
This is the **accepted version** of the journal article:

Morán Ordóñez, Alejandra; Hermoso, Virgilio; Martínez-Salinas, Alejandra. «Multi-objective forest restoration planning in Costa Rica : balancing landscape connectivity and ecosystem service provisioning with sustainable development». *Journal of environmental management*, Vol. 310 (May 2022), art. 114717. DOI 10.1016/j.jenvman.2022.114717

This version is available at <https://ddd.uab.cat/record/257155>

under the terms of the license

Journal of Environmental Management

Multi-objective forest restoration planning in Costa Rica: balancing landscape connectivity and ecosystem service provisioning with sustainable development

--Manuscript Draft--

Manuscript Number:	
Article Type:	Research Article
Keywords:	Nature-Based Solutions; Neotropical Birds; Spatial Conservation Planning Tools; Species Distribution Models; Secondary Forest; Tropical forests
Corresponding Author:	Alejandra Morán-Ordóñez Center for Ecological Research and Forestry Applications: Centre de Recerca Ecologica i Aplicacions Forestals SPAIN
First Author:	Alejandra Morán-Ordóñez
Order of Authors:	Alejandra Morán-Ordóñez Virgilio Hermoso Alejandra Martínez Salinas
Abstract:	Degradation, fragmentation and loss of tropical forests has exponentially increased in the last decades leading to unprecedented rates of species extinctions and loss of ecosystems functions and services. Forest restoration is key to recover ecosystems health and achieve Sustainable Development Goals. However, restoring forests at the landscape scale presents many challenges, since it requires balancing conservation goals and economic development. In this study, we used a spatial planning tool (Marxan) to identify priority areas for restoration satisfying multiple objectives across a biological corridor in Costa Rica. Biological corridors are critical conservation instruments promoting forest connectivity while acknowledging human presence. Increasing forest connectivity requires restoration initiatives that will likely conflict with other land uses, some of them of high national economic importance. Our restoration plan sought to maximize the provision of forest-related services (i.e., seed dispersal, tourism and carbon storage) while minimizing the impact on current land uses and thus avoiding potential conflicts. We quantified seed dispersal and tourism services (birdwatching potential) using species distribution models. We used the carbon sequestration model of InVEST to quantify carbon storage potential. We tested different restoration scenarios that differed in whether land opportunity costs of current uses were considered or not when identifying potential areas for restoration, or how these costs were estimated. We showed how a landscape-scale forest restoration plan accounting for only forest connectivity and ecosystem service provision capacity can greatly differ from a plan that considers the potential impacts on local livelihoods (through the loss of land opportunity costs). Spatial planning tools can assist at designing cost-effective landscape-scale forest restoration plans, identifying priority areas where forest restoration can maximize ecosystem provision and increase forest connectivity. Special care must be paid to the use of adequate estimates of opportunity cost, to avoid potential conflicts between restoration goals and other legitimate land uses.

Title: Multi-objective forest restoration planning in Costa Rica: balancing landscape connectivity and ecosystem service provisioning with sustainable development

Authors: Alejandra Morán-Ordóñez^{1,2}, Virgilio Hermoso², Alejandra Martínez-Salinas³

Affiliations:

¹ Ecological and Forestry Applications Research Centre (CREAF), Edifici C Campus de Bellaterra, 08193, Cerdanyola del Vallés, Spain

² Consorci Centre de Ciència i Tecnologia Forestal de Catalunya (CTFC), Ctra. St. Llorenç de Morunys, km. 2, 25280, Solsona, Spain.

³ CATIE – Centro Agronómico Tropical de Investigación y Enseñanza, 30501, Turrialba, Cartago, Costa Rica.

Corresponding author:

Alejandra Morán-Ordóñez

Ecological and Forestry Applications Research Centre (CREAF)

Address: Edifici C Campus de Bellaterra, 08193, Cerdanyola del Vallés (Spain)

Phone: (+34) 973 48 17 52 (Ext. 330); Email: alejandra.moran@ctfc.cat
/a.moran@creaf.uab.cat

ACKNOWLEDGMENTS

This research was supported by the European Union's H2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 691149 (SuFoRun). A.M.O and V.H. were supported by the Spanish Government through the Juan de la Cierva and Ramón y Cajal fellowship programs (IJCI-2016-30349 and RYC-2013–13979 respectively) and the CERCA Programme/Generalitat de Catalunya. A.M.S. was supported by the US Fish and Wildlife Service (USFWS) through the Neotropical Migratory Bird Conservation Act (NMBCA, grant F18AP00472). We thank Lindsay Canet for facilitating the official land cover map developed for the Volcanica Central Talamanca Biological Corridor (VCTBC) Strategic Plan (2016-2021).

CREDIT AUTHOR STATEMENT

Alejandra Morán-Ordóñez: Conceptualization, Methodology, Formal Analyses, Writing-Original draft preparation; **Virgilio Hermoso,** Methodology, Writing- Original draft preparation; **Alejandra Martínez Salinas:** Conceptualization, Original draft preparation.

Dear Editor,

We would be grateful if you would consider our manuscript entitled “Multi-objective forest restoration planning in Costa Rica: balancing landscape connectivity and ecosystem service provisioning with sustainable development” for publication in *Journal of Environmental Management*.

A fundamental problem of landscape-scale restoration approaches is to balance conservation goals (e.g. biodiversity and ecosystem services recovery) and economic interests. Forests are one of the main Costa Rican’ environmental and economic assets. Forest conservation is promoted through a series of mechanisms i.e. Payment for Ecosystem Services schemes, and establishment of biological corridors to restore or increase landscape connectivity. The recently launched Costa Rican National Decarbonization program targeting net-zero emissions for 2050 emphasizes the need to promote both forest restoration for services like carbon sequestration and storage, and economic activities associated with biodiversity-friendly land management.

In this study, we planned a spatially optimal, multi-objective forest restoration across the Volcanica Central Talamanca Biological Corridor in central Costa Rica. The Corridor plays a key biological role at the national and continental scale, increasing forest connectivity across Central America to facilitate dispersal of emblematic species such as the Jaguar. However, only 57% of the corridor is currently forested, and further forest restoration will conflict with other land uses (e.g. cattle grazing, coffee and sugar cane production), some of them of high economic importance (30% of milk and meat national production comes from this area). Restoration efforts must consider the potential impacts on local income. Our optimal planning approach found the key areas within the Corridor where forest restoration increases forest connectivity and ecosystem services (e.g. carbon sequestration, recreation opportunities), with minimum impact on current co-existing land uses. In other words, we identified areas suitable for forest restoration while accounting for land opportunity costs.

Our results will inform restoration efforts within the Corridor, highlighting synergies and potential conflicts between conservation (e.g. forest connectivity), sustainable development (e.g. ecotourism) and maintenance of traditional uses (e.g. cattle grazing). More broadly, our optimal planning approach will be of interest to a wide audience of ecologists and practitioners. This combination of relevant results and demonstration of a rigorous planning approach integrating multiple ecosystem services and stakeholders interests fits ideally within the scope of *Journal of Environmental Management*, particularly since we use a publicly available tool for multi-objective forest restoration that can be easily applied in other regions.

Thank you in advance for your consideration and I look forward to your correspondence.

Kind regards,

Alejandra Morán-Ordóñez (on behalf of all authors)

- We used spatial planning tools to design a forest restoration plan across a biological corridor in Costa Rica
- Restoration sought to maximize provision of forest-related ecosystem services and forest connectivity
- We evaluated the role of land opportunity costs of current uses on identifying potential areas for restoration
- Accounting for land opportunity costs changed the most the spatial design of forest restoration plans
- We discussed the opportunities (e.g. PES) and challenges in implementing forest restoration in the study area

[Click here to view linked References](#)

1 **Abstract**

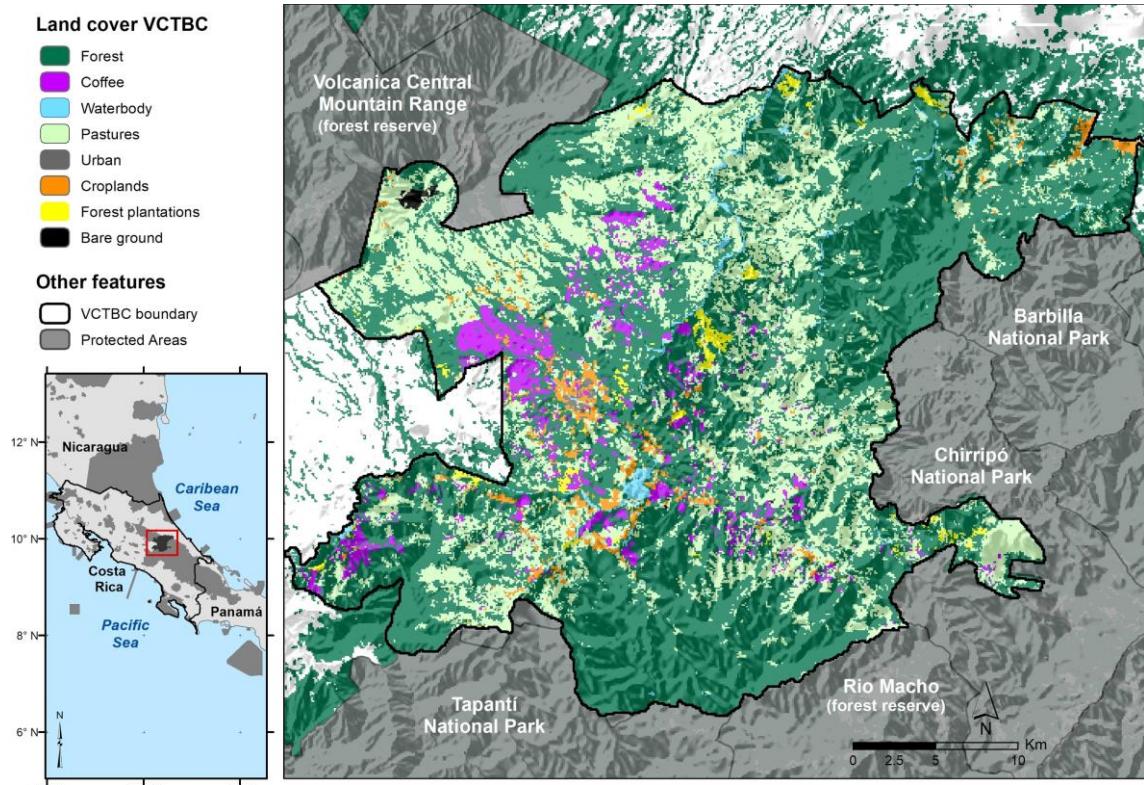
2 Degradation, fragmentation and loss of tropical forests has exponentially increased in the last
3 decades leading to unprecedented rates of species extinctions and loss of ecosystems functions
4 and services. Forest restoration is key to recover ecosystems health and achieve Sustainable
5 Development Goals. However, restoring forests at the landscape scale presents many
6 challenges, since it requires balancing conservation goals and economic development. In this
7 study, we used a spatial planning tool (Marxan) to identify priority areas for restoration
8 satisfying multiple objectives across a biological corridor in Costa Rica. Biological corridors are
9 critical conservation instruments promoting forest connectivity while acknowledging human
10 presence. Increasing forest connectivity requires restoration initiatives that will likely conflict
11 with other land uses, some of them of high national economic importance. Our restoration plan
12 sought to maximize the provision of forest-related services (i.e., seed dispersal, tourism and
13 carbon storage) while minimizing the impact on current land uses and thus avoiding potential
14 conflicts. We quantified seed dispersal and tourism services (birdwatching potential) using
15 species distribution models. We used the carbon sequestration model of InVEST to quantify
16 carbon storage potential. We tested different restoration scenarios that differed in whether land
17 opportunity costs of current uses were considered or not when identifying potential areas for
18 restoration, or how these costs were estimated. We showed how a landscape-scale forest
19 restoration plan accounting for only forest connectivity and ecosystem service provision
20 capacity can greatly differ from a plan that considers the potential impacts on local livelihoods
21 (through the loss of land opportunity costs). Spatial planning tools can assist at designing cost-
22 effective landscape-scale forest restoration plans, identifying priority areas where forest
23 restoration can maximize ecosystem provision and increase forest connectivity. Special care
24 must be paid to the use of adequate estimates of opportunity cost, to avoid potential conflicts
25 between restoration goals and other legitimate land uses.

26 **Keywords:** Nature-Based Solutions; Neotropical Birds; Spatial Conservation Planning Tools;
27 Species Distribution Models; Secondary Forest; Tropical forests

1 **28 INTRODUCTION**

2 29 Forest conservation and restoration at the global scale is key to recovering ecosystems health,
3 30 and achieving Aichi Biodiversity Targets and Sustainable Development Goals (Chazdon, 2019;
4 31 Griscom et al., 2017). This is especially relevant in tropical biodiversity hotspots where forest
5 32 degradation, fragmentation and loss has exponentially increased in the last decades leading to
6 33 unprecedented impacts on biodiversity, biogeochemical cycles, climate change and ecosystems
7 34 integrity (Alroy, 2017; Davidson et al., 2012; Lovejoy and Nobre, 2019). In middle-to-lower
8 35 income countries restoration of forest ecological integrity is critical to maintaining cultural
9 36 identities and greatly contributes to the sustainable development of local communities and their
10 37 health (Bullock et al., 2011; Fisher et al., 2019; Zhang et al., 2019). Forest biodiversity supports
11 38 the livelihoods of these communities directly, through the provision of goods (e.g., food, wood
12 39 products, medicines), and indirectly by generating income opportunities (e.g., ecotourism), and
13 40 more generally, providing many other valuable non-material services such as pollination, pest
14 41 and disease control, regulation of climatic conditions, soil loss mitigation and risk disaster
15 42 reduction (e.g., landslides, floods) (Brandon, 2014).

16 43 Forest restoration targets can be achieved by combining passive and active interventions,
17 44 focusing respectively on either minimizing human disturbances to allow for unassisted recovery
18 45 or actively intervening to accelerate restoration (Holl and Aide, 2011). Natural regeneration
19 46 following land sparing and abandonment (i.e., regrowth of secondary forests) represents one of
20 47 the most cost-effective forest restoration strategies (Brancalion et al., 2019; Chazdon et al.,
21 48 2020), potentially allowing to achieve a faster and cheaper recovery of forest biodiversity and
22 49 ecosystem functions (e.g., increased functional connectivity, carbon sequestration, energy
23 50 fluxes) than actively increasing forest extent using for example monoculture plantations
24 51 (Seddon et al., 2019; Zhang et al., 2021). However, a fundamental problem of forest restoration
25 52 approaches regardless of whether they are active or passive, is to upscale them across large
26 53 territories (i.e., achieve landscape-scale restoration) since this requires balancing restoration and


1 54 economic development, the factor responsible for forest degradation in the first place (Chazdon
2 55 et al., 2017; Holl, 2017).

3
4
5 56 Integrating spatially-explicit planning tools and forest conservation policies and incentives can
6
7 57 prove key to plan landscape-scale forest restoration across areas where conflicts between
8
9 58 ecosystem recovery and socioeconomic development might arise (Chazdon et al., 2020;
10
11 59 Strassburg et al., 2019). Costa Rica represents a unique setting to demonstrate the advantages of
12
13 60 these planning exercises provided its internationally recognized efforts to increase forest extent
14
15 61 and connectivity via several policies, laws and conservation instruments (Sánchez-Azofeifa et
16
17 62 al., 2007). Besides its formal network of national protected areas, Costa Rica has also
18
19 63 incorporated the figure of *biological corridors* into its conservation toolkit (DeClerck et al.,
20
21 64 2010). These biological corridors are multifunctional landscapes, seeking to promote
22
23 65 biodiversity conservation and increasing forest connectivity between national protected areas -
24
25 66 and broadly across Central America -, while pursuing sustainable socio-economic development
26
27 67 and human well-being. Adequate planning of landscape-scale forest restoration in biological
28
29 68 corridors is key to ensure the achievement of nation-wide conservation objectives and minimize
30
31 69 conflicts with other legitimate traditional land uses and sources of livelihood for local
32
33 70 populations (Powlen and Jones, 2019).

