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Abstract 25 

Climatic warming alters the onset, duration and cessation of the vegetative season. While prior studies have 26 

shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of 27 

phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal 28 

growing season (TSOS) and tree growth across the extratropical Northern Hemisphere using 3451 tree-ring 29 

chronologies and daily climatic data for 1948-2014. An earlier TSOS promoted growth in regions with high 30 

ratios of precipitation to temperature but limited growth in cold dry regions. Path analyses indicated that an 31 

earlier TSOS enhanced growth primarily by alleviating thermal limitations on wood formation in boreal 32 

forests and by lengthening the period of growth in temperate and Mediterranean forests. Semi-arid and dry 33 

subalpine forests, however, did not benefit from an earlier onset of growth and a longer growing season, 34 

presumably due to associated water loss and/or more frequent early spring frosts. These emergent patterns 35 

of how climatic impacts on wood phenology affect tree growth at regional to hemispheric scales hint at 36 

how future phenological changes may affect the carbon sequestration capacity of extratropical forest 37 

ecosystems. 38 

  39 
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Main text 40 

Introduction 41 

An unprecedented increase in temperature has been recorded in recent decades, with higher rates of 42 

warming outside than during the main growing season1. Such warming causes large changes in the timing, 43 

duration and thermal conditions of the vegetative season in extratropical terrestrial biomes2-5. The start of 44 

the thermal growing season (TSOS) directly influences vegetation phenology and its advance closely 45 

matches the interannual variability of spring green-up6-12. These phenological shifts influence the capacity 46 

of the biosphere to take up carbon13-15 and affect the exchange of energy between the atmosphere and the 47 

biosphere13, 16. It remains to be answered, whether the shifts in plant phenology would result in a negative 48 

feedback to warming and an increase carbon uptake or alternatively exhibit additional ecological stress13. 49 

Solving this issue may help reduce uncertainties associated with the forecasting and modeling of forest 50 

productivity and global carbon cycling.  51 

Satellite observations of forested areas provide evidence that recent climate change has shifted foliar 52 

phenology and photosynthetic seasonality17. Ninety-five percent of the global land surface underwent 53 

substantial changes in foliar phenology between 1980 and 2012, including changes in the timing of 54 

phenological cycles and the vigor of vegetative activity7. In addition to the direct response of an advanced 55 

foliar flush to an earlier TSOS18, peak photosynthesis occurs earlier and culminates higher in forests of the 56 

extratropical Northern Hemisphere8, 19, 20. These phenological shifts may be strongly correlated with the 57 

thermal conditions in spring, because satellite data indicate that the rate of phenological change slowed 58 

under the warming hiatus of 1998-201221. 59 

Changes in the timing and vigor of vegetation activity further affect when and how carbon is 60 

assimilated by terrestrial ecosystems. The spring shifts of vegetation activity may increase ecosystem 61 

productivity due to an earlier start of carbon uptake19 and longer vegetative seasons with more vigorous 62 

photosynthetic activity15, 22. Widespread and contrasting responses of productivity to shifts in foliar 63 

phenology, however, have been detected across northern terrestrial ecosystems. The beneficial effects of 64 

spring warmth on growing-season productivity can be offset by water stress due to higher 65 

evapotranspiration in the summer23-25 and by increasing carbon losses due to higher respiration in the 66 
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autumn26. A long-term study of biomass also found that alpine plants grew earlier and faster, but the 67 

increase in spring productivity was offset by a reduction in autumnal productivity due to increased water 68 

stress27. Thus, any attempt to explain climatic influences on terrestrial carbon uptake solely based on 69 

studies of shifting foliar phenology and photosynthetic seasonality remains challenging. 70 

The carbon residence time in tree stems is much longer than in foliage, making the former a major 71 

contributor to the long-term carbon sink in forests28. Tree radial growth represents the annual accumulation 72 

and fixation of carbohydrates in the stem. Importantly, wood phenology, mainly in cold areas, is closely 73 

related to temperature29. Wood formation in conifers begins when specific critical temperatures and 74 

photoperiods are reached30-32. In addition to temperature, the length of the growing season determines the 75 

available period for developing functional xylem through cell maturation and lignification, especially in 76 

cold areas31, 33. In drier ecosystems, water availability for roots, rather than rainfall per se, is another 77 

important driver of cambial reactivation34. Temperature and the availability and demand of water also co-78 

determine the rate of growth 35-37. In addition to climate, the phenology of wood formation is also 79 

associated with physiological trade-offs with bud and foliar phenology, because phytohormones produced 80 

in developing buds and foliage regulate the rate of cambial division29, 38 and can lead to changes in 81 

priorities for allocating carbon within a tree. 82 

Fundamental but still unresolved questions are thus whether and how the advance of the thermal 83 

growing season in spring influences annual tree growth (and biomass accumulation) across environmental 84 

gradients. We addressed these questions by investigating the influence of TSOS on tree radial growth 85 

