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ABSTRACT 51 

 52 

Species distribution models (SDM) have been proposed as valuable first screening tools 53 
for predicting species responses to new environmental conditions. SDMs are usually 54 
conducted at the species level, assuming that species-environment relationships are a 55 
species-specific feature that do not evolve and show no variability across a species’ 56 
range. However, broad environmental tolerances at the species level can encompass 57 

narrower and different environmental tolerances for specific lineages or populations. In 58 
this study, we evaluate whether SDMs that account for within-taxon niche variation in 59 
climate and human-habitat associations provide better fits between projected 60 
distributions and real occurrence data for alien bird species than species-level SDMs. 61 
Our study focuses on eight alien bird species with established alien populations for 62 

which detailed phylogeographic information was available. Similarity in climates and 63 
human disturbance conditions occupied by different phylogenetic groups within species 64 

was low and not greater than random expectations. Accounting for intraspecific niche 65 

variation in SDMs modified the distribution and extent of suitable habitat predicted as 66 
susceptible to invasion, but did not result in more accurate model predictions in alien 67 
ranges. Until more accurate information on intraspecific variability is available, species-68 
level models can be reasonable candidates. When phylogeographic information is 69 

available, the use of the most conservative criterion (i.e. to model both species and 70 
lineages on the basis of the actual range) is recommended. 71 

 72 
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INTRODUCTION 101 

 102 

Human activities are accelerating the rate and magnitude of changes in species 103 
geographic ranges worldwide. Climate change, land-use transformations, habitat 104 
fragmentation or environmental pollution, among others, threaten the persistence of 105 
several species in formerly suitable locations, leading to species range contractions or 106 
extinctions, or pushing species to track new suitable environmental conditions beyond 107 

former range limits (Pimm et al. 1995; Vitousek 1997; Parmesan et al. 1999). The 108 
increase and development of trade and transport infrastructures, in turn, have 109 
accelerated the dispersal, and subsequent establishment, of alien species in places far 110 
away from their native range (Blackburn et al. 2009; Hulme 2009). Such changes have 111 
notably altered the distribution of species worldwide, homogenizing species 112 

assemblages (McKinney and Lockwood 1999; Capinha et al. 2015; Sayol et al. 2021), 113 
with detrimental effects on biodiversity and ecosystems. 114 

Although biotic interactions and dispersal are important in constraining species 115 

ranges, environmental factors can exert a primary role (Gaston 2003; Huntley et al. 116 
2007). Species distribution models (SDMs; models that statistically relate observed 117 
species occurrences to environmental variables) have thus been proposed as valuable 118 
first screening tools for predicting species responses to new environmental conditions in 119 

new geographic areas (e.g. invasion risk assessments) or under future environmental 120 
scenarios (e.g. global climate-change) based on current species occurrence-environment 121 

relationships (Guisan and Thuiller 2005; Araújo and Peterson 2012). SDMs rely on 122 
ecological niche theory, which predicts that for relatively recent events such as 123 
biological invasions, the environmental niche is expected to be conserved (Peterson 124 

2011). SDMs often focus on macroclimatic variables. Additionally, accounting for 125 
environmental factors other than climate, such as habitat characteristics and human 126 

disturbance, can substantially improve model predictions (Strubbe et al. 2015; Cardador 127 
and Blackburn 2020). 128 

SDMs are usually conducted at the species level, assuming that species-129 
environment relationships are a species-specific feature that does not evolve and shows 130 

no variability across a species’ range. However, widely distributed species often 131 
encompass different taxonomic or evolutionary units, which can reflect the existence of 132 

ecotypes and locally adapted populations (Smith et al. 2019). Spatial heterogeneity in 133 
environments coupled with reduced gene flow can encourage local adaptation and 134 
functional differences, leading to divergence in niches among closely related lineages.  135 
In fact, recent work has suggested that broad environmental tolerances at the species 136 
level usually encompass narrower and different environmental tolerances for specific 137 

lineages or populations within the species (Peterson and Holt 2003; Pearman et al. 138 
2010). Hence, modelling a species as a single undifferentiated entity may obscure the 139 

possibility that these lineages occupy distinct niches and, as a consequence, miss the 140 
idiosyncratic response of intraspecific lineages to changing environmental conditions 141 
(Pearman et al. 2010; Lecocq et al. 2019). Accounting for intraspecific niche variation 142 
in SDMs has thus been highlighted as important for forecasting species range shifts 143 
under changing environmental conditions, particularly under global climate change 144 

