodic orbit that exists only in PWS systems is the so-called crossing periodic
orbit, i.e. a closed curve formed by concatenating the orbits of subsystems ẋ = f±(x; ε) only
at some points of Σc. An isolated crossing periodic orbit in the set of all crossing periodic
orbits of the differential system is called crossing limit cycle. In this paper we are interested
in the limit cycle bifurcation of system (1), when the unperturbed system has a periodic
submanifold, i.e. a submanifold fulfilled by a continuum of crossing periodic orbits.

One of the tools to study this problem is the averaging theory. The classical averaging
theory is effective only for smooth systems [10, 20, 45]. With the Brouwer degree theory, the
authors of [6] and [40, 41] extended the first three order averaging theory and the arbitrary
order one respectively, only requiring that the considered systems are continuous. At present,
stimulated by both the development of theory and practical applications, the averaging theory
for PWS systems has been studied intensively, see [37] for high-dimensional systems and
the first two orders, [27, 38, 48] for one-dimensional systems and any order, [39] for high-
dimensional systems and any order. It is widely known that averaging theory is established
originally for non-autonomous smooth or PWS systems, and thus it works for system (1)
when we change system (1) to a non-autonomous system by a suitable transformation, as
usual generalized polar coordinates. Then we can obtain information about the number of
crossing limit cycles of system (1) bifurcating from an unperturbed periodic submanifold via
studying the zeros of averaged functions associated with the non-autonomous system.

An alternative tool is the Melnikov theory, which can act on system (1) directly. Here
the number of crossing limit cycles bifurcating an unperturbed periodic submanifold can be
determined by the zeros of Melnikov functions. The research of Melnikov theory for smooth
systems has a long history, see [13, 17, 19, 28, 29, 52] and the references therein. Whereas
for PWS systems it is developing boomingly in the recent decade, and contributions main-
ly focus on deriving the first order Melnikov function. For instance, the authors of [14, 15]
studied the perturbations of general planar system (1) with a periodic annulus; the work-
s [35] and [33] dealt with the perturbations of planar PWS Hamiltonian case and integrable
non-Hamiltonian one of system (1) with a periodic annulus respectively, providing a new
expression of the first order Melnikov function; Xiong [49] generalized the work [35] by in-
troducing an additional parameter in the considered PWS near-Hamiltonian system. All of
the aforementioned references [14, 15, 33, 35, 49] aim to the planar case, while for the high-
dimensional case, we quote [21] and [46] where the perturbations of general system (1) with a
periodic submanifold containing in an invariant hyperplane and integrable system (1) with a
general n-dimensional periodic submanifold were considered separately. Regarding the higher
order Melnikov function, the result is much fewer. To our knowledge, only a formula of the
second order Melnikov function for planar near-Hamiltonian case of system (1) was given
in [36] and [50] independently.

In this paper our first goal is to develop an arbitrary order Melnikov function to study cross-
ing limit cycles of arbitrarily dimensional system (1) bifurcating from a periodic submanifold
fulfilled by a continuum of crossing periodic orbits. As far as we know, an expression of such
function is still lacking for the general system (1) except for some special classes, such as
piecewise polynomial perturbations of a linear center [8, 9].
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We stress that it is quite necessary to obtain an arbitrary order Melnikov function for
system (1), even if we have had an arbitrary order averaged function developed in [38,39] and
the two methods are equivalent in most cases [5,23,36]. The main reason is that the averaging
method has the following two deficiencies in studying the limit cycle bifurcation of system (1)
from a periodic submanifold. Firstly, although the averaged method can be applied in theory
with a suitable transformation, it is very difficult to find such a transformation for many
systems, in particular, the ones with a continuum of periodic orbits that are not due to linear
centers. Secondly, if we use the usual change of generalized polar coordinates, it is possible
for some PWS systems of the form (1) that the derived PWS non-autonomous systems are
extremely complicated, which increases the difficulty in computing the expression and zeros
of the averaged functions, even the subsystems of the derived systems are discontinuous in
each of regions associated to Σ±. For example, as we will see at the end of Section 3, if
we transform the PWS system (10) with n = 2 into a non-autonomous one using the usual
change of polar coordinates x1 = r cos θ, x2 = r sin θ, then both subsystems of the obtained
system are discontinuous and thus the existing averaging method fails. However, applying
the Melnikov theory developed in this paper to system (10) with n = 2, we obtain that the
Melnikov functions are polynomials divided by a monomial, for which its zeros can be studied
easily by mature tools. To some extent, this shows the superiority of the Melnikov method
to certain systems. Based on these reasons, we believe that it is quite necessary to provide
one alternative bifurcation function when it is not easy to compute and analyze the averaged
one. In general, there is no universal rule about how to choose between the two methods.
This mainly depends on the studied problem itself and personal preference.

1.1. Arbitrary order Melnikov function for PWS system (1). To state our first main
theorem on the arbitrary order Melnikov theory for system (1), we next set up our problem
precisely and introduce some notations. Without loss of generality we can rewrite system (1)
as

(2) ẋ =





f+0 (x) +
∞∑

i=1

εif+i (x) if x ∈ Σ+,

f−0 (x) +
∞∑

i=1

εif−i (x) if x ∈ Σ−,

where f±i (x), i = 0, 1, 2, · · ·, are analytic. We make the following basic hypothesis for system
(2) with ε = 0.

(H) There exists an open subset Ω of Rn−1 such that for each h = (h2, h3, · · ·, hn) ∈ Ω
the orbit of system (2) with ε = 0 starting at (0,h)> ∈ Σ is a crossing periodic orbit,
denoted by Γh, which crosses Σ in a transversal way and only twice.

Hypothesis (H) states that the unperturbed system of (2) has a periodic submanifold A
fulfilled by a continuum of crossing periodic orbits Γh for h ∈ Ω, namely A = {Γh : h ∈ Ω}.
Without loss of generality, in this paper we always consider that each Γh crosses Σ at (0,h)>

from Σ− to Σ+, i.e. πf±0 (0,h) > 0. In this case if we denote by x±0 (t, 0,h) the solution
of the unperturbed subsystem of (2)± starting at (0,h)> ⊂ Σ with h ∈ Ω, then hypothesis
(H) implies that there exists t+0 (h) > 0 and t−0 (h) < 0 such that x±0 (t±0 (h), 0,h) ∈ Σ,
x+
0 (t, 0,h) ∈ Σ+ for 0 < t < t+0 (h) and x−0 (t, 0,h) ∈ Σ− for t−0 (h) < t < 0. Moreover, by the

transversality we have

(3) πf±0 (x±0 (t±0 (h), 0,h)) < 0.
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Our goal is to establish some criteria for determining the persistence of crossing periodic
orbits in A, when we perturb it inside this class of all PWS systems of the form (2).

For sufficiently smooth function g : Rn → Rn, following notions of [40] we similarly define
a symmetric L-multilinear map ∂Lg(x)/∂xL, which acts on a ‘product’ of l n-dimensional
vectors, as

(4)
∂Lg(x)

∂xL

l⊙

j=1

uj =

n∑

i1,···,iL=1

∂Lg(x)

∂xi1 · · · ∂xiL
u1i1 · · · uliL ,

where L and l are positive integers, x = (x1, x2, · · ·, xn)> ∈ Rn and uj = (uj1, uj2, · · ·, ujn)> ∈
Rn. Moreover, we denote ub =

⊙b
j=1 u ∈ Rnb for positive integer b and n-dimensional vector

u. To clarify this notation we consider n = 2 and l = 2 as an example. In this case we have

∂g(x)

∂x

2⊙

j=1

uj =
∂g(x)

∂x1
u11u21 +

∂g(x)

∂x2
u12u22

for L = 1 and

∂2g(x)

∂x2

2⊙

j=1

uj =
∂2g(x)

∂x21
u11u21 +

∂2g(x)

∂x1∂x2
u11u22 +

∂2g(x)

∂x2∂x1
u12u21 +

∂2g(x)

∂x22
u12u22

for L = 2.

