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Gammaproteobacteria, a core taxon in the
guts of soil fauna, are potential responders
to environmental concentrations of soil
pollutants
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Abstract

Background: The ubiquitous gut microbiotas acquired from the environment contribute to host health. The gut
microbiotas of soil invertebrates are gradually assembled from the microecological region of the soil ecosystem
which they inhabit, but little is known about their characteristics when the hosts are under environmental stress.
The rapid development of high-throughput DNA sequencing in the last decade has provided unprecedented
insights and opportunities to characterize the gut microbiotas of soil invertebrates. Here, we characterized the core,
transient, and rare bacterial taxa in the guts of soil invertebrates using the core index (CI) and developed a new
theory of global microbial diversity of soil ecological microregions.

Results: We found that the Gammaproteobacteria could respond indiscriminately to the exposure to
environmental concentrations of soil pollutants and were closely associated with the physiology and function of
the host. Meanwhile, machine-learning models based on metadata calculated that Gammaproteobacteria were the
core bacteria with the highest colonization potential in the gut, and further identified that they were the best
indicator taxon of the response to environmental concentrations of soil pollution. Gammaproteobacteria also
closely correlated with the abundance of antibiotic resistance genes.

Conclusions: Our results determined that Gammaproteobacteria were an indicator taxon in the guts of the soil
invertebrates that responded to environmental concentrations of soil pollutants, thus providing an effective
theoretical basis for subsequent assessments of soil ecological risk. The results of the physiological and biochemical
analyses of the host and the microbial-community functions, and the antibiotic resistance of Gammaproteobacteria,
provide new insights for evaluating global soil ecological health.
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Background
Gut microbiotas help to maintain the health and physio-
logical homeostasis of metazoans, in which epithelial
membranes are the most important interfaces between
an organism and its environment [1]. In particular, sym-
biotic gut microbes promote the digestion of complex
substrates and reduce intestinal colonization by patho-
gens through training of the host immune system and by
affecting body maturation [2]. The complexity of mam-
malian gut microbiotas hinders the analysis of host-
microbiota interactions, so invertebrates harboring sim-
ple gut microbiotas are an important experimental
model for determining the relative contributions of indi-
vidual microbes to the physiological processes of the
host [3].
Soil fauna account for 23% of known animals and are

essential components of soil ecosystems, involved in the
decomposition of litter, the transfer of energy, and the
formation of soil microstructure [4, 5]. Recent studies
have found that the gut microbiotas of soil invertebrates
are important for microbial research and have been as-
sociated with the enrichment and dissemination of genes
conferring antibiotic resistance [6], the colonization and
transfer of pathogens [7], and the potential for the cyc-
ling of soil elements [8], thereby expanding the eco-
logical and evolutionary potential of the hosts [9]. The
gut tract of soil invertebrates is dominated by transient
microbiota [5], depending on time, environmental condi-
tions, nutrient availability, stage of growth and health of
the host, and even circadian rhythms [10]. Therefore,
characterizing the core gut microbiotas of soil inverte-
brates is challenging.
Soil pollution is one of the most serious hidden dan-

gers to global agricultural food security [11]. Soil inver-
tebrate faunae, as some of the first organisms exposed to
soil pollutants, are often used as indicator species in
toxicological experiments [12, 13]. The residual environ-
mental concentrations of soil pollutants are usually low
and rarely greatly affect the physiology of soil inverte-
brate fauna in the short term. The microbiotas within
the guts of soil invertebrates have more sensitive charac-
teristics than their hosts or even soil microbiotas [14,
15]. The process to identify core microbiota is inevitably
affected by different experimental methods, PCR
primers, sequencing depth, and other technical opera-
tions [16]. Thus, core microbiota that can stably exist
within the gut of a species have the potential to become
an indicator organism for general study. The develop-
ment of a single test, however, is labor intensive and
would not be universal, so identifying a general indicator
taxon is difficult.
A method combining metadata analysis and machine

learning has recently been used to predict the develop-
ment of cancer based on human intestinal microbiotas

[17], predict the occurrence of fusarium wilt in soil
based on soil microbiotas [18], and predict microplastic
type and its disposal methods based on characteristic en-
vironmental microbiotas [19]. The emergence of re-
search interest in the gut microbiotas of soil fauna, the
substantial development of sequencing technology, the
advocacy of publicly available data, and machine learn-
ing, together, provide an effective route to obtain and
merge the considerable public sequencing data related
to the gut microbiotas of soil fauna, for the identification
of not only the core gut microbiotas of soil fauna but
also of indicator species that respond to soil pollutants.
Oxytetracycline (OTC) is the most commonly used

antibiotic in animal husbandry and several studies indi-
cated that OTC is a common residual antibiotic in soil
to which manure has been applied [20, 21]. The strobi-
lurin fungicide azoxystrobin (AZ) is the highest selling
fungicide, with $1.165 billion in global sales in 2016
(http://cn.agropages.com/, accessed on October 19,
2017). Both the antibiotic OTC and the fungicide AZ
are broad-spectrum antimicrobials, and are the most
representative of soil antimicrobials. Therefore, we used
AZ and OTC as typical treatments to investigate the
changes of the gut microbiota in the model soil inverte-
brate Folsomia candida (Collembola) and analyzed func-
tional genes using eukaryotic transcriptome sequencing,
which could identify the interactions between the gut
microbiota and host physiological functions. We then
defined the core gut microbiota of F. candida using a
large-scale analysis of data for the microbial community
and identified taxa that could be used as potential indi-
cators of environmental concentrations of soil pollutants
using random forest machine learning. We further inves-
tigated the antibiotic resistance genes (ARGs) in F. can-
dida gut using HT-qPCR and identified the taxa related
to the ARGs.

Materials and methods
Details are provided in Supplementary Information and
Figure S1.