(Pearman et al. 2010; Peterson et al. 2019). In particular, phylogeographic structures 145 
have been proposed as a useful proxy to incorporate intraspecific differentiation in 146 
SDMs. However, the efficiency of using these proxies in SDMs remains largely 147 
unknown, in part because spatiotemporally independent data to test the accuracy of 148 
model predictions are often unavailable (Peterson et al. 2019). 149 
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Biological invasions represent unique, large‐scale biogeographical experiments 150 

for evaluating model transferability (Liu et al. 2020). Large numbers of alien species 151 

have been introduced well outside their native ranges, resulting in geographically 152 
independent datasets. However, the relevance of including intraspecific niche variation 153 
in invasion risk assessments has not often been addressed (but see exceptions, Strubbe 154 
et al. 2015; Godefroid et al. 2016). Many alien species currently arrive at new areas 155 
because they are imported as trade commodities (Hulme et al. 2008; Abellán et al. 2016; 156 

Cardador et al. 2017, 2019). If individuals coming from different geographic origins 157 
belong to different lineages that have particular ecological niches (in terms of climate or 158 
human tolerances), their invasion success is also likely to differ across different 159 
recipient environments. The omission of intraspecific niche structure from niche 160 
modelling exercises may lead to some lineages having little representation in the 161 

resulting species models (Pearman et al. 2010; D’Amen et al. 2013). This can lead to 162 

underestimation of the climate tolerances of alien species and, as a consequence, their 163 

potential for establishment and spread in new environments.  164 
Here, we assess the key assumption of distribution modelling theory – that the 165 

environmental niche remains conserved across species native ranges – as applied to the 166 
bird invasion process. For this, we focused on eight alien bird species with established 167 

alien populations, selected because of the availability of robust phylogeographic 168 
information, and for which different phylogenetic lineages (i.e., phylogroups) have been 169 

identified in previous studies. We explored niche variation in the climatic and human 170 
disturbance spaces occupied by the different lineages in the native range in order to 171 
assess whether the different phylogeographic lineages or genetic units occupy different 172 

niches. It should be noted that the niches considered here relate to the realized niche 173 
(occupied niche) and the Grinnellian niche concept: that is, the response of species to a 174 

set of non-consumable environmental variables that influence their large-scale 175 

geographical distribution (Soberón 2007). As evidence of niche conservatism was not 176 

found, we assessed how accounting for intraspecific niche variation in SDMs influences 177 
predictions about potential distributions in adventive regions for the whole species. 178 

Accounting for intraspecific variation is expected to improve the representation of 179 
different phylogroups in models (particularly the scarcest and narrowly distributed in 180 
the native range), and thus to produce better fits between projected distributions and real 181 

occurrence data for alien bird species than species-level models not considering within-182 
taxon niche structure. 183 

 184 

 185 

METHODS 186 

 187 

Phylogenetic and occurrence data 188 

 189 
Our study focuses on 8 alien bird species that have established alien populations in 190 
different regions of the world and for which detailed phylogeographic information 191 
derived from analyses of mitochondrial and/or nuclear DNA sequences was available 192 

from the literature (Table 1). We only considered studies reporting a clear definition of 193 
intra-specific phylogenetic divisions and covering substantial parts of species’ native 194 
ranges. Thiessen polygons were applied to locations with available phylogenetic data to 195 
delimit geographic boundaries of different phylogroups (Figs. 1a and S1 in Supp. Info.) 196 
(Strubbe et al. 2015). Thiessen polygons define an area of influence around each 197 
sampled point (points with genetic data in our study), where every location of the study 198 
area (species ranges in our case) is nearer to this point than to all the others. Thiessen 199 