We define Melnikov functions Mk(h) : Ω→ Rn−1 for k = 1, 2, · · · by

(5) Mk(h) = π⊥M+
k (h)− π⊥M−k (h),

where

(6)

M±k (h) = x±k (t±0 (h), 0,h)

+ k!
k∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±
0 (h), 0,h)

∂tL

l⊙

j=1

t±j (h)bj ,

x±k (t, 0,h) : R× {0} × Ω→ Rn and t±k (h) : Ω→ R for k = 1, 2, · · · are defined recurrently as

(7)

x±1 (t, 0,h) = A±0 (t, 0,h)

∫ t

0

A±0 (s, 0,h)−1f±1 (x±0 (s, 0,h))ds,

x±k (t, 0,h) = k!A±0 (t, 0,h)

∫ t

0

A±0 (s, 0,h)−1
(

f±k (x±0 (s, 0,h))

+
k−1∑

l=1

∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lf±k−l(x

±
0 (s, 0,h))

∂xL

l⊙

j=1

x±j (s, 0,h)bj

+
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk
∂Lf±0 (x±0 (s, 0,h))

∂xL

k⊙

j=1

x±j (s, 0,h)bj

)
ds, k ≥ 2,
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and

(8)

t±1 (h) = − 1

πf±0 (x±0 (t±0 (h), 0,h))
πx±1 (t±0 (h), 0,h),

t±k (h) = − 1

πf±0 (x±0 (t±0 (h), 0,h))
π

(
x±k (t±0 (h), 0,h)

+ k!
k−1∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±
0 (h), 0,h)

∂tL

l⊙

j=1

t±j (h)bj

+ k!
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk
∂Lx±0 (t±0 (h), 0,h)

∂tL

k⊙

j=1

t±j (h)bj

)
, k ≥ 2,

A±0 (t, 0,h) is a fundamental matrix solution of the variational equation of system ẋ = f±0 (x)
along the solution x±0 (t, 0,h), Sl for l = 1, 2, · · ·, k is the set of all l-tuples of non-negative
integers (b1, b2, · · ·, bl−1, bl) satisfying b1 + 2b2 + · · · + lbl = l, σ = {(0, 0, · · ·, 0, 1)} and
L = b1 + b2 + · · ·+ bl. Here t±k (h) for k = 1, 2, · · · are well defined due to (3).

Now we state the first main theorem.

Theorem 1. For piecewise analytic differential system (2) satisfying hypothesis (H) the
functions Mk(h) for k = 1, 2, · · ·, defined in (5), are analytic in h ∈ Ω. Moreover, letting
k0 ≥ 1 be the first positive integer such that Mk0(h) 6≡ 0 we have the following statements.

(i) If Mk0(h∗) 6= 0 for some h∗ ∈ Ω, then there exist no crossing periodic orbits in
a small neighborhood of the crossing periodic orbit Γh∗ ⊂ A for |ε| > 0 sufficiently
small.

(ii) If h∗ ∈ Ω is a simple zero of Mk0(h), i.e. Mk0(h∗) = 0 and the Jacobian matrix
of Mk0(h) at h = h∗ has no zero eigenvalues, then there exists a unique crossing
periodic orbit in a small neighborhood of the crossing periodic orbit Γh∗ ⊂ A for
|ε| > 0 sufficiently small.

(iii) If Mk0(h) has q simple zeros on Ω, then there exist q crossing periodic orbits bifur-
cating from A for |ε| > 0 sufficiently small.

(iv) If Mk0(h) has at most q zeros on Ω, taking into multiplicities account, then there
exist at most q crossing periodic orbits bifurcating from A for |ε| > 0 sufficiently
small.

1.2. Application to the perturbations of a PWS system. In smooth differential systems
a classical perturbation problem is to determine the maximum number of limit cycles bifurcat-
ing from the periodic orbits of the linear center ẋ1 = −x2, ẋ2 = x1 when it is perturbed inside
the set of all polynomial differential systems with a given degree m ≥ 1. An upper bound for
the maximum number was obtained in [26] using the Melnikov theory up to any order. This
is essentially a special case of the weak Hilbert’s 16th problem [1, 32]. In recent years, it has
been extended to PWS systems, considering the piecewise polynomial perturbations of the
linear center ẋ1 = −x2, ẋ2 = x1 in two zones separated by a straight line, e.g. [8, 9, 34, 42],
or considering the piecewise polynomial perturbations of the (d + 2)-dimensional reversible
system ẋ1 = −x2, ẋ2 = x1, ẏ = 0 in two zones separated by a hyperplane, e.g. [43,46], where
y ∈ Rd with d ≥ 1.

Motivated by these works and as an application to Theorem 1, the second goal of this
paper is to bring the weak Hilbert’s 16th problem to piecewise polynomial perturbations of
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the following n-dimensional PWS system,

(9) ẋ =

{
(2x2,−1, 0, · · ·, 0)> if x1 > 0,

(2x2, 1 , 0, · · ·, 0)> if x1 < 0,

where x = (x1, x2, x3, · · ·, xn)> ∈ Rn for n ≥ 2. In the whole paper n = 2 means that system
(9) is a planar one with the variables x1 and x2.

System (9) with n = 2 originally comes from the work [7], and it was obtained as a normal
form of the planar PWS system with a non-smooth center of the fold-fold type, that is, the
center is a fold-fold singularity, see [7, 47]. Here a point in the switching boundary is said to
be a non-smooth center if all orbits in a small deleted neighborhood of it are crossing periodic
orbits, and a fold-fold singularity is a point where both smooth vector fields are quadratically
tangent to the switching boundary, see [22, 31] for a detailed definition. For n > 2, we note
that (x1, x2) ∈ R2 for any fixed (x3, · · ·, xn) = (c3, · · ·, cn) ∈ Rn−2 is an invariant plane of
system (9), and the dynamics on this invariant plane coincides with the one of system (9)
with n = 2. This means that (0, 0, c3, · · ·, cn) is a non-smooth center of system (9) restricted
to the plane (x1, x2).

In particular we have the next proposition.

Proposition 2. For each h = (h2, h3, · · ·, hn) ∈ R+ × Rn−2 the orbit of system (9) starting
at (0,h)> is a crossing periodic orbit, which intersects the switching boundary x1 = 0 in a
transversal way and only twice.

Proposition 2 implies that system (9) satisfies hypothesis (H), and thus we can apply the
Melnikov functions developed in subsection 1.1 to study the limit cycle bifurcation for the
piecewise polynomial perturbations of system (9),

(10) ẋ =





(2x2,−1, 0, · · ·, 0)> +
∞∑

i=1

εi
(
p+i,1(x), p+i,2(x), p+i,3(x), · · ·, p+i,n(x)

)>
if x1 > 0,

(2x2, 1 , 0, · · ·, 0)> +
∞∑

i=1

εi
(
p−i,1(x), p−i,2(x), p−i,3(x), · · ·, p−i,n(x)

)>
if x1 < 0,

where p±i,j : Rn → R for j = 1, 2, 3, · · ·, n are polynomials of degree m ≥ 1.

Theorem 3. For |ε| > 0 sufficiently small the maximum number of crossing limit cycles of
system (10) bifurcating from the unperturbed crossing periodic orbits is at most mn−1 (resp.
kn−1(2m + 1)n−1) by using the Melnikov method of order one (resp. k ≥ 2). Moreover, this
upper bound can be reached for order one.

We must mention that the non-polynomial perturbations of system (9) with n = 2 and
n = 3 also was studied in [7] and [11] respectively. In those papers it was showed that
any finitely or infinitely many crossing limit cycles can bifurcate by some non-polynomial
piecewise C∞-perturbations.

On the other hand, since system (9) with n = 2 is a piecewise Hamiltonian system with
Hamiltonian functionsH+

0 (x1, x2) = −x1−x22 andH−0 (x1, x2) = x1−x22, we are also interested
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in the following piecewise polynomial Hamiltonian perturbations of system (9) with n = 2,

(11)

(
ẋ1
ẋ2

)
=





(
2x2
−1

)
+ ε

( −H+
1,x2

(x1, x2)

H+
1,x1

(x1, x2)

)
+ ε2

( −H+
2,x2

(x1, x2)

H+
2,x1

(x1, x2)

)
if x1 > 0,

(
2x2
1

)
+ ε

( −H−1,x2
(x1, x2)

H−1,x1
(x1, x2)

)
+ ε2

( −H−2,x2
(x1, x2)

H−2,x1
(x1, x2)

)
if x1 < 0,

where H±1 , H
±
2 : R2 → R are polynomials of degree m + 1 ≥ 2, the subscripts x1 and x2

denote derivative. So we have the next theorem.

Theorem 4. For |ε| > 0 sufficiently small the maximum number of crossing limit cycles of
system (11) bifurcating from the unperturbed crossing periodic orbits is at most [m/2] (resp.
m− 1) by using the first (resp. second ) order Melnikov method, where [·] denotes the integer
part function. Moreover, these upper bounds can be reached.

