AAAS

Journal of Remote Sensing

Volume 2022, Article ID 9764982, 10 pages
https://doi.org/10.34133/2022/9764982

Research Article

Journal of Remote Sensing
A SCIENCE PARTNER JOURNAL

A Broadband Green-Red Vegetation Index for Monitoring Gross

Primary Production Phenology

Gaofei Yin(,"">* Aleixandre Verger ,>3* Adria Descals,”” Iolanda Filella,>”

and Josep Peiiuelas 2.3

"Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China

2CREAF, Cerdanyola del Vallés, 08193 Catalonia, Spain

3CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193 Catalonia, Spain
*Desertification Research Centre CIDE-CSIC, Valéncia 46113, Spain

Correspondence should be addressed to Gaofei Yin; coffing@163.com

Received 23 June 2021; Accepted 16 February 2022; Published 19 March 2022

Copyright © 2022 Gaofei Yin et al. Exclusive Licensee Aerospace Information Research Institute, Chinese Academy of Sciences.
Distributed under a Creative Commons Attribution License (CC BY 4.0).

The chlorophyll/carotenoid index (CCI) is increasingly used for remotely tracking the phenology of photosynthesis. However,
CCI is restricted to few satellites incorporating the 531 nm band. This study reveals that the Moderate Resolution Imaging
Spectroradiometer (MODIS) broadband green reflectance (band 4) is significantly correlated with this xanthophyll-sensitive
narrowband (band 11) (R*=0.98,p < 0.001), and consequently, the broadband green-red vegetation index GRVI—computed
with MODIS band 1 and band 4—is significantly correlated with CCI—computed with MODIS band 1 and band 11
(R*=0.97,p <0.001). GRVI and CCI performed similarly in extracting phenological metrics of the dates of the start and end
of the season (EOS) when evaluated with gross primary production (GPP) measurements from eddy covariance towers. For
EOS extraction of evergreen needleleaf forest, GRVI even overperformed solar-induced chlorophyll fluorescence which is seen
as a direct proxy of plant photosynthesis. This study opens the door for GPP and photosynthetic phenology monitoring from a

wide set of sensors with broadbands in the green and red spectral regions.

1. Introduction

Terrestrial gross primary production (GPP), the total
amount of carbon dioxide (CO,) assimilated by plants by
photosynthesis, is the most variable and uncertain flux in
the global carbon cycle [1]. Accurate characterization of
the spatiotemporal dynamics of GPP is crucial for improving
our understanding of the responses and feedbacks of vegeta-
tion to climate change.

Remote sensing provides a feasible way to track GPP
dynamics at a large scale, but it is still not straightforward
to achieve spatiotemporally continuous monitoring with
high reliability [1]. The recently emerging satellite-recorded
solar-induced chlorophyll fluorescence (SIF) opened a new
avenue to directly track GPP, considering its mechanistical
link with plant photosynthesis [2]. However, the temporal
frequency and spatial resolution of current SIF satellite
products are still very limited [3, 4]. Therefore, primary pro-
ductivity models based on simple light-use efficiency (LUE)

considerations still prevail in GPP community. Primary pro-
ductivity models represent GPP as the product of absorbed
photosynthetically active radiation (APAR) and LUE [5].
This LUE paradigm provides a robust and simple framework
for calculating GPP from satellite observations [6]. APAR is
closely related with the normalized difference vegetation
index (NDVI), a measure of vegetation green biomass [7].
The key to estimating GPP using an LUE model is the deter-
mination of LUE. LUE is commonly parameterized by iden-
tifying the maximum LUE for each biome and then
downregulating based on stress conditions, expressed using
climatic variables, e.g., vapor-pressure deficit, temperature,
and soil-moisture concentration [8, 9]. This parameteriza-
tion involves meteorological data and preassigned maximum
LUE, which are both uncertainty-prone. Therefore, LUE
parameterization is one of the main sources of uncertainty
in estimates of GPP [6, 10, 11].

The photochemical reflectance index (PRI) provides a
promising way to determine LUE directly from satellite
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measurements [12]. The underlying mechanisms of PRI
for representing LUE vary with the timescale: PRI repre-
sents both the diurnal activity of the xanthophyll cycle
and seasonal changes in chlorophyll/carotenoid pigment
ratios [13].