34
35
36
37
38
39 71 In this study, we demonstrated the feasibility of using conservation planning tools to identify
40
41 72 priority areas for forest restoration satisfying multiple objectives across a biological corridor in
42
43
44 73 Costa Rica. We sought to identify priority areas for restoration to increase forest connectivity
45
46 74 across the corridor, maximizing the provision of other forest-related services such as seed
47
48 75 dispersal, tourist opportunities and carbon storage, while minimizing the impact on existing
49
50 76 socio-economic activities. We explicitly evaluated the differences between a landscape-scale
51
52 77 forest restoration plan accounting for only forest connectivity and ecosystem service
53
54 78 provisioning from a scenario that considers the potential impacts on local livelihoods through
55
56 79 the loss of land opportunity costs. We discuss our results in terms of the potential on-the-ground

57
58
59
60
61
62
63
64
65

1 80 implementation of this approach to contribute to forest restoration targets across Costa Rica and
2 81 elsewhere.
3
4
5 82 **METHODS**
6
7
8 83 **Study area**
9
10
11 84 The study area is the Volcanica Central Talamanca Biological Corridor (VCTBC; area approx.
12
13 85 115,000 ha), located on the Caribbean slopes of the Volcanica Central mountain range of Costa
14
15 86 Rica (Fig. 1). It was designated in 2003 with the main goal of restoring and/or increasing the
16
17 87 functional connectivity between the Volcanica Central and the Talamanca mountain ranges,
18
19 88 located in the north and south central regions of Costa Rica respectively (Fig. 1), focusing at the
20
21 89 local scale on increasing connectivity between protected areas surrounding the VCTBC (e.g.,
22
23 90 Turrialba, Barbilla and Tapantí National Parks), and at a broader scale, on increasing
24
25 91 connectivity of the forested areas across Central America to facilitate dispersal of emblematic
26
27 92 species such as the Jaguar (*Panthera onca*). Forests cover 57% of the total area of the corridor,
28
29 93 where the second dominant land use is pastures (30%) and other agricultural uses (10 %), such
30
31 94 as coffee plantations (4%) and annual crops (2%). Besides its ecological goals, the VCTBC
32
33 95 pursues the sustainable development of local economies by the involvement of stakeholders in
34
35 96 achieving sustainable management of natural resources (Canet-Desanti, 2016).
36
37
38
39
40
41
42 97
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

99 **Figure 1.** Study area. The map shows the dominant land cover types in the Volcanica Central
100 Talamanca Biological Corridor (VCTBC; source: Canet-Desanti, 2016). The inset map on the
101 bottom left shows the location of the biological corridor in the context of the network of
102 protected areas in Costa Rica and across Central America.

103

104 **Mapping ecosystem services values**

105 We mapped three forest-related ecosystem services (ESS) of high relevance for the goals of the
106 biological corridor: 1) Seed dispersal (supporting service): frugivorous birds are important seed
107 dispersal agents and actively promote natural regeneration and plant diversity (Harms et al.,
108 2000; Morrison and Lindell, 2011), providing with effective means of forest restoration in
109 human-disturbed landscapes (Crouzeilles et al., 2017); 2) Ecotourism linked to birdwatching
110 (cultural service): Costa Rica is one of the top destinations for birdwatchers in Latin America
111 (Echeverri et al., 2019), contributing to the development of ecotourism businesses and the
112 sustainable development of local communities (Sekercioglu, 2002); and 3) Carbon sequestration
113 (regulation service): low-cost natural regeneration or assisted forest regeneration of tropical

114 forest has a large potential for contributing to climate change mitigation via carbon
115 sequestration and storage (Chazdon et al., 2016), making forest restoration one of the main axes
116 of the recently launched Costa Rican National Decarbonization program to 2050 (Costa Rica
117 Government, 2019).

118 To map the seed dispersal and the potential ecotourism services across the biological corridor,
119 we developed species distribution models using Maxent (Phillips et al., 2006; Phillips and
120 Dudík, 2008) for 62 frugivorous bird species with known presence in the VCTBC, also
121 culturally valued by birdwatchers and locals because of multiple reasons (e.g., their esthetic and
122 acoustic beauty, identity values, etc.) (Echeverri et al., 2019) such as the Resplendent Quetzal
123 (*Pharomachrus mocinno*), the Red-capped Manakin (*Ceratopipra mentalis*) or the Collared
124 Aracari (*Pteroglossus torquatus*). Current predictions of habitat suitability for selected bird
125 species were used as a surrogate of the seed dispersal service, assuming seed rain and forest
126 recovery can be potentially higher in areas closer to or within locations with higher suitable
127 conditions for the service-provider species. The projected habitat suitability of the species
128 across the biological corridor assuming all current non-forest areas were restored to forest was
129 used as a surrogate of the ecotourism service potential. For both the seed dispersal and the
130 ecotourism service, we only retained species for which we could generate reliable models in
131 terms of predictive performance (47 species with Area Under the Curve > 0.7; Hanley and
132 McNeil, 1982) (Appendix S1). We used the distribution of each species as an individual
133 surrogate for the ecosystem service. Although the service could be provided by a reduced
134 number of abundant species, we aimed to maximize the number of species that would both
135 benefit from restoration and naturally promote it and, therefore, contribute to the resilience of
136 the overall ESS provision (Chain-Guadarrama et al., 2019; Mouillot et al., 2013). Carbon
137 sequestration potential was mapped using the InVEST Carbon Storage and Sequestration model
138 (version 3.7.0) developed by the Natural Capital Project (Sharp et al., 2018). Using the VCTBC
139 official land cover map as a reference (Canet-Desanti, 2016), the model estimated the potential
140 change in carbon sequestration per hectare if all current non-forested areas in the biological

1 corridor were restored to forest. For parameterizing the model, each land cover (i.e., forest,
2 coffee plantations, crops, pastures, forest plantations, bare ground) was associated with a total
3 carbon storage capacity per ha following values from Vallet et al. (2016). For this analysis, we
4 assumed improvement in carbon sequestration across the corridor could only be achieved
5 through the conversion of coffee plantations, crops, and pastures to forests. All the three ESS
6 were mapped at 1 ha spatial resolution. The spatial predictions of current and future habitat
7 suitability of the 47 frugivorous birds (subrogates of seed dispersal and ecotourism ESS,
8 respectively) along with predictions of the carbon sequestration potential from the InVEST
9 model constituted the 95 ESS features that input the prioritization analyses. See Appendix S1
10 for full details of data sources and handling, the species and carbon modelling parametrization,
11 fit and validation and mapping methods.

12 **Spatial prioritization of forest restoration**

13 We used the spatial prioritization tool Marxan (Ball et al., 2009) to identify priority areas for
14 forest restoration across the biological corridor to maximize provision of the three ESS (i.e.,
15 seed dispersal, ecotourism and carbon storage) while increasing spatial forest connectivity.
16 Marxan uses an optimization algorithm that seeks to minimize an Objective Function (Eq. 1)
17 across I restoration units and J ESS features:

$$18 OF = \sum_i^I Cost_i + \sum_j^J SPF * Feature\ Penalty_j + CSM \sum_i^I Connectivity\ Penalty_i \quad Eq. 1$$

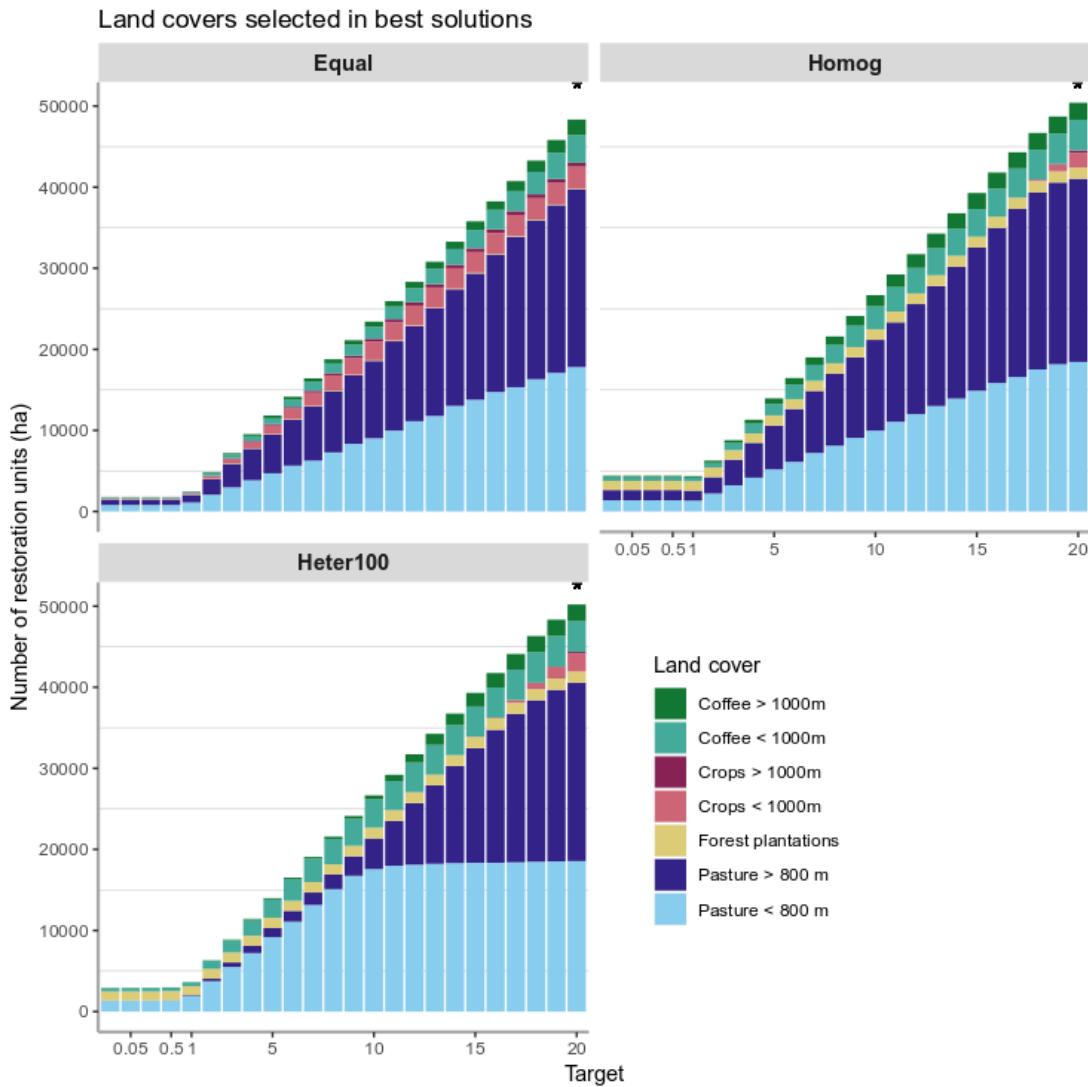
19 We only considered pastures, annual crops and coffee plantations as land covers with potential
20 to be restored to forest, totaling 51852 ha, each hectare representing an individual restoration
21 unit. The selected land covers represent the only ones that could potentially benefit from
22 economic incentives associated to climate mitigation targets – Payments for Environmental
23 Services) (Sánchez-Azofeifa et al., 2007).

24 We ran different restoration scenarios that differed in the assumptions of the opportunity costs
25 of each restoration unit (i.e., the revenues per ha that could be potentially lost when restoring

166 forest over the current land uses) (first element of Eq. 1): 1) an *Equal opportunity cost* (**Equal**)
167 that assumed all restoration units had equal opportunity costs, regardless their current land use;
168 2) a *Homogeneous opportunity cost scenario* (**Homog**) that assumed the opportunity costs of
169 each restoration unit only depended on its current land use, regardless of its spatial location
170 across the corridor. The opportunity costs of restoring forest over pastures, annual crops and
171 coffee plantations across the biological corridor were sourced from the Total Added Values per
172 ha of each of these land uses reported for the study area in Vallet et al. (2016) (Appendix S2); 3)
173 a *Heterogeneous opportunity cost scenario* (**Heter**), where the opportunity cost of each
174 restoration unit for each land use varied across the biological corridor to account for differences
175 in productivity across environmental gradients. In this case, depending on the replaced land use
176 and its elevation. The most productive lands for annual crops and coffee in the VCTBC are
177 above the 1000 m.a.s.l, whereas the most productive pastures for dairy farming (one of the main
178 economic activities in the VCTBC) are those above the 800 m.a.s.l (C.V. and F.C. Unit of
179 Livestock and Environmental Management, CATIE, personal communication). Since the actual
180 difference in revenues per ha depending on land use and elevation was unknown, we tested
181 three variations of this scenario in which the opportunity costs of restoration units over current
182 land uses were 30%, 50% or 100% higher in lands above the before mentioned elevational
183 thresholds than below (**Heter30**, **Heter50** and **Heter100**, respectively). The opportunity costs
184 below those thresholds were assumed the same as in the **Homog** scenario. The use of these
185 scenarios sought to evaluate how accounting for land opportunity costs could influence the
186 optimal spatial design of landscape-scale forest restoration plans across the corridor.
187 We ran a sensitivity analyses over a range of targets, to evaluate how much forest restoration
188 would be needed if we sought to increase the ESS provision between 0.01 to 20% compared to
189 current levels. For reference, a 0.01% increase in carbon sequestration compared to current
190 levels would require the restoration of an approximately minimum of 15, 25 or 29 ha of
191 croplands, pastures and coffee plantations, respectively, to forest (being connectivity and other
192 ecosystems features not considered). Marxan applies a Feature Penalty for not achieving a target

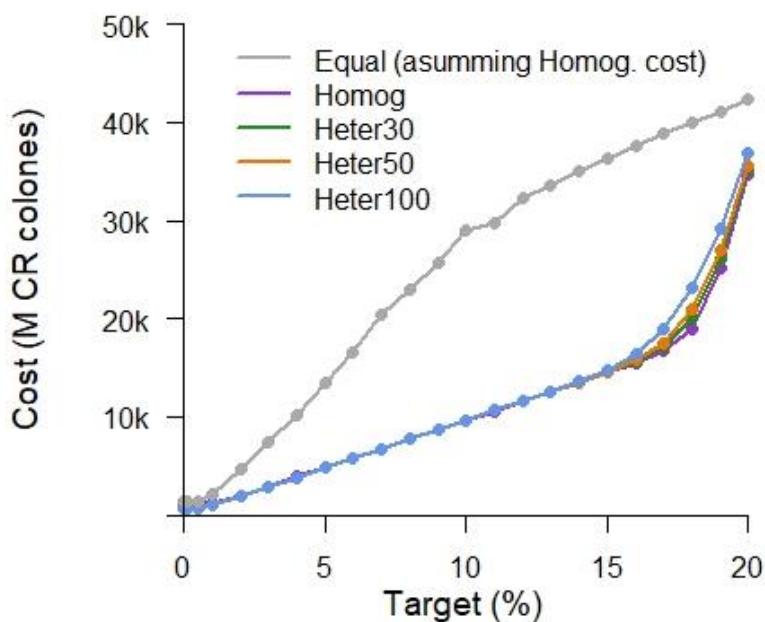
193 set for each ESS feature (second element in Eq. 1). The contribution of this Feature Penalty to
194 the overall Marxan solution is weighted by the Species Penalty Factor coefficient (SPF). To
195 ensure that targets for all ESS features were achieved across solutions, we set a high SPF
196 (SPF=10). This SPF brought the weight of the Feature Penalty into line with that of the Costs in
197 Eq. 1.

198 Finally, the Connectivity Penalty in Eq. 1 is a penalty for not selecting restoration units spatially
199 aggregated. We derived connectivity penalties from the geographic distance d_{ij} to the nearest 8-
200 neighbours of each restoration unit (penalty = $d_{ij}-2$). The Connectivity Penalty is weighted
201 within the objective function by a Connectivity Strength Modifier (CSM). Higher CSM values
202 result in solutions where restoration units are more spatially clumped, but it comes to higher
203 costs. For this reason, it is necessary to calibrate the CSM value. We calibrated the CSM (Eq. 1)
204 for each scenario and target following Ardron et al. (2010). However, and given the large
205 amount of forest already existing in the biological corridor (approx. 57% of the total area), small
206 CSM values led Marxan solutions to select all the available areas for restoration, even at low
207 targets (Appendix S3). To avoid the connectivity constraint to override Marxan's solutions, we
208 selected a CSM value over the calibration curves that allow us to balance both objectives as well
209 as to allow fair comparison of achieved connectivity values across scenarios (Appendix S3).