(represented by a ring-width index, RWI) in the extratropical Northern Hemisphere and by identifying the 86 

dominant mechanisms controlling the relationship between TSOS and growth for several regions with 87 

contrasting climates (northern Asia, northern Europe, Central Europe, the Mediterranean region, the 88 

western and eastern coast of the US, and the Colorado and Tibetan Plateaus) with different forest biomes 89 

(boreal, Mediterranean, temperate, semi-arid and dry subalpine forests). We tested the hypothesis that the 90 

shift of TSOS influences tree growth by changing its timing, duration, and rate according to the influence 91 

of climate on the processes of xylem formation35, 39, 40. We assumed that a shift of TSOS would lengthen 92 

the growing season by modifying growing degree days and the availability of soil moisture and that such 93 
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phenological changes could affect growth through various ecophysiological mechanisms depending on the 94 

ambient climatic conditions.  95 

 96 

Results 97 

Response of tree growth to TSOS changes 98 

Most areas in the extratropical Northern Hemisphere had trends toward an earlier TSOS between 1948 and 99 

2016. Correlation results show that 36.5% of these areas exhibited significant (p < 0.05 in a two-tailed 100 

Student t-test) and 49.2% at least marginally significant (p < 0.1) advancing trends (Extended Data Fig. 1). 101 

11.4% of the RWI chronologies had significant (p < 0.05, t-test) and 18.0% at least marginally significant 102 

(p < 0.1) simple correlations with TSOS, and 7.7% had significant and 13.6% at least marginally significant 103 

partial correlations (Extended Data Fig. 1). The correlations revealed distinct spatial patterns after gridding 104 

onto a 2°×2° raster (Fig. 1). The area with negative TSOS-RWI correlations was generally larger than the 105 

area with positive correlations (56% vs 33% in the simple correlation analyses and 46% vs 36% in the 106 

partial correlation analyses; see histograms in Fig. 1C, D). Negative correlations dominated at high 107 

latitudes (>60°N), central Europe, eastern and western coastal North America, indicating that the advancing 108 

TSOS could benefit tree growth in these regions. Correlations were mainly positive for the Colorado and 109 

Tibetan Plateaus, indicating that an advance in TSOS could reduce growth in these regions. Similar patterns 110 

were found for both the simple and partial correlations. 111 

We calculated the 30-year (1969-1998) mean growing degree days (GST) and the 30-year mean 112 

growing-season precipitation (GSP) to compare the ambient climatic characteristics of the RWI sites with 113 

contrasting responses to changes in TSOS. GST for the RWI chronologies with significant negative TSOS 114 

correlations was distinctly lower than for RWI chronologies with positive correlations (Fig. 1E, F). Linear 115 

regression analyses of GST and GSP further indicated a higher regression coefficient for RWI chronologies 116 

with significant negative correlations than for RWI chronologies with positive correlations. These results 117 

suggest that the advance in TSOS would likely benefit tree growth in cold areas with a lower number of 118 

GST and/or a higher GSP:GST ratio. 119 

Relationships between TSOS and RWI in climatically distinct regions 120 
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We conducted path analyses to decompose the effect of TSOS on RWI, so that the magnitude of the 121 

underlying processes responsible for the emergent correlations could be compared. TSOS-RWI 122 

relationships of each tree-ring chronology involved in path analyses for the eight selected regions (northern 123 

Asia, northern Europe, Central Europe. the Mediterranean region, the western and eastern coast of the US, 124 

the Colorado Plateau and the Tibetan Plateau) are shown in Extended Data Fig. 2. The path diagram was 125 

reliable in all regions; the specific model fits for each region are presented in Supplementary Table 1. The 126 

path effects showed distinct responses between regions (Fig. 2). TSOS had a negative total effect on RWI 127 