5 
 

polygons derived from sampled points where a given phylogroup was identified were 200 

merged together to obtain the phylogroup geographic boundaries. We used ArcGIS 10.5 201 

for those analyses. Note that for most species, different phylogroups were allopatric 202 
(Fig. S1), although cases of partial overlap in geographic ranges also occur. For each 203 
species, occurrence data for niche and modelling analyses were compiled from the 204 
Global Biodiversity Information Facility (GBIF, GBIF.org, 2017,Table S1). GBIF 205 
records spanned the years 1744 to 2017 (Table S2). Compiled records were classified as 206 

pertaining to the native breeding range or alien established range according to range 207 
maps provided by the BirdLife International & NatureServe (2014) and the Global 208 
Avian Invasions Atlas (Dyer et al. 2017), respectively. Note that in the case of 209 
Copsychus saularis, BirdLife International & NatureServe (2014) provided separate 210 
maps for Copsychus saularis and Copsychus mindanensis. Based on the phylogenetic 211 

data available, we considered these two taxa as the same species and considered their 212 
range maps jointly (Sheldon et al. 2009). Species occurrences in the native range were 213 

then assigned to different phylogroups according to geographic boundaries defined by 214 

Thiessen Polygons (Figs. 1a and S1 in Supp. Info.). Occurrence data were aggregated at 215 
5-arcminute resolution, which corresponds approximately to 10 × 10 km. This 216 
resolution was considered to be representative of the size of the smallest cities, and thus 217 
adequate to capture the main responses of bird species to humanized environments with 218 

acceptable computing time. Samples with reported geographical issues, location 219 
uncertainty above 5 km, or with central grid coordinates of atlases of >10 km resolution, 220 

were removed from analyses. Duplicate samples at the 5-arcminute resolution were 221 
handled as single observations. Final sample sizes ranged from 3,156 to 32,052 for 222 
different species in the native range, and from 2 to 2,368 in the alien range (Table 1).  223 

 224 

Environmental variables 225 

 226 

We considered eight bioclimatic variables (obtained from WorldClim 1, 227 
http://www.worldclim.org/) (Hijmans et al. 2005), which are known to affect bird 228 

distributions (Strubbe et al. 2015; Cardador et al. 2016): annual mean temperature, 229 
temperature seasonality (standard deviation ×100), maximum temperature of the 230 
warmest month, minimum temperature of the coldest month, annual precipitation, 231 
precipitation of the driest month, precipitation of the wettest month and precipitation 232 

seasonality (coefficient of variation). However, annual mean temperature, temperature 233 
seasonality and annual precipitation were highly correlated with other climate variables 234 
across the world (r ≥0.90) and thus removed from analyses (Cardador and Blackburn 235 
2019). We considered two variables as descriptors of human transformed environments: 236 
i) the Global Human Influence Index, which provides a weighed composite map of 237 

anthropogenic impacts including urban extent, population density, land cover, night 238 

lights and distance to roads, railways, navigable rivers and coastlines (Sanderson et al. 239 

2002), and ii) the percentage of urban habitats, as a more specific descriptor of 240 
urbanization. The percentage of urban habitats at the 5-arcminute resolution was derived 241 
from MODIS-based global land cover climatology data at 500m resolution (Broxton et 242 
al. 2014).  243 
 244 

Niche analyses 245 
 246 
We compared the climatic and human disturbance niches of different phylogroups of a 247 
given species in its native range using the framework proposed by Broennimann et al. 248 
(2012). These analyses involved four steps: (1) definition of a two-dimensional gridded 249 

http://www.worldclim.org/
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environmental space, (2) calculation of the density of occurrences along the two-250 

dimensional environmental space using kernel smoothers (3) measurement of niche 251 

overlap between occurrence densities of two given groups along the environmental 252 
space and (4) statistical tests of niche similarity using a randomization approach. For 253 
climatic niche analyses the gridded environmental space was that formed by the first 254 
two axes of a PCA on the five climatic variables considered (see above) in 5-arcminute 255 
pixels across the world. These axes explained 78% of the inertia. The first PCA axis 256 

(45%) predominantly represented temperature gradients (with higher values 257 
representing warmer climates) while the second axis (33%) represented precipitation 258 
gradients (with higher values representing drier climates with higher precipitation 259 
seasonality, Table S3). For the human space, the two axes represented the two human-260 
related variables considered (i.e., the Global Human Influence Index and the percentage 261 

of urban environments - see above). Niche similarity was assessed using the Schoener's 262 
D metric, calculated from the occupancies in the environmental space depicted by the 263 

two first axes of the PCA. This metric indicates the overall match between two niches 264 

over the whole climatic or human spaces and ranges from 0 (no overlap) to 1 (complete 265 
overlap). We calculated niche similarity between each phylogroup of a species and all 266 
the other phylogroups using one-to-one comparisons.  267 