PRI was originally calculated as the normalized differ-
ence between reflectances at 531 and 570 nm, serving as
xanthophyll-sensitive and reference bands, respectively
[14-16]. There are very few satellite-based sensors equipped
with these two spectral bands simultaneously. For example,
MODIS, the mostly used sensor for calculating satellite-
PRI, only has the xanthophyll-sensitive band (band 11,
526-536nm). Many alternative bands were therefore
adopted as the reference band, e.g., bands 1 (620-670 nm),
4 (545-565nm), 10 (483-493 nm), 12 (546-556 nm), and 13
(662-672nm) [11, 17-19], resulting in different “MODIS
PRI” indices. Recent studies have demonstrated that the
“MODIS PRI” calculated using bands 1 and 11 is closely
linked to the seasonal changes in chlorophyll/carotenoid
pigments and was therefore renamed as the chlorophyll/
carotenoid index (CCI) [7, 20]. CCI has been widely used
to track GPP dynamics [20-24]. Especially, CCI was found
suitable to timely capture the photosynthesis downregula-
tion around the end of growing season, improving the accu-
racy of traditional broadband red and near-infrared
vegetation indices such as NDVT for photosynthetic phenol-
ogy estimation [25, 26].

Although CCI provides a reliable tool to monitor GPP
dynamics, it can be calculated from a very few sensors (e.
g., MODIS), because most of the current running optical sat-
ellites lack the xanthophyll-sensitive narrowband. In addi-
tion, chlorophyll/carotenoid ratio retrieval is very
challenging because of the high atmospheric contamina-
tion [27]. Many studies revealed atmospheric correction
would not improve and even reduce the performance of
CCI [17, 18, 28, 29]. We hypothesized that the
xanthophyll-sensitive narrowband MODIS band 11 (rang-
ing from 526 to 536 nm) and the broadband in the green
and MODIS band 4 (ranging from 545 to 565nm) are
highly correlated. If this hypothesis holds, the applicability
of CCI would substantially improve, considering the ready
availability of broadband green reflectances from existing
multispectral sensors.

In fact, the normalized difference between broadband
green and red reflectances has long been proposed [30]
and was later named as green-red vegetation index
(GRVI) [31]. However, its potential in capturing GPP
dynamics may be underevaluated. GRVI has been
reported to outperform the commonly used NDVI and
enhanced vegetation index (EVI) in tracking plant photo-
synthesis [32, 33].

This study is aimed at evaluating the validity of GRVI, as
an alternative to CCI, for monitoring gross primary produc-
tion and vegetation phenology. Specific scientific questions
include the following: (1) whether the MODIS-derived
GRVI and CCI highly correlate with each other and (2)
how well does GRVI track the dynamics of GPP, especially
for the end of season when a temporal lag between NDVI
and GPP often occurs.
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2. Materials and Methods

2.1. Vegetation Indices. CCI can be calculated from MODIS
reflectance data as

By, - B,
B, + B,

CCI = : (1)

where B, and By, are the surface reflectances in MODIS band
1 (620-670 nm) and band 11 (526-536 nm), respectively.

The underlying spectroscopic mechanism of CCI is the
foliar spectra in the green-red region, which is mainly con-
trolled by pigmentation (Figure 1). The reflectance for sum-
mer acclimated leaves is much higher at the green than the
red band. Winter acclimated leaves, which often have a
lower chlorophyll/carotenoid pigment ratio [34], are charac-
terized by higher reflectance except around 531 nm (MODIS
band 11), leading to lower CCI values (Equation (1)). CCI is
therefore a reliable indicator of the temporal variation of the
chlorophyll/carotenoid pigment ratio, which indicates
photosynthetic downregulation during autumn and winter
(7, 20, 21, 24, 26].

GRVI was established based on the contrasting reflec-
tances at green and red bands. GRVI can be calculated from
MODIS band 1 (B1) and band 4 (545-565nm) (B4), as

B4_Bl

GRVI= .
B, + B,

(2)

Although the GRVI and CCI are mechanistically differ-
ent, they may be similar at satellite scale because the reflec-
tance change caused by varied chlorophyll/carotenoid
pigment ratio is quite subtle, compared with other con-
founding factors, e.g., atmospheric disturbance [27]. There-
fore, we inferred that bands 4 and 11 may exhibit high
consistence, considering their close spectral distance.

For comparison, the commonly used NDVTI and the EVI,
as well as the solar-induced chlorophyll fluorescence (SIF),
were also employed in this study. NDVI and EVI were calcu-
lated from the MODIS reflectance data in bands B1 (620-
670 nm), B2 (841-8756nm), and B3 (459-479 nm), as

B, - B,
NDVI = ,
B, + B, (3)
BZ - Bl
EVI=2.5

B, +6B,—7.5B;+1°

SIF was extracted from GOSIF dataset with a resolution
of 0.05° and 8 days. GOSIF used a machine learning method
to predict Orbiting Carbon Observatory-2 observations with
MODIS EVI and meteorological data (specifically, photo-
synthetically active radiation, vapor pressure deficit, and air
temperature) as explanatory variables [35].