It is worth mentioning that Yang, Han and Huang in [51] studied the Hopf bifurcation
of planar piecewise polynomial Hamiltonian systems with two zones separated by a straight
line. From Theorem 1.2 and Remark 1.1 of that paper, it follows that m− 1 small amplitude
crossing limit cycles can bifurcate from the fold-fold singularity O of the unperturbed system
of (11). However, we deal with crossing limit cycles bifurcating from the unperturbed crossing
periodic orbits, and then our result allows that the bifurcated crossing limit cycles are of large
amplitude by resorting to the Melnikov method developed in this paper.

The paper is organized as follows. In Section 2 we provide the proof of Theorem 1 after
introducing a displacement function. Section 3 contains the proofs of Proposition 2 and
Theorem 3. Section 4 is devoted to proving Theorem 4.

2. Proof of Theorem 1

We start to prove Theorem 1. For each h∗ ∈ Ω we construct a displacement function around
the crossing periodic orbit Γh∗ as follows. Let x±(t, 0,h; ε) be the solution of subsystem (2)±
with the initial value x±(0, 0,h; ε) = (0,h)> ∈ Σ. By hypothesis (H) and the analytic
dependency on initial values and parameters, there exists a neighborhood Ω∗ ⊂ Ω of h∗ and
a constant ε0 > 0 such that x±(t, 0,h; ε) satisfying ε ∈ (−ε0, ε0) and h ∈ Ω∗ evolves in Σ±

respectively until it transversally reaches Σ after a travelling time t±(h; ε), i.e.

(12) πx±(t±(h; ε), 0,h; ε) ≡ 0.

Note that x±(t, 0,h; 0) = x±0 (t, 0,h) and t±(h; 0) = t±0 (h) in the settings and notations given
below (H). Therefore we can define a displacement function D(h; ε) : Ω∗ × (−ε0, ε0)→ Σ as

(13) D(h; ε) = π⊥x+(t+(h; ε), 0,h; ε)− π⊥x−(t−(h; ε), 0,h; ε).

Moreover we have the following lemma.

Lemma 5. The displacement function D(h; ε) : Ω∗ × (−ε0, ε0) → Σ defined in (13) can be
written in power series of ε as

D(h; ε) =

∞∑

k=1

Mk(h)

k!
εk,

where Mk(h) for k = 1, 2, · · · are defined in (5).



8 X. CHEN, T. LI AND J. LLIBRE,

Lemma 5 will be proved later on. The fact that Mk(h) for k = 1, 2, · · · are analytic is
obtained directly from their definitions (5). Clearly D(hε; ε) = 0 for some hε ∈ Ω∗ if and
only if the solution of system (2) starting at (0,hε)

> is a crossing periodic orbit. Thus we
consider the system of equations D(h; ε) = 0 in order to study the persistence of the crossing
periodic orbit Γh∗ . In the assumption that Mk(h) ≡ 0 for k = 1, 2, · · ·, k0 − 1, the system of
equations D(h; ε) = 0 is equivalent to

D̃(h; ε) = 0,

where

D̃(h; ε) =
Mk0(h)

k0!
+

∞∑

k=k0+1

Mk(h)

k!
εk−k0 .

If Mk0(h∗) 6= 0, then D̃(h; ε) 6= 0 for ‖h− h∗‖ and |ε| sufficiently small. This means that
there exist no crossing periodic orbits in a small neighborhood of Γh∗ for |ε| sufficiently small,
i.e. statement (i) holds.

If Mk0(h∗) = 0, then D̃(h∗; 0) = 0. Moreover, since we are assuming that the Jacobian
matrix of Mk0(h) at h = h∗ has no zero eigenvalues, a direct application of the Implicit
Function Theorem yields that there exists a unique function h = h(ε), defined in a small

neighborhood of 0 ∈ R, such that h(0) = h∗ and D̃(h(ε); ε) ≡ 0. Hence, we obtain a unique
crossing periodic orbit in a small neighborhood of Γh∗ for |ε| sufficiently small, i.e. statement
(ii) holds.

If Mk0(h) has q simple zeros on Ω, denoted by hi, i = 1, 2, · · ·, q, then for each hi there
exists εi > 0 such that for |ε| < εi there is a unique crossing periodic orbit in a small
neighborhood of Γhi by statement (ii). Choosing ε0 := min{ε1, ε2, · · ·, εq}, we get q crossing
periodic orbits bifurcating from the periodic submanifold A for |ε| < ε0, i.e. statement (iii)
holds.

SinceMk(h) for k = k0, k0 + 1, · · · are analytic and D̃(h; 0) =Mk0(h)/k0!, we verify that

the function D̃(h; ε) satisfies all the conditions of [24, Theorem 3.1] if Mk0(h) has at most q
zeros on Ω, taking into multiplicities account. Thus by [24, Theorem 3.1] we get statement
(iv) and then complete the proof of Theorem 1. �

Now we shall prove Lemma 5.

Proof of Lemma 5. First we prove the following claim.

Claim: We can write the solution x±(t, 0,h; ε) around ε = 0 as

(14) x±(t, 0,h; ε) = x±0 (t, 0,h) +
∞∑

k=1

x±k (t, 0,h)

k!
εk,

where x±0 (t, 0,h) is the solution of subsystem (2)± with ε = 0 starting at (0,h)>, and
x±k (t, 0,h) for k = 1, 2, · · · are defined in (7).

We prove this claim following the idea of the proof of Lemma 1 in [40, Appendix A] where
a non-autonomous version was obtained. By the analytic dependency on parameters we can
write the solution x±(t, 0,h; ε) in the form of (14). Thus next all we need to do is to derive
the expression of x±k (t, 0,h) for k = 1, 2, · · ·.
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Clearly x±(t, 0,h; ε) satisfies

(15) x±(t, 0,h; ε) = (0,h)> +

∞∑

i=0

εi
∫ t

0

f±i (x±(s, 0,h; ε))ds.

Taking the k-th derivative of (15) with respect to ε for k = 1, 2, · · ·, we get

(16) x±k (t, 0,h) =
∂kx±(t, 0,h; ε)

∂εk

∣∣∣∣
ε=0

=
k∑

l=0

k!

l!

∫ t

0

∂lf±k−l(x
±(s, 0,h; ε))

∂εl

∣∣∣∣∣
ε=0

ds.

Then applying the Faá di Bruno’s formula (see [30,40] or the Appendix) to compute the l-th
derivative of f±k−l(x

±(s, 0,h; ε)) with respect to ε for l = 1, 2, · · ·, we get

(17)

∂lf±k−l(x
±(s, 0,h; ε))

∂εl

∣∣∣∣∣
ε=0

=
∑

Sl

l!

b1!b2!2!b2 · · · bl!l!bl
∂Lf±k−l(x

±(s, 0,h; ε))

∂xL

∣∣∣∣∣
ε=0

l⊙

j=1

(
∂jx±(s, 0,h; ε)

∂εj

∣∣∣∣
ε=0

)bj

=
∑

Sl

l!

b1!b2!2!b2 · · · bl!l!bl
∂Lf±k−l(x

±
0 (s, 0,h))

∂xL

l⊙

j=1

x±j (s, 0,h)bj ,

where Sl and L are defined below (8). Thus substituting (17) into (16) we have

x±1 (t, 0,h) =

∫ t

0

(
∂f±0 (x±0 (s, 0,h))

∂x
x±1 (s, 0,h) + f±1 (x±0 (s, 0,h))

)
ds,

and

x±k (t, 0,h) = k!

∫ t

0

(
f±k (x±0 (s, 0,h))

+

k∑

l=1

∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lf±k−l(x

±
0 (s, 0,h))

∂xL

l⊙

j=1

x±j (s, 0,h)bj

)
ds

=

∫ t

0

(
∂f±0 (x±0 (s, 0,h))

∂x
x±k (s, 0,h) + k!f±k (x±0 (s, 0,h))

+ k!

k−1∑

l=1

∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lf±k−l(x

±
0 (s, 0,h))

∂xL

l⊙

j=1

x±j (s, 0,h)bj

+ k!
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk
∂Lf±0 (x±0 (s, 0,h))

∂xL

k⊙

j=1

x±j (s, 0,h)bj

)
ds



10 X. CHEN, T. LI AND J. LLIBRE,

for k = 2, 3, · · ·, where σ = {(0, 0, · · ·, 0, 1)}, also see below (8). This means that x±1 (t, 0,h)
and x±k (t, 0,h) for k = 2, 3, · · · obey the differential equations

∂x±1 (t, 0,h)

∂t
=
∂f±0 (x±0 (t, 0,h))

∂x
x±1 (t, 0,h) + f±1 (x±0 (t, 0,h)), and

∂x±k (t, 0,h)

∂t
=
∂f±0 (x±0 (t, 0,h))

∂x
x±k (t, 0,h) + k!