We assessed niche conservatism by conducting niche similarity tests, whereby 268 

each obtained value of niche similarity was compared against a null distribution of 100 269 
simulated similarity values (obtained when comparing the observed niche of one 270 

phylogroup with niches obtained by drawing occurrences at random within available 271 
habitats and vice versa) (Warren et al. 2008; Broennimann et al. 2012). Note that the 272 
niche similarity test is thus bidirectional, and two tests were conducted for each 273 

comparison between two phylogroups. As available habitat for each phylogroup in 274 
species’ native ranges for analyses, we considered two alternative approaches. First we 275 

considered all ecoregions (Olson et al. 2001) occupied by each species in its native 276 
range (Figs. 1b and S2), as this might represent the complete gradient of climatic and 277 

human conditions that the study species could have reasonably encountered considering 278 
that dispersal is expected to be mainly limited by major biogeographical barriers in 279 

native ranges (Soberon and Peterson 2005). Second, we accounted for potential spatial 280 
constraints limiting the access of different phylogroups to available habitat for the 281 

whole species. For this, we repeated the niche similarity tests considering as available 282 
habitat for each phylogroup that present within the geographic range actually occupied 283 
by that particular phylogroup: i.e., that limited by the geographic boundaries derived 284 
from Thiessen polygons (Fig.S1). The results of both analyses were highly consistent 285 
(Table S4), and for simplicity we thus only provide those for the former approach in the 286 

main manuscript. All analyses were conducted using the ‘ecospat’ library in R software 287 
(Broenniman et al. 2014). The minimum sample size for analyses was five occurrences 288 

(Broennimann et al. 2012). 289 
 290 
Species distribution models 291 
 292 
We fitted SDMs calibrated on occurrences of different phylogroups (single-phylogroup 293 

models) and for the species as a whole (species-level model) to generate global 294 
predictions of species potential distributions outside their native ranges. For robustness 295 
of analyses only phylogroups with more than 50 occurrence locations (exceptions: 1 296 
phylogroup for the northern cardinal Cardinalis cardinalis, 1 for the oriental magpie-297 
robin Copsychus saularis and 9 for the ring-necked parakeet Psittacula krameri) were 298 
retained for single-phylogroup models (Stockwell and Peterson 2002). Data from 299 
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phylogroups with fewer than 50 occurrence locations were also disregarded from 300 

species-level models, to avoid biases in model comparisons related to differences in the 301 

data used. Predictions were derived from an ensemble model of three techniques – 302 
generalized linear models, MAXENT and random forest – using R library ‘biomod2’. 303 
Both the linear and quadratic terms of the climate and human predictors were 304 
considered, to account for positive or negative responses to intermediate values of the 305 
variables. All models were run with a single set of a maximum of 10,000 pseudo-306 

absences randomly drawn from all ecoregions occupied by each species across its native 307 
range as with niche analyses (Figs. 1b and S2). Presences and pseudoabsences were 308 
weighted as such to ensure neutral (0.5) prevalence.  309 

To reduce the potential effect of sampling biases in the data, a bias file was 310 
created by retrieving from GBIF occurrence data at the family level for each species 311 

(Elith et al. 2010; Cardador and Blackburn 2019). We derived a kernel density map of 312 
sampling bias at a 5-arcminute resolution using ArcMap 10.5 to be included as a fixed 313 

effect in model training. Occurrence data from species in the same taxonomic family are 314 

expected to suffer from the same detection limitations, reducing the effect of sampling 315 
biases in observed distribution patterns. To further account for potential effects of the 316 
data selection, we conducted 10 replicates for each model by using random samples 317 
(70%) of the complete datasets. Final ensemble model predictions for each species and 318 

phylogroup were generated as averaged means of all model replicates conducted (Fig. 319 
1c-e). Sampling bias was set to its maximum value for model predictions. For each 320 

species, a composite model prediction integrating information on all single-phylogroup 321 
models was then developed (phylogroup-composite model) (Fig. 1f). For this, single-322 
phylogroup predictions were first standardized to a maximum value of 1 to make them 323 

comparable. We then calculated the mean probability of occurrence of at least one of 324 
the related phylogroups using the multiplicative probability method described in 325 

