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ABSTRACT

The cold-inducible RNA-binding protein (CIRBP) assists cells in adapting to new environmental condi-
tions stabilizing specific mRNAs and promoting their translation. CIRBP participates in anti-apoptotic and
anti-senescence processes, and its expression is induced by mild hypothermia, which may be advanta-
geous to oocytes during vitrification. Several newly discovered small molecules, like zr17-2, mimic the
effects of cold temperatures by increasing the expression of CIRBP at normothermia. This study aimed to
evaluate the mRNA changes of a group of cold-inducible protein-encoding and apoptotic genes in
response to exogenous supplementation of zr17-2 (experiment 1) or CIRBP (experiment 2) in vitro
matured bovine oocytes and their cumulus cells. In experiment 1, cumulus-oocyte complexes (COCs)
were randomly exposed to three concentrations of zr17-2 (1, 10, and 100 uM) during 24 h of in vitro
maturation (IVM) under normothermia (38.5 °C) or mild hypothermia (34 °C) culture conditions. In
experiment 2, COCs were randomly exposed to three concentrations of CIRBP (2, 4, and 6 pug/mL) or
subjected to mild hypothermia (34 °C), followed by oocyte vitrification/warming after 20 h of IVM. The
quantification of the selected gene transcript expression was performed separately in oocytes and
cumulus cells by quantitative real-time PCR. We show that oocytes and cumulus cells exhibited similar
mRNA expression responses to mild hypothermia and vitrification. However, minor differences were
observed when COCs were exposed to exogenous supplementation with zr17-2 and CIRBP. In conclusion,
the alterations observed in the mRNA expression in these experimental conditions may impact the
quality of the cumulus-oocyte complexes in terms of vitrification and sublethal hypothermia challenges.
In this sense, our results should complement other oocyte quality assessments for its application in
future assisted reproductive techniques in the bovine species, including improving oocyte cryotolerance

to vitrification.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

as the mitotic spindle [2—4]. During this process, the ultra-low
temperatures affect mitochondrial activity, affecting apoptotic

Oocyte cryopreservation is a valuable methodology for preser-
ving genetic resources and contributes to developing assisted
reproductive techniques [1]. On the other hand, cryopreservation
may damage the structure of the oocyte and chromosomes, as well
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pathways [5], inducing premature cortical granule extrusion, and
reducing successful fertilization chances [6].

In mammalian cells, exposure to mild hypothermia (34 °C) re-
duces the metabolism and the overall protein abundance, while the
expression of a small group of homologous glycine-rich mRNA-
binding proteins, known as cold-inducible proteins (CIPs), in-
creases under this condition [7—12]. The CIPs bind to mRNA, acting
as regulatory molecules that play an essential role in RNA post-
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transcriptional control [13]. They are upregulated in response to
mild hypothermia and a variety of other cellular stressors, including
osmotic stress, ultraviolet radiation, or hypoxia [14].

The cold-inducible RNA-binding protein (CIRBP) is a constitu-
tively and ubiquitously expressed CIP considered a key component
of the cellular response to moderate cold stress [15]. CIRBP has been
identified in multiple tissues and species [16], including the bovine
ovary and testicle [17]. Although only a few body tissues are
exposed to hypothermia in physiological conditions, the wide-
spread expression of CIRBP [16] may suggest that it is likely
involved in other relevant cellular processes at normothermia.
Primarily located in the nucleus, CIRBP controls RNA transcription
and processing, while in the cytoplasm, CIRBP regulates mRNA
translation and turnover [8,18]. Eventually, CIRBP can be released
into the extracellular space [19]. Once extracellular CIRBP is pre-
sent, it binds to toll-like receptor 4 (TLR4) and the myeloid differ-
entiation factor 2 (MD2), activating several signaling pathways
including the NF-kB pathway [20,21]. The activation of such path-
ways via CIRBP leads to an induction and release of proin-
flammatory cytokines and chemokines, including the IL-18 [19,22].
However, if IL-1f is modulated during the in vitro maturation (IVM)
of bovine cumulus-oocyte complexes (COCs) in the presence of
CIRBP is still unknown.

Other CIPs, as the RNA-binding motif protein 3 (RBM3) and the
serine and arginine-rich splicing factor 5 (SRSF5) [7,12], also bind to
particular mRNAs, stimulating their translation, regulating their
half-life, controlling their expression potential, and determining
their final functions [23,24]. Moreover, CIRBP and RBM3 bind to
specific mRNAs involved in cell survival and anti-apoptotic cas-
cades [14], being potential candidates to improve oocyte cryotol-
erance to vitrification. Because oocyte vitrification can induce
apoptosis [25,26], the study of BCL2 (anti-apoptotic gene) [27], BAX
(pro-apoptotic gene) [28], and its ratio is helpful to investigate the
effects of vitrification on oocytes and cumulus cells.