Laboratory experiments
Experimental design
The test species, Folsomia candida (“Berlin strain,” ori-
ginally obtained from Aarhus University, Denmark), was
reared in our laboratory for 2 years following
Organization for Economic Co-operation and Develop-
ment (OECD) guideline 232 and was placed in a suitable
breeding environment, maintained in Petri dishes con-
taining a mixture of charcoal and plaster of Paris (1:8 w/
w). These Petri dishes were kept in a thermostatic box
(Safe Co., Ningbo, China) at 75% relative humidity and a
temperature of 20 ± 2 °C with a 16:8-h light: dark photo-
period (800 Lux). Ultrapure water was added once a
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week to ensure substrate moisture and the F. candida
were fed twice a week with dry yeast powder.
To obtain F. candida, all of the same age, we trans-

ferred 60-70 active adults to a new substrate to lay eggs
for 2 days, and then removed these adults. As the juve-
niles hatched, they were immediately transferred to a
new substrate for culture. Before the exposure experi-
ment, 7-9-day-old collembolans were transferred to the
test soil (2.27, 16.47, and 81.25% of clay, silt, and sand,
respectively; pH 5.16; water-holding capacity, 46.8%;
total N content, 3.8 g/kg) from a vegetable field (29° 49′
N, 121° 20′ E; Zhejiang, China) to adapt the test collem-
bolans to the new culture environment.
When the mortality of these collembolans in the new

soil culture environment was less than 1% during the
pre-incubation process, we used these collembolans for
subsequent exposure experiments. To simulate the nat-
ural field environment, we did not feed in the pre-
incubation and exposure experiments and added distilled
water twice weekly to maintain soil moisture.
We firstly conducted a pre-exposure experiment, to

measure reproduction rate and mortality, for selecting
the most suitable concentration for the formal experi-
ments, and the specific details are described in the Sup-
plementary Information. The formal laboratory
experiments were divided into two parts, one for deter-
mining the death, reproduction, locomotion, reactive
oxygen species (ROS) concentration, and cytochrome
P450 (CYP450) enzymatic activity of F. candida, and the
other for transcriptomic measurements (gene expres-
sion), the gut microbiota (bacterial and fungal communi-
ties), and the gut resistome of F. candida. Before starting
the experiments, we added ultrapure water to restore
the microorganisms in the soil for a week at room
temperature, and the moisture content was maintained
at 60% of the maximum (60.23%), as detailed in OECD
guideline 232. The laboratory experiments were divided
into two parts, one for determining the death,
reproduction, locomotion, ROS concentration, and
CYP450 enzymatic activity of F. candida, and the other
for transcriptomic measurements (gene expression), the
gut microbiota (bacterial and fungal communities), and
gut resistome of F. candida. In one part of the experi-
ment, soil microcosms were established for exposing F.
candida to the pollutants: control (no pollutants), AZ
(0.3 mg AZ/kg dry soil), OTC (10 mg/kg dry soil), and
AO (combined 0.3 mg AZ/kg dry soil and 10 mg OTC/
kg dry soil). Twenty 14-16-day-old pre-incubated col-
lembolans were introduced into these experimental mi-
crocosms, each treatment had four replicates and were
conducted in sterile glass beakers (inner diameter 5.3
cm, 6.5 cm high) containing 30 g of moist soil at 18 °C
with a diurnal light cycle (16:8 h light: dark). We added
sterile water twice a week and recorded the numbers of

adults and larvae in all microcosms after 28 days of ex-
posure using the imageJ 1.52, and 13 adults were col-
lected for the locomotory test. Two adults were then
isolated for determining ROS content and CYP450 en-
zymatic activity respectively, following the manufac-
turer’s instructions for the nematode ELISA kit based on
the double-antibody sandwich method (Jiangsu Enzyme
Industrial Co., Ltd., Yancheng, China) [15].
In the other experimental setup, sixty 14-16-day-old

pre-incubated collembolans were added to control, AZ,
OTC, and AO experimental microcosms with eight rep-
licates. These experimental microcosms were conducted
in same-sized beaker with 65 g moist soil. After expos-
ure for 28 days, all collembolans were collected for gut
microbiome, resistome, and eukaryotic transcriptome
analysis. Fifty adults per replicate were washed three
times with ultrapure water and dissected under a stereo
microscope using very precise tweezers to obtain the
collembolan gut samples [6].
The gut samples were transferred to 2-mL round-

bottomed centrifuge tubes containing 20 μL of protein-
ase K and 180 μL of a lysis buffer solution for the extrac-
tion of DNA [15]. A total of 2 g of soil per sample,
without collembolans, was collected for analyzing the
soil microbial community. Fifty adults each replicate
were provided for extraction of RNA. These collected
collembolans were firstly washed three times with ultra-
pure water and then immediately frozen in liquid nitro-
gen for RNA extraction.

Effects of soil pollution on F. candida gut microbiota
A total of 50 guts of adult F. candida, per replicate, were
used to isolate high-quality DNA using a DNeasy® Blood
& Tissue Kit (QIAGEN, GER). The V4 hypervariable re-
gion of the 16S rRNA gene was amplified using universal
primers (forward primer 515F 5′-GTGCCAGCMGCC
GCGG-3′ and reverse primer 806R 5′-GGACTACNVG
GGTWTCTAA-3′) [14], and region 1 of the internal
transcribed spacer (ITS) gene was amplified using the
forward primer ITS1F (5′-CTTGGTCATTTAGAGGAA
GTAA-3′) and the reverse primer ITS2 (5′-GCTGCG
TTCTTCATCGATGC-3′) [21]. The 50-μL reactions (25
μL of TaKaRa ExTaq DNA polymerase, 1 μL of DNA
(range 10-15 μg/mL), 1 μL of universal forward, 1 μL re-
verse primer, and 22 μL of PCR-grade water) were amp-
lified following reaction conditions previously described
[14]. The PCR products were then purified, pooled, and
sequenced using the Illumina MiseqPE300 platform
(Meiji, Shanghai, China).

Effects of soil pollution on F. candida gut resistome
We used a total of 384 primer sets (Data set S2) (includ-
ing 320 antibiotic resistance genes (ARGs), 57 mobile
genetic elements (MGEs), and the 16S rRNA gene) to
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investigate the composition and abundance of ARGs in
the collembolan gut using the SmartChip Real-time PCR
system (Wafergen, USA). The PCR reaction mixture of
each well compose with collembolan DNA template,
primers, sterile water, and LightCycler 480 SYBR Green
I Master mix. The reaction system (95 °C (10 min) and
40 cycles of 95 °C (0.5 min) and 60 °C (0.5 min)) was
used for HT qPCR. SmartChip qPCR software was used
to analyze the raw data and a threshold cycle (CT) of 31
was used to detect ARGs. Only when 3 technical repli-
cates and 3 biological replicates were amplified at the
same time, did we consider an ARG to have been de-
tected. The relative abundance of ARGs was calculated
using the equation below [22].
Copy number of gene = 10 ((31-CT (measurement))/(10/3)

Effects of soil pollution on F. candida gene expression at
the transcriptomic level
A total of 50 collected adults per replicate were immedi-
ately snap frozen in liquid nitrogen and stored at −80 °C
to ensure the RNA integrity. The RNA was isolated from
each replicate pool using an RNA extraction kit (HiPure
Universal RNA Midi Kit, Magen, Guangzhou, China).
We checked the concentration, purity, and integrity of
the RNA and isolated the mRNA. The enriched mRNA
was then randomly broken into fragments of ~300 bp
and reverse transcribed to produce stable double-
stranded cDNA using ReverTra Ace qPCR RT Kit
(TOYOBO, Osaka, Japan), which was sequenced using
the Illumina Novaseq 6000 platform (Meiji, Shanghai,
China).