Pearman et al. (2010). We converted continuous model predictions into binary 326 
presence–absence maps by implementing a threshold for species presence that 327 

maximized sensitivity plus specificity (Liu et al. 2005) in the training region (Fig. 1g). 328 
In the case of composite models, binary maps were obtained by assigning species 329 

presence to each cell that was predicted suitable for at least one single-phylogroup 330 
model (Fig. 1h). To reduce problems related to model extrapolation, model projections 331 

were adjusted using multivariate environmental similarity surfaces (MESSs) (Mateo et 332 
al. 2014) (Fig. S3). Environmental suitability in dissimilar areas (MESS <0) was 333 
considered to be zero. However, analyses using non-adjusted model projections were 334 
highly concordant (see results). 335 

Model accuracy of phylogroup-composite and species-level models in predicting 336 

species occurrences in the native range were evaluated using the Boyce index (which 337 
ranges from -1 to 1, with higher values indicating higher match (Hirzel et al. 2006)) and 338 

AUC (which ranges from 0 to 1, with values up to 0.5 representing models not better 339 
than random (Phillips et al. 2006)), using the libraries ‘pROC’ and ‘ecospat’ in R. 340 
Sensitivity (i.e., the proportion of correctly classified presences) was also computed  341 
using the binary maps derived from continuous predictions. Potential differences in 342 
accuracy metrics among species-level and phylogroup-composite models in native 343 

ranges were evaluated using non-parametric paired Wilcoxon signed rank tests. 344 
 345 

Geographic extent of SDM predictions 346 
 347 
We calculated the extent of predicted suitable habitat in km2 for each species at a global 348 
scale according to binary map projections of single-phylogroup, phylogroup-composite 349 



8 
 

and species-level models, using the library ‘raster’ from R. Accounting for intraspecific 350 

variation is expected to improve the representation of different phylogroups in models 351 

(particularly the most scarce and narrowly distributed in the native range), and thus to 352 
increase the geographical distribution of habitat conditions predicted as suitable for 353 
alien birds: environments occupied by rarer phylogroups are expected to be marginal, 354 
and thus result in low probabilities of occurrence in those environments when 355 
distribution is modelled at the species level. Differences in the extent of phylogroup-356 

composite and species-level model predictions in alien ranges were evaluated using 357 
one-tailed paired t-tests. We also tested the hypothesis that the niches occupied by the 358 
most narrowly distributed phylogroups in the native range are little represented in 359 
species-level models. For this, we assessed the relationship between the percentage of 360 
habitat predicted as suitable by single-phylogroup models also predicted as suitable by 361 

species-level models and phylogroup relative range size (i.e., the proportion of species 362 
native range covered by a given phylogroup). We used general linear models (GLM) for 363 

those analyses. 364 

 365 
Accuracy of SDM predictions 366 
 367 
SDM-based predictions were tested against real occurrence data in alien ranges using 368 

the Boyce index, AUC and sensitivity using the libraries ‘pROC’ and ‘ecospat’ in R as 369 
in native ranges. As background for AUC and Boyce calculations, we followed the 370 

framework proposed by (Strubbe et al. 2013, 2015) to estimate the area that could have 371 
been effectively accessible to introduced birds. We buffered each 5-arcminute alien 372 
locality with a distance equal to the minimum invasion speed recorded for birds (i.e. 373 

4.59 km year, derived from (Blackburn et al. 2009)) multiplied by the number of years 374 
since introduction (Fig. S4). For localities with duplicate records the oldest year was 375 

used in analyses. When the specific year of introduction was not provided (≤ 4% of total 376 
alien localities for each species), we were conservative and only considered that locality 377 

(not a buffer around it) for background calculations. Buffers were only allowed to cover 378 
areas effectively outside species native breeding ranges. Both occurrence localities in 379 

regions where the species has effectively established (see ‘Phylogenetic and occurrence 380 
data’ section) and known introduction localities (compiled from (Redding et al. 2019)) 381 

were used. Differences in the accuracy of phylogroup-composite and species-level 382 
model predictions in alien ranges were evaluated using one-tailed paired t-tests (AUC) 383 
and one-tailed paired Wilcoxon signed rank tests (Boyce and sensitivity) according to 384 
fit of normality and homoscedasticity assumptions. 385 