(
f±k (x±0 (t, 0,h))

+
k−1∑

l=1

∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lf±k−l(x

±
0 (t, 0,h))

∂xL

l⊙

j=1

x±j (t, 0,h)bj

+
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk
∂Lf±0 (x±0 (t, 0,h))

∂xL

k⊙

j=1

x±j (t, 0,h)bj

)

satisfying the initial value x±1 (0, 0,h) ≡ 0 and x±k (0, 0,h) ≡ 0 respectively. Solving these
linear differential equations we obtain (7) and thus this claim holds.

From (14) it follows that

(18) x±(t±(h; ε), 0,h; ε) =

∞∑

k=0

x±k (t±(h; ε), 0,h)

k!
εk.

Taking the k-th derivative of (18) with respect to ε for k = 1, 2, · · ·, we get

(19)
∂kx±(t±(h; ε), 0,h; ε)

∂εk

∣∣∣∣
ε=0

= k!

k∑

l=0

1

l!(k − l)!
∂lx±k−l(t

±(h; ε), 0,h)

∂εl

∣∣∣∣∣
ε=0

.

Again, applying the Faá di Bruno’s formula to compute the l-th derivative of x±k−l(t
±(h; ε), 0,h)

with respect to ε for l = 1, 2, · · ·, we get

(20)

∂lx±k−l(t
±(h; ε), 0,h)

∂εl

∣∣∣∣∣
ε=0

=
∑

Sl

l!

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±(h; ε), 0,h)

∂tL

∣∣∣∣∣
ε=0

l⊙

j=1

(
∂jt±(h; ε)

∂εj

∣∣∣∣
ε=0

)bj

=
∑

Sl

l!

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±
0 (h), 0,h)

∂tL

l⊙

j=1

(
∂jt±(h; 0)

∂εj

)bj
.
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Thus substituting (20) into (19) we can write x±(t±(h; ε), 0,h; ε) in the power series of ε as

(21)

x±(t±(h; ε), 0,h; ε)

= x±0 (t±0 (h), 0,h) +
∞∑

k=1

1

k!

(
x±k (t±0 (h), 0,h)

+ k!
k∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±
0 (h), 0,h)

∂tL

l⊙

j=1

(
∂jt±(h; 0)

∂εj

)bj)
εk

= x±0 (t±0 (h), 0,h) +

(
x±1 (t±0 (h), 0,h) +

∂x±0 (t±0 (h), 0,h)

∂t

∂t±(h; 0)

∂ε

)
ε

+
∞∑

k=2

1

k!

(
x±k (t±0 (h), 0,h) +

∂x±0 (t±0 (h), 0,h)

∂t

∂kt±(h; 0)

∂εk

+ k!
k−1∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±
0 (h), 0,h)

∂tL

l⊙

j=1

(
∂jt±(h; 0)

∂εj

)bj

+ k!
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk
∂Lx±0 (t±0 (h), 0,h)

∂tL

k⊙

j=1

(
∂jt±(h; 0)

∂εj

)bj )
εk.

Since t±(h; ε) satisfies equation (12), it follows from (21) that

π

(
x±1 (t±0 (h), 0,h) +

∂x±0 (t±0 (h), 0,h)

∂t

∂t±(h; 0)

∂ε

)
≡ 0,

and

π

(
x±k (t±0 (h), 0,h) +

∂x±0 (t±0 (h), 0,h)

∂t

∂kt±(h; 0)

∂εk

+ k!

k−1∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l(t

±
0 (h), 0,h)

∂tL

l⊙

j=1

(
∂jt±(h; 0)

∂εj

)bj

+ k!
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk
∂Lx±0 (t±0 (h), 0,h)

∂tL

k⊙

j=1

(
∂jt±(h; 0)

∂εj

)bj )
≡ 0,

from which we easily obtain

∂t±(h; 0)

∂ε
= t±1 (h),

∂kt±(h; 0)

∂εk
= t±k (h), k ≥ 2,

because ∂x±0 (t±0 (h), 0,h)/∂t = f±0 (x±0 (t±0 (h), 0,h)), where t±1 (h) and t±k (h) are defined recur-
rently in (8). Then from (6) and the first equality of (21) we have

x±(t±(h; ε), 0,h; ε) = x±0 (t±0 (h), 0,h) +
∞∑

k=1

M±k (h)

k!
εk.

This, together with (5) and (13), means that the displacement function D(h; ε) can be written
as

D(h; ε) = π⊥x+
0 (t±0 (h), 0,h)− π⊥x−0 (t−0 (h), 0,h) +

∞∑

k=1

Mk(h)

k!
εk =

∞∑

k=1

Mk(h)

k!
εk,
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where the second equality is due that each orbit of system (2) with ε = 0 starting at (0,h) ∈
Ω∗ ⊂ Ω is a crossing periodic orbit. This ends the proof of Lemma 5. �

3. Proofs of Proposition 2 and Theorem 3

The purpose of this section is to prove Proposition 2 and Theorem 3. We start with the
proof of Proposition 2.

Proof of Proposition 2. Let x±0 (t, z) = (x±0,1(t, z), x±0,2(t, z), · · ·, x±0,n(t, z))> be the solution

of subsystem (9)± with the initial value z = (z1, z2, · · ·, zn)> ∈ Rn. Then

x±0,1(t, z) = ∓t2 + 2z2t+ z1, x±0,2(t, z) = ∓t+ z2,

x±0,j(t, z) = zj , j = 3, · · ·, n.

Hence for h = (h2, h3, · · ·, hn) ∈ R+ × Rn−2 the forward orbit of subsystem (9)+ start-
ing at (0,h)> evolves in the half plane x1 > 0 for 0 < t < 2h2 and maps (0,h)> to
the point (0,−h2, h3, · · ·, hn)>. Furthermore the forward orbit of subsystem (9)− start-
ing at (0,−h2, h3, · · ·, hn)> evolves in the half plane x1 < 0 for 0 < t < 2h2 and maps
(0,−h2, h3, · · ·, hn)> to the point (0,h)>. In conclusion, for each h ∈ R+ × Rn−2 the or-
bit of system (9) with the initial value (0,h)> is a crossing periodic orbit which crosses the
switching line x1 = 0 only twice. Moreover, since ẋ1 = 2x2 6= 0 for x2 6= 0, all the crossing
periodic orbits of system (9) intersect x1 = 0 in a transversal way. This concludes the proof
of Proposition 2. �

From Proposition 2 we know that system (10) satisfies hypothesis (H). Hence the Melnikov
function of order k associated to system (10) are just the oneMk(h) defined in (5) by taking
Ω = R+ × Rn−2 and

(22)
f±0 (x) = (2x2,∓1, 0, · · ·, 0)>,

f±i (x) = (p±i,1(x), p±i,2(x), · · ·, p±i,n(x))>, i = 1, 2, · · ·.

Moreover, from the proof of Proposition 2 we see that for h = (h2, h3, · · ·, hn) ∈ R+ × Rn−2,

(23) x±0 (t, 0,h) = (∓t2 + 2h2t,∓t+ h2, h3, · · ·, hn)>, t±0 (h) = ±2h2,

and

A±0 (t, 0,h) =




1 2t 0
0 1 0
0 0 I


 , A±0 (t, 0,h)−1 =




1 −2t 0
0 1 0
0 0 I


 ,

where A±(t, 0,h) is introduced below (8) and I is an (n− 2)× (n− 2) identity matrix.

Consequently, restricted to system (10), we can simplify Mk(h) defined in (5) to

(24) Mk(h) =
(
M+

k,2(h)−M−k,2(h),M+
k,3(h)−M−k,3(h), · · ·,M+

k,n(h)−M−k,n(h)
)>

for h ∈ R+ × Rn−2 and k = 1, 2, · · ·, where

(25)

M±k,j(h) = x±k,j(±2h2, 0,h)

+ k!

k∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l,j(±2h2, 0,h)

∂tL

l⊙

r=1

t±r (h)br
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for j = 2, 3, ·· ·, n, x±k,j(t, 0,h) is the j-th component of x±k (t, 0,h) : R×{0}×R+×Rn−2 → Rn
and they are defined recurrently as

(26)

x±1,1(t, 0,h) =

∫ t

0

p±1,1(x±0 (s, 0,h))− 2sp±1,2(x±0 (s, 0,h))ds+ 2t

∫ t

0

p±1,2(x±0 (s, 0,h))ds,

x±1,j(t, 0,h) =

∫ t

0

p±1,j(x
±
0 (s, 0,h))ds, j ≥ 2,

x±k,1(t, 0,h) = k!