(i.e., higher RWI under advanced TSOS) for boreal forests in northern Asia and Europe, temperate forests 128 

in central Europe and the east coast of the US, and for forests in the Mediterranean region and along the 129 

west coast of the US. In boreal forests, the most pronounced pathway affecting RWI is the “growing degree 130 

days (GDD) effect” (i.e., the path effect through the “TSOS—GDD—RWI” path), suggesting that an 131 

advance in TSOS increases tree growth mainly through the increase in GDD. TSOS also had a negative 132 

total effect on RWI in temperate and seasonally dry Mediterranean forests, but the path effect was stronger 133 

through the length of the thermal growing season (GSL) than GDD, suggesting that the beneficial effect of 134 

an advanced TSOS on growth was due to the extension of the thermal growing season, without a clear 135 

effect of drought due to reduced SM. In contrast, TSOS for semi-arid forests on the Colorado Plateau had a 136 

strong positive total effect on RWI (i.e., lower RWI under advanced TSOS). The positive effect through 137 

GSL combined with the effect through GDD and SM, suggests that an advance in TSOS could reduce tree 138 

growth due to the longer growing season, the increase in GDD, and the decrease in SM (soil drought) 139 

caused by the increased GDD. TSOS for dry subalpine forests on the Tibetan Plateau also had a positive 140 

effect on RWI, with the main path through changes to GSL, suggesting that the unfavorable situation of an 141 

advanced TSOS for growth was mainly caused by the lengthening of the growing season. 142 

 143 

Discussion  144 

Our study has demonstrated that spatiotemporal shifts in TSOS can significantly and variably affect 145 

tree growth in the extratropical Northern Hemisphere. This conclusion is supported by our current 146 

understanding of the physiological mechanisms that underlie wood formation. As shown by xylogenetic 147 
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studies, wood formation involves sequential processes of cambial cell division, cell enlargement and cell-148 

wall thickening41. The onset of wood formation is the main factor that directly or indirectly triggers all 149 

subsequent phases of xylem maturation39. Small changes in the period of cell division can lead to 150 

substantial increases in xylem cell production and growth40. The rate of increase in xylem size peaks when 151 

the cambium is dividing vigorously and most cells are undergoing the enlarging phase. These physiological 152 

processes culminate at the end of spring and slow down in late summer and autumn when the tree ring is 153 

almost fully formed38, 41, 42. Therefore, tree growth would be enhanced by an earlier onset and also by 154 

higher growth rates during the peak growing season in cold climates. Recent xylogenetic studies have also 155 

demonstrated that a longer growing season induced by its earlier start will not benefit xylem formation in 156 

trees located in drought-prone environments. Instead, warming induced drought could limit carbon 157 

sequestration by reducing the rate of cell production35, 37. Based on these physiological mechanisms, we 158 

assumed that growth changes caused by shifts in TSOS can be inferred from tree-ring data. 159 

Our results revealed a clear spatial pattern in the response of tree growth (RWI) to TSOS (Fig. 1). 160 

Areas with beneficial effects of TSOS on RWI (i.e., negative correlation) are generally located in high-161 

latitude (above 60°N), Europe, as well as in eastern and western coastal North America. These cold and 162 

humid regions have no or minimal water limitation during the growing season. This spatial distribution 163 

generally agrees with the distribution of areas that exhibit a clear advance in the timing of foliar onset and 164 

peak photosynthetic activity11, 19, 43. This importantly suggests that enhanced carbon uptake induced by the 165 

advance of TSOS promoted the production and accumulation of photosynthates and thus increased the 166 

availability of resources for tree growth. Although a warmer autumn may offset the increased productivity 167 

during spring due to a disproportionally larger increase in respiration compared with photosynthesis23, 24, 26 168 

and can additionally cause earlier foliar senescence44, this is likely to affect carbon stored in pools with a 169 

faster turnover rate such as shoots and leaves. However, the effect of autumnal warming was marginal for 170 

“slow carbon”, i.e., that sequestered in the wood, compared to this canopy activity. The regions with 171 

negative effects of TSOS on growth (i.e., positive correlation) were mainly located on the Colorado Plateau 172 

and the Tibetan Plateau, corresponding to cold-dry conditions where forests are typically co-limited by the 173 

availability of soil water and nutrients. Radial growth is more sensitive to low temperatures or drought than 174 
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photosynthesis45 and may cease long before carbon uptake in response to water shortage46. Warming during 175 

the growing season in these regions may intensify drought, inhibit woody tissue formation37, 45, and reverse 176 

the positive effects of temperature on growth even in cold areas47. An extended growing season may also 177 

increase the risk of tree expose to low temperature events such as spring frosts48. These effects are possible 178 

causes of reduced tree growth and constrain carbon accumulation in the wood. 179 

The shift in the timing of TSOS may have affected GSL, GDD and SM. The change of GSL would 180 

extend the time when cambial activity and wood formation are possible. In contrast, the change of GDD 181 

and SM would affect growth rates35, 49. All these factors can interact to modulate tree growth and the 182 

resulting sequestration of carbon. Decomposing the effect of TSOS on radial growth in different forest 183 

biomes – as we have done in this study – can therefore help advance our understanding of the effects of 184 