Data collection and description and processing of the 16S
rRNA gene metadata
Based on a previous search principle [19], we searched
the Web of Science Core Collection and Science Direct
for the terms “gut microbiota of soil fauna or ‘species’
name” “gut microbial community of soil fauna or ‘spe-
cies’ name” and “gut microbiota of soil invertebrate or
‘species’ name.” A total of 33 studies were collected from
these databases, but only 20 independent experiments
were publicly available with incomplete 16S rRNA gene
sequences (Data set S1), including three 16S rRNA gene
hypervariable regions, V4, V4-V5, and V3-V4, which
were amplified using the respective primer pairs 515F/
806R (forward primer: 5′-GTGCCAGCMGCCGCGG
TAA-3′, reverse primer: 5′-GGACTACNVGGGTWTC
TAA-3′), 515F/907R (forward primer: 5′-GTGCCAGC
MGCCGCGGTAA-3′, reverse primer: 5′-CCGTCAAT
TCMTTTRAGTTT-3′), and 334F/806R (forward pri-
mer: 5′-CCTACGGGAGGCAGCAG-3′, reverse primer:
5′-GGACTACHVGGGTWTCTAAT-3′). We used
Vsearch (version 2.7.1) and QIIME2 (version 2021.2) to
filter, classify, and merge these raw data sets. Each

sample sequence was normalized to 2000 reads, and a
total of 415 samples from the 17 independent studies,
including the 17 soil pollutants (e.g., the fungicide azox-
ystrobin; the insecticide cypermethrin; the herbicide gly-
phosate; the antibiotics tetracycline, sulfamethoxazole,
and oxytetracycline; the antibiotic substitute Macleaya
cordata extract; the heavy metals arsenic, silver nitrate,
silver nanoparticles, and nano-copper oxide; and the
emerging pollutants micro-, nano-, and tire-tread plas-
tics), five kinds of soil invertebrates (collembolans,
enchytraeus, earthworms, mites, and ants), and three ex-
posure methods (oral exposure, soil microcosm, and
field experiment). All metadata were divided into “Con-
trol” and “Pollution” based on the sample information
for each experiment (Data set S1).

Construction and validation of the predictive model
Machine-learning algorithms were used to predict the
heterogeneous microbial data for identifying taxa in the
guts of the soil invertebrates that were most strongly as-
sociated with the stress of the soil pollutants. We uti-
lized three machine-learning algorithms, random forest
(RF) [23], logistic regression (LR) [24], and support-
vector machine (SVM) [25]. The receiver operating char-
acteristic curve (ROC) and the area under the curve in-
dicated that the RF algorithm performed well on our
merged data. We therefore used the RF algorithm to
build the predictive model. Classification models based
on each taxonomic level could distinguish between the
bacterial communities in the guts of the soil inverte-
brates in the control and pollutant treatments using the
randomForest package in R with default parameters
(version 4.6-14). The results indicated that the average
accuracy rate was similar across all taxa, so we selected
the RF model at the genus level with the lowest esti-
mated rate of out-of-bag (OOB) errors (17.58%) [26].

Statistical methods
The means ± standard errors (SEs) of each treatment
were calculated. A two-tailed Welch’s t test was used to
identify significant differences between groups. A princi-
pal coordinate analysis (PCoA) based on unweighted
UniFrac distances for the guts of the soil invertebrates
and for the bacterial and fungal communities in the sur-
rounding soil was performed using the Majorbio Cloud
Platform (www.majorbio.com), and the output was visu-
alized using OriginPro 9.1. The Adonis function (9999
permutations) was used in a PERMANOVA to identify
differences among the treatments using the vegan 2.4-3
package in R version 3.6.1. Function prediction analysis
of fungi using FUNGuild was performed on Majorbio
Cloud Platform (www.majorbio.com).
Heatmaps were generated using TBtools (Toolbox Bi-

ologists v0.655), and histograms, line and box charts,
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and linear regressions were produced using GraphPad
Prism 8.00. The weighted gene co-expression network
analysis (WGCNA) was performed using the Majorbio
Cloud Platform (www.majorbio.com). The co-
occurrence network analysis of laboratory experiments,
based on the relative abundance of all bacterial and fun-
gal classes, using pairwise Spearman’s rank correlations
(r) in the psych package in R (r > 0.6 or r < −0.6, P <
0.05), was performed using Gephi v0.9.2. The shared
network based on the frequency of each bacterial class
among all independent studies was produced using
Gephi v0.9.2. Structural equation models (SEMs) were
built to calculate the direct and indirect effects among
the gut bacteria (Shannon index), treated groups, bacter-
iaShannon/fungiShannon (B/F) index, cytochrome P450 (en-
zymatic activity), the HAA index, Gammaproteobacteria
(relative abundance), and transcriptome (PC1 of the
TPM value using Bray-Curtis distances). The signifi-
cance of each path-coefficient was analyzed by calculat-
ing its critical ratio (P < 0.05). The goodness-of-fit index
(GFI) and the Bentler comparative fit index (CFI) indi-
cating the goodness-of-fit of the models to the original

data. The SEM was produced using Amos Graphics v22
(IBM Corp., Armonk, NY, USA). Meta-analysis and sen-
sitivity analysis were performed using the STATA statis-
tical software package version 15.0 (Stata Corp., College
Station, TX, USA). In addition, to characterize positive
and negative co-occurrences separately, we used the co-
hesion among taxa to reveal the interactions, similarity,
and differences between both positive and negative spe-
cies interactions in the niches of microbial taxa, using
the previous equation to calculate the positive and nega-
tive cohesion values [27].