∫ t

0

g±k,1(s, 0,h)− 2sg±k,2(s, 0,h)ds+ 2k!t

∫ t

0

g±k,2(s, 0,h)ds, k ≥ 2,

x±k,j(t, 0,h) = k!

∫ t

0

g±k,j(s, 0,h)ds, k ≥ 2, j ≥ 2,

with

(27)

g±k,j(s, 0,h) = p±k,j(x
±
0 (s, 0,h))

+

k−1∑

l=1

∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lp±k−l,j(x

±
0 (s, 0,h))

∂xL

l⊙

r=1

x±r (s, 0,h)br

for j = 1, 2 · ··, n, and t±k (h) : R+ × Rn−2 → R are defined recurrently as

(28)

t±1 (h) =
x±1,1(±2h2, 0,h)

2h2
,

t±k (h) =
1

2h2

(
x±k,1(±2h2, 0,h)

+ k!
k−1∑

l=1

1

(k − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k−l,1(±2h2, 0,h)

∂tL

l⊙

r=1

t±r (h)br

+ k!
∑

Sk\σ

1

b1!b2!2!b2 · · · bk!k!bk

∂Lx±0,1(±2h2, 0,h)

∂tL

k⊙

r=1

t±r (h)br

)
, k ≥ 2.

In the computation of x±k,j(t, 0,h) for k ≥ 2, j ≥ 2 we used the facts that L = b1+b2+···+bk ≥
2 for (b1, b2, · · ·, bk) ∈ Sk \ σ, and

∂Lf±0,j(x)

∂xi1 · · · ∂xiL
≡ 0 for L ≥ 2 and any i1, · · ·, iL,

since the vector fields f±0 (x) associated to system (10) are linear, see (22).

To study the number of zeros of the k-th order Melnikov functionMk(h) in (24), we need
the following two technical lemmas.

Lemma 6. Consider all the functions given in (26). Then x±k,1(t, 0,h) (resp. x±k,j(t, 0,h),

j = 2, 3, · · ·, n) for k = 1, 2, · · · are polynomials of degree 2km + 2 (resp. 2km + 1) in the
variables t and h.

Proof. We prove this lemma by the induction method. Since p±1,j(x) for j = 1, 2, · · ·, n are

polynomials of degree m, p±1,j(x
±
0 (t, 0,h)) are polynomials of degree 2m in the variables t and

h by (23). Then x±1,1(t, 0,h) are polynomials of degree 2m+ 2 and x±1,j(t, 0,h) for j = 2, · · ·, n
are polynomials of degree 2m+ 1 in the variables t and h, i.e. Lemma 6 holds for k = 1.



14 X. CHEN, T. LI AND J. LLIBRE,

It remains to prove this lemma for k = k0 ≥ 2, provided that it holds for k = 2, 3, ..., k0−1.
In fact, from (23) again p±k0,j(x

±
0 (t, 0,h)) are polynomials of degree 2m in the variables t and

h. In addition, by the meaning of the symbol
⊙

given in (4),

∂Lp±k0−l,j(x
±
0 (t, 0,h))

∂xL

l⊙

r=1

x±r (t, 0,h)br for l ≤ k0 − 1

are polynomials of degree 2(m − L) +
∑l
r=1(2rm + 2)br = 2lm + 2m in the variables t and

h, as we are assuming that this lemma holds for k = 1, 2, 3, · · ·, k0 − 1. This means that
g±k0,j(t, 0,h) in (27) are polynomials of degree 2(k0− 1)m+ 2m = 2k0m in the variables t and

h. Therefore Lemma 6 for k = k0 ≥ 2 follows directly from the definitions of x±k0,1(t, 0,h)

and x±k0,j(t, 0,h) for j = 2, · · ·, n given in (26). This ends the proof of Lemma 6. �

Lemma 7. Consider the functions t±k (h) for k = 1, 2, · · · given in (28). Then we can write
them into the form

t±k (h) =
τ±k (h)

hk−12

with τ±k (h) polynomials of degree k(2m+ 1).

Proof. We prove this lemma by the induction method. From Lemma 6 we know that
x±1,1(t, 0,h) are polynomials of degree 2m+2 in the variables t and h, so that x±1,1(±2h2, 0,h)

are polynomials of degree 2m + 2 in the variables h. Moreover, it follows from (26) that
x±1,1(0, 0,h) ≡ 0, which implies that x±1,1(±2h2, 0,h) has a factor h2. Using the definition of

t±1 (h) we get t±1 (h) = x±1,1(±2h2, 0,h)/(2h2) is of degree 2m+ 1. This provides Lemma 7 for

k = 1 by taking τ±1 (h) = t±1 (h).

Assuming that Lemma 7 holds for k = 2, 3, ···, k0−1, we only need to prove it for k = k0 ≥ 2
in order to complete the proof of Lemma 7. In this case recalling (28) we obtain

(29) t±k0(h) =
1

2h2

(
x±k0,1(±2h2, 0,h) + k0!u±k0(h) + k0!v±k0(h)

)
,

where

u±k0(h) =

k0−1∑

l=1

1

(k0 − l)!
∑

Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂Lx±k0−l,1(±2h2, 0,h)

∂tL

l⊙

r=1

(
τ±r (h)

hr−12

)br
,

v±k0(h) =
∑

Sk0
\σ

1

b1!b2!2!b2 · · · bk0 !k0!bk0

∂Lx±0,1(±2h2, 0,h)

∂tL

k0⊙

r=1

(
τ±r (h)

hr−12

)br
.

By Lemma 6 ∂Lx±k0−l,1(±2h2, 0,h)/∂tL are polynomials of degree 2(k0 − l)m + 2 − L.

Moreover we are assuming that τ±j (h) are polynomials of degree j(2m + 1) for j = 1, 2, · ·
·, k0 − 1. Thus, using b1 + 2b2 + · · ·+ lbl = l and b1 + b2 + · · ·+ bl = L, we obtain that

hl−L2

∂Lx±k0−l,1(±2h2, 0,h)

∂tL

l⊙

r=1

(
τ±r (h)

hr−12

)br
=
∂Lx±k0−l,1(±2h2, 0,h)

∂tL

l⊙

r=1

τ±r (h)br
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are polynomials of degree 2k0m + 2 + l − L. So, together with the definition of u±k0(h), we

can write u±k0(h) into the form

(30) u±k0(h) =
µ±k0(h)

hk0−22

with µ±k0(h) polynomials of degree k0(2m+ 1).

On the other hand, we find L = b1 + b2 + · · ·+ bk0−1 + bk0 ≥ 2 for (b1, b2, · · ·, bk0) ∈ Sk0 \σ,
i.e. bk0 = 0. Moreover from (23) we have ∂Lx±0,1(±2h2, 0,h)/∂tL = ∓2 (resp. 0) if L = 2

(resp. > 2). Thus, using again b1 + 2b2 + · · ·+ k0bk0 = k0 and b1 + b2 + · · ·+ bk0 = L, we get
that

hk0−L2

∂Lx±0,1(±2h2, 0,h)

∂tL

k0⊙

r=1

(
τ±r (h)

hr−12

)br
=
∂Lx±0,1(±2h2, 0,h)

∂tL

k0⊙

r=1

τ±r (h)br

are polynomials of degree k0(2m + 1) if L = 2, while if L > 2 they are identically zero. So,
together with the definition of v±k0(h), we can write v±k0(h) into the form

(31) v±k0(h) =
ν±k0(h)

hk0−22

with ν±k0(h) polynomials of degree k0(2m+ 1).

Joining (29), (30), (31) and the fact that x±k0,1(±2h2, 0,h) are polynomials of degree 2k0m+
2, which is obtained in Lemma 6, we finally get Lemma 7 for k = k0 ≥ 2, provided that it
holds for k = 1, 2, · · ·, k0 − 1. That is, the proof of Lemma 7 is finished. �

With Lemmas 6 and 7 we can obtain an upper bound for the maximum number of isolated
zeros of the k-th order Melnikov functionMk(h) defined in (24) associated to system (10) as
it is stated in the following proposition.