TSOS on carbon sequestration and wood formation, and pave the way for improved forecasting of forest 185 

carbon cycling. 186 

The advance of TSOS benefited tree growth in the boreal forests of northern Asia and Europe, and the 187 

path analyses indicated that the “GDD effect” was the primary responsible pathway (Fig. 2A). Our results 188 

are consistent with previous studies of canopy processes reporting that an increase in vegetation greenness 189 

was more pronounced across boreal ecosystems than in other regions50, which was mainly due to the 190 

alleviation of the limitation of cold temperatures on vegetation growth under climatic warming51, 52. The 191 

advance of TSOS also benefited tree growth in temperate forests of central Europe and the east coast of the 192 

US, and Mediterranean forests of the Mediterranean region and the west coast of the US. The “GSL effect” 193 

was the primary path effect in those areas (Fig. 2B). In central Europe and along the east coast of the US, 194 

precipitation is adequate to abundant, and the summers are generally warm and humid. A lengthened GSL 195 

extends the growth duration and favors tree growth there. The Mediterranean climate is characterized by 196 

dry and hot summers, with optimal conditions for vegetation growth occurring during the cool and rainy 197 

springs and autumns, often leading to a bimodal pattern of growth with a temporary cessation of growth in 198 

summer53. Photoperiods are longer in spring than in autumn, and an earlier reactivation of the cambium 199 

after winter dormancy can harness this period for increasing production. A lengthening of the growing 200 

season through the advance of TSOS may therefore benefit tree growth if spring droughts are not persistent 201 
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or severe. SM at the beginning of the growing season is also a major factor affecting tree radial growth54, 55, 202 

but the advanced TSOS in our study may have had a limited effect on RWI via the “SM effects” (i.e. the 203 

path effect through the “TSOS—GSL—GDD—SM—RWI” and “TSOS—SM—RWI” paths) in these 204 

regions. The thermal conditions at the beginning of the growing season were mild and may not have caused 205 

a severe loss of soil water through evaporation, but an advanced TSOS may accelerate snow melt and 206 

increase the availability of soil water56. These remaining uncertainties need to be comprehensively 207 

addressed in future studies. The path effects of northern and central Europe are small compared with other 208 

regions, perhaps due to the difference in the distance from the ocean and the complexity in topography and 209 

species composition, which also need to be studied with more detail in future work. 210 

The advance of TSOS negatively affected growth in semi-arid forests on the Colorado Plateau and dry 211 

subalpine forests on the Tibetan Plateau. Path analysis further indicated that growth reductions under 212 

advanced TSOS were primarily caused by the “GSL effect” (Fig. 2). This result was not consistent with our 213 

original hypothesis in the path diagram that an extended GSL would enhance tree radial growth 214 

(Supplementary Fig. 1) and may involve more complex mechanisms. Extended GSL in these regions, 215 

combined with higher heat accumulation (“GDD effect”) and/or evapotranspiration of soil water (i.e., the 216 

path effect through the “TSOS—GSL—GDD—SM—RWI”), may induce both atmospheric and soil 217 

droughts. Droughts will trigger stomatal closure, increase water tension in the xylem, and deplete the 218 

contents of nonstructural carbohydrates in trees57-59, thus reducing the rate of wood production35. Forests in 219 

these regions also suffered more from frost days than those in high latitude regions (see Supplementary Fig. 220 

2). Earlier TSOS may increase tree exposure to spring frost and thereby reduce tree growth48, 60. The 221 

specific mechanisms underlying these processes need to be addressed in further experimental studies. 222 

Uncertainties in our analyses were mainly introduced by three sources: the spatial representativeness 223 

of the tree-ring series, the determination of the TSOS thresholds and the establishment of the path diagram. 224 