210 For each scenario, we run Marxan 100 times, using standard annealing parameters. In all runs
211 and scenarios, current forest cover was locked-in, while water bodies, bare ground and urban
212 areas were always locked-out (i.e., not considered for their potential to achieve targets). All
213 scenarios were run both using the calibrated CSM value (Appendix S3) and considering a CSM
214 = 0, to assess the impact of connectivity constraints in spatial prioritization outputs. In each
215 scenario, we selected the best solution out of the 100 independent runs (Marxan best solution
216 from here on) and use it to make comparisons across all scenarios using three metrics: (1) the
217 number of restoration units required by the best solution (reflecting total restoration efforts);
218 within each set of restoration units we calculated the percentage of each current land use
219 selected for restoration in each combination of scenario-target; (2) total restoration opportunity

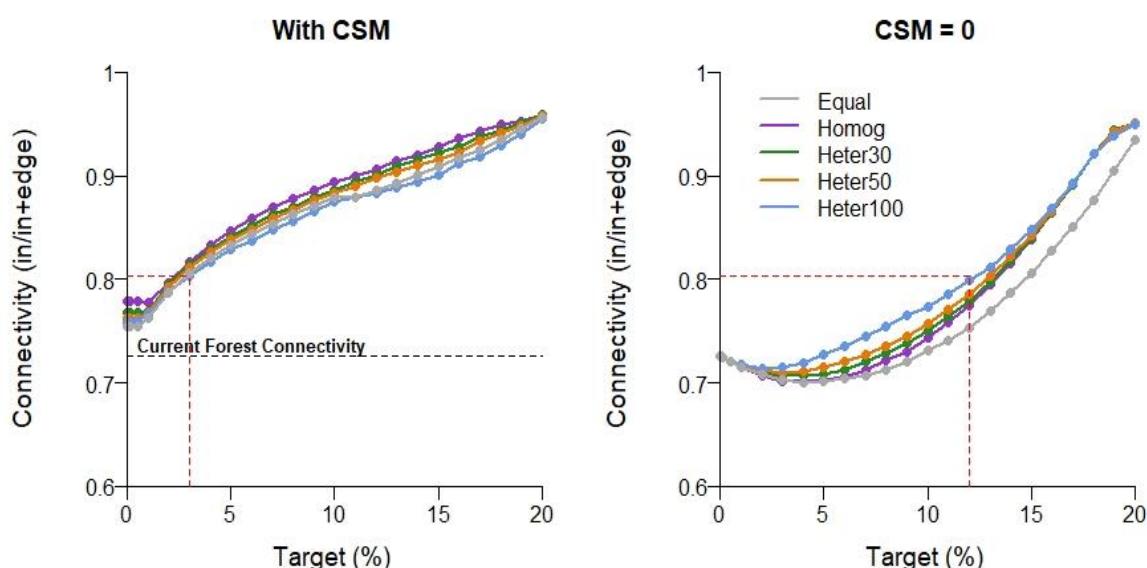
220 cost (in Colons, Costa Rican currency) calculated for each best solution based on the same
1
2 opportunity cost (**Homog**) so values could be compared across scenarios, and (3) the overall
3
4 forest connectivity achieved. Connectivity achieved in each scenario was calculated using a
5
6 connectivity index that measures the relative connectivity achieved in the solution compared to
7
8 the maximum connectivity that could have been achieved if all restoration units in the solution
9 were fully connected. This connectivity index is independent of the number of restoration units
10 in the solution and, therefore, comparable across scenarios and targets (Hermoso et al., 2020).
11
12 We also measured the selection frequency of restoration units in best solutions across all targets
13
14 for each scenario.

15
16
17
18
19
20
21 **RESULTS**
22
23

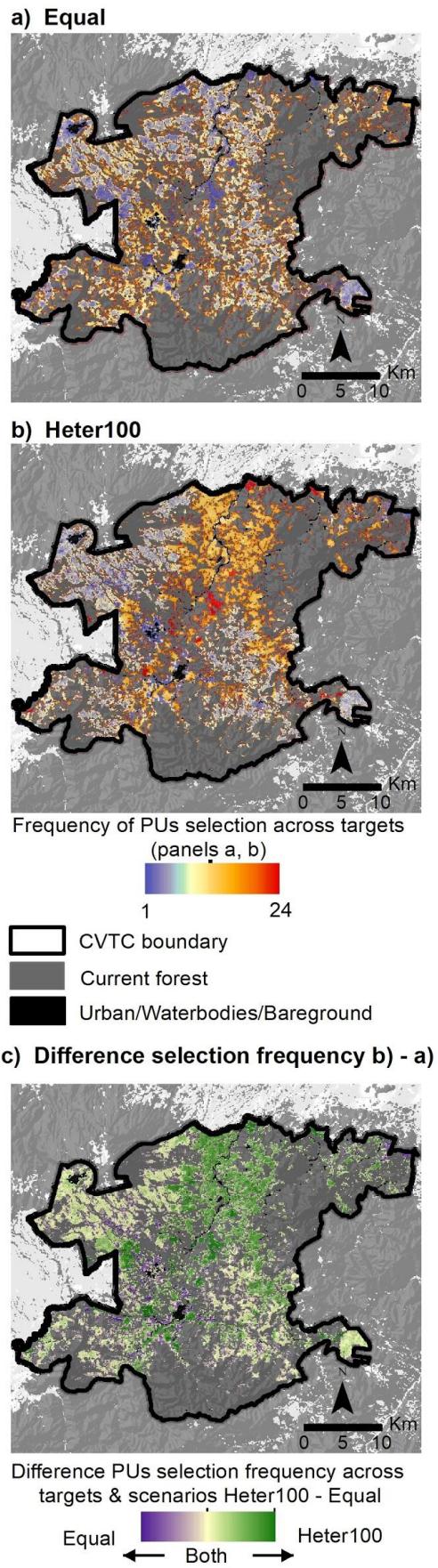

24
25 Restoration targets were achieved for all 95 ESS across all scenarios and tested targets
26
27 (Appendix S4). For a given target, the number of hectares selected for forest restoration
28
29 (restoration units) was slightly smaller in the **Equal** scenario than in those considering
30
31 opportunity costs (**Homog**, **Heter30**, **Heter50** and **Heter100**; Fig. 2, Appendix S5). The
32
33 selection frequency of different land uses across Marxan's best solutions also markedly differed
34
35 between scenarios (Fig. 2). The **Equal** scenario identified pasturelands as the most suitable land
36
37 cover to promote forest restoration (accounting for more than 80% of restoration units selected
38
39 in best solutions, regardless the target considered). Approximately 10% of selected restoration
40
41 units in this scenario corresponded to croplands < 1000m (in targets from 1 - 20). On the
42
43 contrary, scenarios considering opportunity costs prioritized the selection of restoration units in
44
45 lowlands, where the total opportunity cost was smaller (e.g., selection of restoration units over
46
47 pastures at < 800 m were prioritized over selection of pastures > 800m; Fig. 2; Appendix S5,
48
49 S6). As a result, the **Homog** and **Heter** scenarios selected a larger proportion of restoration units
50
51 across current coffee plantations (15%; the land use with the smallest total added value) and
52
53 forest plantations and did not select restoration units in current croplands - except when large
54
55 targets were considered (target values 18 – 20). For example, for a target of 1% increase in
56
57 service provision, Marxan best solutions suggest forest restoration of 10%, 8.4% and 7.1% of
58
59
60
61
62
63
64
65

current pastures, croplands, and coffee plantations respectively in the **Equal** scenario (approx. 2400 ha). Alternatively, best solutions of the **Homog** scenario suggest forest restoration of 12.6% and 20.6% of current pastures and coffee plantations (approx. 3200 ha) (**Homog** and **Heter30**, **Heter50** and **Heter100** best solutions were similar; Appendix S5, S6).

Figure 2. Number of units (hectares) selected for forest restoration across the biological corridor, under each combination of scenario (Equal Opportunity Cost, Homogeneous Opportunity Cost, Heterogeneous Opportunity Cost 100%) and target. Colors within each bar reflect the proportion of each land use (coffee plantations, crops, pastures, and forest plantations) selected within the set of restoration units in each of the Marxan's best solutions. The asterisk on top of the bar of the target 20 marks the total number of hectares available for restoration across the biological corridor. See Appendix S5 for results of the Heter30 and Heter50 (not shown here because of their resemblance with the Heter100 solution).


1 Although the total number of restoration units selected for any given target was smaller under
 2 the **Equal** scenario, the total opportunity costs of this scenario were much higher than those of
 3 best solutions of scenarios accounting for opportunity costs (Fig. 3). The **Homog.** scenario and
 4 all versions of the *Heterogeneous Opportunity Cost* scenarios (**Heter30**, **Heter50** and
 5 **Heter100**) showed similar costs, only that starting to diverge for targets over 15%, being the
 6 **Heter100** scenario the most expensive.
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

267
 268 **Figure 3.** Estimated forest restoration costs in Millions of Colons (Costa Rican currency)
 269 across scenarios and targets. To ease comparison between scenarios, costs were calculated by
 270 summing up the current land opportunity costs of the selected restoration units in the Marxon's
 271 best solutions for each scenario (i.e., taking the costs of the **Homog** scenario as reference to
 272 compare opportunity costs across all scenarios).


273
 274 Marxan best solutions across all scenarios markedly increase forest structural connectivity
 275 compared to current connectivity across all targets (Fig. 4a) but especially compared to
 276 reforestation scenarios that sought to achieve ESS targets without accounting for connectivity
 277 (CSM==0; Fig. 4b). We found small differences in connectivity achievement across all tested
 278 scenarios, with the **Equal** scenario attaining a slightly lower structural connectivity than the
 279 other scenarios, especially at small targets. The spatial outputs of the best solutions differed
 280 mostly between the **Equal** and other scenarios (Fig. 5; Appendix S7, S8). The **Equal** scenario

281 identified as best areas for forest restoration those units on the edges of already existing forest
 1 patches, regardless of the current land use and following a scattered pattern across the corridor.
 2
 3 The **Homog**, **Heter30**, **Heter50** and **Heter100** scenarios identified key areas for forest
 4 restoration those placed across the central parts of the biological corridor, connecting already
 5 existing forest patches from North to South; these include already existing forest plantations that
 6 did not contribute to the overall achievement of ESS targets but mostly to increasing forest
 7 connectivity but also, and most importantly, coffee plantations and pastures in lowlands in the
 8 northcentral parts of the corridor (Fig. 1).
 9
 10
 11
 12
 13
 14
 15
 16

290 **Figure 4.** Overall forest structural connectivity achieved across scenarios and targets when
 291 connectivity is considered in the planning process along with ESS targets (left panel 'With
 292 CSM') or when increasing connectivity is not considered in the planning process (right panel
 293 'CSM=0'). The intersection between the dashed red lines points to an increase in connectivity
 294 of 10% regarding current levels and how it is achieved at much higher costs when CSM=0. For
 295 example, to achieve that increase in connectivity under the Heter100 scenario (see intersection
 296 between dashed red lines in both plots), the number of hectares to restore (as identified in
 297 MarXan best solution) was of 8,877 when connectivity was considered along ESS targets in the
 298 spatial prioritization (with CSM) and of 30,368 when CSM=0.
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365

300 **Figure 5** Frequency of selection of
 301 restoration units in best solutions across all
 302 tested targets (24) in the two most
 303 contrasting planning scenarios **a) Equal**
 304 *Opportunity Cost (Equal)* and **b)**
 305 *Heterogeneous Opportunity Costs*
 306 (**Heter100**). The map in panel **c**) highlights
 307 the differences in frequency of selection of
 308 restoration units between the **Heter100** and
 309 the **Equal** scenario, with areas in yellow
 310 indicating restoration units that are
 311 selected with the same frequency in both
 312 scenarios. See Appendix S7 for
 313 comparative results for the *Homog.*,
 314 *Heter30* and *Heter50* scenarios. See
 315 Appendix S8 for best solutions for targets 1,
 316 5 and 10.

1 318 **DISCUSSION**
2
3
4 319 We have demonstrated how to identify priority areas for forest restoration for multiple objectives, by
5
6 320 using a freely available spatial planning tool. Our results showed that a landscape-scale forest
7
8 321 restoration plan only considering forest connectivity and the increase of ESS provision capacity
9
10 322 greatly differed from a plan also considering potential impacts on local livelihoods, i.e., accounting
11
12 323 for opportunity costs associated with forest restoration. When planning blindly to opportunity costs
13
14
15 324 (**Equal** scenario), our results suggest that landscape-scale forest restoration plans could lead to
16
17 325 potential socio-economic impacts and management conflicts (selection for restoration units with the
18
19 326 highest opportunity costs). Careful consideration of potential constraints to the implementation of
20
21 327 restoration is, therefore, crucial to ensure that restoration recommendations arising from planning
22
23 328 exercises will encounter less local opposition. We also showed that the reduction in opportunity cost
24
25
26 329 can be achieved at no expenses of other objectives, such as increasing ESS provision or connectivity.
27
28 330 Our approach to restoration planning is suitable for other landscape-scale restoration plans elsewhere
29
30 331 (and regardless of the ecosystem aiming to restore), where multiple-objectives are pursued and where
31
32 332 potential conflicts between these could arise, being a useful and reality-grounded tool to foster
33
34 333 optimal restoration interventions.
35
36
37
38 334 Our restoration planning approach addresses recent calls for increasing the cost-efficiency of forest
39
40 335 restoration programs by using spatially-explicit systematic planning approaches (Gourevitch et al.,
41
42 336 2016; Strassburg et al., 2019); these allow to identify areas where restoration programs have the
43
44 337 potential to maximize benefits in terms of biodiversity recovery and ESS provision at minimum costs.
45
46
47 338 They could also be used to evaluate trade-offs between potentially competing objectives (e.g.
48
49 339 maximizing ecosystem service provision and biodiversity; Ramel et al., 2020). One of the main
50
51 340 differences between solutions across scenarios considering opportunity costs and those of the **Equal**
52
53 341 scenario were that the later suggested the restoration of croplands and pasturelands in the highest parts
54
55 342 of the corridor as the most efficient way to achieve the ESS targets (lower number of restoration units
56
57
58 343 needed), whereas the former did not select those areas as a priority. However, the croplands in the
59
60
61
62
63
64
65

highest parts of the corridor are highly productive compared to those in the lowlands, being the type of crops grown in those areas (e.g., potatoes and onions) strongly demanded at the national and international level (Vallet et al., 2016). The productivity of dairy pasturelands at higher altitudes is also higher and it is mostly oriented to the production of Turrialba cheese which has a *Protected Designation of Origin* by the World Trade Organization since 2012, recognizing cheese characteristics linked to this specific geographical location and its artisanal way of production. This makes the **Equal** scenario not only the most expensive in terms of total opportunity cost (Fig. 3) but also, the scenario in which forest restoration would be less feasible to achieve in real life, having the largest consequences in terms of loss of cultural heritage of the VCTBC among all tested scenarios (i.e. loss of cultural services and relational values; Chapman et al., 2020; Daniel et al., 2012). On the other hand, our results also showed that accounting for opportunity costs (scenarios **Homog**, **Heter30**, **Heter50** and **Heter100**) did not translate into loss of connectivity or service provision values, as the later scenarios were equally effective at achieving targets. Therefore, we found little trade-offs between avoiding socio-economic conflicts and promoting restoration for increasing ESS provision and connectivity across the corridor, the two main objectives pursued here.

Accounting for opportunity costs when designing landscape-scale forest restoration plans is critical to design reality-grounded interventions. The estimates of opportunity costs that we used were based only on the current revenues the farmers get from the goods they produce, without considering any potential changes in market demands and product prices or accounting for other intangible benefits (e.g., biodiversity conservation value of certain land uses). Given the relevance that the use of opportunity cost had on the selection of priority areas for restoration, the selection of adequate estimates of these opportunity costs, including consideration of temporal dynamics, deserves special attention. For example, Marxan best solutions of the **Homog**, **Heter30**, **Heter50** and **Heter100** scenarios selected current coffee plantations more frequently over croplands for restoration (Fig. 2), because currently, the yield of coffee plantation per ha at the VCTBC is 25 times lower than from croplands (Appendix S2; Vallet et al. 2016). However, these opportunity costs are temporally dynamic (e.g., dependent on market prices fluctuations) and can be estimated in different ways (i.e.,

371 using current land prices, using historical changes in land prices to estimate future value, using
1 productivity values per ha, etc.), which would translate into changes in the spatial distribution of
2 priority areas for restoration. Ideally, opportunity costs should also account for the intangible
3 contributions of land uses; for example, coffee agroforestry systems (where coffee plants interact with
4 a diverse set of perennial woody species) have been shown to support greater levels of native
5 biodiversity compared to other crops and other coffee management systems (e.g., coffee
6 monocultures) and to contribute to functional connectivity of forest-dependent bird species which in
7 turn provide supporting and regulating services such as seed dispersal and pest control (Chain-
8 Guadarrama et al., 2019; De Leijster et al., 2021). Sustainable certified production in agroforestry
9 systems is also eligible for incentives for premium products. If all these ecological benefits and the
10 potential premium prices over sustainable certification were considered, opportunity costs of coffee
11 agroforestry plantations across the VCTBC would probably exceed by large those of pastures or
12 vegetable crops, completely changing the forest restoration solutions presented here. Similarly, if
13 potential revenues from ecotourism development after forest restoration could be estimated, they
14 would probably exceed the land opportunity costs of any of the current uses in the biological corridor
15 and change the spatial solutions of the landscape-scale forest restoration plan.