A temporary increase in general adaptability generated by
controlled exposure to sub-lethal stressors has been used to
improve cryotolerance in mammalian oocytes and embryos using
various strategies [29], such as heat stress [30] or high hydrostatic
pressures [31]. However, little attention has been given to mild
hypothermia as a sub-lethal stressor to enhance stress tolerance. In
this sense, we have previously reported an increase in CIRBP
expression on bovine COCs exposed to mild hypothermia (33.5 °C)
[32]. However, detrimental effects on oocyte nuclear and cyto-
plasmic maturation rates were reported due to the non-optimal
temperature conditions during the IVM [32]. Furthermore, some
small molecules (including zr17-2) have been detected, capable of
mimicking the effect of hypothermia in the absence of cold stim-
ulus [33], being good candidates for their application to improve
cell cryotolerance.

In the present study, we hypothesized that oocytes and cumulus
cells might modify the expression of selected genes during the IVM
in response to the exogenous supplementation with zr17-2 and
CIRBP directly added to the culture medium. For this purpose, we
aim to test the effect of exogenous supplementation with zr17-2
and CIRBP during the IVM of bovine COCs and whether this pro-
cedure implies upregulation of mRNA expression of the three CIPs
included (CIRBP, RBM3, and SRSF5), BCL2, and IL-1(3, and down-
regulation of BAX mRNA expression. In addition, we will determine
the mRNA changes on three CIPs, apoptotic-related transcripts (BAX
and BCL2, and their ratio), and the pro-inflammatory interleukin 18
(IL-18) induced by mild hypothermia and vitrification in both oo-
cytes and cumulus cells.
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2. Materials and methods

Unless otherwise stated, all chemicals and reagents were pur-
chased from Sigma-Aldrich Co. (St. Louis, MO, USA).

2.1. Bovine COCs recovery and IVM

Bovine ovaries were obtained from a local slaughterhouse
(Escorxador de Sabadell, Barcelona, Spain) and transported to the
laboratory at 35-37 °C in 0.9% saline solution. The ovaries were
collected from cycling non-gravid heifers in follicular phase.
Immature COCs were aspirated from ovarian follicles between 6
and 8 mm in diameter using an 18-gauge needle attached to a low-
pressure vacuum pump. Only COCs presenting more than three
compact layers of cumulus cells and a homogeneous cytoplasm
were selected for the study. The selected COCs were randomly
allocated in groups of 50 oocytes in 500 pL of maturation medium
in 4-well dishes (Nalge Nunc International, Rochester, NY, USA) and
cultured following the experimental design. The maturation me-
dium was composed of TCM199 with Earle's salts, L-glutamine, and
sodium bicarbonate supplemented with 10% (v/v) fetal bovine
serum (FBS), 10 ng/mL epidermal growth factor, and 50 pg/mL
gentamicin.

2.2. Experiment 1: hypothermia mimetic zr17-2 supplementation

In experiment 1, COCs were randomly distributed in groups of
50 oocytes in 4 experimental groups: exposed to control conditions
or exposed to three different concentrations of zr17-2 (1, 10, and
100 pM). These 4 experimental groups were incubated for 24 h in a
humidified atmosphere containing 5% CO, at two different tem-
perature conditions, 38.5 °C or 34 °C. After 24 h of IVM, COCs were
washed and denuded by gently pipetting (PIPETMAN ® P100L,
Gilson, Spain) in phosphate buffer saline medium. Oocytes were
harvested and the remaining media after denudation was centri-
fuged (500xg, 3 min, room temperature) to obtain the cumulus
cells of the oocytes on each experimental group. The supernatant
was discarded and the cryotube containing the cell pellet of each
group was immediately plunged in liquid nitrogen. Oocytes of each
group (n = 25 oocytes/experimental group and replicate) were
transferred to cryotubes using the minimum possible volume of
media and directly immersed in liquid nitrogen. All samples were
kept at —80 °C until further analysis. The experiment was per-
formed three times.