Results
Effects of AZ, OTC, and AO on the physiology and
biochemistry of F. candida.
We designed a locomotory map (radii of 5, 10, 15, 20,
and 30 cm) to characterize the motility of F. candida
after exposure to pollutants (Fig. 1A). Thirteen individ-
uals of the same size were treated with 0.3 mg AZ/kg
dry soil, 10 mg OTC/kg dry soil, or AO for 28 days and
were then put at the center of the map. The number of
individuals in areas A1-A5 after 2, 4, 6, 8, and 10 min

Fig. 1 Effects of azoxystrobin (AZ), oxytetracycline (OTC), and their combination (AO) on the physiology and biochemistry of Folsomia candida.
Locomotory test map (A). The number of the individuals in different areas of the map after 2-10 min of exposure to AZ, OTC, and AO (B). The
high area activity (HAA) index (C), with different K values (D). E The numbers of adults and larvae, ROS concentrations, and the enzymatic activity
of CYP450 after exposure to AZ, OTC, and AO. * (P < 0.05) and ** (P < 0.01) indicate significant differences between the bacterial and fungal
communities (two-tailed Welch’s t test)
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were recorded (Fig. 1B). The AZ and OTC concentra-
tions, which did not cause mortality, were chosen ac-
cording to the environmental residual levels and pre-
experiment results (Figure S2). F. candida motility was
calculated using Eq. 1 (Supplementary Information), and
an index of high area activity (HAA) was calculated for
each time point. F. candida motility for the treatments
was in the order control > AZ > TOC > AO based on
the slopes of the fitted lines (Fig. 1C, D).
The numbers of adults and larvae did not differ signifi-

cantly between the treated groups and the control. The
concentration of reactive oxygen species (ROS) was
higher in OTC-, AZ-, and AO-treated groups than the
control (Fig. 1E: P < 0.01, P < 0.01, P < 0.05, df = 6, n =
4 per group, two-tailed Welch’s t test), and the enzym-
atic activity of cytochrome P450 (CYP450) was signifi-
cantly higher only in the AO group (P < 0.05, df = 6, n =
4 per group, two-tailed Welch’s t test).

Effects of AZ, OTC, and AO on the microbiota of the
surrounding soil.
A total of 0.5 g of soil surrounding the F. candida speci-
mens was carefully separated from the microcosms, both
with and without treatment, under a microscope to
avoid interference by the larvae for determining the ef-
fects of AZ, OTC, and AO on the diversity and compos-
ition of the soil microbiota. The soil bacterial and fungal
communities were assessed using deep amplicon se-
quencing of the 16S rRNA and internal transcribed spa-
cer (ITS) genes, respectively. Exposure to AZ, OTC, and
AO for 28 days did not significantly affect the alpha-
(Shannon and Chao indices) or beta-diversity of the soil
bacterial community (P > 0.05, df = 6, n = 4 per group,
two-tailed Welch’s t test; PERMANOVA for treatments:
R2 = 0.2764, P = 0.182, Adonis analysis) (Figure S3A, B).
The number and classification of operational taxonomic
units (OTUs) did not differ significantly between the
treated groups and the control (P > 0.05, df = 6, n = 4
per group, metagenomeSeq difference analysis).
Fungal diversity was significantly higher in the AZ and

AO groups, although the fungi were richest in the AO
group (Figure S3C), and the treatments affected the
composition of the fungal community (principal coord-
inate analysis (PCoA) of unweighted UniFrac distance)
[28], PERMANOVA for treatments: R2 = 0.2392, P =
0.024, Adonis analysis) (Figure S3D). The number and
classification of OTUs differed significantly in each
group (Figure S4A-C), and the OTUs with highest abun-
dances belonged to plant or animal pathogens (function
prediction analysis of fungi using FUNGuild, a tool for
parsing fungal OTUs) (Figure S4D). This finding indi-
cated that soil microbiotas would respond differently to
different soil pollutants and that low environmental

concentrations of pollutants would enrich potential soil
pathogens, inducing ecological risks.

Effects of AZ, OTC, and AO on gut microbiotas of F.
candida
Analysis of the 16S rRNA and ITS gene sequences from
20 adult F. candida guts showed that richness was sig-
nificantly higher in the fungal community than the bac-
terial community (P < 0.001, df = 30, two-tailed Welch’s
t test) (Figure S5), indicating that the potential
colonization in F. candida guts was much lower for
fungi than bacteria. The addition of pollutants did not
affect the diversity or abundance of the fungal commu-
nity (Shannon and Chao indices: P > 0.05, df = 6, two-
tailed Welch’s t test) (Figure S6A, B), but unweighted
UniFrac distances indicated that the diversity and abun-
dance of the fungal community differed between the AO
group and the control (P <0.001, df = 26, two-tailed
Welch’s t test) (Figure S6C), perhaps due to the inter-
action between fungi and bacteria. We established a co-
occurrence network of the bacterial and fungal species
to test this hypothesis and found that the index of stabil-
ity (negative: positive cohesion) for all microbial commu-
nities was highest in the AO group, representing the
most unstable community network (Figure S7).
Exposure to the pollutants significantly affected the di-

versity and structure of the bacterial community, espe-
cially in the AZ and AO groups (Fig. 2A, B: AZShannon

and AZChao: P < 0.01, df = 6, two-tailed Welch’s t test;
AOShannon: P < 0.01, df = 6, two-tailed Welch’s t test;
PERMANOVA for treatments: R2 = 0.6398, P = 0.001,
Adonis analysis). Totals of 2 (1 up and 1 down), 10 (8
up and 2 down), and 6 (4 up and 2 down) OTUs differed
significantly between the OTC, AZ, and AO groups as
compared to the control, respectively (Fig. 2C: P < 0.05,
df = 6, n = 4 per group, MetagenomeSeq difference ana-
lysis). The associated phylogenetic relationships are
shown in Fig. 2D. The OTUs shared between the treat-
ment groups were classified into Proteobacteria
(phylum), with Alphaproteobacteria and Gammaproteo-
bacteria (classes) identified as common potential indica-
tor taxa after exposure to the pollutants (Fig. 2E), similar
to previous studies [22, 29]. Proteobacteria may be a po-
tential microbial signature of dysbiosis in soil inverte-
brates, just as in human guts [30]. Interestingly, the
relative abundance of Gammaproteobacteria gradually
increased with the intensity of pollutant stress (OTC <
AZ < AO) (Fig. 2F: P > 0.05, P < 0.01, and P < 0.05, df =
6, n = 4 per group, two-tailed Welch’s t test). The co-
occurrence network indicated that the Gammaproteo-
bacteria, the most common taxon across all treatments,
was significantly correlated with the abundances of 178
other bacteria and 16 fungi, indicating that this taxon
occupied an important central position for correlating
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the fungal and bacterial communities (Fig. 2G, Spear-
man’s > 0.6, P < 0.05). The associated topological
data also showed that Gammaproteobacteria played the
most important role in the co-occurrence network
through interactions with other bacteria and fungi (Fig-
ure S8).