The ITRDB data set contains a large imbalance in the spatial distribution of sites and in its species 225 

composition61, 62. Further, the local microenvironment, stand structure, or biotic and abiotic disturbances are 226 

often unknown but can also impact tree radial growth and phenological responses10, 63, 64. To mitigate 227 

potential biases associated with these caveats, we first gridded the correlation coefficients and then 228 
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displayed the percentage of the direction instead of the magnitude of the correlation coefficients. We were 229 

thereby able to extract the dominant spatial patterns of the response of tree growth to shifts in the timing of 230 

the thermal growing season. 231 

The thermal threshold for growth of 5 °C is widely accepted and used6, but debatable because the 232 

choice of threshold may lead to different conclusions4. A more vegetative based threshold (for instance the 233 

threshold from vegetation greenness) is, however, difficult to achieve due to the inconsistency in temporal 234 

availability of tree-ring data and satellite-retrieved observations62. Biological evidence suggests that the 235 

daily mean temperature threshold for the onset of xylem growth in conifers at high altitudes and in cold 236 

climates is 5.6 to 8.0 °C32, 65. The critical threshold of mean air temperature at alpine treelines is about 3.9 237 

°C31. With these premises, we assumed the threshold for TSOS and GDD range between 4 to 6 °C while 238 

exploring the response of tree growth to TSOS at large-spatial scales and chose to present the results for the 239 

5 °C cutoff. Reassuringly, the results of analyses with other cutoffs showed similar patterns, confirming the 240 

robustness of the results.  241 

The establishment of our path diagram was based on experimental studies; advanced TSOS would 242 

extend growth duration (indicated by GSL) and affect growth rates (controlled by GDD and SM), thus 243 

influencing annual tree growth. Path analysis is an extension of multiple linear regression. We therefore 244 

assumed that the relationships among the variables were mainly linear, which is not always consistent with 245 

our current understanding of the complex responses of tree growth to climate66-68. Encouragingly, the 246 

relationships between TSOS and RWI in the eight regions were mostly linear (Extended Data Fig. 2). We 247 

therefore considered our use of path analyses to be appropriate. 248 

We found that the impact of shifts in the timing and duration of the thermal growing season could be 249 

detected in tree rings at regional to hemispheric scales. Our study thus allows for the further exploration of 250 

the impact of climatic trends and variability on tree growth. Such information is essential for integrating 251 

information regarding the responses of foliage and stems to climate change, and for predicting future 252 

vegetation performance. Explaining the influence of plant phenology on carbon sequestration solely based 253 

on the perspective of foliar phenology and photosynthesis seasonality (which drive carbon uptake) is 254 

insufficient. Low temperatures and drought constrain growth more than photosynthesis45. A carbon sink 255 
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(i.e., wood) oriented view on phenological impacts is therefore essential for predicting carbon sequestration 256 

capacity, because wood is the primary long-term carbon storage pool in forests. Wood formation, however, 257 

is notoriously difficult to quantify using satellite observations or techniques of eddy covariance41. Our 258 

study implies that the analysis of tree rings at regional to global scales could provide new solutions to 259 

differentiate between shifts in the turnover of “slow” and “fast” carbon pools under a rapidly changing 260 

climate69. 261 

In summary, our study provides strong evidence that shifts in TSOS influence tree radial growth in the 262 

extratropical Northern Hemisphere. The advance of TSOS is more likely to enhance tree growth in cold 263 

humid areas with a higher water:heat ratio, whereas growth in cold dry areas may be reduced. Our results 264 

also indicated that the primary path effect of TSOS on growth differed among forest biomes. The beneficial 265 

effects in the boreal forests of northern Asia and Europe were mainly due to the alleviation of thermal 266 

limitation on wood formation, so that higher growth rates were possible, but the primary beneficial effect in 267 

the temperate forests of central Europe and the east coast of the US and Mediterranean forests involved a 268 

lengthening of the growing season. The negative effects for semi-arid and dry alpine forests on the cold dry 269 

Colorado Plateau and the Tibetan Plateau were primarily due to a longer period of growth, presumably due 270 

to associated droughts driven by heat, as well as by an increased likelihood of spring frosts. This study 271 

reveals how climate affects tree growth through wood phenology and contributes to improving our ability 272 

to predict trends in the capacity of forests to sequester carbon at regional to global scales. 273 

 274 

Methods 275 

Experimental design 276 

We raised fundamental but still unresolved questions of whether and how the advance of the thermal 277 

growing season in spring influences tree growth across environmental gradients. We addressed these 278 

questions by investigating the relationships between TSOS and tree radial growth across the extratropical 279 

Northern Hemisphere with correlation analyses and by identifying the dominant mechanisms controlling 280 

the relationships in path analyses for several regions with contrasting climates. A total of 3451 tree-ring 281 

width chronologies and daily climatic data for 1948-2014 were used to conduct these analyses. 282 
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Data 283 