2.3. Experiment 2: exogenous CIRBP supplementation

In experiment 2, COCs were randomly distributed in groups of
50 oocytes in 5 experimental groups: exposed to standard bovine
IVM conditions (38.5 °C, 5% CO,, in humidified atmosphere),
exposed to three different concentrations of exogenous CIRBP (2, 4,
and 6 pg/mL), or exposed to mild hypothermia (34 °C, 5% CO,, in
humidified atmosphere). After 20 h of IVM, half of the COCs on each
experimental group were vitrified and ulteriorly warmed (n = 25
oocytes/experimental condition and replicate). Vitrified/warmed
oocytes were returned for 4 h to the maturation dishes to complete
24 h of IVM. After finishing the 24 h of IVM, COCs (n = 25/experi-
mental group and replicate) were denuded by gently pipetting to
separate oocytes from cumulus cells, as before described. The
experiment was performed three times.
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2.4. Oocyte vitrification and warming

After 20 h of IVM, COCs were partially denuded by gentle
pipetting until a few layers of cumulus cells remained. Following a
modified vitrification protocol [34], oocytes were transferred into
an equilibrium solution (TCM199 with HEPES supplemented with
20% (v/v) FBS, 7.5% (v/v) ethylene glycol (EG) and 7.5% (v/v)
dimethyl sulfoxide (Me,S0)) for 9 min at room temperature (20-
22 °C). After being equilibrated, oocytes were transferred into a
vitrification solution (TCM199 with HEPES supplemented with 20%
(v/v) FBS, 15% (v/v) EG, 15% (v/v) Me,S0, and 0.5 M sucrose) for 30 s.
Groups of 5—6 oocytes were then picked up in a small volume of
vitrification solution, placed on top of the polypropylene strip of a
Cryotop device (Kitazato Supply Co, Fujinomiya, Japan), and
immediately plunged in liquid nitrogen.

For warming, the polypropylene strip of the Cryotop device was
immersed directly into TCM199 with HEPES supplemented with
20% (v/v) FBS containing 1 M sucrose at 37 °C for 5 min. Recovered
oocytes were washed for 5 min in decreasing sucrose solutions
(0.5 M, 025 M, and 0 M sucrose in TCM199 with HEPES). Once
warming was finished, oocytes were returned to the maturation
dishes allowing them to mature for four additional hours.

2.5. RNA extraction and cDNA synthesis

Total RNA from oocytes and cumulus cells was extracted using
the commercial miRNeasy Mini Kit (Qiagen, Barcelona, Spain)
following the manufacturer's instructions. The RNA concentration
was determined using the Thermo Scientific NanoDrop™ 2000
(Fisher Scientific, Madrid, Spain). Synthesis of cDNA was performed
using the High-Capacity RNA-to-cDNA™ Kit (Fisher Scientific,
Madrid, Spain) according to the manufacturer's instructions. The
cDNA obtained was stored at —20 °C for subsequent analysis.

2.6. Quantitative real-time PCR (qPCR)

Data analysis was performed using the CFX Maestro software
version 3.3.3 (Bio-Rad Laboratories, Kabelsketal, Germany). Rela-
tive quantification of CIRBP, RBM3, SRSF5, BCL2, BAX, and IL-13
transcripts was performed using the 2724 method [35] with
G3PDH as a housekeeping gene for normalization. Commercial
gene-specific qPCR primers for bovine species were used (Pri-
mePCR™SYBR® Green Assay, Bio-Rad Laboratories, Kabelsketal,
Germany). The product sizes for each primer pair were confirmed
by loading the amplicons in an agarose gel using a gel imaging
system (ChemiDoc XRS + System, BioRad Laboratories, Inc.,
Kabelsketal, Germany).

2.7. Data analyses

Each experiment was repeated three times. The relative mRNA
expression data of the genes included in the study were analyzed
by R software version 3.6.1 [36] with nlme [37] to develop linear
mixed-effects (LME) models and multcomp [38] to perform pair-
wise comparisons. All data sets were analyzed for normal distri-
bution and homoscedasticity using the Shapiro—Wilk Normality
test and Levene's test, respectively. Non-normal distributed data
were transformed using the log(x+1) transformation. The
threshold of significance was set at p < 0.05.

For experiment 1, the experimental group and the temperature
during IVM (34 °C or 38.5 °C) were included as fixed effects and the
replicates as the random part of the LME. Pairwise comparisons
were adjusted by the Sidak test.

For experiment 2, the experimental group and vitrification
procedure (vitrified or non-vitrified) were included as fixed effects
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and the replicates as the random part of the LME. Pairwise com-
parisons were adjusted by the Sidak test.