35
36
37 Implementing any of the landscape-scale forest restoration solutions identified by the most cost-
38 efficient scenarios will inevitably require the involvement of the people living in the landscape
39 (Chazdon et al., 2017; Holl, 2017) as well as finding adequate financial incentives to landowners
40 (Brancalion et al., 2012). In this regard, forest restoration actions across the VCTBC could benefit
41 from the Payments for Environmental Services (PES) scheme of Costa Rica directed to promote forest
42 protection and recovery across the country (GGGI, 2016). This scheme, mainly financed through the
43 national fuel tax and operationalized through the National Forestry Financial Fund (FONAFIFO),
44 pays private landowners who own forests or who promote forest recovery in their land, in recognition
45 of the ESS provided (Liagre et al., 2021; Sánchez-Azofeifa et al., 2007). It subsidizes land-use
46 management practices leading to forest protection, forest management in primary and secondary
47 forest, and sustainable management of agroforestry systems among other interventions (Sánchez and
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

398 Navarrete, 2017). The scheme gives a strong emphasis on the potential social impact of those
1 interventions (e.g., prioritizing subsidies to small landholders and to indigenous lands; Molina Murillo
2 et al., 2014) and facilitates private investments when possible. Forest restoration across the corridor
3 could benefit from a combination of PES options depending on the location and current use of the
4 land. For example, both low- and highland pastures located in steep slopes have already been
5 subsidized in different pilot projects across the corridor to spare land and promote regrowth of
6 secondary forests with the ultimate goal of reducing soil loss and sediment transport and prevent
7 negative impacts on hydroelectrical plants (under the “water resource protection” PES scheme;
8 Estrada-Carmona and DeClerck, 2012).

9
10
11 407 Passive restoration following natural regeneration of secondary forest could represent an interesting
12 408 cost-effective landscape-scale forest restoration measure to apply across the corridor (especially
13 409 across pasturelands and croplands, although the success of natural regeneration will strongly depend
14 410 on past land use practices; Holl and Aide 2011). In this regard, all Marxan solutions presented here
15 411 suggest areas where this restoration option could be facilitated to a great extent by the presence of
16 412 seed dispersers (i.e., frugivorous birds). However, in Costa Rica, forest expansion due to the regrowth
17 413 of secondary forests has been hampered by several factors including the existence of a strong forest
18 414 law that bans land use change over forested land, the lack of knowledge by landowners of financial
19 415 mechanisms to support the management of secondary forests (option only contemplated and fully
20 416 developed in Costa Rica legislation in 2016 Decreto 399952 - MINAE) as well as the lengthy and
21 417 complex bureaucracy and administration processes to access them (e.g., an officially approved forest
22 418 management plan is mandatory to access incentives for forest management; Reyes et al., 2018). In
23 419 fact, the PES funds directed to natural afforestation and forest management during the period 2006-
24 420 2017 represented less than 4% and 0.5% of PES funds granted to forest protection, respectively
25 421 (FONAFIFO stats 2018; www.fonafifo.go.cr). Forest plantations can also be contemplated as an
26 422 option to increase forest extent and structural connectivity across the corridor and, as such, have been
27 423 recurrently selected in the best solutions of scenarios accounting for land opportunity costs (Fig. 2,
28 424 Fig. 5; Appendix S7). Forest plantations are eligible for financial mechanisms besides the PES

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 425 scheme (e.g., the carbon credits market through the UN REDD+ program), making them currently
2 426 attractive for owners of marginal land. They can be used as a pathway to forest recovery (Alexander et
3 427 al., 2016) and have proven useful to trigger ecosystem recovery in other areas of Costa Rica (e.g.,
4 428 Guanacaste; Pringle, 2017). However, they do not represent a universal solution: monoculture
5 429 plantations can maximize carbon sequestration at high costs to the provision of other services and
6 430 ecological functions (FONAFIFO et al., 2012; Zhang et al., 2021). In this regard, private companies in
7 431 the carbon market are increasingly interested in paying for carbon sequestration which is ‘bundled’ to
8 432 other ecosystem and social benefits (Estrada-Carmona and DeClerck, 2012; FONAFIFO et al., 2012;
9 433 GGGI, 2016) and thus, a multi-objective spatial prioritization protocol as the one presented in this
10 434 study can prove key to identify areas where to maximize such investments.
11
12
13
14
15
16
17
18
19
20
21
22
23 435
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

436 **REFERENCES**

1
2
3 437 Alexander, S., Aronson, J., Whaley, O., Lamb, D., 2016. The relationship between ecological
4 438 restoration and the ecosystem services concept. *Ecol. Soc.* 21. <https://doi.org/10.5751/ES-08288-210134>
5 439
6
7 440 Alroy, J., 2017. Effects of habitat disturbance on tropical forest biodiversity. *Proc. Natl. Acad. Sci. U.*
8 441 *S. A.* 114, 6056–6061. <https://doi.org/10.1073/pnas.1611855114>
9
10 442 Andron, J.A., Possingham, H.P., Klein, C.J., 2010. Marxan Good Practices Handbook, Version 2.
11 443 Pacific Marine Analysis and Research Association, Victoria, BC, Canada.
12
13
14 444 Ball, I.R., Possingham, H.P., Watts, M.E., 2009. Marxan and Relatives: Software for Spatial
15 445 Conservation Prioritization, in: Moilanen, A., Wilson, K.A., Possingham, H.P. (Eds.), *Spatial*
16 446 *Conservation Prioritisation: Quantitative Methods and Computational Tools*. Oxford University
17 447 Press, Oxford University Press, pp. 185–195. <https://doi.org/10.1016/j.cjca.2015.05.027>
18
19
20 448 Brancalion, P.H.S., Meli, P., Tymus, J.R.C., Lenti, F.E.B., M. Benini, R., Silva, A.P.M., Isernhagen,
21 449 I., Holl, K.D., 2019. What makes ecosystem restoration expensive? A systematic cost
22 450 assessment of projects in Brazil. *Biol. Conserv.* 240, 108274.
23 451 <https://doi.org/10.1016/j.biocon.2019.108274>
24
25
26 452 Brancalion, P.H.S., Viani, R.A.G., Strassburg, B.B.N., Rodrigues, R.R., 2012. Finding the money for
27 453 tropical forest restoration. *Unasylva* 63, 41–50.
28
29
30 454 Brandon, K., 2014. Ecosystem Services from Tropical Forests: Review of Current Science, CGD
31 455 Working Paper 380. Washington, D.C. <https://doi.org/10.2139/ssrn.2622749>
32
33
34 456 Bullock, J.M., Aronson, J., Newton, A.C., Pywell, R.F., Rey-Benayas, J.M., 2011. Restoration of
35 457 ecosystem services and biodiversity: Conflicts and opportunities. *Trends Ecol. Evol.* 26, 541–
36 458 549. <https://doi.org/10.1016/j.tree.2011.06.011>
37
38 459 Canet-Desanti, L., 2016. Plan Estratégico del Corredor Biológico Volcánica Central - Talamanca
39 (2016-2021). Turrialba, Costa Rica.
40
41 460 Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N., Ricketts, T.H., 2019. Ecosystem
42 461 services by birds and bees to coffee in a changing climate: A review of coffee berry borer
43 462 control and pollination. *Agric. Ecosyst. Environ.* 280, 53–67.
44 463 <https://doi.org/10.1016/j.agee.2019.04.011>
45
46 464 Chapman, M., Satterfield, T., Wittman, H., Chan, K.M.A., 2020. A payment by any other name: Is
47 465 Costa Rica's PES a payment for services or a support for stewards? *World Dev.* 129, 104900.
48 466 <https://doi.org/10.1016/j.worlddev.2020.104900>
49
50
51 468 Chazdon, R.L., 2019. Towards more effective integration of tropical forest restoration and
52 469 conservation. *Biotropica* 51, 463–472. <https://doi.org/10.1111/btp.12678>
53
54 470 Chazdon, R.L., Brancalion, P.H.S., Lamb, D., Laestadius, L., Calmon, M., Kumar, C., 2017. A
55 471 Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration. *Conserv. Lett.*
56 472 10, 125–132. <https://doi.org/10.1111/conl.12220>
57
58
59 473 Chazdon, R.L., Broadbent, E.N., Rozendaal, D.M.A., Bongers, F., Zambrano, A.M.A., Aide, T.M.,
60 474 Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H.S., Craven, D., Almeida-Cortez, J.S.,
61
62
63
64
65

475 Cabral, G.A.L., De Jong, B., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M.,
1 Espírito-Santo, M.M., Fandino, M.C., César, R.G., Hall, J.S., Hernández-Stefanoni, J.L.,
2 Jakovac, C.C., Junqueira, A.B., Kennard, D., Letcher, S.G., Lohbeck, M., Martínez-Ramos, M.,
3 Massoca, P., Meave, J.A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y.R.F.,
4 Ochoa-Gaona, S., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E.A., Piotto, D.,
5 Powers, J.S., Rodríguez-Velazquez, J., Romero-Pérez, I.E., Ruíz, J., Saldarriaga, J.G., Sanchez-
6 Azofeifa, A., Schwartz, N.B., Steininger, M.K., Swenson, N.G., Uriarte, M., Van Breugel, M.,
7 Van Der Wal, H., Veloso, M.D.M., Vester, H., Vieira, I.C.G., Bentos, T.V., Williamson, G.B.,
8 Poorter, L., 2016. Carbon sequestration potential of second-growth forest regeneration in the
9 Latin American tropics. *Sci. Adv.* 2. <https://doi.org/10.1126/sciadv.1501639>
10
11
12
13 Chazdon, R.L., Lindenmayer, D., Guariguata, M.R., Crouzeilles, R., Rey Benayas, J.M., Lazos
14 Chavero, E., 2020. Fostering natural forest regeneration on former agricultural land through
15 economic and policy interventions. *Environ. Res. Lett.* 15. <https://doi.org/10.1088/1748-9326/ab79e6>
16
17
18
19 Costa Rica Government, 2019. Costa Rica National Decarbonization Plan 2018-2050.
20
21 Crouzeilles, R., Ferreira, M.S., Chazdon, R.L., Lindenmayer, D.B., Sansevero, J.B.B., Monteiro, L.,
22 Iribarrem, A., Latawiec, A.E., Strassburg, B.B.N., 2017. Ecological restoration success is higher
23 for natural regeneration than for active restoration in tropical forests. *Sci. Adv.* 3, 1–8.
24
25 <https://doi.org/10.1126/sciadv.1701345>
26
27 Daniel, T.C., Muhar, A., Arnberger, A., Aznar, O., Boyd, J.W., Chan, K.M.A., Costanza, R.,
28 Elmquist, T., Flint, C.G., Gobster, P.H., Grêt-Regamey, A., Lave, R., Muhar, S., Penker, M.,
29 Ribe, R.G., Schauppenlehner, T., Sikor, T., Soloviy, I., Spierenburg, M., Taczanowska, K., Tam,
30 J., Von Der Dunk, A., 2012. Contributions of cultural services to the ecosystem services agenda.
31 Proc. Natl. Acad. Sci. U. S. A. 109, 8812–8819. <https://doi.org/10.1073/pnas.1114773109>
32
33
34 Davidson, E.A., De Araújo, A.C., Artaxo, P., Balch, J.K., Brown, I.F., Mercedes, M.M., Coe, M.T.,
35 Defries, R.S., Keller, M., Longo, M., Munger, J.W., Schroeder, W., Soares-Filho, B.S., Souza,
36 C.M., Wofsy, S.C., 2012. The Amazon basin in transition. *Nature* 481, 321–328.
37
38 <https://doi.org/10.1038/nature10717>
39
40 De Leijster, V., Santos, M.J., Wassen, M.W., Camargo García, J.C., Llorca Fernandez, I., Verkuil, L.,
41 Scheper, A., Steenhuis, M., Verweij, P.A., 2021. Ecosystem services trajectories in coffee
42 agroforestry in Colombia over 40 years. *Ecosyst. Serv.* 48, 101246.
43
44 <https://doi.org/10.1016/j.ecoser.2021.101246>
45
46 DeClerck, F.A.J., Chazdon, R., Holl, K.D., Milder, J.C., Finegan, B., Martinez-Salinas, A., Imbach,
47 P., Canet, L., Ramos, Z., 2010. Biodiversity conservation in human-modified landscapes of
48 Mesoamerica: Past, present and future. *Biol. Conserv.* 143, 2301–2313.
49
50 <https://doi.org/10.1016/j.biocon.2010.03.026>
51
52 Echeverri, A., Naidoo, R., Karp, D.S., Chan, K.M.A., Zhao, J., 2019. Iconic Manakins and Despicable
53 Grackles: Comparing Bird-Related Cultural Ecosystem Services Across Birdwatchers, Farmers,
54 and Urbanites in 2 Northwestern Costa Rica. <https://doi.org/10.1101/548982>
55
56 Estrada-Carmona, N., DeClerck, F., 2012. Payment for Ecosystem Services for Energy, Biodiversity
57 Conservation and Poverty Reduction in Costa Rica, in: Ingram, J.C., DeClerck, F., Rumbaitis del
58 Rio, C. (Eds.), *Integrating Ecology and Poverty Reduction: The Application of Ecology in*
59 *Development Solutions*. Springer, pp. 191–210. <https://doi.org/10.1007/978-1-4614-0186-5>
60
61
62
63
64
65

518 Fisher, B., Herrera, D., Adams, D., Fox, H.E., Gallagher, L., Gerkey, D., Gill, D., Golden, C.D., Hole,
519 D., Johnson, K., Mulligan, M., Myers, S.S., Naidoo, R., Pfaff, A., Rasolofoson, R., Selig, E.R.,
520 Tickner, D., Treuer, T., Ricketts, T., 2019. Can nature deliver on the sustainable development
521 goals? *Lancet Planet. Heal.* 3, e112–e113. [https://doi.org/10.1016/S2542-5196\(18\)30281-X](https://doi.org/10.1016/S2542-5196(18)30281-X)

522 FONAFIFO, CONAFOR, Ministry of Environment, 2012. Lessons Learned for REDD+ from PES
523 and Conservation Incentive Programs: Examples from Costa Rica, Mexico and Ecuador.
524 Washington, DC.

525 GGGI, 2016. Bridging the Policy and Investment Gap for Payment for Ecosystem Services: Learning
526 from the Costa Rican Experience and Roads Ahead.

527 Gourevitch, J.D., Hawthorne, P.L., Keeler, B.L., Beatty, C.R., Greve, M., Verdone, M.A., 2016.
528 Optimizing investments in national-scale forest landscape restoration in Uganda to maximize
529 multiple benefits. *Environ. Res. Lett.* 11, 114027. <https://doi.org/10.1088/1748-9326/11/11/114027>

531 Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H.,
532 Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J.,
533 Conant, R.T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M.R., Herrero, M., Kiesecker,
534 J., Landis, E., Laestadius, L., Leavitt, S.M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E.,
535 Sanderman, J., Silvius, M., Wollenberg, E., Fargione, J., 2017. Natural climate solutions. *Proc.*
536 *Natl. Acad. Sci. U. S. A.* 114, 11645–11650. <https://doi.org/10.1073/pnas.1710465114>

537 Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a receiver operating
538 characteristic (ROC) curve. *Radiology* 143, 29–36.