Tree-ring width chronologies 284 

Raw tree-ring width chronologies from 4219 sites across the extratropical Northern Hemisphere (20-75°N) 285 

were selected from the reformatted data set of the International Tree-Ring Data Bank (ITRDB)61, as well as 286 

83 sites on the Tibetan Plateau (Supplementary Table 2) from the tree-ring group of the Institute of Tibetan 287 

Plateau Research Chinese Academy of Sciences (ITPCAS) (https://doi.org/10.11888/Terre.tpdc.271925). 288 

We excluded chronologies shorter than 30 years after 1948 and those where TSOS varied little (i.e. no 289 

change of TSOS for >20 years), for a total of 3451 sites retained for further analyses. Of these 290 

chronologies, 73.6% (2540) were from evergreen conifers, 9.1% (314) from deciduous conifers (mainly 291 

larch), 16.5% (569) from broadleaf species, and 0.2% (7) from shrubs at the boreal treeline. Twenty-one 292 

chronologies lacked information about tree species. To transform the tree-ring width data into a ring-width 293 

index (RWI) that accentuates the variability of annual to decadal growth, we removed long-term trends 294 

caused by aging and increasing trunk diameter by fitting either a negative exponential curve or a cubic 295 

smoothing spline (removing 50% of the variance for a period of 67% of series length) to the raw ring-width 296 

series using the dplR package (version 1.7.1)70 in R71. Mean site chronologies of RWI after 1948 were 297 

calculated using bi-weight robust means. 298 

 299 

Climatic and soil-moisture data 300 

Daily grids of mean air temperature and total precipitation for 1948 to 2016 were obtained from the Global 301 

Meteorological Forcing Dataset of the Terrestrial Hydrology Research Group at Princeton University 302 

(http://hydrology.princeton.edu/data.pgf.php) at a spatial resolution of 0.25°72. Daily soil-moisture content 303 

(SM) in the root zone (0-100 cm) was obtained from the NASA Global Land Data Assimilation System 304 

Version 2 (GLDAS-2) 305 

(https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary?keywords=GLDAS2.0) at a 306 

resolution of 0.25°. GLDAS-2 is forced entirely with the Princeton meteorological forcing input data and 307 

provides a temporally consistent series from 1948 to 2014. 308 

https://doi.org/10.11888/Terre.tpdc.271925
http://hydrology.princeton.edu/data.pgf.php
https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary?keywords=GLDAS2.0
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We extracted the timing and length of the thermal growing season for each year based on daily mean 309 

air temperature. TSOS was defined as the first six uninterrupted days with daily mean temperatures >5 °C 310 

at mid and high latitudes73. The end of the thermal growing season (TEOS) was defined as the first six 311 

uninterrupted days after 1 July with daily mean temperatures <5 °C. GSL was calculated as the time 312 

between TSOS and TEOS. 313 

Growing degree days (GDD), which represent the effective accumulation of heat for vegetation 314 

growth during the growing season, were calculated as the sum of daily mean temperatures >5 °C54:  315 

   𝐺𝐷𝐷 = ∑ (𝑇𝑖 − 5)𝑇𝐸𝑂𝑆
𝑇𝑆𝑂𝑆  𝑖𝑓 𝑇𝑖 > 5    (1) 316 

where 𝑇𝑖  is the mean temperature on day i.  317 

Growing-season precipitation was calculated as the sum of daily precipitation during the thermal growing 318 

season. Mean SM during the growing season was the average of the daily content in the root zone during 319 

the thermal growing season. The 30-year mean GDD (GST) and the 30-year mean growing-season 320 

precipitation (GSP) were calculated for 1969-1998. When choosing an aridity metric for our study, we 321 

decided to use a simple index that relies only on the most widely measured variables: temperature and 322 

precipitation. We favored the GSP:GST ratio (similar to the Selyaninov hydrothermic coefficient74) over 323 

more complex indices because the latter often require input variables that are best measured locally. These 324 

include atmospheric or even soil moisture content, which are not ubiquitously available in remote areas to 325 

feed the data pipelines that produce global gridded climate products. We thus deemed the GSP:GST ratio to 326 

be a robust, reliable and well-established aridity metric for our study. It was used to compare aridity 327 

condition during the growing season among tree-ring sites. 328 

 329 

Analyses 330 

Correlations 331 

We calculated both simple and partial Pearson correlations to explore the effects of TSOS on tree growth 332 

for each site of tree-ring chronology. We eliminated the effects of GSL, GDD and SM when calculating 333 