Relationships between Gammaproteobacteria and host
physiology, biochemistry, and function
We collected 50 F. candida after 28 days of exposure to
AZ, OTC, and AO to extract RNA for transcriptome se-
quencing based on the F. candida genome in NCBI
(GCF_002217175.1) [31] after transferring the gut con-
tents to sterile water to avoid contamination from gut

microorganisms (Fig. 3A). A PCoA of gene expression
value (TPM) using the Bray-Curtis distances indicated
differences among the groups (Fig. 3B: PERMANOVA
for treatments: R2 = 0.6327, P = 0.001), and Bray-Curtis
dissimilarity indicated that the OTC and AO groups
were significantly separated from the control (P < 0.001
and P < 0.01, respectively, two-tailed Welch’s t test). We
classified a total of 24,436 genes (21,359 known, 3077
unknown) into five unique module eigengenes based on
differences in the strength of the interaction between
genes, conforming to a scale-free distribution, to deter-
mine whether gut Gammaproteobacteria were associated
with host functions (R2 = 0.82, soft power (β) = 6, mini-
mum module size = 30, weighted gene co-expression

Fig. 2 Effects of azoxystrobin (AZ), oxytetracycline (OTC), and their combination (AO) on the gut microbiota of Folsomia candida. Alpha diversity
(Shannon and Chao indices) (A). PCoA of OTU file data using unweighted UniFrac distances) for different groups of gut bacteria (B). Significantly
different OTUs between the control and treated groups (C). Evolutionary relationships of the OTUs (D). Classification of significantly different OTUs
at the phylum and class levels and significantly different OTUs shared between the treated groups (E). The relative abundance of significantly
different OTUs shared in all treated groups (F). Co-occurrence network analysis identifing the relationships among the bacteria, fungi, and
Gammaproteobacteria (G). The size and color of the nodes represent the relative abundance and the associated type of OTU data (black, bacteria;
green, fungi; and blue, Gammaproteobacteria). The colored lines indicate the links among the bacteria, fungi, and Gammaproteobacteria. * (P <
0.05) and ** (P < 0.01) indicate significant differences between the bacterial and fungal communities (two-tailed Welch’s t test), NS indicates
“not significant”
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Fig. 3 (See legend on next page.)
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network (WGCNA) analysis) (Figure S9A-C). The MEb-
rown (gene membership of brown) co-expression mod-
ule was selected for further analysis, because it was most
relevant to the control phenotype, to distinguish be-
tween the control and treated groups (module signifi-
cance = 0.451, module membership vs gene significant:
R2 = −0.697, P < 0.012, WGCNA analysis) (Figure S9D-
F). Seventy-nine MEbrown genes were significantly
negatively correlated with the relative abundance of
Gammaproteobacteria (Spearman’s > 0.6, P < 0.05,
Spearman analysis), and gene expression was lower in
the treated groups than the control (Fig. 3C). These
genes were annotated to functions of immunity, diges-
tion, development, detoxification, vitamin carbohydrate
metabolism, protein assembly and synthesis, and cell
growth and apoptosis based on the KEGG pathway data-
base (Fig. 3D). Locomotive activity (HAA index) and
ROS concentration for the host were also significantly
correlated with the relative abundance of Gammaproteo-
bacteria (Fig. 3E: R2 = −0.4568, P = 0.0041; R2 = 0.3395,
P = 0.0395, ordinary least squares linear regression ana-
lysis). These findings indicated that the relative abun-
dance of gut Gammaproteobacteria was negatively
correlated with the normal physiological functions of the
host, similar to the index of oxidative stress (ROS level),
indicating that the host was stressed. Structural equation
modeling (SEM) found that the gut Gammaproteobac-
teria were connected with the expression of host func-
tional genes by interfering with the gut bacterial
community and were also directly associated with host
locomotion and level of oxidative stress (Fig. 3F, G: χ2/df
= 0.961, P = 0.450; GFI = 0.913, CFI = 1.00, RAMSEA =
0.000, SEM analysis).

Defining the core microbiotas of the guts of soil
invertebrates based on a metadata analysis
Global databases of soil invertebrates have recently been
developed, but are concentrated mainly on species iden-
tification (Global Biodiversity Information Facility
(GBIF), www.gbif.org). The recent rapid development of
molecular sequencing technology has provided an effect-
ive way to combine the diversity of global species of
symbiotic microbiota and the gut microbiotas of soil

invertebrates. Previous studies reported that the gut
microbiotas of soil invertebrates were mainly composed
of the phyla Proteobacteria, Firmicutes, Actinobacteria,
and Bacteroidetes [32], which are anaerobic and faculta-
tive anaerobic bacteria due to the special anaerobic en-
vironment of the gut.
We unified the determination of the core gut micro-

biotas of soil invertebrates through collection of data
from 33 independent experiments by searching the Web
of Science Core Collection and Science Direct, 20 of
which were publicly available and contained incomplete
16S rRNA gene sequences (Data set S1). We then reana-
lyzed these sequences and homogenized them to 2000
reads for each sample. The merged OTU table contained
415 gut samples from soil invertebrates in 17 independ-
ent experiments: nematodes, springtails, earthworms,
mites, and ants (Data set S1). The gut microbiotas of soil
invertebrates are contributed by host factors such as diet
[33], habits [34], region [6], and soil type [35], so refining
the core gut microbiotas of soil invertebrates at a higher
level of classification, the class level, was necessary. First,
the results of the taxa-detection rate for each experiment
identified seven shared classes: Actinobacteria, Alpha-
proteobacteria, Ktedonobacteria, Acidimicrobiia, Acido-
bacteriae, Planctomycetes, and Gammaproteobacteria
(Fig. 4A). We then analyzed the frequency and relative
abundance of each class across all samples (Fig. 4B, C).
The two indicators, frequency and relative abundance,
had different rank orders. A core index (CI) was estab-
lished for calculating the symbiotic potential of core
microbiotas from all taxa based on a metadata analysis
using Eq. 2 (Supplementary Information), and we used
the normalized core index (NorCI) to determine the
core gut microbiota of the soil invertebrates (Eq. 3, Sup-
plementary Information) (Fig. 4D). According to the pre-
vious classification method, based on the NorCI
thresholds of 0.83 and 0.3 (Supplementary Information)
and the frequency of all samples, we further divided the
bacterial classes into core (Gammaproteobacteria,
Alphaproteobacteria, and Planctomycetes; 50.68%), tran-
sient (Bacilli, Ktedonobacteria, Actinobacteria, and Acid-
obacteria; 35.63%), and rare (lower-CI taxa; 13.69) gut
microbiota (Fig. 4E). Interestingly, CI and NorCI for the