 386 

RESULTS 387 

 388 

Intraspecific climatic and human niche variation  389 
 390 

Phylogenetic groups within species occupied partially overlapping portions of the 391 
climate and human spaces available in the native range. However, climatic niche 392 
similarity among phylogroups of a species was low (mean ± SD, D = 0.07 ± 0.09, N = 393 
8) and not more similar than expected by chance for the vast majority of phylogroups 394 
within species (95% of 101 reciprocal similarity tests involving 32 phylogroups from 395 

eight species had P > 0.05, Table S4). Human niche similarity was higher than climatic 396 
niche similarity (D = 0.32 ± 0.13), but generally not more similar (97% of tests had P > 397 

0.05) than expected by chance for most comparisons. 398 
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 399 

Species distribution models in native ranges 400 

 401 
Species-level and phylogroup-composite model predictions showed a good agreement 402 
with species occurrences in the native ranges (mean ± SD, species-level: Boyce = 0.88 ± 403 
0.24, AUC = 0.86 ± 0.11, sensitivity = 0.78 ± 0.19; phylogroup-composite: Boyce = 404 
0.91 ± 0.12, AUC = 0.84 ± 0.09, sensitivity = 0.89 ± 0.10). No significant differences in 405 

model performance between species-level and phylogroup-composite models were 406 
observed (one-tailed paired Wilcoxon rank test: Boyce, V = 21.5, P = 0.71; AUC, V = 407 
28, P = 0.93; sensitivity, V = 6, P = 0.054). 408 
 409 
Geographic extent and accuracy of model projections in alien ranges 410 

 411 
Species-level and phylogroup-composite models provided similar but not equal 412 

predictions of habitat susceptible to invasion (Figs. 1e-h, S5 and S6). Notably, 413 

phylogroup-composite models projected significantly larger habitat suitability at a 414 
global scale than species-level models (Fig. 2a, t = -2.0, df = 7, P = 0.04). On average, 415 
only 30 ± 16% of total pixels predicted as suitable by binary maps derived from both 416 
species-level and phylogroup-composite models were coincident between both types of 417 

models, while 52 ± 30% of pixels were predicted as suitable only by phylogroup-418 
composite models and 18 ± 19% only by species-level models. The capacity of species-419 

level models to predict the occurrence of individual phylogroups was significantly 420 
related to phylogroup range size (estimate: 0.68 ± 0.13, P < 0.001, R2 = 0.55; Fig. 3). 421 

When used to predict occurrences in alien ranges, model accuracy was on average 422 

good according to different metrics considered (Figs. 2b-d), but high variability was 423 
observed among species (Figs. 2b-d; see also Fig S7 for comparisons of models not 424 

adjusted by MESS analyses). Accounting for intraspecific niche variation did not 425 
improve model accuracy (Boyce, V = 21, P = 0.69; AUC, t = -0.09, df = 7, P= 0.47; 426 

sensitivity, V = 9, P= 0.22). These result hold when omitting Platycercus elegans from 427 
analyses (Boyce, V = 14, P = 0.53; AUC, t = -0.29, df = 6, P= 0.39; sensitivity, V = 9, 428 

P= 0.22), for which sample size in the alien range was very low (Table 1). 429 

 430 

DISCUSSION 431 

 432 

There is a limited number of studies considering intraspecific niche variation in models 433 

assessing environmental susceptibility to the colonization by alien birds, and they have 434 
rarely compared modelled predictions against independent sets of occurrence data 435 
(Peterson et al., 2019). Our results agree with recent evidence suggesting that 436 

conspecific phylogenetic lineages of a species can differ in the climates and human 437 

disturbance conditions they experience in native ranges (Peterson and Holt 2003; 438 

Pearman et al. 2010; D’Amen et al. 2013): we find little climatic niche similarity among 439 
phylogroups of the 8 species in our study. Accounting for intraspecific variation in 440 

SDMs modified the distribution and the extent of potential suitable habitat for the whole 441 
species. However, contrary to our expectations, accounting for intraspecific niche 442 
variation did not result in more accurate model predictions, according to current 443 

distributions of established alien species.  444 
The increased extent of phylogroup-composite model predictions, when compared 445 

to classical species-level models, suggests that the omission of intraspecific niche 446 
structure from species distribution models underestimates intraspecific realized niche 447 
variation, and thus species-level prediction of habitat susceptible to invasion (Peterson 448 
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and Holt 2003; D’Amen et al. 2013; Godefroid et al. 2016). The extents of geographic 449 

areas occupied by different phylogroups of a species in our study were not equivalent 450 

