
Advances in Mathematics 401 (2022) 108318
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A Central Limit Theorem for inner functions

Artur Nicolau a,∗,1, Odí Soler i Gibert b,1

a Universitat Autònoma de Barcelona, Departament de Matemàtiques,
and Centre de Recerca Matemàtica, 08193 Barcelona, Spain
b Julius-Maximilians-Universität Würzburg, Institut für Mathematik, 
Emil-Fischer-Strasse 40, 97074 Würzburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 November 2020
Received in revised form 17 January 
2022
Accepted 17 February 2022
Available online 14 March 2022
Communicated by C. Fefferman

MSC:
primary 30D05, 30J05
secondary 37A05, 37F10

Keywords:
Inner functions
Aleksandrov-Clark measures
Central Limit Theorem

A Central Limit Theorem for linear combinations of iterates 
of an inner function is proved. The main technical tool is 
Aleksandrov Desintegration Theorem for Aleksandrov-Clark 
measures.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail addresses: artur@mat.uab.cat (A. Nicolau), odi.solerigibert@mathematik.uni-wuerzburg.de

(O. Soler i Gibert).
1 Both authors have been supported in part by the Generalitat de Catalunya (grant 2017 SGR 395), 

the Spanish Ministerio de Ciencia e Innovación (project MTM2017-85666-P) and the Spanish Research 
Agency (María de Maeztu Program CEX2020-001084-M). Second author has also been supported by the 
ERC project CHRiSHarMa no. DLV-682402.
https://doi.org/10.1016/j.aim.2022.108318
0001-8708/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.aim.2022.108318
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2022.108318&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:artur@mat.uab.cat
mailto:odi.solerigibert@mathematik.uni-wuerzburg.de
https://doi.org/10.1016/j.aim.2022.108318
http://creativecommons.org/licenses/by/4.0/


2 A. Nicolau, O. Soler i Gibert / Advances in Mathematics 401 (2022) 108318
1. Introduction and main results

Inner functions are analytic mappings from the unit disc D into itself whose radial 
limits are of modulus one at almost every point of the unit circle ∂D. Inner functions were 
introduced by R. Nevanlinna and after the pioneering work of brothers Riesz, Frostmann 
and Beurling, they have become a central notion in Analysis. See for instance [17]. Any 
inner function f induces a mapping from the unit circle into itself defined at almost 
every point z ∈ ∂D by f(z) = limr→1 f(rz). This boundary mapping will be also called 
f . It is well known that if f(0) = 0, normalized Lebesgue measure m in the unit circle 
is invariant under this mapping, that is, m(f−1(E)) = m(E) for any measurable set 
E ⊂ ∂D. Several authors have also studied the distortion of Hausdorff measures by 
this mapping. See [15] and [18]. Dynamical properties of the mapping f : ∂D → ∂D, as 
recurrence, ergodicity, mixing, entropy and others have been studied by Aaronson [1], 
Crazier [10], Doering and Mañe [11], Fernández, Melián and Pestana [14], [13], Neurwirth 
[19], Pommerenke [21], and others. Dynamical properties of inner functions have been 
recently used in several problems on the dynamics of meromorphic functions in simply 
connected Fatou components. See [5], [6] and [12].

It is well known that in many senses lacunary series behave as sums of independent 
random variables. Salem and Zygmund ([23] and [24]) proved a version of the Central 
Limit Theorem for lacunary series and, a few years later, Weiss proved a version of the 
Law of the Iterated Logarithm in this context ([26]). Our main result is a Central Limit 
Theorem for linear combinations of iterates of an inner function fixing the origin. It is 
worth mentioning that in our result no lacunarity assumption is needed. Recall that a 
sequence of measurable functions {fN} defined at almost every point in the unit circle 
converges in distribution to a (circularly symmetric) standard complex normal variable 
if and only if for any Borel set K ⊂ C such that its boundary ∂K has zero area one has

lim
N→∞

m ({z ∈ ∂D : fN (z) ∈ K}) = 1
2π

∫
K

e−|w|2/2 dA(w).

As it is usual we denote by fn the n-th iterate of the function f .