Proposition 8. The k-th order Melnikov functionMk(h) defined in (24) associated to system
(10) has at most kn−1(2m+ 1)n−1 isolated zeros in R+ × Rn−2.

Proof. Considering the second summand in (25), we can write it as M±k,j(h)/hk−12 for k =

1, 2 · ·· and j = 2, · · ·, n with M±k,j(h) polynomials of degree k(2m+ 1), because

hl−L2

∂Lx±k−l,j(±2h2, 0,h)

∂tL

l⊙

r=1

t±j (h)br =
∂Lx±k−l,j(±2h2, 0,h)

∂tL

l⊙

r=1

τ±r (h)br

are polynomials of degree 2(k − l)m + 1 − L +
∑l
r=1 r(2m + 1)br = 2km + 1 + l − L by

Lemmas 6, 7 and the facts that b1 + 2b2 + · · ·+ lbl = l and b1 + b2 + · · ·+ bl = L. Let

M̃±k,j(h) = hk−12 x±k,j(±2h2, 0,h) +M±k,j(h)

for j = 2, 3, · · ·, n. Then M̃±k,j(h) are polynomials of degree k(2m+ 1), since x±k,j(±2h2, 0,h)
for j = 2, 3, · · ·, n are polynomials of degree 2km+ 1 by Lemma 6. Moreover, it follows from
(25) that

(32) M±k,j(h) =
M̃±k,j(h)

hk−12

for k = 1, 2 · ·· and j = 2, · · ·, n.
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Finally combining (24) and (32) we obtain

(33) Mk(h) =
1

hk−12

M̃k(h),

where

M̃k(h) =
(
M̃+

k,2(h)− M̃−k,2(h),M̃+
k,3(h)− M̃−k,3(h), · · ·,M̃+

k,n(h)− M̃−k,n(h)
)>

is a map consisting of n− 1 polynomials of degree k(2m+ 1). Obviously Mk(h) and M̃k(h)
have the same zeros in R+ × Rn−2. In conclusion, Mk(h) has at most kn−1(2m + 1)n−1

isolated zeros in R+ × Rn−2 by the Bézout Theorem [4], because each component of M̃k(h)
is a polynomial of degree k(2m+ 1). That is Proposition 8 follows. �

For the maximum number of isolated zeros of M1(h) we have a more precise result.

Proposition 9. The first order Melnikov functionM1(h) defined in (24) associated to system
(10) has at most mn−1 isolated zeros in R+ × Rn−2. Moreover, there exists a system of the
form (10) such that M1(h) has exactly mn−1 simple zeros in R+ × Rn−2.

Proof. Consider functions x±1,j(t, 0,h) for j = 1, · · ·, n and h = (h2, h3, · · ·, hn) ∈ R+ × Rn−2
given in (26), and take

p±1,j(x) =
m∑

i1+i2+···+in=0

a±i1i2···in,jx
i1
1 x

i2
2 · · · xinn .

We have

(34)

x±1,1(±2h2, 0,h)

=

∫ ±2h2

0

(
m∑

i1+i2+···+in=0

a±i1i2···in,1(∓s2 + 2h2s)
i1(∓s+ h2)i2hi33 · · · hinn

−2s
m∑

i1+i2+···+in=0

a±i1i2···in,2(∓s2 + 2h2s)
i1(∓s+ h2)i2hi33 · · · hinn

)
ds

± 4h2

∫ ±2h2

0

(
m∑

i1+i2+···+in=0

a±i1i2···in,2(∓s2+2h2s)
i1(∓s+h2)i2hi33 · · · hinn

)
ds

=
m∑

i1+i2+···+in=0

(a±i1i2···in,1 ± 2h2a
±
i1i2···in,2)I±i1,i2(h2)hi33 · · · hinn

± 2

m∑

i1+i2+···+in=0

a±i1i2···in,2I
±
i1,i2+1(h2)hi33 · · · hinn ,

and

(35)

x±1,j(±2h2, 0,h)

=

∫ ±2h2

0

(
m∑

i1+i2+···+in=0

a±i1i2···in,j(∓s
2 + 2h2s)

i1(∓s+ h2)i2hi33 · · · hinn

)
ds

=
m∑

i1+i2+···+in=0

a±i1i2···in,jI
±
i1,i2

(h2)hi33 · · · hinn



MELNIKOV FUNCTIONS FOR PIECEWISE SMOOTH DIFFERENTIAL SYSTEMS 17

for j = 2, · · ·, n, where

I±k,l(h2) =

∫ ±2h2

0

(∓s2 + 2h2s)
k(∓s+ h2)lds, k, l ≥ 0.

We compute

(36)

I±k,l(h2) =

∫ ±2h2

0

k∑

p=0

k!

p!(k − p)! (∓s
2)p(2h2s)

k−p
l∑

q=0

l!

q!(l − q)! (∓s)
qhl−q2 ds

=

∫ ±2h2

0

k∑

p=0

k!

p!(k − p)! (∓1)ps2p2k−phk−p2 sk−p
l∑

q=0

l!

q!(l − q)! (∓1)qsqhl−q2 ds

= ω±k,lh
2k+l+1
2 ,

and

ω±k,l =

k∑

p=0

l∑

q=0

(±1)k+1(−1)p+q22k+q+1k!l!

(k + p+ q + 1)p!(k − p)!q!(l − q)! .

That is, I±k,l(h2) is a monomial of degree 2k + l + 1.

On the other hand, we prove

(37) I±k,l(h2) ≡ 0 (resp. 6≡ 0) for l ≥ 0 odd (resp. even).

In fact, due to −s2 + 2h2s > 0 for 0 < s < 2h2 and s2 + 2h2s < 0 for −2h2 < s < 0, we have

(38) I±k,0(h2) =

∫ ±2h2

0

(∓s2 + 2h2s)
kds 6≡ 0.

Moreover,

(39) I±k,1(h2) =
1

2(k + 1)

∫ ±2h2

0

d(∓s2 + 2h2s)
k+1 ≡ 0.

For l ≥ 2, using the integration by parts method we get

(40)

I±k,l(h2) =
1

2(k + 1)

∫ ±2h2

0

(∓s+ h2)l−1d(∓s2 + 2h2s)
k+1

= ± l − 1

2(k + 1)

∫ ±2h2

0

(∓s2 + 2h2s)
k+1(∓s+ h2)l−2ds

= ± l − 1

2(k + 1)
I±k+1,l−2(h2).

Hence (37) follows from (38), (39) and (40). This, together with (36), means that ω±k,l = 0

for l ≥ 0 odd and ω±k,l 6= 0 for l ≥ 0 even.

From (23), (25) and (28) it follows that

(41)
M±1,2(h) = x±1,2(±2h2, 0,h)∓

x±1,1(±2h2, 0,h)

2h2
, and

M±1,j(h) = x±1,j(±2h2, 0,h), j = 3, · · ·, n.
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Therefore, joining (34), (35), (36) and (41), we get

(42)

M+
1,2(h)−M−1,2(h)

=
m∑

i1+i2+···+in=0

a+i1i2···in,2ω
+
i1,i2

h2i1+i2+1
2 hi33 · · · hinn

−
m∑

i1+i2+···+in=0

(
a+i1i2···in,1

2
+ h2a

+
i1i2···in,2

)
ω+
i1,i2

h2i1+i22 hi33 · · · hinn

−
m∑

i1+i2+···+in=0

a+i1i2···in,2ω
+
i1,i2+1h

2i1+i2+1
2 hi33 · · · hinn

−
m∑

i1+i2+···+in=0

a−i1i2···in,2ω
−
i1,i2

h2i1+i2+1
2 hi33 · · · hinn

−
m∑

i1+i2+···+in=0

(
a−i1i2···in,1

2
− h2a−i1i2···in,2

)
ω−i1,i2h

2i1+i2
2 hi33 · · · hinn

+
m∑

i1+i2+···+in=0

a−i1i2···in,2ω
−
i1,i2+1h

2i1+i2+1
2 hi33 · · · hinn

=−
m∑

i1+i2+···+in=0

(
a+i1i2···in,1ω

+
i1,i2

2
+
a−i1i2···in,1ω

−
i1,i2

2

)
h2i1+i22 hi33 · · · hinn

+

m∑

i1+i2+···+in=0

(
a−i1i2···in,2ω

−
i1,i2+1 − a+i1i2···in,2ω

+
i1,i2+1

)
h2i1+i2+1
2 hi33 · · · hinn

and

(43)

M+
1,j(h)−M−1,j(h)

= h2

m∑

i1+i2+···+in=0

(
a+i1i2···in,jω

+
i1,i2
− a−i1i2···in,jω

−
i1,i2

)
h2i1+i22 hi33 · · · hinn

for j = 3, · · ·, n.