(Fig. S1), and this may lead to some phylogroups (particularly the most scarce and 451 
narrowly distributed in the native range) having little representation in model 452 
predictions obtained by classical species level models (Fig. 3). 453 

However, contrary to our expectations, accounting for intraspecific niche variation 454 
did not improve model accuracy when predicting occurrences in alien ranges. These 455 

results could be related to different, not mutually exclusive processes. First, it should be 456 
noted that phylogroup separation – in this study and in general – relies on neutral 457 
molecular markers. Strong structuring in these markers across populations indicates 458 
reduced dispersal and thus increased potential for local genetic adaptation to emerge 459 
(Lenormand 2002). Yet, we do not know whether genetic structuring in neutral markers 460 

really reflects local genetic adaptation to climatic and human environmental conditions 461 
experienced (Holderegger et al. 2006), and thus in these species tolerances, or just 462 

reflects differences in the realized (i.e., occupied) niche of different phylogroups 463 

(Guisan et al. 2014; Peterson et al. 2019). In this sense, since most phylogroups within 464 
species considered have allopatric distributions, observed realized niche divergence may 465 
have been driven by different environmental conditions in the range of each 466 
phylogroup, rather than by adaptation to different conditions within a shared spatial 467 

distribution (Maia-Carvalho et al. 2018). If so, dividing a species’ range into several 468 
groups might have yielded different climate–occupancy relationships for each group 469 

even in the absence of local adaptation. In our study, this could explain the larger 470 
species range predictions of models considering phylogroup information, but the quite 471 
similar prediction performances. For some species it is also possible that local 472 

adaptation occurs at higher or lower taxonomic levels (Peterson et al. 2019; Smith et al. 473 
2019) or geographic scales (Cardador et al. 2016). 474 

Second, lineages little represented in classical species-level models are also those 475 
less likely to be introduced and subsequently established in new areas, given the 476 

positive effects of abundance and geographic range size on introduction and 477 
establishment success in alien species (Blackburn and Duncan 2001b, a). If this is the 478 

case, accounting for intraspecific niche variation would result in small differences in 479 
model prediction for the most commonly translocated taxa. At the same time, 480 

accounting for intraspecific niche variation might overestimate the potential alien range 481 
size, as the environmental tolerances of alien individuals would actually be narrower 482 
than that of the species as a whole. Under this hypothesis (i.e., the more common 483 
phylogroups in native areas are more often introduced and established in alien ranges), 484 
higher model accuracy for the more common phylogroups should be expected. 485 

However, post-hoc analyses assessing the relationship between accuracy of single-486 
phylogroup model predictions and phylogroup relative range size (i.e., the proportion of 487 

species native range covered by a given phylogroup) offer little support for this 488 
hypothesis (Pearson correlation coefficients between accuracy metrics and phylogroup 489 
range size, AUC: r = -0.20, P =0.33; Boyce: r = -0.01, P = 0.97, N = 25). 490 

Third, as most bird introductions are relatively recent, species might not occupy 491 
all of the potential suitable environments available in the invaded range, due to dispersal 492 

limitations (Blackburn et al. 2009; Ascensão et al. 2020). For some species, current 493 
alien distributions may thus reflect the characteristics of the new introduction localities 494 
rather than optimum environmental conditions, which might be more likely to be moved 495 
into during spread (Abellán et al. 2017). Furthermore, while climate and human 496 
variables appeared to be major factors shaping alien species distributions (Cardador and 497 
Blackburn 2019), omission of other important drivers of bird distributions, such as 498 
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interspecific interactions (Blackburn et al. 2009; Redding et al. 2019), might also 499 

produce an overestimate of the projected suitable area for species. Some species might 500 

even undergo niche shifts in alien ranges, although this seems to be less frequent 501 
(Broennimann et al. 2007; Strubbe et al. 2013; Cardador and Blackburn 2020). All of 502 
these issues may have contributed to reduce model accuracy for both species-level and 503 
phylogroup-composite model predictions in alien ranges, masking potential differences.  504 