2.2. Data. In situ GPP time series from the FLUXNET-2015
dataset [36] were used as a benchmark to assess the perfor-
mance of GRVI in tracking GPP dynamics. Daily GPP calcu-
lated from a nighttime method [37] was used. We selected
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FIGURE 1: Spectra of typical summer and winter acclimated leaves. The shaded areas denote the spectral response functions of MODIS bands
1 (B1), 4 (B4), and 11 (B11). The spectra were for Pinus contorta (lodgepole pine) seedlings edited from Gamon et al. [7].

27 grasslands, 37 evergreen needleleaf forests, and 21 decidu-
ous broadleaf forests. Detailed information for each site is pre-
sented in Table S1. Sites were selected based on the criteria: (1)
they were in the Northern Hemisphere at latitudes > 30°, and
(2) they had at least three years of concomitant in situ GPP
and MODIS observations for 2001-2020.

We used the daily MCD19A1 Version 6 [38] to calculate
CCI, GRVI, NDVI, and EVI, for two main reasons: (1) it
uses an adaptive time series and a spatial analysis, the
Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm, to derive atmospheric aerosol concen-
trations and surface reflectances without empirical assump-
tions to obtain a more accurate surface reflectance, and (2)
reflectances at bands 1, 2, 3, 4, and 11 are all delivered,
allowing the comparison between CCI, GRVI, NDVI, and
EVL All the bands were resampled to 1km.

Data contaminated by clouds, snow, or a high aerosol
optical depth were excluded. MCD19A1 data with viewing
zenith angles >40° were also excluded to minimize the
anisotropic effects of the reflectance [19, 25].

2.3. Statistical Analysis. We firstly compared the reflectances
at MODIS bands 11 and 4 and also compared the, respec-
tively, derived CCI vs. GRVT over all the selected 115,916
reflectance samples.

We evaluated the performance of CCI, GRVI, NDVI,
EVI, and SIF for tracking GPP and retrieving phenological
metrics as compared to FLUXNET GPP. The maximum-
separation (MS) method was adopted to extract the dates
of the start of season (SOS) and end of season (EOS) [39].
MS is a variant of the threshold method and applies a mov-
ing window that estimates the ratio of observations that
exceed a threshold (50%, in this study) before and after the
central day. SOS/EOS is the day of the year when the differ-
ence between the ratios before and after the central day are

minimum/maximal. Details for MS are provided in our pre-
vious study [39]. SOS/EOS was estimated from CCI, GRVI,
NDVI, EV], SIF, and FLUXNET GPP. SOS and EOS from
GPP were seen as the references of starting and ending days
of photosynthetically active season, respectively. Note that,
before phenology extraction, the daily vegetation indices
and GPP were resampled to 8-day temporal resolution with
a maximum-value composting method to smooth the noise
in the time series.

3. Results

The reflectances from MODIS bands 4 and 11 were highly
consistent (R*>=0.98), and the correlation was significant
(p<0.001) (Figure 2). This consistency was propagated to
the derived vegetation indices: the GRVI could reproduce
the CCI with a robust regression of y=0.98x-0.074
(R? =0.97,p <0.001); ie., the GRVI, based on the green
broadband, is a reliable proxy of CCIL

US-Oho, CA-TP3, and US-IB2, were selected as exam-
ples of deciduous broadleaf forest (DBF), evergreen needle-
leaf forest (ENF), and grassland (GRA), respectively, to
illustrate the seasonal dynamics of GPP and the capacity of
different vegetation indices to capture its dynamics
(Figure 3). During spring season, GPP and all the vegetation
indices increased rapidly and nearly at the same time, as
reflected by the narrow range of variation of SOS values
especially for grassland (Figure 3(c)). Contrarily, the
decrease during the senescence process was gradual. The sat-
ellite vegetation indices showed a systematic positive tempo-
ral lag difference (i.e., a delay in phenology) compared to
ground GPP measurements. NDVI showed the highest pos-
itive lag in autumn phenology compared with GPP, imply-
ing that photosynthesis shuts down even when plants still
have high green biomass. CCI and GRVI were very similar



4 Journal of Remote Sensing

02 z 0.6 7 400
y = 0.91x-0.003 y = 0.98x-0.074 #
R2=0.098 R2=0.97 )
p<0.001 j p<0.001 300

MODIS band 11 reflectance

_ O _
0.1 S 0 200
100
0 - | 0.6 = | 0
0 0.1 0.2 -0.6 0 0.6
MODIS band 4 reflectance GRVI

(a) (b)

FIGURE 2: Density scatter plots of the reflectances from MODIS bands 4 and 11 (a) and of the broadband green-red vegetation index (GRVT)
vs. the original narrowband chlorophyll/carotenoid index (CCI) (b).
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FiGUure 3: Temporal profiles of in situ gross primary production (GPP), normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), solar-induced chlorophyll fluorescence (SIF), chlorophyll/carotenoid index (CCI), and green-red vegetation index
(GRVI) for a deciduous broadleaf forest (a), an evergreen needleleaf forest (b), and a grassland (c). The vertical lines show the extracted
phenology from a maximum-separation (MS) method. US-Oho (in 2006), CA-TP3 (in 2013), and US-IB2 (in 2011) were selected as
examples of grassland, deciduous broadleaf forest, and evergreen needleleaf forest, respectively. For a better comparison, all the indices
were linearly normalized to the range of [0, 1].