(See figure on previous page.)
Fig. 3 Correlations among the transcriptome, gut microbiome, and gut Gammaproteobacteria of Folsomia candida (A). PCoA based on the
Folsomia candida gene expression value (TPM) data using Bray-Curtis distances showing the different clusters in the control and the treated
groups (OTC, AZ, and AO) (B). Heatmap of the level of expression (the color key indicates the TPM value) (C), and associated KEGG functional
pathway (the color scale and red text indicate the primary and various secondary pathways, respectively) (D). Ordinary least squares (OLS) linear
regression between Gammaproteobacteria (relative abundance) and physiological and biochemical indicators of F. candida (number of juveniles,
HAA index, enzymatic activity of CYP450, and ROS concentration) (E). Structural equation model (SEM) of the relationships among the gut
bacteria (Shannon index), treated groups, bacteriaShannon/fungiShannon (B/F) index, cytochrome P450 (enzymatic activity), the HAA index,
Gammaproteobacteria (relative abundance), transcriptome (PC1 of the TPM value using Bray-Curtis distances), and the goodness-of-fit index (GFI)
and the Bentler comparative fit index (CFI) indicating the goodness-of-fit of the models to the original data. Dashed lines indicates the “not
significant correlation” (F). The direct, indirect, and total standardized effects of Gammaproteobacteria on the indicators (G)
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invertebrates and the surrounding soil (Figure S10A)
showed that the core taxa in soil were very similar to the
transient taxa in the invertebrate gut. A PCoA based on
the OTU data using Bray-Curtis distances, however,
identified a pronounced separation between the soil in-
vertebrates and the bacterial communities of the sur-
rounding soil (Figure S10B). Surprisingly, CI was also
highest for Gammaproteobacteria in the surrounding
soil, but the PCoA based on Gammaproteobacteria OTU
data demonstrated that the gut Gammaproteobacterial
community differed from the community in the sur-
rounding soil. This finding may have been due to the
special anaerobic environment of the gut (Figure S10C).

Screening the most important gut bacterial taxa that
respond to pollutant pressure using a machine-learning
method and associated community function
We screened data for a total of 415 gut samples (193
controls and 222 pollution groups) from 17 independent

experiments. The samples were from earthworms,
Enchytraeus, collembolas, ants, and mites exposed to 15
kinds of soil pollutants (e.g., the fungicide azoxystrobin;
the insecticide cypermethrin; the herbicide glyphosate;
the antibiotics tetracycline, sulfamethoxazole, and oxy-
tetracycline; the antibiotic substitute Macleaya cordata
extract; the heavy metals arsenic, silver nitrate, silver
nanoparticles, and nano-copper oxide; and the emerging
pollutants micro-, nano-, and tire-tread plastics), ma-
nure, and lime.
To determine whether gut bacterial taxa could be used

as biomarkers for responses to soil pollutants, we built
three machine-learning models, random forest (RF),
support-vector machines (SVM), and logistic regression
(LR), in which the accuracy rate (area under the curve)
indicated that RF was the best model for predicting the
classification of samples (Fig. 5A). We therefore calcu-
lated the accuracy of the classification based on the bac-
terial data at the levels of phylum, class, order, family,

Fig. 4 Defining the core microbiomes of the guts of soil invertebtrates based on a metadata analysis. Network analysis showing the unique and
shared classes in the 17 independent experiments. The node size indicates the number of connections, the node color indicates the following:
black nodes, different independent experiments; blue nodes indicate bacterial classes not shared between all experiments; red nodes indicate
bacterial classes shared by all independent experiments (A). The frequencies (B) and average abundances (C) of the 20 most abundant classes in
all samples, respectively. Core index (CI) for core, transient, and rare bacteria (at the class level) in the guts of the soil invertebrates (f, class
frequency; n, number of independent experiments with class data; s, sequence length of the class; S, total sequence length from all samples) and
NorCI, the normalized core index using all classes detected to normalize CI (D). Relative abundances of the core (50.68%), transient (35.63%), and
rare (13.69%) classes in all samples (E). All data from the independent studies were merged into a single data set for all analyses
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Fig. 5 Screening of gut microbiota that responded to pollutant pressure using a machine-learning method. The machine-learning modules of the
random forest (RF), support-vector machine (SVM), and logistic regression (LR) analyses were built using the OTU data for the bacterial community (A). The
associated AUC and ROC curves indicated that the RF model was the most accurate model. The RF module constructed using all samples at the phylum,
class, order, family, genus, and OTU levels. Dashed lines indicates the 95% confidence interval (B). Prediction using the test data in the RF module. Black
indicates the control, and blue indicates the treated groups in the comparison between raw (O) and predictive (P) information (C). Each test used a tenfold
cross-validation method to verify the accuracy of the model predictions, and the 18 most abundant bacterial genera were identified by applying the RF
classification of the relative abundances of the control and treated samples (D). RF classification of the relative abundance of the control and treated
samples as based on the data for all genera for calculating their mean decreases in accurracy, combined with the frequency of each genus for screening
the most important indicator genus, Paraburkholderia, belonging to Gammaproteobacteria (E). The associated relative abundance of Gammaproteobacteria
in the control and the treated groups (F). P values were determined using two-tailed Welch’s t tests
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genus, species, and OTUs and selected the most accur-
ate classification of the genus data to establish the RF
model (Fig. 5B). The predication of this model based on
the test data set was 100% accurate for the pollution
samples and 84.2% accurate for the control samples (Fig.
5C). We next conducted a tenfold cross-validation with
five repeats to evaluate the importance of genera as po-
tential indicators (Fig. 5D), which combined with the
frequency data for each genus, and confirmed the bac-
terial biomarker taxa (Fig. 5E) belonging to Gammapro-
teobacteria and their enrichment in contaminated guts
(Fig. 5F). Meanwhile, taking the heterogeneity of differ-
ent experimental pollutants, we used a meta-analysis
and a sensitivity analysis based on a random model and
found an upward trend of Gammaproteobacteria in the
contaminated group (Figure S11). This finding sup-
ported the hypothesis that Gammaproteobacteria, by

accumulating within the gut, could act as indicators of
soil disturbance by pollution. A PCoA based on the
OTU data from the rarefied sequencing reads for each
gut sample using the Bray-Curtis distances presented
significantly separated clusters between control and pol-
lutant treatments (Fig. 6A: PERMANOVA for treat-
ments: R2 = 0.1256, P < 0.001, Adonis analysis). Bacterial
diversity (Shannon index) was higher in the pollutant
treatments (Fig. 6B: P < 0.001, df = 415, two-tailed
Welch’s t test), indicating that pollutant residues in the
soil interfered with the structure and diversity of the gut
microbial community. The topological properties ana-
lysis exhibited an insignificant change between control
and treatment group (Figure S12). The negative:positive
cohesion of each bacterial community and the
Gammaproteobacteria-correlated community network in
the control and pollutant treatments were calculated