3. Results
3.1. Experiment 1: hypothermia mimetic zr17-2 supplementation

The relative mRNA expression of selected transcripts showed
that mild hypothermia induced most of the changes observed in
CIRBP, RBM3, SRSF5, BCL2, and BAX mRNA expression, both in oo-
cytes (Fig. 1a) and cumulus cells (Fig. 1b).

Mild hypothermia upregulated CIRBP and RBM3 mRNA expres-
sion in oocytes and cumulus cells (p < 0.05). SRSF5 mRNA expres-
sion was upregulated in cumulus cells exposed to mild
hypothermia culture conditions (p < 0.05), but no differences were
observed in oocytes. RBM3 mRNA expression was upregulated in
oocytes exposed to mild hypothermia at different concentrations of
zr17-2 compared to the control group (p < 0.05). Besides, RBM3
mRNA expression was upregulated in oocytes exposed to mild
hypothermia at 100 pM zr17-2 compared to all the experimental
groups at normothermia (p < 0.05). Additionally, RBM3 mRNA
expression was upregulated in oocytes exposed to mild hypother-
mia at 10 pM zr17-2 compared to oocytes exposed to normo-
thermia at 10 uM zr17-2 and IVM control conditions (p < 0.05).

The mRNA expression of anti-apoptotic BCL2 was down-
regulated in oocytes and cumulus cells cultured under mild hypo-
thermia conditions (p < 0.05), whereas mRNA expression of the
pro-apoptotic gene BAX was upregulated in cumulus cells cultured
under mild hypothermia conditions (p < 0.05).

When cultured at normothermia, the relative mRNA expression
of IL-13 was downregulated in oocytes by the 100 uM zr17-2 sup-
plementation compared to the control group (p < 0.05).

3.2. Experiment 2: exogenous CIRBP supplementation

The relative mRNA expression of selected transcripts in Fig. 2
shows that mild hypothermia induced most of the changes
observed in the CIRBP and RBM3 mRNA expressions, whereas the
vitrification procedure induced changes in SRSF5 mRNA expression.

CIRBP mRNA expression was upregulated in oocytes exposed to
mild hypothermia (vitrified and non-vitrified) compared to 6 pg/
mL CIRBP (non-vitrified), 2 pg/mL CIRBP (vitrified and non-
vitrified), and vitrified control oocytes (p < 0.05). For cumulus
cells, the CIRBP mRNA expression was upregulated in non-vitrified
cells exposed to mild hypothermia compared to vitrified cumulus
cells exposed to 2 pg/mL CIRBP (p < 0.05).

RBM3 mRNA expression was upregulated in oocytes exposed to
mild hypothermia (vitrified and non-vitrified) compared to the rest
of the experimental groups (p < 0.05). In non-vitrified cumulus
cells exposed to mild hypothermia, RBM3 mRNA expression was
upregulated compared to the rest of the non-vitrified experimental
groups and the vitrified cumulus cells exposed to 2 and 6 pug/mL of
exogenous CIRBP (p < 0.05). Additionally, RMB3 mRNA expression
was upregulated in vitrified cumulus cells exposed to mild hypo-
thermia compared to the rest of vitrified and non-vitrified treat-
ments, excluding the non-vitrified cumulus cells exposed to mild
hypothermia (p < 0.05).

SRSF5 mRNA expression in oocytes and cumulus cells was
increased by the vitrification procedure (p < 0.05). Besides, SRSF5
mRNA expression was upregulated in vitrified oocytes exposed to
mild hypothermia compared to non-vitrified oocytes exposed to 4,
2 pg/mL CIRBP, and control conditions (p < 0.05). Additionally,
SRSF5 expression was upregulated in vitrified oocytes exposed to
4 ug/mL CIRBP compared to non-vitrified oocytes exposed to 2 pg/
mL CIRBP and control conditions (p < 0.05).
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Fig. 1. Relative mRNA expression of selected genes in oocytes and cumulus cells of experiment 1. Relative mRNA expression + SEM of CIRBP, RBM3, SRSF5, BCL2, BAX, and IL-10 in
oocytes (a) and cumulus cells (b) of experimental groups in experiment 1. Supplementation with four concentrations of zr17-2 (0, 1,10, 100 pM) incubated at 38.5 °C or 34 °C, 5% CO,
in humidified atmosphere. Different lowercase-letters represent statistical differences between experimental groups. Different uppercase-letters represent statistical differences
between culture temperature conditions. The control group (0 pM zr17-2 incubated at 38.5 °C, 5% CO- in humidified atmosphere) was established as the reference group.