throughout the growing season, but GRVI lagged slightly Compared with the GPP-derived SOS, those from the
compared with the CCI, especially for the forests  satellite indices all exhibit earlier estimates over DBF
(Figures 3(a) and 3(b)). (Figure 4), with the largest and least bias happen for NDVI
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error (RMSE), and the mean bias. DOY: day of year.
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production (GPP) for deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), and grassland (GRA). SOS dates were
extracted using the Maximum Separation method [39]. The referred statistics are the correlation coefficient (R?), the root mean square
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FIGURE 5: Scatterplots of the dates of the end of the season (EOS) estimated using the vegetation indices and in situ gross primary
production (GPP) for deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), and grassland (GRA). EOS dates were
extracted using the Maximum Separation method [39]. The referred statistics are the correlation coefficient (R?), the root mean square

error (RMSE), and the mean bias. DOY: day of year.

(Figure 4(a)) and SIF (Figure 4(g)), respectively. Over the
three selected vegetation types, SOS for ENF showed the
highest uncertainty. For example, R* between NDVI and

GPP-derived SOS was 0.11. The best estimate was from
SIF, with a R? of 0.58. For GRA, due to its simple structure,
no obvious discrepancy was found for the SOS estimates
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from the five indices. Generally, GRVI performed compara-
ble with CCI in SOS estimation, and they both show similar
performance as EVI. However, closer inspection reveals that
GRVI and CCI both obtained better accuracy than EVI for
ENF, for which CCI was originally designed [7, 20].

EOS dates estimated using NDVI were considerably
delayed compared with the reference dates using GPP for
all selected vegetation types (Figures 5(a)-5(c) for DBF,
ENF, and GRA, respectively). The highest bias was observed
in ENF sites (43.03 days) (Figure 5(b)). Compared with
NDVI, the lag of the estimated EOS from other indices
was remarkably mitigated; e.g., the bias for ENF was reduced
to 6.28 and 9.63d for CCI and GRVI, respectively. GRVI
performed comparably than CCI over all site-years, with
only slightly more delayed estimates: 2.56 (20.15-17.59),
3.35 (9.63-6.28), and 0.62 (12.5-11.88) d for DBF, ENF, and
GRA, respectively. As expected, SIF performed very well
for every vegetation type. Yet, CCI and GRVI showed
slightly better performances, in terms of R* and RMSE, than
SIF for EOS retrieval over ENF.

4. Discussion

This study demonstrated that at the satellite scale the
MODIS narrowband CCI can be reproduced with the broad-
band GRVI. GRVI performed satisfactorily in tracking GPP
dynamic over DBF, ENF, and GRA vegetation types.

The physiological chlorophyll/carotenoid index (CCI)
was originally designed for ENF [7] but also well represents
GPP variation for other vegetation types, e.g., DBF [23] and
GRA [25]. The advantage of CCI to track GPP mainly lies in
the extraction of the end of the photosynthetically active sea-
son (EOS) [26]. For deciduous plants (including DBF and
GRA), senescence follows a physiological timetable: (1) real-
location of foliar nutrients, (2) degradation of chlorophyll,
(3) foliar coloration, and (4) foliar abscission. The realloca-
tion of foliar nutrients is difficult to detect with remote sens-
ing but is strongly associated with the degradation of
chlorophyll (with decreasing chlorophyll/carotenoid ratio)
[40]. As for evergreen plants, the absorbed light during late
autumn cannot be fully exploited for carbon uptake because
of environmental stress (e.g., low temperature) [41]. Such an
imbalance between light energy supply and utilization acti-
vates a mechanism which adjusts leaf pigment pools and dis-
sipates excess energy by increasing the carotenoid/
chlorophyll ratio [13, 42]. Therefore, CCI is more capable
of capture the downregulation of plant photosynthesis than
other vegetation indices more sensitive to green bio-
mass [26].