Fig. 6 Effects for soil pollutant in stability of microbial networks of soil invertebrate gut. Principal coordinate analysis (PCoA) of the 17
independent experiments with 415 gut samples (193 control and 222 treated), including 17 kinds of soil pollutants (Data set S1) using Bray-Curtis
dissimilarity performed on OTU data from the control and treated microbial communities (A). R2 and P values were determined using Adonis
analysis. Shannon index for the gut mirobial communities in the control and treated groups (B). P values were determined using two-tailed
Welch’s t tests. Negative:positive cohesion (calculated using the formula in (28)) in the whole (C) and Gammaproteobacteria-associated
communities (D) networks with and without soil pollution, indicating that the treated groups formed a more stable community network than the
control as shown in the schematic diagram (E)
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using the equation described by Hernandez et al. [27], to
determine the function of the Gammaproteobacteria
community in the gut. The higher negative:positive cohe-
sion in the bacterial communities of the contaminated
guts demonstrated that soil pollutants stimulated the gut
to develop a more stable community network (Fig. 6C,
E), especially the Gammaproteobacteria, which greatly
promoted the stability of the gut bacterial community
(Fig. 6D).

Discussion
The rapid development of next-generation sequencing
technology and bioinformatics has enabled large-scale,
cross-influence analyses of complexity, which has greatly
enlarged our understanding of the interaction between
microbial communities and their ecological niches [36–
38]. Interestingly, microbiotas directly and closely associ-
ated with personal, public, and planetary health [39]
have gradually become indicators for predicting human
and ecological health [17, 18, 37, 38, 40]. Our previous
studies have found that the gut microbiota of soil inver-
tebrates was more sensitive than soil microbiotas to soil
pollution [14, 15, 34]. Identifying common potential in-
dicator taxa in invertebrate guts may therefore be benefi-
cial to the assessment of soil ecological risk. We used a
microcosm experiment for prediction, and used meta-
data and machine learning for verification, to identify in-
dicator taxa from the guts of soil invertebrates in
response to environmental concentrations of soil pollu-
tion and their relationships with the associated gut
microbiome and resistome and with characteristics of
host physiology and biochemistry.
We exposed the model soil invertebrate F. candida to

common soil pollutants (a fungicide (AZ) and an anti-
biotic (OTC)) in our microcosm experiment, separately
targeting fungal and bacterial communities. The survival
and fecundity of F. candida were not significantly af-
fected, but the significant increase in ROS confirmed
that the host was negatively affected by these pollutants
(Fig. 1D). The enzymatic activity of CYP450 was also
higher in the pollutant treatments, indicating a biochem-
ical stress response and detoxification mechanism by F.
candida [15]. This result indicated that soil pollutants at
environmentally relevant residual concentrations could
not be indicated via ordinary physiological phenomena.
The HAA index also indicated that the effect of AZ and
OTC was higher when combined, than individually (Fig.
1C), unlike the effect on the F. candida gut microbiota.
A specific taxon rather than the entire bacterial commu-
nity was thus likely an indicator of the response to soil
pollution.
We could not differentiate the diversity and structure

of the soil bacterial community between the control and
pollutant treatments. The structure of the fungal

community was significantly affected by soil pollution,
but the fungal OTUs were not shared among the pollu-
tant treatments. Interestingly, the gut bacterial commu-
nity had a stress response to the pollutants similar to the
host physiological response and also shared significantly
different OTUs in each treatment group, suggesting that
the gut and soil bacteria possessed common response
characteristics to soil pollution, indicating that the gut
bacteria may not have been disturbed by specific targets
of the soil pollutants. The diversity of colonization by
the fungal community in the gut of F. candida was
strongly affected by dietary structure, but the potential
for colonization was much lower for the fungi than the
bacteria.
The gut bacteria of soil invertebrates may thus be suit-

able potential indicators of soil pollution. We classified
the OTUs shared at the phylum and class levels as Pro-
teobacteria and Gammaproteobacteria (Fig. 2E), which
were significantly enriched in the F. candida gut in the
pollutant treatments. Interestingly, the change in relative
abundance of Gammaproteobacteria was consistent with
the HAA index after exposure to OTC, AZ, and AO,
supporting Gammaproteobacteria as a potential indica-
tor of the response to soil pollution. We constructed the
co-occurrence network, including both bacteria and
fungi, to test the contributions of Gammaproteobacteria
to the entire gut microbiota and found that Gammapro-
teobacteria correlated with most other bacteria and fungi
to maintain the interoperability and intercommunica-
tions throughout the microbial community (Fig. 2G).
F. candida is sensitive to soil pollutants, which will in-

evitably affect the level of molecular functions. We used
a WGCNA analysis of the transcriptomic data to identify
the functional characteristics of the host under the pres-
sure of soil pollution for determining the MEbrown co-
expressed gene module, significantly correlated with the
control phenotypes, which differed from the pollution
phenotypes (Figure S8). Interestingly, the expression of
genes significantly correlated with Gammaproteobacteria
was downregulated in the pollutant treatments. These
genes were assigned to immunological, digestive, meta-
bolic, and other functional pathways essential to the
host. We used SEM to identify the relationships between
the host function and Gammaproteobacteria abundance,
which again demonstrated that Gammaproteobacteria
were negatively linked to host function (transcriptome
data) by affecting the diversity of the gut bacterial com-
munity (Fig. 3G, H). The relative abundance of Gamma-
proteobacteria was significantly and directly correlated
with the levels of oxidative stress and locomotive ability
of the host. These results strongly supported Gamma-
proteobacteria as a potential indicator taxon in response
to soil pollution, although limited to the environmental
concentrations in this study.
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Proteobacteria have been considered as gut microbiota
associated with dysbiosis in humans, blooms of which
have been correlated with obesity, diabetes, and some
immunological disorders [30]. Proteobacteria are faculta-
tive anaerobic bacteria, whose unique oxygen consump-
tion affects the gut environment, making it conducive to
colonization by many types of anaerobic bacteria and de-
stroys the stability of the original gut microbial commu-
nity. The phylum Proteobacteria is generally considered
to be comprised of 116 validated bacterial families and
has the largest phylogenetic composition, with highly di-
verse morphological and physiological functions for
maintaining a competitive advantage in adapting to
complex and diverse ecological niches (e.g., soil [36],
plants [41], freshwater [42], seawater [43], and the at-
mosphere [44]). In particular, one group of Proteobac-
teria, the Gammaproteobacteria, often aggressively
occupies the ecological niche of the symbiotic relation-
ship between plants and insects [45, 46]. We therefore
hypothesized that Gammaproteobacteria would occupy
an important core position in the gut microbiotas of soil
invertebrates. We analyzed 16S rRNA gene sequences
from the guts of 17 soil invertebrates available in public
databases but found no consensus among previous re-
ports for defining the core microbiota. A current strict
definition for an indicator species is that all samples
must include a specific taxon (at the OTU level) [47],
but this definition is not suitable for many distantly re-
lated host species [10, 48]. Various independent studies
have included different test species, environments, and
methods, especially those based on metadata analyses,
which may be less appropriate, because the number of
shared OTUs may be much lower than at other levels of
classification.
We thus took into account both the percent occur-