Since ω±k,l = 0 for l ≥ 0 odd and ω±k,l 6= 0 for l ≥ 0 even as proved below (40), all the

terms of M+
1,2(h) −M−1,2(h) and (M+

1,j(h) −M−1,j(h))/h2 for j = 3, · · ·, n that contain an

odd power of h2 disappear. Hence if we regard h22 as a new variable, thenM+
1,2(h)−M−1,2(h)

and (M+
1,j(h) −M−1,j(h))/h2 for j = 3, · · ·, n are polynomials of degree m in the variables

h22, h3, · · ·, hn, so that

(44)

(
M+

1,2(h)−M+
1,2(h),

1

h2

(
M+

1,3(h)−M−1,3(h)
)
, · · ·, 1

h2

(
M+

1,n(h)−M−1,n(h)
))>

has at most mn−1 isolated zeros in R+ ×Rn−2 by the Bézout Theorem. By the definition in
(24), M1(h) and (44) have the same zeros in R+ × Rn−2, so that M1(h) also has at most
mn−1 isolated zeros in R+ × Rn−2.
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Regarding the reachability of this number, we choose p+1,2(x) = p−1,1(x) = · · · = p−1,n(x) ≡ 0
and

p+1,1(x) =
m∑

i=0

a+i,1x
i
1, p+1,j(x) =

m∑

i=0

a+i,jx
i
j

for j = 3, · · ·, n. Then from (42) and (43) it follows that

M+
1,2(h)−M−1,2(h) = −

m∑

i=0

a+i,1ω
+
i,0

2
h2i2 ,

1

h2

(
M+

1,j(h)−M−1,j(h)
)

=
m∑

i=0

a+i,jω
+
0,0h

i
j

for j = 3, · · ·, n, which are complete polynomials in the variables h22 and hj respectively.
Consequently we can obtain mn−1 simple zeros of M1(h) in R+ ×Rn−2 by a suitable choice
for parameters a+i,1 and a+i,j . This ends the proof of Proposition 9. �

Having these preliminaries we now prove Theorem 3 as follows.

Proof of Theorem 3. By statement (iv) of Theorem 1, the upper bounds for order one and
order k ≥ 2 obtained in Theorem 3 are direct conclusions of Propositions 9 and 8 respectively.
Regarding the realizability of the upper bound for order one, we can resort to Proposition 9
and statement (iii) of Theorem 1. �

We indicate that the averaging method is not a good choice for studying the limit cycles
of system (10). In fact, considering system (10) with n = 2 as an example, by the usual
change to polar coordinates x1 = r cos θ, x2 = r sin θ we can transform it into the following
non-autonomous piecewise form

dr

dθ
=

{
F+
0 (r, θ) + F+

1 (r, θ)ε+O(ε2) if θ ∈ (0, π),

F−0 (r, θ) + F−1 (r, θ)ε+O(ε2) if θ ∈ (π, 2π),

where

F±0 (r, θ) =
2r2 sin θ cos θ ∓ r sin θ

∓ cos θ − 2r sin2 θ
,

F±1 (r, θ) = ∓
rp±1,1(r cos θ, r sin θ)± 2r2 sin θp±1,2(r cos θ, r sin θ)

(cos θ ± 2r sin2 θ)2
.

Note that F+
0 (r, θ) and F+

1 (r, θ) are discontinuous in (r, θ) ∈ R+ × (0, π), and F−0 (r, θ) and
F−1 (r, θ) are discontinuous in (r, θ) ∈ R+ × (π, 2π). Thus, according to [38], the averaging
method cannot be applied to the above non-autonomous piecewise system. On the other
hand, our results show that Melnikov functions associated to system (10) are polynomials
divided by a monomial, see (33), for which an upper bound for the maximum number of
zeros can be obtained by the Bézout Theorem. Therefore, by contrast, the Melnikov method
developed in this paper is more successful than the averaging method for system (10).

4. Proof of Theorem 4

In this section we will complete the proof of Theorem 4. First we observe the following
important proposition that helps us to simplify system (11).
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Proposition 10. Consider piecewise polynomial Hamiltonian systems (11) and

(45)

(
ẋ1
ẋ2

)
=





(
2x2
−1

)
+ ε

(
−H+

1,x2
(0, x2)

0

)
+ ε2

(
−H+

2,x2
(0, x2)

0

)
if x1 > 0,

(
2x2
1

)
+ ε

(
−H−1,x2

(0, x2)
0

)
+ ε2

(
−H−2,x2

(0, x2)
0

)
if x1 < 0.

For |ε| > 0 sufficiently small the number of crossing limit cycles of the two systems bifurcating
from the unperturbed crossing periodic orbits are the same.

Proof. Assume that system (11) has a crossing limit cycle Γε which tends to a crossing
periodic orbit Γ0 in the unperturbed periodic annulus as ε→ 0. Let (0, p1(ε)) and (0, p2(ε))
with p1(ε) > p2(ε) be the two intersections between Γε and the switching line x1 = 0. Then
p1(ε) tends to a value p̂ > 0 and p2(ε) tends to −p̂ as ε → 0, where the points (0, p̂) and
(0,−p̂) are the intersections between Γ0 and the switching line x1 = 0.

We next prove that system (45) also admits a crossing limit cycle that intersects the
switching line x1 = 0 at (0, p1(ε)) and (0, p2(ε)) for |ε| > 0 enough small. In fact, we observe
that the Hamiltonian functions of subsystems in (11) are

H+(x1, x2) = −x1 − x22 + εH+
1 (x1, x2) + ε2H+

2 (x1, x2),

H−(x1, x2) = x1 − x22 + εH−1 (x1, x2) + ε2H−2 (x1, x2),

respectively. Thus (0, p1(ε)) and (0, p2(ε)) obey the system of equations

H+(0, p1(ε)) = H+(0, p2(ε)), H−(0, p1(ε)) = H−(0, p2(ε)),

or equivalently, the system

(46)
− p1(ε)2+εH+

1 (0, p1(ε))+ε2H+
2 (0, p1(ε))=−p2(ε)2+εH+

1 (0, p2(ε))+ε2H+
2 (0, p2(ε)),

− p1(ε)2+εH−1 (0, p1(ε))+ε2H−2 (0, p1(ε))=−p2(ε)2+εH−1 (0, p2(ε))+ε2H−2 (0, p2(ε)).

On the other hand, the Hamiltonian functions of subsystems in (45) are given by

H̃+(x1, x2) = −x1 − x22 + εH+
1 (0, x2) + ε2H+

2 (0, x2),

H̃−(x1, x2) = x1 − x22 + εH−1 (0, x2) + ε2H−2 (0, x2),

respectively. Using (46) we obviously get

H̃+(0, p1(ε)) = H̃+(0, p2(ε)), H̃−(0, p1(ε)) = H̃−(0, p2(ε)).

This means that the points (0, p1(ε)) and (0, p2(ε)) lie in the same orbit for both subsystems
of (45) and for |ε| > 0 enough small. Moreover, due to p1(ε)→ p̂ and p2(ε)→ −p̂ as ε→ 0,
(0, p1(ε)) and (0, p2(ε)) are crossing points of system (45). Therefore for |ε| > 0 enough small
system (45) admits a crossing periodic orbit that passes through (0, p1(ε)) and (0, p2(ε)) and
that tends to Γ0 as ε→ 0. In particular this crossing periodic orbit is a crossing limit cycle.
Otherwise, by reversing the above analysis process, we can obtain that Γε is no longer a
crossing limit cycle, which contradicts the assumption at the beginning of this proof.

On the contrary, if we assume that system (45) has a crossing limit cycle that tends to a
crossing periodic orbit Γ0 in the unperturbed periodic annulus as ε→ 0, we can similarly prove
that system (11) also has a crossing limit cycle that tends to Γ0 as ε→ 0. So Proposition 10
is proved. �
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Proposition 10 tells that we can equivalently consider the piecewise polynomial Hamil-
tonian system (45) to study the number of crossing limit cycles of the piecewise polynomial
Hamiltonian system (11) bifurcating from the unperturbed crossing periodic orbits. Thus
the rest of this section is devoted to computing the first two Melnikov functions associated
to system (45) by using the formula (24) with (25)–(28), and then obtaining the number of
zeros of the two Melnikov functions. With these results we will prove Theorem 4. In what
follows we always take

(47) H±1 (0, x2) =
m+1∑

i=0

a±i x
i
2, H±2 (0, x2) =

m+1∑

i=0

b±i x
i
2.