Previous studies revealed that NDVI was mainly deter-
mined by vegetation structure and EVTI is relatively more
controlled by leaf coloration [43]. This explains why the
observed positive temporal lag phenomenon in EOS extrac-
tion was shorter for EVI (with less bias compared with GPP
EOS) than for NDVI. Compared with NDVI and EVI, GRVI
was capable of capturing the reflectance contrast between
the green hump and red valley (see Figure 1) which are
mainly determined by leaf chlorophyll content. Leaf chloro-
phyll content was found a good proxy of maximum photo-

synthetic rate ([44]). GRVI therefore performed better than
NDVI and EVI to extract photosynthetic phenology, espe-
cially for EOS. SIF, a direct “proxy” of plant photosynthesis
[2], was also employed as a reference to assess the perfor-
mance of GRVI in GPP tracking. Our results reveal that
GRVI derived from MODIS data performs comparable with
SIF derived from GOSIF data. GOSIF has, however, a lower
spatial resolution and revisit frequency (0.05° every 8-day
temporal frequency) than MCD19A1 data (1 km spatial res-
olution and 1-day temporal frequency). The current existing
SIF datasets are indeed characterized by low spatial resolu-
tion and temporal frequency, so the GRVI here defined pro-
vides a useful complementary or even alternative tool for
high spatiotemporal GPP monitoring.

We found that MODIS bands 11 (narrow green band,
sensitive to xanthophyll interconversion) and 4 (wide green
band, signaling leaf chlorophyll content) were highly corre-
lated at the seasonal scale (Figure 2(a)), so CCI (Equation
(1)) can be safely reproduced by GRVI (Equation (2)). The
direct comparison between CCI and GRVI (Figure 2(b)),
the comparison with FLUXNET GPP, and the validation of
phenology metrics supported our hypothesis of equivalence
between CCI and GRVI for monitoring GPP and phenology.
Considering that band 4 has higher spatial resolution
(500 m) than band 11 (1km), MODIS GRVI is capable of
characterizing GPP seasonality at smaller granularity than
CCI. Furthermore, the calculation of GRVI is easy to trans-
fer to other sensors, because the green and red broadbands
are readily available on most existing multispectral sensors.
Note that the xanthophyll-sensitive narrowband (~531 nm)
was removed in the VIIRS, the successor of MODIS [45].
The application of MODIS CCI, however, can be continu-
ously persisted by GRVI from VIIRS.

GRVI can quantify the maximum leaf photosynthetic
rate ([32, 33]); therefore, performs satisfactory in tracking
GPP dynamics, even for the evergreen forests [32, 33, 46].
Other indices were also reported having the potential to
capture the pigment variation and deserved further
assessment. For example, Penuelas et al. [16] found that
the red and blue bands were the best combination to cap-
ture the variation of chlorophyll/carotenoid pigment ratios
(Normalized Difference Pigment Index (NDPI) = (red-blue)/
(red + blue) and Structural Independent Pigment Index
(SIPI) = (IR-blue)/(IR-red)). The blue band, however, was
highly sensitive to atmospheric distortion, so the feasibility
of NDPI or SIPI calculated from satellite observations
remains unknown. Red edge bands were also found highly
sensitive to pigment content, especially to chlorophyll con-
tent [47]. Therefore, red edge-based vegetation indices, e.
g, MERIS Terrestrial Chlorophyll Index (MTCI) and
OLCI Terrestrial Chlorophyll Index (OTCI) [48], were also
worth assessment in terms of photosynthetic phenology
extraction.

This study demonstrated that MODIS CCI could be
reproduced by the GRVI. GRVI can be directly transferred
to other satellites considering the readily availability of
broadband green and red bands. We will assess the applica-
tion of GRVI to Landsat 8, Sentinel-2, and other commonly
used optical satellites in future studies. Future studies should



focus on assessing the feasibility of GRVI to retrieve chloro-
phyll/carotenoid ratio also as compared with MODIS CCI
and ground data. Residual atmospheric contamination
effects on CCI also require further attention [27]. Finally,
we will also test other band combinations and investigate
red-edge and blue bands from Sentinel-2 and Sentinel-3 in
a future study.

5. Conclusions

This study demonstrated that MODIS-derived CCI, origi-
nally calculated with the support of the narrow
xanthophyll-sensitive (~531nm) band, could be safely
reproduced by wide green and red bands, GRVI (R* =0.97
), for monitoring GPP and phenology. The comparison with
FLUXNET GPP showed that the broadband GRVI per-
formed comparably with the original CCI in tracking the
dynamics of GPP and for extracting the dates of the start
and end of the photosynthetically active season. GRVI pro-
vides a powerful and robust tool for monitoring the tempo-
ral variation of photosynthesis activity from a wide set of
sensors with broadbands in the green and red spectral
regions.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

Authors’ Contributions

G.Y. did the conceptualization. G.Y. is responsible for the
writing—original draft. A.V., A.D,, LF., and J.P. is assigned
to the writing—review and editing.