partial correlation coefficients between TSOS and RWI. Tree-ring width chronologies are likely co-driven 334 

by local site factors such as microclimatic and soil conditions, forest composition and competition in 335 
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closed-canopy stands and a possible mismatch between the site location and the gridded climatic data (e.g. 336 

elevation). To reduce the impact of these site-specific factors and identify general spatial pattern in the 337 

correlation coefficients, we gridded the correlation coefficients by 2°×2° and displayed the percentage of 338 

tree-ring series with positive coefficients within each grid. 339 

 340 

Path analysis 341 

Path analysis is an extension of multiple regression analyses used to evaluate causal models by examining 342 

the linear relationships between independent and dependent variables75. Path analysis decomposes bivariate 343 

correlation coefficients into path coefficients, which represent the relative importance of prespecified 344 

hypotheses within the same path diagram. We used the existing information of how TSOS affects RWI (see 345 

the Introduction section) to test a path diagram containing four hypothetical associations (Supplementary 346 

Fig. 1). First, the advance in TSOS would extend GSL and thereby enhance tree radial growth (represented 347 

by RWI). Second, the advance in TSOS would extend GSL and increase GDD, causing a positive change in 348 

RWI. Third, the advance in TSOS would extend GSL, increase GDD and lead to a shortage of soil 349 

moisture, with negative effects on RWI. Fourth, the change in TSOS could affect SM by accelerating snow 350 

melt, by increasing the thawing of permafrost or by changing the proportion of precipitation during the 351 

growing season56, thereby promoting tree growth and increasing RWI. 352 

We used the “sem” package (version 3.1.9)76 in R to calculate the standardized path coefficients of the 353 

preset path diagram. Path effects were then calculated as the product of the standardized path coefficients 354 

along each pathway. We compared the bivariate correlation coefficients (i.e. TSOS and RWI) and the total 355 

path effects (i.e. the sum of the four path effects) of all 3451 RWI series to determine the fit of the preset 356 

path diagram to our data. The relationships between the bivariate correlation coefficients and the total path 357 

effects were consistent (Supplementary Fig. 3). 358 

We selected eight regions based on the spatial patterns identified by the correlation analyses and 359 

climatological consistency to examine the general characteristics of the path effects. The definition of 360 

northern Asia and Europe, central Europe, the Mediterranean region and the Tibetan Plateau referred to 361 

IPCC climate reference regions77, the west and east coast of the US and the Colorado Plateau referred the 362 
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hydrologic and geographic unit. For the eight regions, general climatic conditions were presented in 363 

Supplementary Fig. 4 and forest conditions were described in the supplementary text. Because we aimed to 364 

decompose correlations into different processes for the interpretation of underlying mechanisms, only RWI 365 

chronologies with at least marginally significant correlations (p < 0.1) were included in the regional path 366 

analyses56. Anomalies of climatic variables (i.e., TSOS, GSL, GDD and SM) were calculated for each RWI 367 

chronology in reference to its 30-year (1969-1998) mean climate condition. Then we used RWIs and their 368 

corresponding climatic anomalies within the same region to conduct the path analysis. All variables were 369 

standardized prior to path analyses. Many fitting measures can appraise a path diagram. We measured the 370 

adequacy of the fitness of the path diagram in each region using the following criteria: goodness-of-fit 371 

index (GFI) ≥ 0.95, comparative fit index (CFI) ≥ 0.90, root mean square error of approximation (RMSEA) 372 

≤ 0.10, nonnormed fit index (NNFI) ≥ 0.92 and standardized root mean square residual (SRMR) ≤ 0.08. 373 

The path diagram was considered reliable when three of these five criteria were met78. 374 

 375 

Results validation 376 

In order to confirm the robustness of our results, we tested different thresholds of TSOS, as well as of GDD 377 

at 4, 4.5, 5.5 and 6 °C, and conducted the full analysis for each of them. The results showed similar pattern 378 

and are presented in the Supplementary Table 3. 379 

 380 

Data availability 381 

The reformatted data set of the International Tree-Ring Data Bank were obtained from 382 

https://doi.org/10.5061/dryad.kh0qh06. Tree-ring width data from the ITPCAS tree-ring group are available 383 

from https://doi.org/10.11888/Terre.tpdc.271925. The Global Meteorological Forcing Dataset of the 384 

Terrestrial Hydrology Research Group at Princeton University were obtained from 385 

http://hydrology.princeton.edu/data.pgf.php. The NASA Global Land Data Assimilation System Version 2 386 

were obtained from 387 

https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary?keywords=GLDAS2.0. 388 