Proposition 11. The first order Melnikov function associated to system (45) with (47) is

(48) M1(h) =

[m/2]∑

j=0

(a+2j+1 − a−2j+1)h2j

for h ∈ R+, and thus it has at most [m/2] isolated zeros in R+, where [·] denotes the integer
part function. Moreover, there exists a choice of parameters a±2j+1 such that it has exactly

[m/2] simple zeros in R+.

Proof. Since system (45) is a particular case of system (10) with n = 2 in which all terms
vanish except for

(49) p±1,1(x1, x2) = −H±1,x2
(0, x2), p±2,1(x1, x2) = −H±2,x2

(0, x2),

the first order Melnikov function associated to system (45) can be computed from (24) for
h = h2 ∈ R+ with (25)–(28). In fact, from (23), (26) and (49) we compute

x±1,1(±2h, 0, h) = −
∫ ±2h

0

H±1,x2
(0,∓s+ h)ds

= −
m+1∑

i=0

ia±i

∫ ±2h

0

(∓s+ h)i−1ds

= ±
m+1∑

i=0

a±i ((−1)i − 1)hi

= ∓2

[m/2]∑

j=0

a±2j+1h
2j+1,

and x±1,2(±2h, 0, h) ≡ 0. Then

(50) t±1 (h) = ∓
[m/2]∑

j=0

a±2j+1h
2j
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from (28). Therefore, recalling (24) and (25), the first order Melnikov function associated to
system (45) is

M1(h) =
∂x+0,2(2h, 0, h)

∂t
t+1 (h)−

∂x−0,2(2h, 0, h)

∂t
t−1 (h)

= −t+1 (h)− t−1 (h)

=

[m/2]∑

j=0

(a+2j+1 − a−2j+1)h2j ,

where the second equality is due to (23). Since a±2j+1 for j = 0, 1, · · ·, [m/2] can be chosen

arbitrarily, a straightforward application of the Descartes Theorem (see the Appendix) implies
Proposition 11. �

Proposition 12. The second order Melnikov function associated to system (45) with (47) is

(51) M2(h) = 2

[m/2]∑

j=0

(b+2j+1 − b−2j+1)h2j −
[(m+1)/2]∑

j=0

2j(a+2j − a−2j)h2j−2
[m/2]∑

j=0

a+2j+1h
2j

for h ∈ R+, and thus it has at most m − 1 isolated zeros in R+. Moreover, there exists a
choice of parameters a±2j , a

+
2j+1 and b±2j+1 such that it has exactly m− 1 simple zeros in R+.

Proof. Again, since system (45) is a particular case of system (10) with n = 2 in which all
terms vanish except for the ones in (49), we can compute the second order Melnikov function
for system (45) by (24) with (25)–(28) for h = h2 ∈ R+. To do this, from (23), (26) and (27)
it follows that x±1,2(t, 0, h) = x±2,2(t, 0, h) ≡ 0,

∂x±1,1(±2h, 0, h)

∂t
= −H±1,x2

(0,−h) = −
m+1∑

i=0

ia±i (−h)i−1,

and

x±2,1(±2h, 0, h) = −2

∫ ±2h

0

H±2,x2
(0,∓s+ h)ds

= −2
m+1∑

i=0

ib±i

∫ ±2h

0

(∓s+ h)i−1ds

= ±2

m+1∑

i=0

b±i ((−1)i − 1)hi

= ∓4

[m/2]∑

j=0

b±2j+1h
2j+1,

because p±1,1(x1, x2) and p±2,1(x1, x2) satisfy (49), and p±1,2(x1, x2) = p±2,2(x1, x2) ≡ 0 for system

(45). Then, together with (23), (28) and (50),

t±2 (h) =
1

2h

(
x±2,1(±2h, 0, h) + 2

∂x±1,1(±2h, 0, h)

∂t
t±1 (h) +

∂2x±0,1(±2h, 0, h)

∂t2
t±1 (h)2

)

=
1

2h

(
∓ 4

[m/2]∑

j=0

b±2j+1h
2j+1 ± 2

m+1∑

i=0

ia±i (−h)i−1
[m/2]∑

j=0

a±2j+1h
2j ∓ 2

( [m/2]∑

j=0

a±2j+1h
2j
)2
)
.
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Finally, according to (24) and (25), the second Melnikov function associated to system (45)
is

M2(h) =
∂2x+0,2(2h, 0, h)

∂t2
t+1 (h)2 +

∂x+0,2(2h, 0, h)

∂t
t+2 (h)

−
∂2x−0,2(−2h, 0, h)

∂t2
t−1 (h)2 −

∂x−0,2(−2h, 0, h)

∂t
t−2 (h)

= −t+2 (h)− t−2 (h)

= − 1

2h

(
− 4

[m/2]∑

j=0

b+2j+1h
2j+1+2

m+1∑

i=0

ia+i (−h)i−1
[m/2]∑

j=0

a+2j+1h
2j − 2

( [m/2]∑

j=0

a+2j+1h
2j
)2
)

− 1

2h

(
4

[m/2]∑

j=0

b−2j+1h
2j+1 − 2

m+1∑

i=0

ia−i (−h)i−1
[m/2]∑

j=0

a−2j+1h
2j + 2

( [m/2]∑

j=0

a−2j+1h
2j
)2
)
,

where we used that x±1,2(t, 0, h) = x±2,2(t, 0, h) ≡ 0 in the computation of the first equality,

and the second equality is due to (23).

Note that M2(h) makes sense only if M1(h) ≡ 0, which leads to a+2j+1 = a−2j+1 for

j = 0, 1, · · ·, [m/2] from (48). Hence we can reduce M2(h) obtained above to (51). It is easy
to observe that M2(h) is a polynomial of degree 2m − 2 satisfying that all the odd terms
vanish. By the Descartes Theorem M2(h) has at most m− 1 isolated zeros in R+.

Regarding the reachability, we take b+2j+1 = b−2j+1 for j = 0, 1, · · ·, [m/2] and a−2j = 0 for

j = 0, 1, · · ·, [(m+ 1)/2]. In this case we have M2(h) = −M21(h)M22(h), where

M21(h) =

[(m+1)/2]∑

j=0

2ja+2jh
2j−2, M22(h) =

[m/2]∑

j=0

a+2j+1h
2j .

If we regard h2 as a new variable, then M21(h) and M22(h) are complete polynomials of
degrees [(m + 1)/2] − 1 and [m/2] in the variable h2 respectively. Thus we can choose a+2j
and a+2j+1 in such a way that M21(h) has [(m + 1)/2] − 1 simple zeros in R+, and M22(h)

has [m/2] simple zeros in R+ which are different from the ones of M21(h). This concludes
that M2(h) has [(m+ 1)/2]− 1 + [m/2] = m− 1 simple zeros in R+ for a suitable choice of
parameters a+2j and a+2j+1. �

Having these preliminaries we now prove Theorem 4 as follows.

Proof of Theorem 4. By statements (iii) and (iv) of Theorem 1, the upper bounds and
their realizability in Theorem 4 can be obtained directly from Propositions 10, 11 and 12. �

Appendix

In this appendix we recall the Faá di Bruno’s formula [30,40] on the higher order derivative
of a composite function and the Descartes Theorem [2,18].
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Faá di Bruno’s formula. Let g(x) : Rn → R and f(t) : R → Rn be two functions with a
sufficient number of derivatives. Then

dlg(f(t))

dtl
=
∑

sl

l!

b1!b2! · · · bl!l!bl
∂Lg(f(t))

∂xL

l⊙

j=1

(
djf(t)

dtj

)bj
,

where Sl is the set of all l-tuples of non-negative integers (b1, b2, · · ·, bl) satisfying b1 + 2b2 +
· · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl.

Descartes Theorem. Let q(x) = ai11x
i1 + ai2x

i2 + ... + airx
ir be the real polynomial with

0 = i1 < i2 < ... < ir with r > 1. If aijaij+1 < 0, we say that aij and aij+1 have a variation
of sign. If the number of variations of signs is r0 ∈ {0, 1, 2, ..., r − 1}, then the polynomial
q(x) has at most r0 positive real roots. Furthermore, we can choose the coefficients of the
polynomial q(x) in such a way that q(x) has exactly r − 1 simple positive real zeros.
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