Acknowledgments

This work was supported by the Sichuan Science and
Technology Program (2021JDJQ0007 and 2020JDTDO0003),
the National Natural Science Foundation of China
(41971282), and the Marie Sklodowska-Curie Grant of
the European Union’s Horizon 2020 Research and Innova-
tion Programme (835541). Funding from the Spanish
Government (grant PID2019-110521GB-100), Fundacién
Ramon Areces (grant ELEMENTAL-CLIMATE), Catalan
Government (grants SGR 2017-1005 and AGAUR-
2020PANDEO00117), and European Research Council (Syn-
ergy grant ERC-SyG-2013-610028, IMBALANCE-P) is also
acknowledged. This work represents a contribution to
CSIC-PTI TELEDETECT. In situ observations of fluxes were
obtained from the FLUXNET 2015 dataset (http://fluxnet
Afluxdata.org/data/fluxnet2015-dataset/). The MCD19A1 C6
product is also available online (https://ladsweb.modaps
.eosdis.nasa.gov/search/). Jiangliu Xie, Hongfan Gu, and
Huiqin Pan are appreciated for collecting the data.

Journal of Remote Sensing

Supplementary Materials

Table S1: description of the FLUXNET sites. DBF: deciduous
broadleat forest; ENF: evergreen needleleaf forest; GRA:
grassland. (Supplementary Materials)

References

[1] A. Anav, P. Friedlingstein, C. Beer et al., “Spatiotemporal pat-
terns of terrestrial gross primary production: a review,”
Reviews of Geophysics, vol. 53, no. 3, pp. 785-818, 2015.

[2] A. Porcar-Castell, E. Tyystjarvi, J. Atherton et al., “Linking
chlorophyll a fluorescence to photosynthesis for remote sens-
ing applications: mechanisms and challenges,” Journal of
Experimental Botany, vol. 65, no. 15, pp. 4065-4095, 2014.

[3] C. Frankenberg, J. B. Fisher, J. Worden et al., “New global
observations of the terrestrial carbon cycle from GOSAT: pat-
terns of plant fluorescence with gross primary productivity,”
Geophysical Research Letters, vol. 38, no. 17, 2011.

[4] L. Guanter, C. Bacour, A. Schneider et al., “The TROPOSIF
global sun-induced fluorescence dataset from the Sentinel-5P
TROPOMI mission,” Earth System Science Data, vol. 13,
no. 11, pp. 5423-5440, 2021.

[5] J. L. Monteith, “Solar radiation and productivity in tropical
ecosystems,” Journal of Applied Ecology, vol. 9, no. 3,
pp. 747-766, 1972.

[6] W.P.Yuan, S. Liu, G. S. Zhou et al., “Deriving a light use effi-
ciency model from eddy covariance flux data for predicting
daily gross primary production across biomes,” Agricultural
and Forest Meteorology, vol. 143, no. 3-4, pp. 189-207, 2007.

[7] J. A. Gamon, K. F. Huemmrich, C. Y. Wong et al., “A remotely
sensed pigment index reveals photosynthetic phenology in
evergreen conifers,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 113, no. 46,
pp- 13087-13092, 2016.

[8] S. W. Running, R. R. Nemani, F. A. Heinsch, M. S. Zhao,
M. Reeves, and H. Hashimoto, “A continuous satellite-
derived measure of global terrestrial primary production,” Bio-
science, vol. 54, no. 6, pp. 547-560, 2004.

[9] B. D. Stocker, J. Zscheischler, T. F. Keenan, 1. C. Prentice, S. I.
Seneviratne, and J. Penuelas, “Drought impacts on terrestrial
primary production underestimated by satellite monitoring,”
Nature Geoscience, vol. 12, no. 4, pp. 264-270, 2019.

[10] C. Y. Wu, J. M. Chen, A. R. Desai et al., “Remote sensing of
canopy light use efficiency in temperate and boreal forests of
North America using MODIS imagery,” Remote Sensing of
Environment, vol. 118, pp. 60-72, 2012.

[11] F. M. Zhang, J. M. Chen, J. Q. Chen, C. M. Gough, T. A.
Martin, and D. Dragoni, “Evaluating spatial and temporal
patterns of MODIS GPP over the conterminous U.S. against
flux measurements and a process model,” Remote Sensing of
Environment, vol. 124, pp. 717-729, 2012.

[12] J. Penuelas, M. F. Garbulsky, and I. Filella, “Photochemical
reflectance index (PRI) and remote sensing of plant CO,
uptake,” New Phytologist, vol. 191, no. 3, pp. 596-599,
2011.

[13] C.Y.Wongand]. A. Gamon, “Three causes of variation in the
photochemical reflectance index (PRI) in evergreen conifers,”
The New Phytologist, vol. 206, no. 1, pp. 187-195, 2015.

[14] J. A. Gamon, J. Penuelas, and C. B. Field, “A narrow-waveband
spectral index that tracks diurnal changes in photosynthetic


http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://downloads.spj.sciencemag.org/remotesensing/2022/9764982.f1.docx

Journal of Remote Sensing

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

efficiency,” Remote Sensing of Environment, vol. 41, no. 1,
pp. 35-44, 1992.