539 Harms, K.E., Wright, S.J., Calderón, O., Hernández, A., Herre, E.A., 2000. Pervasive density-
540 dependent recruitment enhances seedling diversity in a tropical forest. *Nature* 404, 493–495.
541 <https://doi.org/10.1038/35006630>

542 Hermoso, V., Morán-Ordóñez, A., Lanzas, M., Brotons, L., 2020. Designing a network of green
543 infrastructure for the EU. *Landsc. Urban Plan.* 196.
544 <https://doi.org/10.1016/j.landurbplan.2019.103732>

545 Holl, K.D., 2017. Restoring tropical forests from the bottom up. *Science* (80-.). 355, 455–456.
546 <https://doi.org/10.1126/science.aam5432>

547 Holl, K.D., Aide, T.M., 2011. When and where to actively restore ecosystems? *For. Ecol. Manage.*
548 261, 1558–1563. <https://doi.org/10.1016/j.foreco.2010.07.004>

549 Liagre, L., Pettenella, D., Pra, A., Carazo Ortiz, F., Garcia Arguedas, A., Nguyen Chien, C., 2021.
550 How can National Forest Funds catalyse the provision of ecosystem services? Lessons learned
551 from Costa Rica, Vietnam, and Morocco. *Ecosyst. Serv.* 47, 101228.
552 <https://doi.org/10.1016/j.ecoser.2020.101228>

553 Lovejoy, T.E., Nobre, C., 2019. Amazon tipping point: Last chance for action. *Sci. Adv.* 5, 4–6.
554 <https://doi.org/10.1126/sciadv.aba2949>

555 Molina Murillo, S.A., Pérez Castillo, J.P., Herrera Ugalde, M.E., 2014. Assessment of environmental
556 payments on indigenous territories: The case of Cabecar-Talamanca, Costa Rica. *Ecosyst. Serv.*
557 8, 35–43. <https://doi.org/10.1016/j.ecoser.2014.02.003>

558 Morrison, E.B., Lindell, C.A., 2011. Active or Passive Forest Restoration? Assessing Restoration
1 559 Alternatives with Avian Foraging Behavior. *Restor. Ecol.* 19, 170–177.
2 560 <https://doi.org/10.1111/j.1526-100X.2010.00725.x>

3 561 Mouillot, D., Bellwood, D.R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M.,
4 562 Lavergne, S., Lavorel, S., Mouquet, N., Paine, C.E.T., Renaud, J., Thuiller, W., 2013. Rare
5 563 Species Support Vulnerable Functions in High-Diversity Ecosystems. *PLoS Biol.* 11.
6 564 <https://doi.org/10.1371/journal.pbio.1001569>

7 565 Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species
8 566 geographic distributions. *Ecol. Modell.* 190, 231–259.
9 567 <https://doi.org/10.1016/j.ecolmodel.2005.03.026>

10 568 Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a
11 569 comprehensive evaluation. *Ecography (Cop.)* 31, 161–175.

12 570 Powlen, K.A., Jones, K.W., 2019. Identifying the determinants of and barriers to landowner
13 571 participation in reforestation in Costa Rica. *Land use policy* 84, 216–225.
14 572 <https://doi.org/10.1016/j.landusepol.2019.02.021>

15 573 Pringle, R.M., 2017. Upgrading protected areas to conserve wild biodiversity. *Nature* 546, 91–99.
16 574 <https://doi.org/10.1038/nature22902>

17 575 Ramel, C., Rey, P.L., Fernandes, R., Vincent, C., Cardoso, A.R., Broennimann, O., Pellissier, L.,
18 576 Pradervand, J.N., Ursenbacher, S., Schmidt, B.R., Guisan, A., 2020. Integrating ecosystem
19 577 services within spatial biodiversity conservation prioritization in the Alps. *Ecosyst. Serv.* 45,
20 578 101186. <https://doi.org/10.1016/j.ecoser.2020.101186>

21 579 Reyes, V., Cascante, S., Murillo, C., 2018. *Condiciones habilitadoras y barreras para el desarrollo de*
22 580 *modelos sostenibles en el manejo productivo de bosques secundarios en Costa Rica*. Turrialba,
23 581 Costa Rica.

24 582 Sánchez-Azofeifa, G.A., Pfaff, A., Robalino, J.A., Boomhower, J.P., 2007. Costa Rica's payment for
25 583 environmental services program: Intention, implementation, and impact. *Conserv. Biol.* 21,
26 584 1165–1173. <https://doi.org/10.1111/j.1526-1739.2007.00751.x>

27 585 Sánchez, O., Navarrete, G., 2017. The Experience of Costa Rica with the Payments for Environmental
28 586 Services: 20 Years of Lessons Learned. *Trop. J. Environ. Sci.* 51, 195–214.

29 587 Seddon, N., Turner, B., Berry, P., Chausson, A., Girardin, C.A.J., 2019. Grounding nature-based
30 588 climate solutions in sound biodiversity science. *Nat. Clim. Chang.* 9, 84–87.
31 589 <https://doi.org/10.1038/s41558-019-0405-0>

32 590 Sekercioglu, C.H., 2002. Impacts of birdwatching on human and avian communities. *Environ.*
33 591 *Conserv.* 29, 282–289. <https://doi.org/10.1017/S0376892902000206>

34 592 Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E.,
35 593 Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J.,
36 594 Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim,
37 595 C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K.,
38 596 Chaumont, N., Perelman, A., Lacayo, M.M.L., Hamel, P., Vogl, A.L., Rogers, L., Bierbower,
39 597 W., Denu, D., Douglass, J., 2018. InVEST 3.7.0 User's Guide. Nat. Cap. Proj. Stanford Univ.
40 598 Univ. Minnesota, Nat. Conserv. World Wildl. Fund.

599 Strassburg, B.B.N., Beyer, H.L., Crouzeilles, R., Iribarrem, A., Barros, F., de Siqueira, M.F.,
600 Sánchez-Tapia, A., Balmford, A., Sansevero, J.B.B., Brancalion, P.H.S., Broadbent, E.N.,
601 Chazdon, R.L., Filho, A.O., Gardner, T.A., Gordon, A., Latawiec, A., Loyola, R., Metzger, J.P.,
602 Mills, M., Possingham, H.P., Rodrigues, R.R., Scaramuzza, C.A. de M., Scarano, F.R., Tambosi,
603 L., Uriarte, M., 2019. Strategic approaches to restoring ecosystems can triple conservation gains
604 and halve costs. *Nat. Ecol. Evol.* 3, 62–70. <https://doi.org/10.1038/s41559-018-0743-8>

605 Vallet, A., Locatelli, B., Levrel, H., Pérez, C.B., Imbach, P., Carmona, N.E., Manlay, R., Oszwald, J.,
606 2016. Dynamics of ecosystem services during forest transitions in Reventazón, Costa Rica.
607 *PLoS One* 11, 1–18. <https://doi.org/10.1371/journal.pone.0158615>

608 Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., Zhao, W., 2021. Improve forest restoration initiatives
609 to meet Sustainable Development Goal 15. *Nat. Ecol. Evol.* 5, 10–13.
610 <https://doi.org/10.1038/s41559-020-01332-9>

611 Zhang, W., Dulloo, E., Kennedy, G., Bailey, A., Sandhu, H., Nkonya, E., 2019. Biodiversity and
612 Ecosystem Services, Sustainable Food and Agriculture. <https://doi.org/10.1016/b978-0-12-812134-4.00008-x>

614
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 Appendix S1. Species distribution models (subrogates of ESS provision)**2 1.1. Species data**

3 We accessed occurrence data of neotropical birds in Costa Rica for the period 1990-2019 from the
4 Global Biodiversity Information Facility (<https://www.gbif.org/>; eBird Observational Dataset: 10 June
5 2019). We filtered this dataset (4,164,402 records) to retain only frugivorous birds with presence in
6 the biological corridor, and one record per ha (100 m²; finest spatial resolution of environmental
7 predictors). We kept only species with at least 30 records in order to minimize the possible negative
8 influence of small samples sizes in modelling outputs (Hernandez et al., 2006; Wisz et al., 2008),
9 ending up with a list of 62 bird species to model and 100,429 occurrence records.

10 1.2. Environmental predictors

11 We sourced long-term average climatic data for Costa Rica from the WorldClim database (version
12 2.0; 1 km – spatial resolution). From the 19 bioclimatic variables available in WorldClim, we retained
13 a subset of four variables with maximum Pearson's pairwise correlation of 0.55 (Dormann et al.,
14 2013; Tabachnick and Fidell, 1996): average mean temperature (Bio 1), Temperature annual range
15 (Bio 7), Annual precipitation (Bio 12) and precipitation of the wettest month (Bio 13). Correlations
16 between variables were calculated across all occurrence records of the filtered data set (also called
17 target-group background points; Phillips et al., 2009) (see mode details in the “Habitat Suitability
18 Section”). Additionally, and because we were interested in understanding the response of species to
19 forest restoration, we used a predictor accounting for the percentage of forest cover in each hectare.
20 Forest cover data from Costa Rica was derived from the 2012 forest map of Costa Rica (SIREFOR
21 www.sirefor.go.cr; vector format). This map had clouds covering large parts of the forest areas. We
22 filled the clouds' gaps in the forested areas using the 2005 forest map of Costa Rica (SIREFOR).
23 Costa Rica has a strong conservationist forest law that does not allow forest harvest in national
24 reserves and state forests, nor the conversion of forest on private land to other uses. Thus, we assumed
25 that if a given pixel was covered with forest in 2005 it would keep the same cover in 2012. The forest
26 cover predictor was not correlated with the climatic variables (Pearson's R < 0.1). We found some
27 discrepancies between the national forest map of Costa Rica and a land cover map expressly
28 developed in 2012 for the VCTBC (the amount of forest cover in the VCTBC map was higher than
29 the national forest map; Canet-Desanti, L. 2016). Thus, while the model predictor derived from the
30 national forest map (% of forest per ha) was used to train the models at the Costa Rica level, the 2012
31 forest cover map of the VCTBC was used to make predictions at the VCTBC level (the scale at which
32 conservation planning analyses were carried out).

34 **1.3. Habitat suitability maps**

35 We modelled the distribution of 62 bird species using MaxEnt(version 3.3.3k; Phillips et al., 2006;
36 Phillips and Dudík, 2008), a machine learning method designed for dealing with presence-only data
37 (Elith et al., 2011) while taking into account the distribution of environmental predictors in the
38 background area of analysis. Exploratory analyses showed that species records were biased towards
39 areas of high accessibility (e.g. roads and urban areas). Biased survey data can lead to
40 environmentally and geographic biased predictions that might reflect the sampling effort rather than
41 the species' true distributions across the study area (Fithian et al., 2015; Kramer-Schadt et al., 2013;
42 Phillips et al., 2009). To reduce the possible effect of geographical bias in presence data on SDM
43 predictive performance, we provided background points to MaxEnt in such a way as to copy the
44 geographic and environmental bias of the occurrence records by using as background all available
45 records for birds over Costa Rica. This approach, known as "target-group background" approach
46 (Phillips et al., 2009), has been shown to perform well in dealing with bias (Fithian et al., 2015;
47 Kramer-Schadt et al., 2013; Phillips et al., 2009). Same background points were used in all species
48 models.

49 MaxEnt models were run with default settings except we controlled the complexity of the response
50 shapes by allowing only linear, quadratic and product features in the model. These are similar to
51 linear, quadratic and interaction terms in regression models, and their simplicity guards against
52 models being overfitted to samples, making them more general for prediction (Elith et al., 2011;
53 Merow et al., 2014). Predictive performance (in terms of discrimination ability; Guillera-Arroita et al.,
54 2015) and uncertainty of the fitted responses was assessed using the area under the area under the
55 receiver-operator characteristic curve (AUC; Hanley and McNeil, 1982) adapted for use with presence
56 - background samples (Phillips et al., 2006). We estimated AUC using the ten-fold cross-validation
57 provided in Maxent.

58 We evaluated bias reduction effectiveness (i.e., whether modelling the species using a 'target-group
59 background' was better than considering a random background over Costa Rica), by asking experts on
60 birds in the study area to compare model outputs (map predictions) and predictive performance values
61 of models based on those two background selection methods (target-group vs random background).
62 Models fit using the target-group background approach were validated by experts as better reflecting
63 the habitat suitability of the species in the study area than the models assuming random background.

64 From the initial list of species with enough records available to run MaxEnt models (62 species), we
65 retained for the subsequent MARXAN analysis only those whose species whose models' predictive
66 performance was moderate to high (cross-validated AUC > 0.7; Swets, 1988) (47 species; Table S1).
67 We re-fitted the model of each species using all presence records, to take advantage of the full amount

68 of information for each species (cross-validated models used only 9/10 parts of the data in each
69 iteration). These are called ‘full’ models; outputs of ‘full’ models were used as inputs for the spatial
70 prioritization analyses (*Spatial prioritization of forest restoration* section in main text).

71 **1.4. Habitat suitability maps to mapped ecosystem services**

72 To map the seed dispersal service for each species across the biological corridor, we made predictions
73 of the models over the current land cover map of the VCTBC. These inform about the areas with
74 current higher habitat suitability for the species and where we could expect seed dispersal (seed rain)
75 to be higher, contributing naturally to forest restoration (Crouzeilles et al., 2017). To map the
76 ecotourism service for each species across the biological corridor, we made spatial predictions of the
77 models assuming all current non-forested areas in the VCTBC were covered in forests. This predicts
78 how the habitat suitability of the species with touristic value will change across the biological corridor
79 if forest restoration would take place.

80

81

82

83 **Table S1.** List of bird frugivorous species considered for the analyses (scientific and common name),
 84 the predictive performance for the Maxent models following 10-fold cross validation (mean AUC
 85 test \pm SD) and the number of samples available to fit the models (n samples). Species with low
 86 predictive performance (test AUC < 0.7) were not considered for the spatial prioritization analysis
 87 (15/62 species).

Scientific name	Common name	AUC _{TEST\pmSD}	N samples
<i>Attila spadiceus</i>	Bright-rumped Attila	0.673 \pm 0.018	2095
<i>Aulacorhynchus prasinus</i>	Emerald Toucanet	0.893 \pm 0.010	1211
<i>Baryphthengus martii</i>	Rufous Motmot	0.868 \pm 0.014	566
<i>Caryothraustes poliogaster</i>	Black-faced Grosbeak	0.875 \pm 0.013	562
<i>Catharus frantzii</i>	Ruddy-capped Nightingale-Thrush	0.941 \pm 0.009	513
<i>Ceratopipra mentalis</i>	Red-capped Manakin	0.829 \pm 0.023	730
<i>Chlorophanes spiza</i>	Green Honeycreeper	0.747 \pm 0.015	2061
<i>Chlorothraupis carmioli</i>	Carmiol´s Tanager	0.913 \pm 0.013	422
<i>Corapipo altera</i>	White-ruffed Manakin	0.800 \pm 0.023	732
<i>Cotinga amabilis</i>	Lovely Cotinga	0.897 \pm 0.028	43
<i>Cyanerpes lucidus</i>	Shining Honeycreeper	0.781 \pm 0.020	999
<i>Cyanoloxia cyanoides</i>	Blue-black Grosbeak	0.721 \pm 0.022	1138
<i>Dacnis cayana</i>	Blue Dacnis	0.747 \pm 0.021	1130
<i>Dacnis venusta</i>	Scarlet-thighed Dacnis	0.775 \pm 0.018	1136
<i>Dives dives</i>	Melodious Blackbird	0.558 \pm 0.014	3957
<i>Elaenia flavogaster</i>	Yellow-bellied Elaenia	0.613 \pm 0.014	3253
<i>Elaenia frantzii</i>	Mountain Elaenia	0.896 \pm 0.009	1142
<i>Eubucco bourcierii</i>	Red-headed Barbet	0.880 \pm 0.017	412
<i>Habia fuscicauda</i>	Red-throated Ant-Tanager	0.864 \pm 0.013	721
<i>Ixothraupis guttata</i>	Speckled Tanager	0.850 \pm 0.021	592
<i>Lipaugus unirufus</i>	Rufous Piha	0.789 \pm 0.034	511
<i>Manacus candei</i>	White-collared Manakin	0.855 \pm 0.009	1407
<i>Mionectes oleagineus</i>	Ochre-bellied Flycatcher	0.703 \pm 0.023	1132
<i>Mionectes olivaceus</i>	Olive-striped Flycatcher	0.826 \pm 0.025	542
<i>Mitrospingus cassini</i>	Dusky-faced Tanager	0.920 \pm 0.017	195