Theorem 1. Let f be an inner function with f(0) = 0 which is not a rotation. Let {an}
be a sequence of complex numbers. Consider

σ2
N =

N∑
n=1

|an|2 + 2 Re
N∑

k=1

f ′(0)k
N−k∑
n=1

anan+k, N = 1, 2, . . . (1.1)

Assume there exists a constant η > 0 such that

lim
N→∞

sup
{
|an|2 : n ≤ N

}
(∑N |an|2

)(1−η)/2 = 0. (1.2)

n=1
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Then

1√
2−1σN

N∑
n=1

anf
n

converges in distribution to a standard complex normal variable.

Let f be an inner function fixing the origin. Then it is well known that Lebesgue 
measure m is ergodic. Hence the classical Ergodic Theorem gives that

lim
N→∞

1
N

N∑
n=1

fn(z) = 0

at almost every point z ∈ ∂D. This can be understood as a version of the Law of 
Large Numbers. Our result provides the corresponding version of the Central Limit 
Theorem. Actually taking an = 1, n = 1, 2 . . ., in Theorem 1, one can easily show that 
limN→∞ σ2

N/Nσ2 = 1, where

σ2 = Re 1 + f ′(0)
1 − f ′(0) (1.3)

and we deduce the following result.

Corollary 2. Let f be an inner function with f(0) = 0 which is not a rotation. Then

1√
2−1N

N∑
n=1

fn

converges in distribution to a complex normal variable with mean 0 and variance σ2

given by (1.3), that is, for any Borel set K ⊂ C such that its boundary ∂K has zero area, 
we have

lim
N→∞

m

({
z ∈ ∂D : (2−1N)−1/2

N∑
n=1

fn(z) ∈ K

})
= 1

2πσ2

∫
K

e−|w|2/2σ2
dA(w).

Observe that when f ′(0) is close to 1 and hence f is close to be the identity map, the 
variance σ2 is large. However if f ′(0) is close to a unimodular constant different from 1, 
the variance is small. On the opposite side, if f ′(0) = 0, σ = 1.

Let H2 be the Hardy space of analytic functions in D whose Taylor coefficients are 
square summable. Let {an} be a sequence of complex numbers. It is easy to show (see 
Theorem 9) that 

∑
n anf

n converges in H2 if and only if 
∑

n |an|2 < ∞. A repetition 
of the proof of our main result gives the following version of the Central Limit Theorem 
for the tails.
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Theorem 3. Let f be an inner function with f(0) = 0 which is not a rotation. Let {an}
be a square summable sequence of complex numbers. Consider

σ2(N) =
∑
n≥N

|an|2 + 2 Re
∑
k≥1

f ′(0)k
∑
n≥N

anan+k, N = 1, 2, . . . (1.4)

Assume there exists a constant η > 0 such that

lim
N→∞

sup
{
|an|2 : n ≥ N

}
(∑

n≥N |an|2
)(1−η)/2 = 0. (1.5)

Then

1√
2−1σ(N)

∞∑
n=N

anf
n

converges in distribution to a standard complex normal variable.

Let S2
N =

∑N
n=1 |an|2. It is easy to show (see Theorem 9) that there exists a constant 

κ = κ(f) > 0 such that κ−1S2
N ≤ σ2

N ≤ κS2
N , N = 1, 2, . . .. When f ′(0) = 0 we 

have σN = SN but in general, both quantities do not coincide. However if the following 
uniform quasiorthogonality condition holds

lim
N→∞

supk≤N

∣∣∣∑N−k
n=1 anan+k

∣∣∣
S2
N

= 0, (1.6)

then limN→∞ SN/σN = 1 and Theorem 1 gives that

1√
2−1SN

N∑
n=1

anf
n

converges in distribution to a standard complex normal variable.
We now make some remarks on the assumption and proof of Theorem 1. Condition 

(1.2) implies that 
∑

n |an|2 = ∞, but one can not expect this last condition to be 
sufficient in Theorem 1. However note that if {an} is bounded, both conditions are 
equivalent. The proof of Theorem 1 uses two relevant properties of the iterates of an 
inner function fixing the origin. The first one is that the square of the modulus of the 
partial sums are uncorrelated. More concretely, given a set A of positive integers, consider 
the corresponding partial sum

ξ(A) =
∑
n∈A

anf
n.