J. Penuelas, I. Filella, and J. A. Gamon, “Assessment of photo-
synthetic radiation-use efficiency with spectral reflectance,”
New Phytologist, vol. 131, no. 3, pp. 291-296, 1995.

J. Penuelas, J. A. Gamon, A. L. Fredeen, J. Merino, and C. B.
Field, “Reflectance indices associated with physiological
changes in nitrogen- and water-limited sunflower leaves,”
Remote Sensing of Environment, vol. 48, no. 2, pp. 135-146,
1994.

A. Goerner, M. Reichstein, E. Tomelleri et al., “Remote sensing
of ecosystem light use efficiency with MODIS-based PRI,” Bio-
geosciences, vol. 8, no. 1, pp. 189-202, 2011.

M. He, J. S. Kimball, S. Running, A. Ballantyne, K. Guan, and
F. Huemmrich, “Satellite detection of soil moisture related
water stress impacts on ecosystem productivity using the
MODIS-based photochemical reflectance index,” Remote
Sensing of Environment, vol. 186, pp. 173-183, 2016.

E. M. Middleton, K. F. Huemmrich, D. R. Landis, T. A. Black,
A. G. Barr, and J. H. McCaughey, “Photosynthetic efficiency of
northern forest ecosystems using a MODIS-derived Photo-
chemical Reflectance Index (PRI),” Remote Sensing of Environ-
ment, vol. 187, pp. 345-366, 2016.

C. Y. S. Wong, P. D'Odorico, M. A. Arain, and I. Ensminger,
“Tracking the phenology of photosynthesis using carotenoid-
sensitive and near-infrared reflectance vegetation indices in a
temperate evergreen and mixed deciduous forest,” The New
Phytologist, vol. 226, no. 6, pp. 1682-1695, 2020.

P. D'Odorico, A. Besik, C. Y. S. Wong, N. Isabel, and
I. Ensminger, “High-throughput drone-based remote sensing
reliably tracks phenology in thousands of conifer seedlings,”
The New Phytologist, vol. 226, no. 6, pp. 1667-1681, 2020.

E. Frechette, C. Y. Chang, and I. Ensminger, “Variation in the
phenology of photosynthesis among eastern white pine prove-
nances in response to warming,” Global Change Biology,
vol. 26, no. 9, pp. 5217-5234, 2020.

K. Springer, R. Wang, and J. Gamon, “Parallel seasonal pat-
terns of photosynthesis, fluorescence, and reflectance indices
in boreal trees,” Remote Sensing, vol. 9, no. 7, p. 691, 2017.

C. Y. S. Wong, P. D'Odorico, Y. Bhathena, M. A. Arain, and
I. Ensminger, “Carotenoid based vegetation indices for accu-
rate monitoring of the phenology of photosynthesis at the
leaf-scale in deciduous and evergreen trees,” Remote Sensing
of Environment, vol. 233, p. 111407, 2019.

R. Wang, J. A. Gamon, C. A. Emmerton, K. R. Springer, R. Yu,
and G. Hmimina, “Detecting intra- and inter-annual variabil-
ity in gross primary productivity of a North American grass-
land using MODIS MAIAC data,” Agricultural and Forest
Meteorology, vol. 281, p. 107859, 2020.

G. Yin, A. Verger, L. Filella, A. Descals, and J. Pefiuelas, “Diver-
gent estimates of forest photosynthetic phenology using struc-
tural and physiological vegetation indices,” Geophysical
Research Letters, vol. 47, no. 18, 2020.

N. Sabater, P. Kolmonen, S. Van Wittenberghe, A. Arola, and
J. Moreno, “Challenges in the atmospheric characterization for
the retrieval of spectrally resolved fluorescence and PRI region
dynamics from space,” Remote Sensing of Environment,
vol. 254, p. 112226, 2021.

G. G. Drolet, K. F. Huemmrich, F. G. Hall et al., “A MODIS-
derived photochemical reflectance index to detect inter-
annual variations in the photosynthetic light-use efficiency of

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

a boreal deciduous forest,” Remote Sensing of Environment,
vol. 98, no. 2-3, pp. 212-224, 2005.

A. Moreno, F. Maselli, M. A. Gilabert, M. Chiesi, B. Martinez,
and G. Seufert, “Assessment of MODIS imagery to track light-
use efficiency in a water-limited Mediterranean pine forest,”
Remote Sensing of Environment, vol. 123, pp. 359-367, 2012.

C.J. Tucker, “Red and photographic infrared linear combina-
tions for monitoring vegetation,” Remote Sensing of Environ-
ment, vol. 8, no. 2, pp. 127-150, 1979.

T. Motohka, K. N. Nasahara, H. Oguma, and S. Tsuchida,
“Applicability of green-red vegetation index for remote sens-
ing of vegetation phenology,” Remote Sensing, vol. 2, no. 10,
pp. 2369-2387, 2010.