Scientific name	Common name	AUC _{TEST \pm SD}	N samples
<i>Monasa morphoeus</i>	White-fronted Nunbird	0.910 \pm 0.018	211
<i>Myadestes melanops</i>	Black-faced Solitaire	0.898 \pm 0.010	1011
<i>Myiopagis viridicata</i>	Greenish Elaenia	0.742 \pm 0.030	482
<i>Oncostoma cinereigulare</i>	Northern Bentbill	0.742 \pm 0.030	556
<i>Ortalis cinereiceps</i>	Gray-headed Chachalaca	0.674 \pm 0.014	2646
<i>Phainoptila melanoxantha</i>	Black-and-yellow Silky-flycatcher	0.945 \pm 0.010	453
<i>Pharomachrus mocinno</i>	Resplendent Quetzal	0.932 \pm 0.009	750
<i>Piranga bidentata</i>	Flame-colored Tanager	0.922 \pm 0.010	794
<i>Piranga leucoptera</i>	White-winged Tanager	0.867 \pm 0.023	267
<i>Procnias tricarunculatus</i>	Three-wattled Bellbird	0.820 \pm 0.030	578
<i>Psarocolius montezuma</i>	Montezuma Oropendola	0.719 \pm 0.010	4550
<i>Psilorhinus morio</i>	Brown Jay	0.701 \pm 0.012	3932
<i>Pteroglossus torquatus</i>	Collared Aracari	0.794 \pm 0.015	2060
<i>Querula purpurata</i>	Purple-throated Fruitcrow	0.948 \pm 0.015	247
<i>Ramphastos ambiguus</i>	Yellow-throated Toucan	0.733 \pm 0.011	3894
<i>Ramphastos sulfuratus</i>	Keel-billed Toucan	0.755 \pm 0.011	3318
<i>Ramphocelus passerinii</i>	Scarlet-rumped Tanager	0.676 \pm 0.009	6137
<i>Ramphocelus sanguinolentus</i>	Crimson-collared Tanager	0.854 \pm 0.012	814
<i>Saltator atriceps</i>	Black-headed Saltator	0.781 \pm 0.015	1163
<i>Saltator maximus</i>	Buffed-throated Saltator	0.640 \pm 0.012	4127
<i>Semnornis frantzii</i>	Prong-billed Barbet	0.926 \pm 0.011	568
<i>Stilpnia larvata</i>	Golden-hooded Tanager	0.696 \pm 0.011	3780
<i>Tachyphonus delatrii</i>	Tawny-crested Tanager	0.916 \pm 0.017	294
<i>Tachyphonus luctuosus</i>	White-shouldered Tanager	0.760 \pm 0.024	898
<i>Tachyphonus rufus</i>	White-lined Tanager	0.740 \pm 0.024	766
<i>Tangara gyrola</i>	Bay-headed Tanager	0.756 \pm 0.019	1376
<i>Tangara icterocephala</i>	Silver-throated Tanager	0.811 \pm 0.013	1723
<i>Tangara lavinia</i>	Rufous-winged Tanager	0.930 \pm 0.019	155
<i>Thraupis episcopus</i>	Blue-gray Tanager	0.577 \pm 0.010	8361

Scientific name	Common name	AUC _{TEST ± SD}	N samples
<i>Thraupis palmarum</i>	Palm Tanager	0.637 ± 0.012	4643
<i>Trogon caligatus</i>	Gartered Trogan	0.672 ± 0.017	2096
<i>Trogon collaris</i>	Collared Trogan	0.880 ± 0.014	600
<i>Trogon massena</i>	Slaty-tailed Trogan	0.790 ± 0.016	1526
<i>Trogon rufus</i>	Black-throated Trogan	0.783 ± 0.021	1107
<i>Turdus assimilis</i>	White-throated Thrush	0.826 ± 0.022	726
<i>Turdus grayi</i>	Clay-colored Thrush	0.564 ± 0.010	8871
<i>Zimmerius parvus</i>	Mistletoe Tyrannulet	0.667 ± 0.016	2519

88

89

90

91 **References (Appendix S1)**

92

93 Crouzeilles, R., Ferreira, M.S., Chazdon, R.L., Lindenmayer, D.B., Sansevero, J.B.B., Monteiro, L.,
 94 Iribarrem, A., Latawiec, A.E., Strassburg, B.B.N., 2017. Ecological restoration success is higher
 95 for natural regeneration than for active restoration in tropical forests. *Sci. Adv.* 3, 1–8.
 96 <https://doi.org/10.1126/sciadv.1701345>

97 Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B.,
 98 Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B.,
 99 Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: a review of
 100 methods to deal with it and a simulation study evaluating their performance. *Ecography* (Cop.).
 101 36, 027–046. <https://doi.org/10.1111/j.1600-0587.2012.07348.x>

102 Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation
 103 of MaxEnt for ecologists. *Divers. Distrib.* 17, 43–57. <https://doi.org/10.1111/j.1472-4642.2010.00725.x>

104 Fithian, W., Elith, J., Hastie, T., Keith, D. a., 2015. Bias correction in species distribution models:
 105 pooling survey and collection data for multiple species. *Methods Ecol. Evol.* 6, 424–438.
 106 <https://doi.org/10.1111/2041-210X.12242>

107 Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy,
 108 M.A., Tingley, R., Wintle, B.A., 2015. Is my species distribution model fit for purpose?
 109 Matching data and models to applications. *Glob. Ecol. Biogeogr.* 24, 276–292.
 110 <https://doi.org/10.1111/geb.12268>

111 Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a receiver operating
 112 characteristic (ROC) curve. *Radiology* 143, 29–36.

113 Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., 2006. The effect of sample size and
 114 species characteristics on performance of different species distribution modeling methods.
 115 *Ecography* (Cop.). 29, 773–785.

116 Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried,
 117 M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald,
 118 D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R.,
 119 Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H., Wilting,
 120 A., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models.
 121 *Divers. Distrib.* 19, 1366–1379. <https://doi.org/10.1111/ddi.12096>

122 Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W.,
 123 Wüest, R.O., Zimmermann, N.E., Elith, J., 2014. What do we gain from simplicity versus
 124 complexity in species distribution models? *Ecography* (Cop.). 37, 1267–1281.

125

126 Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species
127 geographic distributions. *Ecol. Modell.* 190, 231–259.
128 <https://doi.org/10.1016/j.ecolmodel.2005.03.026>

129 Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a
130 comprehensive evaluation. *Ecography (Cop.)*. 31, 161–175.

131 Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009.
132 Sample selection bias and presence-only distribution models: implications for background and
133 pseudo-absence data. *Ecol. Appl.* 19, 181–197.

134 Swets, J.A., 1988. Measuring the Accuracy of Diagnostic Systems. *Science* 240, 1285–1293.

135 Tabachnick, B.G., Fidell, L.S., 1996. Using multivariate statistics. HarperCollins College Publishers,
136 New York, USA.

137 Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., 2008. Effects of sample
138 size on the performance of species distribution models. *Divers. Distrib.* 14, 763–773.

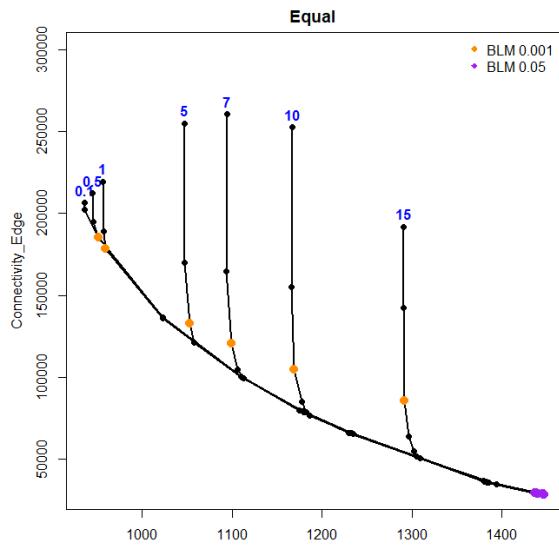
139

140

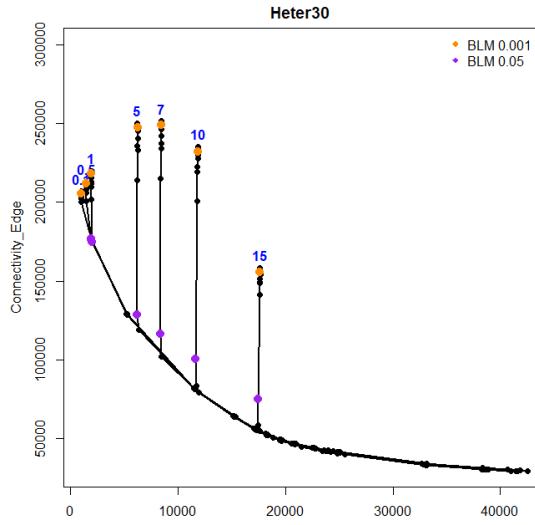
141 **Appendix S2.** Estimated total added value in Colons (Costa Rican currency) per ha of goods
142 produced in agricultural land across the corridor (source: Vallet et al., 2016)

143

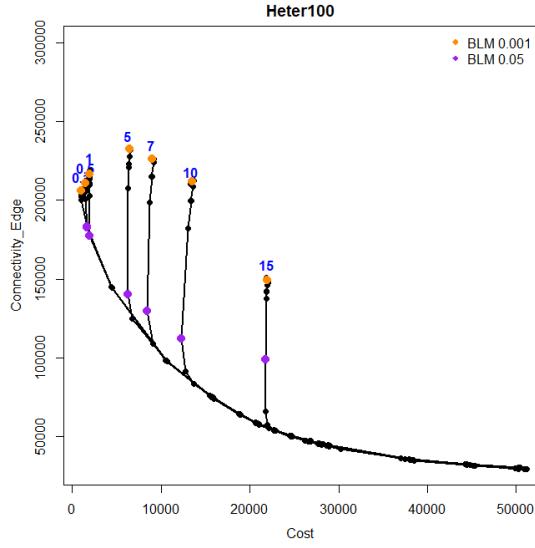
Agricultural land uses (Figure 1 main text)	Added value
Coffee plantations	297,663
Pastures	396,668
Crops	7,882,732


144

145 Ref. Vallet, A., Locatelli, B., Levrel, H., Pérez, C.B., Imbach, P., Carmona, N.E., Manlay, R.,
146 Oszwald, J., 2016. Dynamics of ecosystem services during forest transitions in Reventazón,
147 Costa Rica. PLoS One 11, 1–18. <https://doi.org/10.1371/journal.pone.0158615>

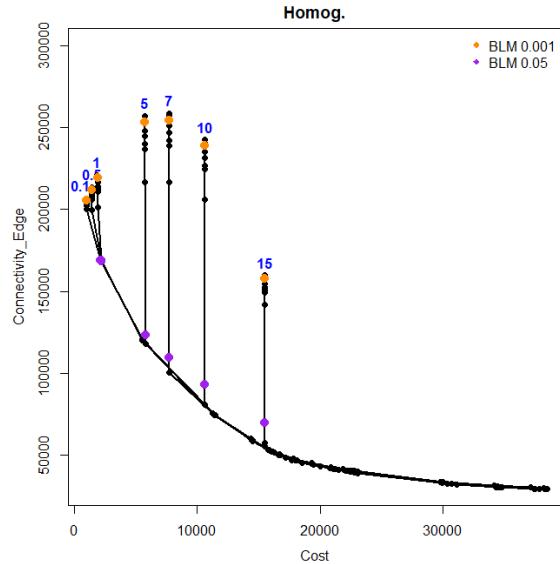

148

149

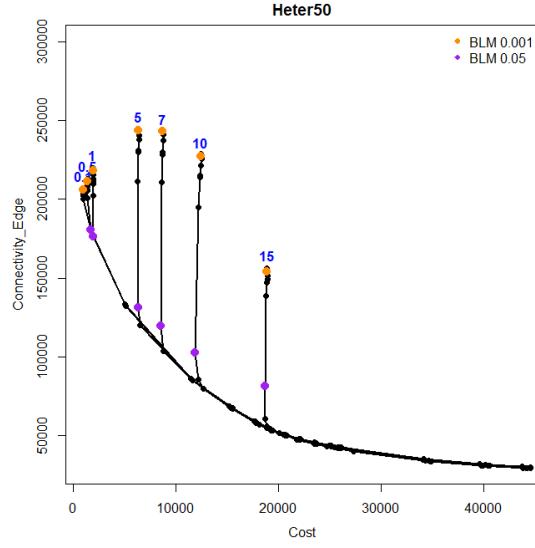

150 Appendix S3 CSM calibration curves

151

152


153

154

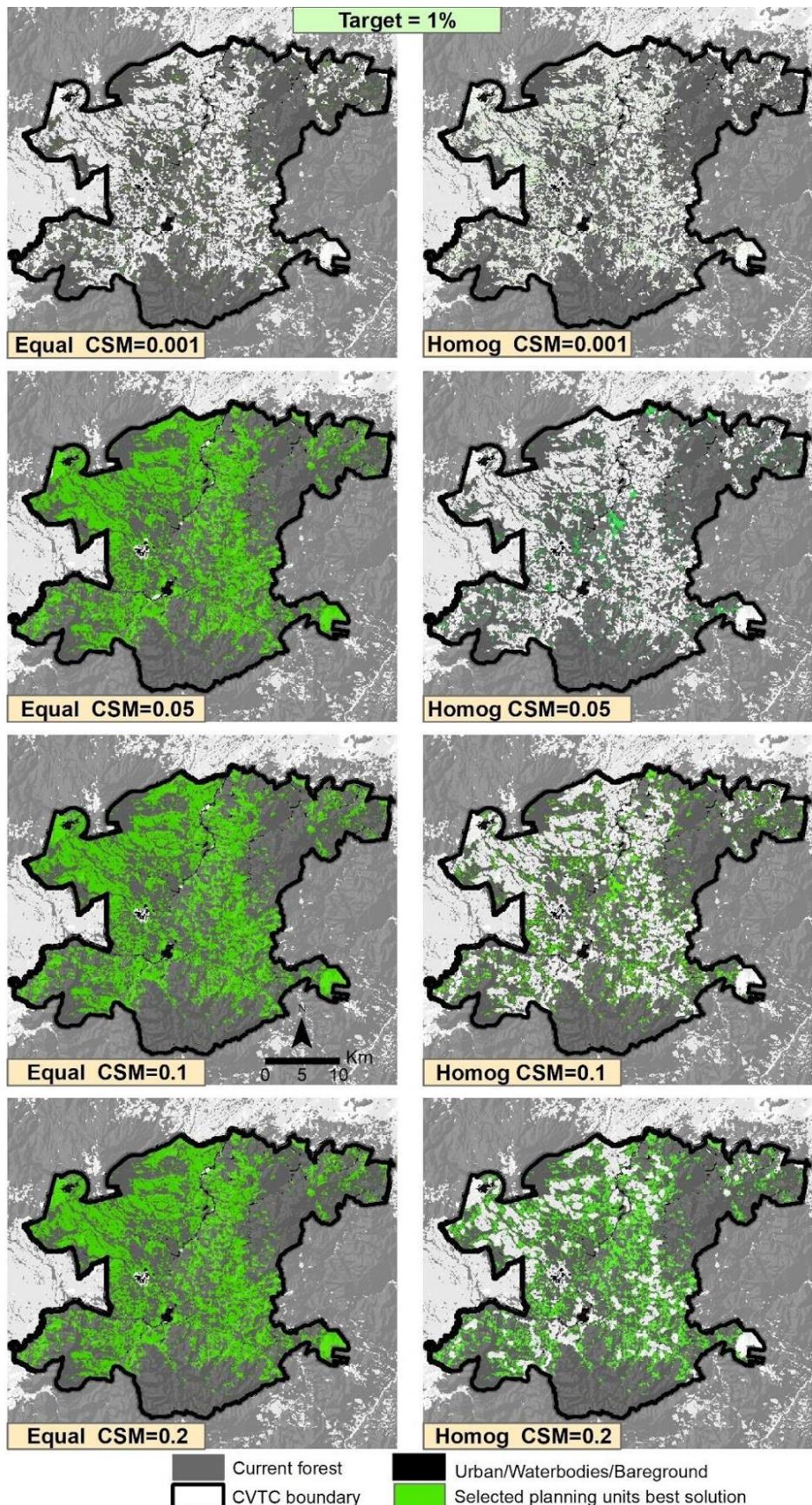

155

156

157

158

159


160

161 CSM calibration curves considering different
 162 cost layers at targets 0.1, 0.5, 1, 5, 10, and 20.
 163 The orange points in each graph represent the
 164 intersection between Cost and Connectivity for
 165 a CSM=0.001 (value selected for running the
 166 **Equal scenario** prioritization) and the purple
 167 ones, the intersection at CSM=0.05. (value
 168 selected for running the **Homog.**, **Heter30**,
 169 **Heter50** and **Heter100** scenarios). The
 170 selection of CSM values over the calibration
 171 curves allowed us to balance the achievement
 172 of ecosystem services targets and the
 173 connectivity objectives (see maps below).