 389 

https://doi.org/10.5061/dryad.kh0qh06
https://doi.org/10.11888/Terre.tpdc.271925
http://hydrology.princeton.edu/data.pgf.php
https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary?keywords=GLDAS2.0
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 390 

Code availability 391 

Statistical analysis in this study were performed with publicly available packages in R (version 3.6.2, dplR 392 

and sem packages) and Python (version 3.8, scipy package), and the figures were produced using Python 393 

(matplotlib, cartopy and seaborn packages). The custom code for the analysis of the data are available from 394 

https://doi.org/10.11888/Terre.tpdc.271925.  395 

https://doi.org/10.11888/Terre.tpdc.271925
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 415 

Fig. 1 | Responses of tree growth to changes in the onset of the thermal growing season (TSOS) across 416 

the extratropical Northern Hemisphere. Spatial patterns of the percentage of tree-ring series (represented 417 

by RWI) with a positive simple correlation coefficient (A), partial correlation coefficient (B), significant (p 418 

< 0.1) simple correlation coefficient (C) and significant partial correlation coefficient (D) between RWI 419 

and TSOS within 2°×2° grids. The number of tree-ring width chronologies considered in each grid are 420 

presented in Supplementary Fig. 5. The histograms in panels (A) to (D) present the frequency distributions 421 
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of the percentages. Climatic characteristics of tree-ring sites with a significant simple correlation 422 

coefficient (E) and partial correlation coefficient (F) in the space of GST and GSP. The histograms located 423 

at the top and right of panels (E) and (F) present the distributions of the tree-ring sites along the GST and 424 

GSP gradients. The blue and red kernel density plots and histograms represent tree-ring chronologies with 425 

negative and positive correlation coefficients, respectively. The lines in panels (E) and (F) are derived from  426 

linear regression, the shown regression equations are all significant (p < 0.001) estimated using the F-test.  427 

  428 
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 429 

Fig. 2 | Path diagrams and path effects for northern Asia, northern and central Europe, the 430 

Mediterranean region, the west and east coasts of the US, the Colorado Plateau, and the Tibetan 431 

Plateau. In the geographic map, dots represent the location of tree-ring chronologies with significant (p < 432 

0.1) positive (red dots) and negative (blue dots) simple correlation with TSOS; boxes delineate the eight 433 

regions. The numbers in the path diagrams represent the mean and standard error of standardized path 434 

coefficients in the regions, asterisks indicate the significance of the path coefficients (p < 0.05) and the 435 

colors (negative and positive effects are presented as blue and red arrows, respectively) and widths of the 436 
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arrows represent the signs and magnitudes of the path coefficients, respectively. A, B, C and D in the 437 

panels on the right represent the effect of four major paths, TE represents the total effect. The number of 438 

tree-ring width chronologies for each region is presented in Supplementary Fig. 6.  439 
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 440 

Extended Data Fig. 1|Responses of tree growth to changes in TSOS in the extratropical Northern 441 

Hemisphere. Spatial distributions of simple correlation coefficients (A), partial correlation coefficients 442 

(B), significant (p < 0.1) simple correlation coefficients (C) and significant (p < 0.1) partial correlation 443 

coefficients (D) of TSOS and RWI. (E) Areas with significant (p < 0.1, dark blue) and nonsignificant (light 444 

blue) trends toward earlier TSOS between 1948 and 2016 in the extratropical Northern Hemisphere. (F) 445 

Areas with significant (p < 0.05, blue shaded area) trends toward earlier TSOS overlapping tree-ring 446 

chronologies with significant (p < 0.1) simple correlation coefficients of TSOS and RWI. The significance 447 

of the correlation analyses is estimated by two-tailed Student’s t-test. This figure was generated using the 448 

matplotlib and cartopy package in Python. 449 

  450 
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Extended Data Fig. 2 | Scatter plots of TSOS-RWI relationships in different regions. TSOS-RWI 452 

relationships of tree-ring chronologies with significant (p < 0.1) simple correlations for northern Asia (A), 453 

northern Europe (B), central Europe (C), the Mediterranean region (D), the west coast of the US (E), the 454 

east coast of the US (F), the Colorado Plateau (G) and the Tibetan Plateau (H). The predicted mean (solid 455 

lines) is bounded by the 95% confidence intervals (shaded areas). This figure was generated using the 456 

seaborn package, “lmplot” function in Python. 457 

  458 
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