rence in samples and the relative abundance of each
taxon [16] and used class as the core taxonomic level.
We also constructed a shared network based on each in-
dependent experiment, identifying the classes shared
among all studies (Fig. 3A), to avoid interference of the
variation of different independent experiments. Based on
the above factors, we developed an equation using CI to
represent the roles of each taxon and identified the core
taxa based on the metadata analysis (Eq. 2, Supplemen-
tary Information). Gammaproteobacteria had the highest
CI, supporting their role as an important core taxon in
the guts of soil invertebrates. Other core gut taxa
(Alphaproteobacteria and Planctomycetes) with a total
relative abundance 50.68% were identified using 0.83 as
the CI’ threshold. A CI’ threshold of 0.3 was used to
identify the transient taxa (35.63%): Bacilli, Ktedonobac-
teria, Actinobacteria, and Acidobacteria (Fig. 2E). Previ-
ous studies also defined the core taxa of common soil
invertebrates. They included Rickettsia and Pseudomonas

in Orchesella cincta and Folsomia candida, Enterobacte-
riaceae, Pseudomonadaceae, and Sphingomonadaceae in
Caenorhabditis elegans, all of which are classified to the
Gamma- and Alpha-proteobacteria [49], and these taxa
also strictly conformed to our definition. The definition
of the core taxa of the same genetic relationship was
conserved at the family level, but the cross-species core
taxa definition in this study can only be conserved at the
class level. The metadata analysis also indicated that gut
core taxa have similar core taxa classification character-
istics, but the specific species composition and structure
are significantly different, indicating that the assembly of
the gut microbiotas of soil invertebrates depended on
the host and deterministic processes, perhaps associated
with the structure and function of the gut. These results
provide a basis for future research on the microbial di-
versity of soil ecosystems.
We divided a total of 415 samples, from 17 independ-

ent experiments, into two parts, control and pollutant
treatments. The diversity and structure of the bacterial
community differed significantly between the controls
and pollutant treatments, and the bacterial communities
of the contaminated guts were more stable (Fig. 6), indi-
cating that higher bacterial-community diversity can
maintain the stability of community function. Previous
studies have reported that soil invertebrates will only ac-
cumulate a small amount of pollutants in their guts [14],
leaving the gut community under sub-stressed condi-
tions, which could reduce competition between taxa and
increase bacterial diversity. The Intermediate Disturb-
ance Hypothesis [50] states that appropriate interference
prevents competitive exclusion in communities [51], in-
dicating that coerced systems are more stable than unco-
erced systems. The gut bacterial communities in our
study had a positive defensive strategy under pollution
stress, and that Gammaproteobacteria played a key role
in maintaining the stability of the communities. Due to
the complex anaerobic environment of the gut and its
high species heterogeneity, finding an effective method
for determining the action of Gammaproteobacteria on
the host, such as the commonly used verification
methods, isolation of gut microbiota, and artificial con-
struction of functional microbiota [52, 53], is difficult.
The construction of sterile gut environments in our
study has especially identified large obstacles to the veri-
fication of the specific identity of Gammaproteobacteria.
The combination of metadata analysis and machine
learning is a good alternative to laboratory-validated
methods by building models using large-scale computa-
tional analysis. The RF model we used in this study has
been widely used in the prediction of different commu-
nities, such as distinguishing between the gut bacterial
communities of mice that feed on normal diets and
those with high salt content [54], distinguishing between
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soil fungal and bacterial communities with and without
fusarium wilt [55] and distinguishing between the root
microbial communities of indica and japonica rice [18].
Interestingly, we also found that the healthy and con-
taminated guts were accurately distinguished using an
RF model, which can be built at any taxonomic level
with similar average accuracy rates, so we selected the
RF model at the genus level with the lowest estimated
rate of out-of-bag (OOB) errors (17.58%), indicating that
Gammaproteobacteria was the core taxon that may re-
spond to soil pollutants and was enriched in the con-
taminated guts of the soil invertebrates (Fig. 5E, F).
Most interestingly, previous meta-analyses of gut

microbiota showed that Gammaproteobacteria (Escheri-
chia coli) may be the main ARBs in the human gut [56].
We detected that Gammaproteobacteria was the only
bacterial class that was significantly and strongly corre-
lated with the relative abundance of ARGs (Figure S13),
indicating that Gammaproteobacteria may affect the gut
resistome of F. candida. The soil invertebrate gut is an
important reservoir for ARGs, transferring them across
the soil food web, thus allowing its use as one of the in-
dicators for risk assessment of soil ecology and health
[57]. Therefore, Gammaproteobacteria not only respond
to the environmental concentration but can also reflect
the dynamic changes among ARGs, which may allow
evaluation of soil ecological health risks from two per-
spectives. It is therefore a reasonable and flexible strat-
egy to construct Gammaproteobacteria general-purpose
primers, to provide an indication of soil ecological and
health risks.

Conclusion
We combined our microcosm experiment, metadata
analysis, and a machine-learning method to identify the
core taxa in the guts of soil invertebrates and provided a
quantitative method for identifying core taxa in micro-
bial communities based on metadata analysis that is suit-
able for different habitats and species. Interestingly, we
also determined that Gammaproteobacteria were a po-
tential indicator taxon in the guts of the soil inverte-
brates that responded to environmental concentrations
of soil pollutants, thus providing an effective theoretical
basis for subsequent assessments of soil ecological risk.
Additionally, the results from the physiological and bio-
chemical analyses of the host, and the microbial-
community functions and antibiotic resistance of Gam-
maproteobacteria, also provide new insights for evaluat-
ing global soil ecological health.
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