Vitrification and mild hypothermia induced most of the changes
observed in the BCL2 mRNA of oocytes (Fig. 2a) and cumulus cells
(Fig. 2b), respectively. In vitrified and non-vitrified cumulus cells
exposed to mild hypothermia, the BCL2 mRNA expression was
downregulated compared to non-vitrified control cumulus cells
and the vitrified and non-vitrified cumulus cells exposed to 4 pg/
mL of exogenous CIRBP (p < 0.05). On the other hand, the vitrifi-
cation procedure induced BAX and IL-13 mRNA expression changes
in the cumulus cells. Additionally, BAX mRNA expression was
upregulated in vitrified oocytes exposed to 6 pg/mL CIRBP
compared to vitrified oocytes exposed to mild hypothermia and
non-vitrified oocytes exposed to 4 pg/mL CIRBP (p < 0.05).

3.3. Apoptosis gene expression: BAX:BCL2 ratio

The relative BAX:BCL2 ratios were increased by mild hypother-
mia in experiment 1 (Fig. 3a and b) and vitrification in experiment 2
(Fig. 3c and d) (p < 0.05).

Additionally, in experiment 2, the ratio was increased in non-
vitrified oocytes exposed to mild hypothermia compared to non-
vitrified oocytes exposed to 4 pug/mL CIRBP and to control condi-
tions (p < 0.05) (Fig. 3¢c). On the other hand, the ratio was increased
in vitrified and non-vitrified cumulus cells exposed to mild hypo-
thermia compared to the non-vitrified treatments (p < 0.05)
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(Fig. 3d). Besides, the ratio was increased in non-vitrified cumulus
cells exposed to mild hypothermia compared to the rest of vitrified
cumulus cells (p < 0.05), except for the vitrified cumulus cells
exposed to mild hypothermia (Fig. 3d).

4. Discussion

Different strategies have been used to improve cryotolerance in
mammalian oocytes by increasing the general adaptability induced
by sublethal stressors [29]. Mild hypothermia, on the other hand,
has received little attention as an inductor of tolerance. Further-
more, the CIPs are potential candidates to mitigate the damage
produced in oocytes during vitrification, mainly due to their
involvement in cell survival and anti-apoptotic pathways [14]. This
study has determined mRNA expression changes of CIPs and anti-
and pro-apoptotic transcripts in oocytes and cumulus cells induced
by mild hypothermia, vitrification, and exogenous zr17-2 and CIRBP
supplementation.

Oocytes and cumulus cells exhibited similar mRNA expression
responses to mild hypothermia and vitrification, but minor differ-
ences were observed when COCs were exposed to exogenous
supplementation with zr17-2 and CIRBP. Our findings may suggest
a common underlying mechanism of such observed response to
mild hypothermia and vitrification in both types of cells. The
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control group was established as the reference group.

bidirectional communication between oocytes and cumulus cells is
essential to establish the optimal intrafollicular microenvironment,
which controls the growth and maturation of the follicles to pro-
duce viable and competent oocytes [39,40]. In addition, this com-
plex communication may be involved in shared responses to ensure
that both cells quickly adapt to the new environmental conditions.
This fact suggests that the mRNA expression changes that occurred
during the maturation of the oocyte may have potential effects
during early embryo development [40]. In this sense, the regulation
of CIRBP expression in mature yak oocytes before vitrification may
explain the improvement in its in vitro developmental competence
after vitrification/warming [41].

Several CIPs have been previously identified; yet, two of them
(CIRBP and RBM3) have been well-characterized since their dis-
covery [7,8]. Both proteins regulate gene expression at the tran-
scription level by binding to different transcripts, allowing the cell
to respond quickly to environmental changes [42]. Here, we
confirmed that the mRNA expressions of CIRBP and RBM3 were
significantly induced by mild hypothermia in oocytes and cumulus
cells, with or without an additional vitrification procedure. Even
though oocytes were exposed to ultralow temperatures during
vitrification, it seems that the brief exposure time to sub-
physiological temperatures was not enough to induce the

20

transcription of neither both CIPs when cells were previously long
exposed to exogenous CIRBP and mild hypothermia. In contrast,
previous studies have reported an increase of CIRBP mRNA
expression after oocyte vitrification [43,44], using the expression of
CIRBP as a marker of cryoinjury. Aside from its roles in hypother-
mia, CIRBP has been shown to play key roles during early devel-
opment [45] and cell protection against endogenous and external
stressors at normothermia [42]. Our study only analyzed an early
event during oocyte maturation and no later events on develop-
ment. Future research should focus on the effects of CIRBP and
other CIPs during in vitro early embryo development and tests its
impact on embryo competence after oocyte vitrification/warming.