174

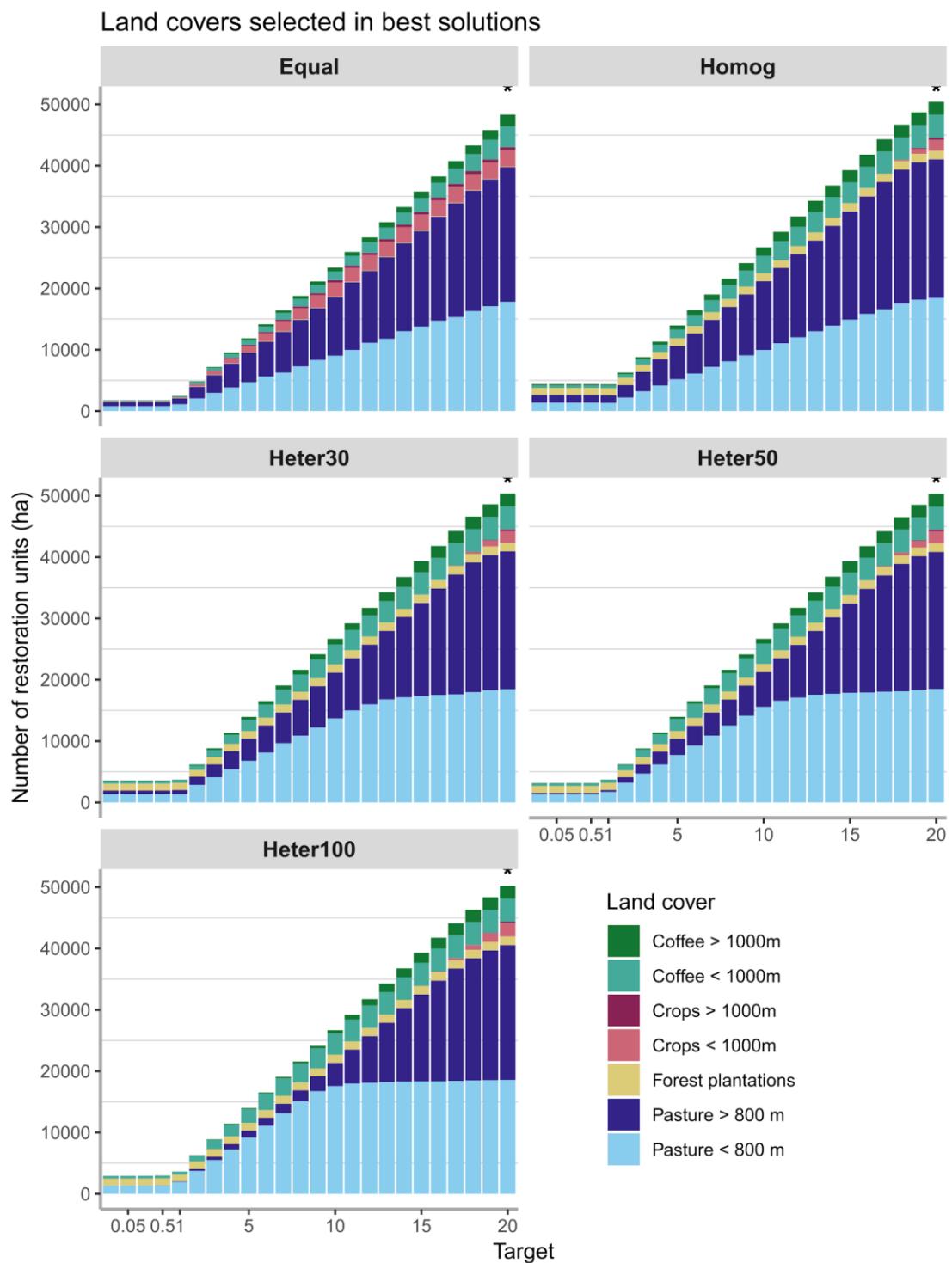
175

176 Best solutions for Equal and Homog scenario when target=1% and at different CSM
177 values

178

179 **Appendix S4.** Percentage of target achievement across tested scenarios and targets
 180 (median, minimum, and maximum values across the 95 ES features). A value of 100%
 181 indicates the full target achievement. Note that for small targets (those < 1) there is an
 182 extremely large overall target achievement that results from connectivity constraints.
 183 This reflects the fact that the selection of restoration units does not only seek to achieve
 184 targets across the 95 ES features but also to increase forest connectivity (i.e. many
 185 restoration units are selected in best solution because connectivity constraints
 186 overinflating the overall target achievement for each of the 95 ES features).

187


188

Scenario	Target	Target achievement %		
		Median	Max.	Min.
Equal Opportunity Cost (Equal)	0.01	36934.2	174564.2	6988.8
	0.05	7386.8	34912.7	1397.8
	0.1	3693.4	17456.4	698.9
	0.5	738.7	3491.3	139.8
	1	518.2	2250.0	100
	2	503.2	1791.4	100
	3	495.7	1499.6	100
	4	485.8	1300.4	100
	5	484.0	1177.4	100
	6	480.5	1081.9	100
	7	478.6	999.9	100
	8	476.8	914.2	100
	9	474.3	877.1	100
	10	476.2	799.1	100
	11	474.1	752.0	100
	12	475.0	720.8	100
	13	475.6	671.7	100
	14	474.7	635.7	100
	15	479.2	603.4	100
	16	476.7	566.4	100
	17	479.0	548.6	100
	18	479.4	515.3	100
	19	480.4	499.2	100
	20	479.1	484.9	100
Homogeneous Opportunity cost (Homog)	0.01	67895.3	249221.0	12814.9
	0.05	13579.1	49844.1	2563.0
	0.1	6789.5	24922.0	1281.5
	0.5	1357.9	4984.4	256.3
	1	677.5	2522.9	128.4
	2	527.8	1748.9	100
	3	523.2	1469.8	100
	4	521.3	1325.4	100
	5	517.3	1167.4	100

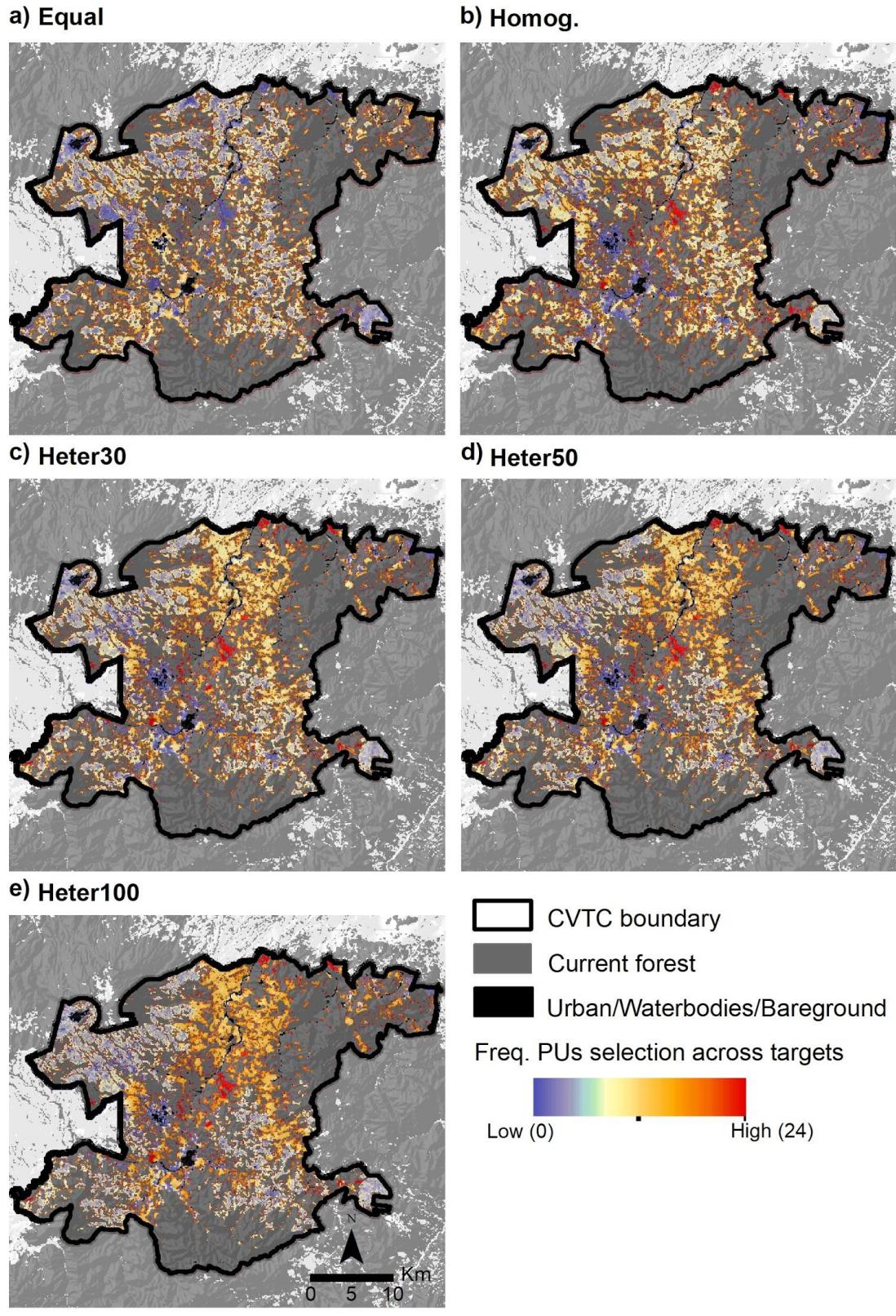
	6	516.6	1056.6	100
	7	515.5	938.6	100
	8	513.5	887.3	100
	9	513.9	824.6	100
	10	513.8	750.7	100
	11	511.7	718.6	100
	12	510.2	676.3	100
	13	513.0	642.0	100
	14	510.3	597.6	100
	15	511.3	561.7	100
	16	509.4	543.1	100
	17	504.9	532.1	100
	18	503.3	528.3	100
	19	496.0	511.2	100
	20	486.8	493.5	100
<hr/>				
Heterogeneous Opportunity Cost 30% (Heter30)	0.01	51256.5	247207.0	9171.3
	0.05	10251.3	49441.2	1834.3
	0.1	5125.6	24720.6	917.1
	0.5	1025.1	4944.1	183.4
	1	549.9	2500.2	100
	2	547.6	2105.7	100
	3	545.9	1733.4	100
	4	544.6	1493.7	100
	5	545.2	1336.7	100
	6	545.6	1194.7	100
	7	542.5	1084.4	100
	8	538.5	984.5	100
	9	538.1	915.8	100
	10	536.7	832.1	100
	11	534.5	781.4	100
	12	533.0	725.0	100
	13	528.6	673.4	100
	14	521.3	636.0	100
	15	517.0	601.7	100
	16	511.8	567.1	100
	17	506.3	543.4	100
	18	502.6	524.2	100
	19	494.8	506.5	100
	20	486.2	490.7	100
<hr/>				
Heterogeneous Opportunity Cost 50% (Heter50)	0.01	46103.9	250934.2	5932.8
	0.05	9220.8	50186.7	1186.6
	0.1	4610.4	25093.3	593.3
	0.5	922.1	5018.7	118.7
	1	575.6	3044.6	100
	2	564.8	2241.6	100

3	560.9	1823.3	100
4	557.0	1553.3	100
5	554.0	1389.1	100
6	552.1	1248.6	100
7	551.3	1122.6	100
8	552.4	1024.6	100
9	549.6	936.6	100
10	543.1	856.9	100
11	539.0	793.6	100
12	533.5	740.5	100
13	528.8	700.3	100
14	522.8	652.8	100
15	520.0	613.3	100
16	512.2	578.4	100
17	507.2	547.7	100
18	500.9	526.4	100
19	493.5	507.1	100
20	485.7	490.8	100
<hr/>			
Heterogeneous Opportunity Costs 100% (Heter100)		0.01	40799.4
		0.05	8159.9
		0.1	4084.4
		0.5	824.3
		1	577.3
		2	571.0
		3	569.7
		4	569.5
		5	562.0
		6	560.6
		7	561.8
		8	559.4
		9	556.6
		10	551.0
		11	544.1
		12	537.0
		13	530.8
		14	524.0
		15	519.2
		16	512.8
		17	506.4
		18	499.2
		19	493.1
		20	485.6
<hr/>			

192 **Appendix S5.** Number of planning units selected for forest restoration under each combination
 193 of scenario (**Equal**, **Homog**, **Heter30**, **Heter50**, **Heter100**) and target. Colors within each bar
 194 reflect the proportion of each land use (coffee plantations, crops, pastures, and forest
 195 plantations) selected within the set of planning units in each of the Marxan's best solutions. The
 196 asterisk on top of the bar of the target 20 marks the total number of planning units available for
 197 restoration across the biological corridor.

198
 199
 200

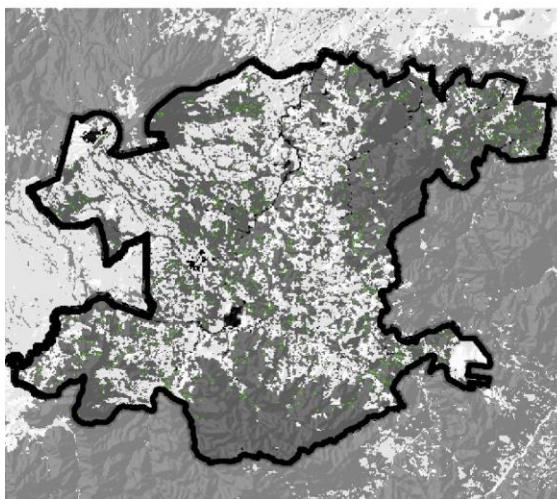
201 **Appendix S6.** Percentage of each land use (pasturelands, croplands, coffee and forest
 202 plantations), in relation to what is available across the biological corridor, selected in
 203 Marxan best solutions across different scenarios and targets. Note that forest plantations
 204 are selected in solutions for their contribution to increasing forest connectivity since
 205 they do not contribute to ecosystem service (ESS) provision.