Overall, our results show variability in model predictions linked to taxonomic 505 

level considered. However, comparisons of model predictions with current available 506 
distribution data in alien ranges do not provide evidence of an improvement in 507 
prediction accuracy for models accounting for intraspecific niche variation. This result 508 
is relevant given the lack of information about the presence and geographical 509 
distribution of phylogeographic lineages for many species: according to our results, 510 

until more accurate information on intraspecific variability is available, species-level 511 
models can be reasonable candidates. However, when phylogeographic information is 512 

available, the use of the most conservative criterion (i.e. to model both species and 513 

lineages on the basis of the actual range, e.g. Mori et al. 2019) is recommended, given 514 
that the ultimate purpose of such modelling exercises is to reduce invasion risks and 515 
their consequences on biodiversity conservation. 516 

 517 
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Table 1. Bird species selected on the basis of the existing literature on phylogeographic structure. Species name, number of phylogroups per 

species, source for phylogenetic data and the number of occurrences available in the native and alien ranges according to GBIF (www.gbif.org) 

are provided. For native occurrences, the minimum and maximum occurrences available for different phylogroups are shown in parentheses.  

Species Phylogroups References Native occurrences Alien occurrences 

Alauda arvensis 2 Zink et al. 2008  19789 (232- 19557) 2378 

Cardinalis cardinalis 6 Smith et al. 2011  41372 (9- 40079) 200 

Copsychus saularis 3 Sheldon et al. 2009  3893 (20 - 3726) 36 

Corvus frugilegus 2 Haring et al. 2007  7445 (52- 7393) 53 

Perdix perdix 2 Liukkonen-Anttila et al. 2002  6444 (1804 - 6291) 2316 

Pica pica 2 Haring et al. 2007  32052 (782 - 31270) 115 

Platycercus elegans 2 Joseph et al. 2008  5046 (79- 4967) 2 

Psittacula krameri 17 Strubbe et al. 2015  3156 (1-1834) 701 
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Figure Legends 751 

 752 

Figure 1. Phylogroup distribution, native occurrences and model predictions for the 753 
Eurasian skylark Alauda arvensis. (a) Distribution of two different phylogroups (red 754 
and orange) as derived from Thiessen polygons and locations with genetic data (points); 755 
(b) native occurrence data (black dots) and background (i.e., all ecoregions occupied by 756 
each species in its native range, grey) used for species distribution modelling; (c-d) 757 

continuous predictions of single phylogroup models, polygons show the distribution of 758 
the phylogroup used in models; (e) species-level model continuous predictions; (f) 759 
phylogroup-composite model continuous predictions; (g) species-level model binary 760 
predictions; (h) phylogroup-composite model binary predictions. In (g) and (h), green 761 
represents habitat predicted as suitable and grey as non-suitable. 762 

 763 
Figure 2. Comparisons of (a) extent of suitable habitat and (b – d) model accuracy in 764 

alien ranges between species distribution models accounting or not for phylogroup 765 

niche variation. Extent of suitable habitat (a) is derived from binary maps using the 766 
maximum sensitivity plus specificity threshold. Model accuracy in alien ranges is 767 
assessed by the AUC (b), TSS (c) and sensitivity (d). N = 8. 768 
 769 

Figure 3. Similarity between single-phylogroup and species-level model predictions in 770 
relation to phylogroup relative range size. Similarity refers to the percentage of pixels 771 

predicted as suitable by a single-phylogroup model also predicted as suitable by 772 
species-level models at a global scale. 773 
 774 

 775 
 776 

 777 
 778 

 779 
 780 

 781 
 782 

 783 
 784 
 785 
 786 
 787 

 788 
 789 

 790 
 791 
 792 
 793 
 794 

 795 
 796 
 797 
 798 
 799 
 800 



18 
 

Figure 1. 801 

 802 

 803 
 804 
 805 

 806 
 807 

 808 
 809 
 810 
 811 

 812 
 813 
 814 
 815 

 816 
 817 
 818 

 819 
 820 
 821 
 822 
 823 

 824 
 825 
 826 



19 
 

Figure 2. 827 

 828 

 829 
 830 
 831 

 832 
 833 

 834 
 835 

 836 
 837 
 838 

 839 
 840 
 841 
 842 

 843 
 844 
 845 
 846 
 847 
 848 
 849 



20 
 

Figure 3. 850 

 851 

 852 
 853 