Another recently described RNA-binding protein induced by
mild hypothermia and other stressors is SRSF5 [12]. SRSF5 belongs
to the serine-arginine rich splicing factor (SRSF) protein family,
which is involved in alternative splicing and mRNA processing [46].
Additionally, SRSF5 seems to perform specific functions in plurip-
otent cells, managing the nuclear availability of splicing factors and
cytoplasmic activities by responding quickly to changing cellular
circumstances [47]. Our results showed that mild hypothermia
increased SRSF5 mRNA expression in cumulus cells but not in oo-
cytes. Besides, SRSF5 mRNA expression was increased by the vitri-
fication procedure in both oocytes and cumulus cells. These results
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and non-vitrified groups (experiment 2). The control group was established as the reference group for each experiment.

contrast with what was observed in CIRBP and RBM3 mRNA
expression, where only mild hypothermia was responsible for most
of the changes. Although SRSF5 has been recently described as a
novel CIP [12], its mRNA expression responded differently from
CIRBP and RBM3.

The use of mild hypothermia sub-lethal stress and the vitrifi-
cation procedure lead to analyzing apoptotic-related transcripts in
this study. BCL2 is an anti-apoptotic gene that promotes cells sur-
vival by releasing mitochondrial cytochrome c [27], whereas BAX is
the first pro-apoptotic member activated during apoptotic condi-
tions, accelerating cell death [28]. Other studies have investigated
the effect of vitrification on the expression of both genes [25,26];
however, the results have been inconsistent. Our results showed
that mild hypothermia and vitrification affected BCL2 and BAX
mRNA expression. Taken together, the detrimental effects caused
by mild hypothermia and vitrification induced apoptotic pathways
in oocytes and cumulus cells were independent of the zr17-2 and
CIRBP exogenous supplementation. Consistent with this conclu-
sion, our BAX:BCL2 ratio data confirmed this hypothesis.

CIRBP has an important role in regulating inflammatory
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molecules like IL-1p and the NF-kB pathway [22], and extracellu-
larly, CIRBP acts as a damage-associated molecular signal [20].
Notably, IL-1f is a cytokine that plays a crucial role in inflammation,
stimulating its production and other pro-inflammatory cytokines
[48,49]. Cytokines operate as mediators between the immune and
reproductive systems and paracrine and autocrine ovarian regula-
tory factors [50—52]. In addition to ovarian macrophages and
monocytes, other ovarian cell types can produce cytokines, like the
granulosa cells [53]. Besides, the supplementation with IL-1§ and
tumor necrosis factor alpha stimulates the growth and maturation
of bovine oocytes during in vitro culture [54]. Our study showed an
upregulation of IL-16 mRNA expression in cumulus cells after
vitrification. However, our data cannot link the changes in IL-18
mRNA expression with the stimulation of the COCs growth after
warming. Further research is needed to test if IL-1f could stimulate
the COCs growth after warming to cope with the detrimental ef-
fects of vitrification. Somehow, increased concentrations of zr17-2
exogenous supplementation trigger the downregulation of IL-18
mRNA expression. These results suggest a link between the two
molecules, perhaps via a regulatory function of CIRBP accumulation
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[22], but further studies should be performed to define the exact
mechanism behind these results.

5. Conclusions

In conclusion, the current study has identified differences in the
mRNA expression of bovine oocytes and cumulus cells exposed to
mild hypothermia and vitrification. In addition, the exogenous
supplementation with zr17-2 to the maturation media has little
impact on the CIPs mRNA expression of both oocytes and cumulus
cells, but it affects IL-13 mRNA expression under physiological
temperatures and at the higher concentration used. Mild hypo-
thermia induced most of the mRNA expression changes observed in
this study. CIPs mRNA expression increased in response to mild
hypothermia. In addition, SRSF5 mRNA expression among the CIPs
included in this study was affected by vitrification. Vitrification also
affected the mRNA expression of apoptotic-related genes and IL-10.
Future studies are needed to assess whether the identified mRNA
expression changes might affect the overall oocyte quality and,
perhaps, the subsequent embryo development. Understanding how
CIPs influence oocyte maturation could help establish new pro-
tocols that prompt protection against vitrification-induced damage.
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