S. Nagai, T. Inoue, T. Ohtsuka et al., “Relationship between
spatio-temporal characteristics of leaf-fall phenology and sea-
sonal variations in near surface- and satellite-observed vegeta-
tion indices in a cool-temperate deciduous broad-leaved forest
in Japan,” International Journal of Remote Sensing, vol. 35,
no. 10, pp. 3520-3536, 2014.

S. Nagai, T. M. Saitoh, H. Kobayashi et al., “In situexamination
of the relationship between various vegetation indices and can-
opy phenology in an evergreen coniferous forest, Japan,” Inter-
national Journal of Remote Sensing, vol. 33, no. 19, pp. 6202—
6214, 2012.

J. Penuelas, F. Baret, and I. Filella, “Semi-empirical indices to
assess carotenoids chlorophyll-a ratio from leaf spectral reflec-
tance,” Photosynthetica, vol. 31, pp. 221-230, 1995.

X. Li and J. F. Xiao, “Mapping Photosynthesis Solely from
solar-induced chlorophyll Fluorescence: A Global, Fine-
Resolution Dataset of Gross Primary Production derived from
OCO-2,” Remote Sensing, vol. 11, no. 21, p. 2563, 2019.

G. Pastorello, C. Trotta, E. Canfora et al., “The FLUXNET2015
dataset and the ONEFlux processing pipeline for eddy covari-
ance data,” Sci Data, vol. 7, no. 1, p. 225, 2020.

M. Reichstein, E. Falge, D. Baldocchi et al., “On the separation
of net ecosystem exchange into assimilation and ecosystem
respiration: review and improved algorithm,” Global Change
Biology, vol. 11, no. 9, pp. 1424-1439, 2005.

A. 1. Lyapustin, Y. Wang, I. Laszlo et al., “Multi-angle imple-
mentation of atmospheric correction for MODIS (MAIAC):
3. Atmospheric correction,” Remote Sensing of Environment,
vol. 127, pp. 385-393, 2012.

A. Descals, A. Verger, G. Yin, and J. Penuelas, “A threshold
method for robust and fast estimation of land-surface phenol-
ogy using Google Earth Engine,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 14,
2021.

Y. Fracheboud, V. Luquez, L. Bjorken, A. Sjodin,
H. Tuominen, and S. Jansson, “The control of autumn senes-
cence in European Aspen,” Plant Physiology, vol. 149, no. 4,
pp. 1982-1991, 2009.

G. Oquist and N. P. Huner, “Photosynthesis of overwintering
evergreen plants,” Annual Review of Plant Biology, vol. 54,
no. 1, pp. 329-355, 2003.

J. Kim, Y. Ryu, B. Dechant et al., “Solar-induced chlorophyll
fluorescence is non-linearly related to canopy photosynthesis
in a temperate evergreen needleleaf forest during the fall tran-
sition,” Remote Sensing of Environment, vol. 258, p. 112362,
2021.

X. M. Xiao, D. Hollinger, J. Aber et al., “Satellite-based model-
ing of gross primary production in an evergreen needleleaf



10

[44]

(45]

(46]

(47]

(48]

forest,” Remote Sensing of Environment, vol. 89, no. 4, pp. 519-
534, 2004.

H. Croft, J. M. Chen, X. Z. Luo, P. Bartlett, B. Chen, and R. M.
Staebler, “Leaf chlorophyll content as a proxy for leaf photo-
synthetic capacity,” Global Change Biology, vol. 23, no. 9,
pp. 3513-3524, 2017.

D. Hillger, T. Kopp, T. Lee et al., “First-light imagery from
Suomi NPP VIIRS,” Bulletin of the American Meteorological
Society, vol. 94, no. 7, pp. 1019-1029, 2013.

A. A. Gitelson, Y. J. Kaufman, R. Stark, and D. Rundquist,
“Novel algorithms for remote estimation of vegetation frac-
tion,” Remote Sensing of Environment, vol. 80, no. 1, pp. 76—
87, 2002.

L. Filella and J. Penuelas, “The red edge position and shape as
indicators of plant chlorophyll content, biomass and hydric
status,” International Journal of Remote Sensing, vol. 15,
no. 7, pp. 1459-1470, 1994.

J. Clevers and A. A. Gitelson, “Remote estimation of crop and
grass chlorophyll and nitrogen content using red-edge bands
on Sentinel-2 and -3,” International Journal of Applied Earth
Observation and Geoinformation, vol. 23, pp. 344-351, 2013.

Journal of Remote Sensing



	A Broadband Green-Red Vegetation Index for Monitoring Gross Primary Production Phenology
	1. Introduction
	2. Materials and Methods
	2.1. Vegetation Indices
	2.2. Data
	2.3. Statistical Analysis

	3. Results
	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