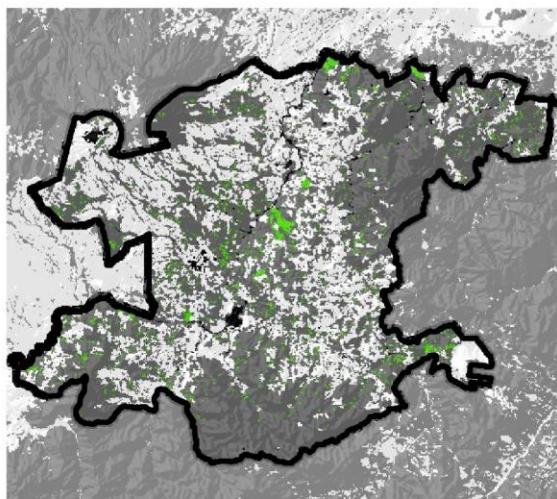

206

Scenario	Target	PUs%	Pasture > 800m	Pasture < 800m	Crops > 1000m	Crops < 1000m	Coffee > 1000m	Coffee <1000m	Forest Plantation
Equal opportunity cost (Equal)	0.05	3.4	3.0	4.3	2.7	2.6	1.8	2.9	4.2
	0.5	3.4	3.0	4.3	2.7	2.6	1.8	2.9	4.2
	1	4.8	4.1	6.0	3.7	4.7	2.4	4.4	4.4
	5	22.8	21.1	25.3	31.1	38.4	15.9	19.2	5.7
	10	45.2	42.0	48.5	70.7	85.1	30.4	38.7	5.8
	15	69.0	68.5	74.1	91.0	94.0	49.6	60.1	7.3
Homog. Oppor. Cost (Homog)	20	93.2	96.6	95.7	99.8	98.5	91.3	89.8	6.5
	0.05	8.5	5.5	7.4	0.0	0.0	8.9	11.7	79.7
	0.5	8.5	5.5	7.4	0.0	0.0	8.9	11.7	79.7
	1	8.4	5.4	7.2	0.0	0.0	8.8	11.8	81.2
	5	26.9	23.7	28.0	0.0	0.0	31.4	37.8	88.9
	10	51.5	49.3	53.6	0.0	0.0	65.4	74.6	92.5
Heter. Opport Cost 30% (Heter30)	15	75.8	77.7	80.1	0.0	0.0	94.8	89.6	94.2
	20	97.2	99.4	99.2	66.2	65.6	99.2	99.7	98.0
	0.05	6.9	2.5	7.4	0.0	0.0	3.0	11.7	80.8
	0.5	6.9	2.5	7.4	0.0	0.0	3.0	11.7	80.8
	1	7.2	3.0	7.3	0.0	0.0	3.3	11.5	81.8
	5	26.9	15.9	36.5	0.0	0.0	21.8	49.0	86.9
Heterorg. Opport. Cost 50% (Heter50)	10	51.5	32.8	73.7	0.0	0.0	46.0	85.5	92.6
	15	75.8	66.7	93.2	0.0	0.1	85.8	95.9	97.0
	20	97.1	98.9	99.2	54.7	70.4	99.3	99.5	98.4
	0.05	6.1	0.9	7.3	0.0	0.0	2.0	11.4	80.8
	0.5	6.1	0.9	7.3	0.0	0.0	2.0	11.4	80.8
	1	7.2	1.4	9.3	0.0	0.0	2.4	12.1	81.7
Hererog. Opport. Cost 100% (Heter100)	5	26.9	11.7	41.6	0.0	0.0	15.2	52.9	88.0
	10	51.5	25.0	83.8	0.0	0.0	36.9	88.0	93.0
	15	75.8	64.1	96.2	0.0	0.4	87.3	96.3	96.4
	20	97.0	98.3	99.4	48.2	73.7	98.6	99.9	98.0
	0.05	5.6	0.0	7.2	0.0	0.0	0.6	11.5	79.6
	0.5	5.7	0.2	7.3	0.0	0.0	1.0	11.5	79.6

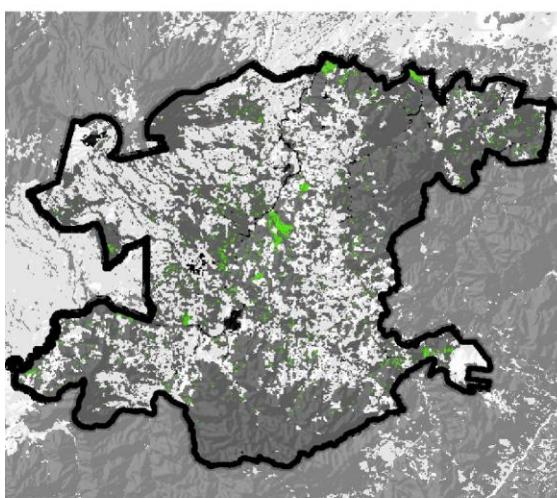
207

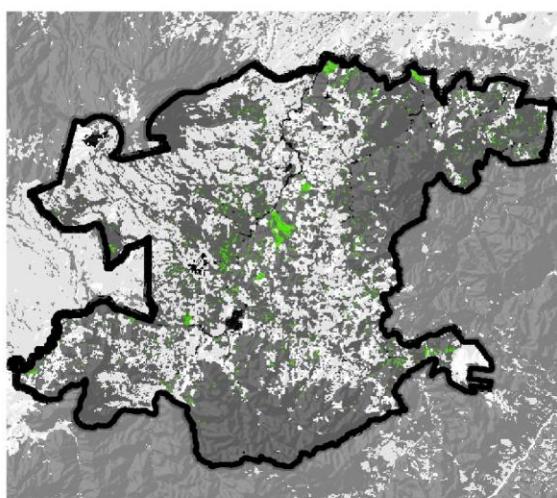
208

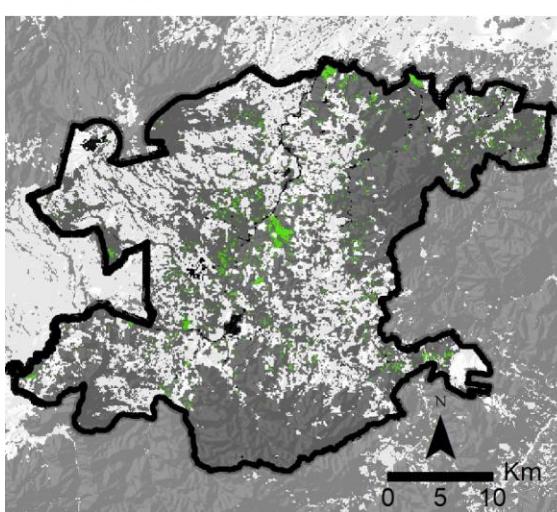

209 **Appendix S7.** Frequency of selection of planning units across all tested targets (24) in
210 each of the tested scenarios **a) Equal Opportunity Cost (Equal)** **b) Homogeneous**
211 **Opportunity cost (Homog), and Heterogeneous Opportunity Costs c) Heter30, d)**
212 **Heter50 and e) Heter 100.**


213
214
215

216 **Appendix S8.** Marxan best solutions across scenarios for a target of 1% **increase** in ES
217 provision.

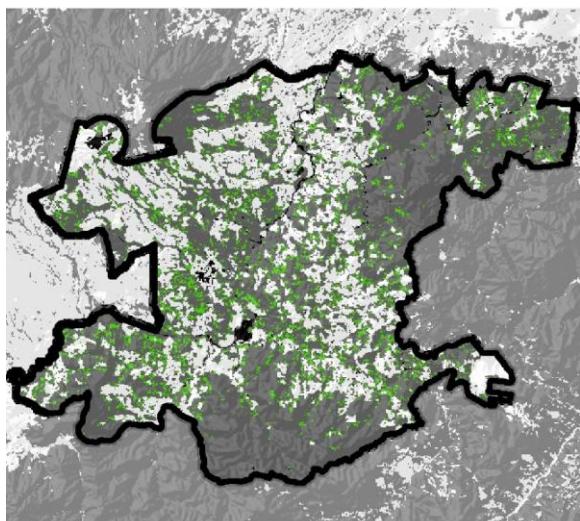

a) Equal


b) Homog.

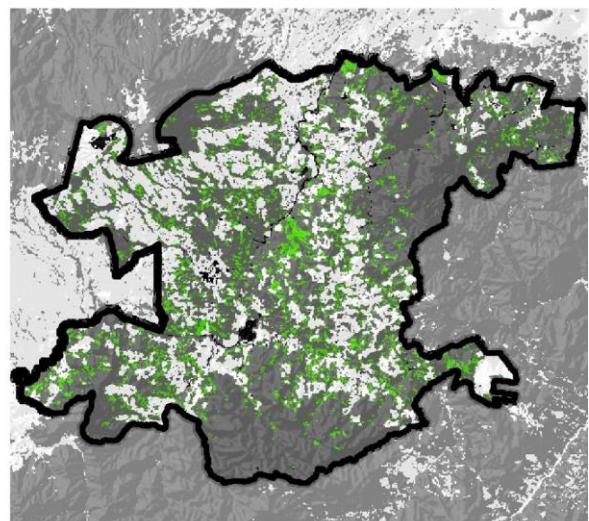

c) Heter30

d) Heter50

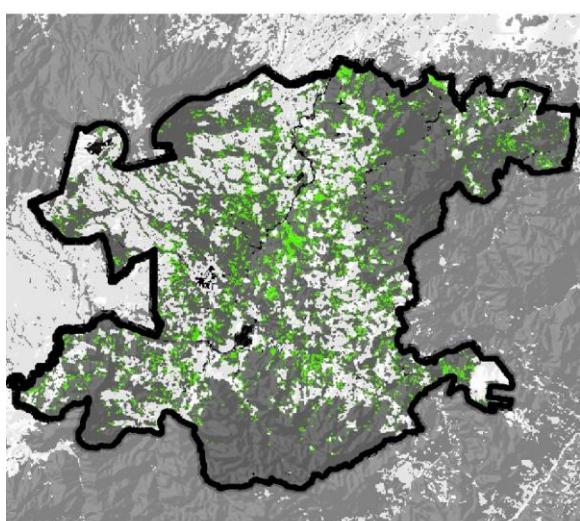
e) Heter100

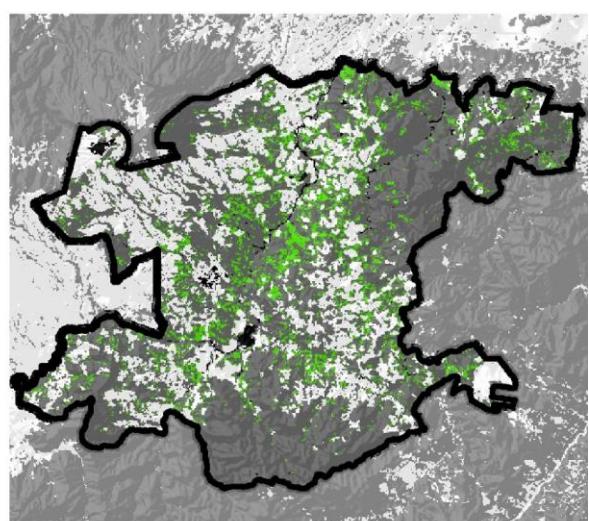


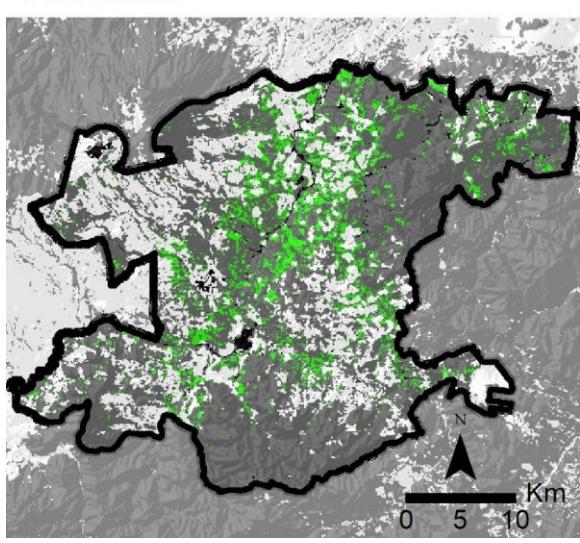
CVTC boundary
Current forest
Urban/Waterbodies/Bareground
Selected PUs best solution
(1% target)


218
219

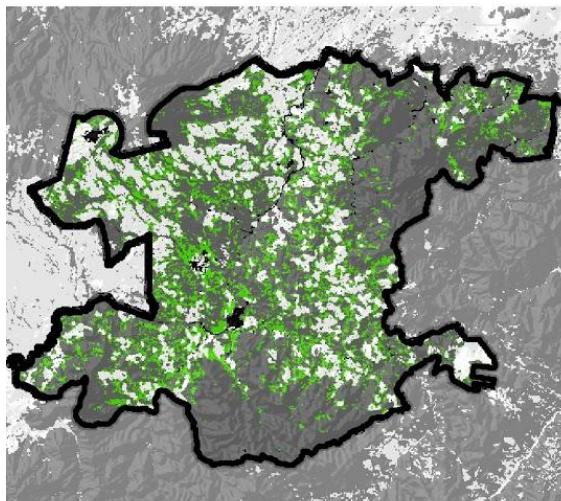
220 Marxan best solutions across scenarios for a target of **5% increase** in ES provision.

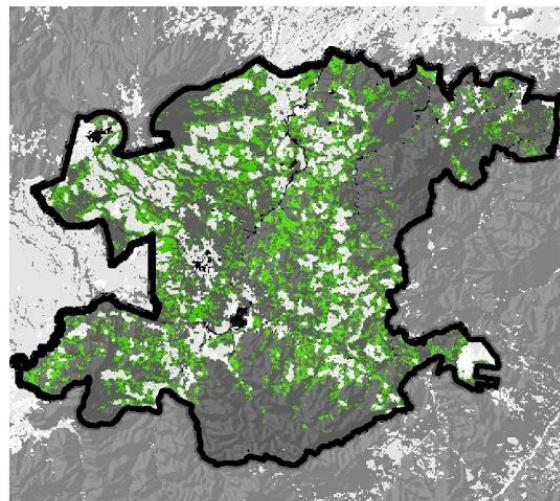

a) Equal


b) Homog.

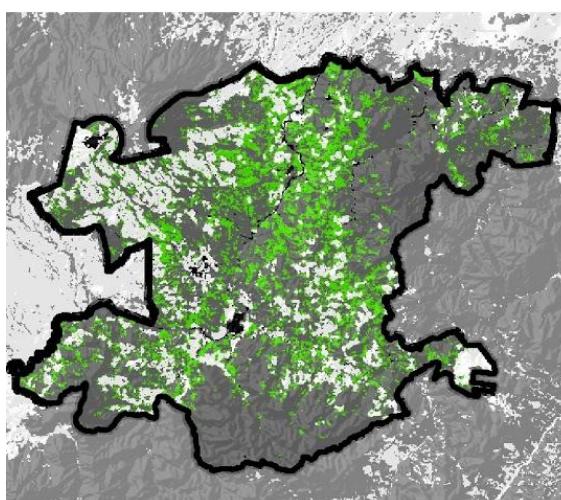

c) Heter30

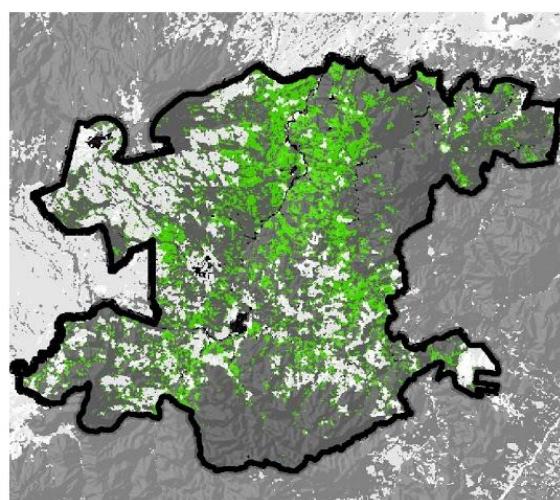
d) Heter50

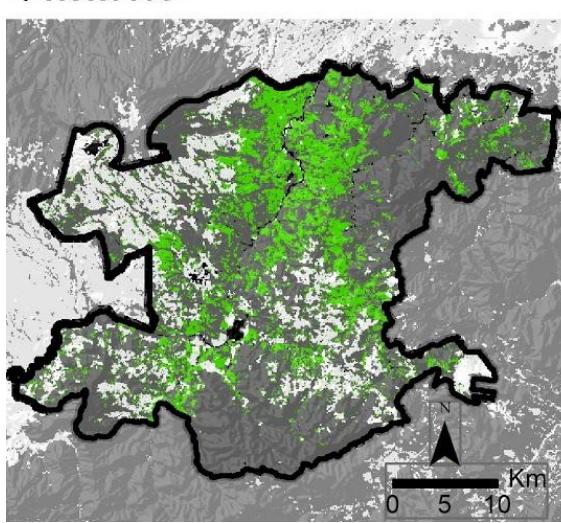

e) Heter100


 CVTC boundary
 Current forest
 Urban/Waterbodies/Bareground
 Selected PUs best solution
(5% target)

223 Marxan best solutions across scenarios for a target of **10% increase** in ES provision.

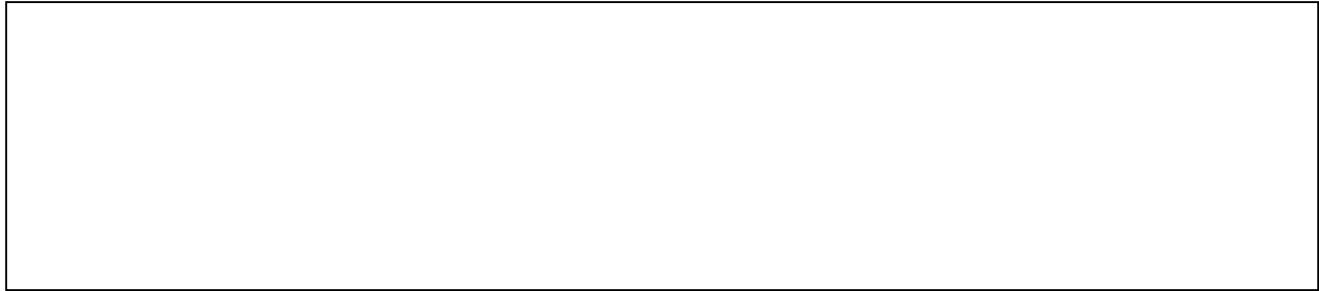

a) Equal


b) Homog.


c) Heter30

d) Heter50

e) Heter100


CVTC boundary
Current forest
Urban/Waterbodies/Bareground
Selected PUs best solution
(10% target)

224

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, occupying the lower half of the page. It is intended for authors to provide any necessary declarations of interests or conflicts of interest.