If max(A) < min(B), we will show in Theorem 6 that
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∫
∂D

|ξ(A)|2|ξ(B)|2 dm =

⎛
⎝∫
∂D

|ξ(A)|2 dm

⎞
⎠
⎛
⎝∫
∂D

|ξ(B)|2 dm

⎞
⎠ . (1.7)

The second property provides an exponential decay of the higher order correlations of 
the iterates. More concretely, let εi = 1 or εi = −1 for i = 1, 2, . . . , k and n1 < . . . < nk

be positive integers satisfying nj − nj−1 ≥ q ≥ 1, j = 2, . . . , k. Denote ε = (ε1, . . . , εk)
and n = (n1, . . . , nk). For a positive integer n, denote by f−n the function defined by 
f−n(z) = fn(z), z ∈ ∂D. We will prove in Theorem 13 that there exists a constant 
C > 0, independent of the indices, such that

∣∣∣∣∣∣
∫
∂D

k∏
j=1

fεjnj dm

∣∣∣∣∣∣ ≤ Ckk!|f ′(0)|Φ(ε,n), k = 1, 2, . . . , (1.8)

if q is sufficiently large and where Φ is a certain function depending on the choice of 
indices that satisfies Φ(ε, n) ≥ kq/4. The main technical tool in the proof of both prop-
erties (1.7) and (1.8) is the theory of Aleksandrov-Clark measures and more concretely, 
the Aleksandrov Desintegration Theorem.

The paper is organized as follows. In Section 2 we introduce Aleksandrov-Clark mea-
sures and use them to prove property (1.7). In Section 3 we estimate the L2 and the L4

norm of ξ(A). In Section 4 we prove estimate (1.8). The proof of Theorem 1 is given in 
Section 5.

2. Aleksandrov-Clark measures and property (1.7)

We start with an elementary auxiliary result which is just a restatement of the invari-
ance of Lebesgue measure.

Lemma 4. Let f be an inner function with f(0) = 0.

(a) Let G be an integrable function on ∂D. Then
∫
∂D

G(f(z)) dm(z) =
∫
∂D

G(z) dm(z)

(b) Let k < j be positive integers. Then
∫
∂D

fkf j dm = f ′(0)j−k

Proof of Lemma 4. We can assume that G is the characteristic function of a measurable 
set E ⊂ ∂D. Since m(f−1(E)) = m(E), the identity (a) follows. Using (a) and Cauchy 
formula, we have
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∫
∂D

fkf j dm =
∫
∂D

zf j−k(z) dm(z) = f ′(0)j−k. �

Given an analytic mapping from the unit disc into itself and a point α ∈ ∂D, the 
function (α+ f)/(α− f) has positive real part and hence there exists a positive measure 
μα = μα(f) in the unit circle and a constant Cα ∈ R such that

α + f(w)
α− f(w) =

∫
∂D

z + w

z − w
dμα(z) + iCα, w ∈ D. (2.1)

The measures {μα : α ∈ ∂D} are called the Aleksandrov-Clark measures of the function 
f . Clark introduced them in his paper [9] and many of their deepest properties were 
found by Aleksandrov in [2], [3] and [4]. The two surveys [20] and [22] as well as [8, 
Chapter IX] contain their main properties and a wide range of applications. Observe 
that if f(0) = 0 then μα are probability measures. Moreover, f is inner if and only if μα

is a singular measure for some (all) α ∈ ∂D. From the definition it is clear that, in the 
case that f is an inner function, the mass of μα is carried by the set f−1({α}) ⊂ ∂D. 
Assume f(0) = 0. Computing the first two derivatives in formula (2.1) and evaluating 
at the origin, we obtain

∫
∂D

z dμα(z) = f ′(0)α, α ∈ ∂D, (2.2)

and
∫
∂D

z2 dμα(z) = f ′′(0)
2 α + f ′(0)

2
α2, α ∈ ∂D. (2.3)

Our main technical tool is Aleksandrov Desintegration Theorem which asserts that

m =
∫
∂D

μα dm(α) (2.4)

holds true in the sense that∫
∂D

Gdm =
∫
∂D

∫
∂D

G(z) dμα(z) dm(α),

for any integrable function G on the unit circle. Aleksandrov Desintegration Theorem 
will be used in our next auxiliary result.

Lemma 5. Let f be an inner function with f(0) = 0. For k = 1, 2, . . . , p, let nk, jk, be 
positive integers such that
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max{nk, jk} < min{nk+1, jk+1}, k = 1, . . . , p− 1. (2.5)

Then
∫
∂D

p∏
k=1

fnkf jkdm =
p∏

k=1

∫
∂D

fnkf jkdm. (2.6)

Proof of Lemma 5. We argue by induction on p. Assume (2.6) holds for p − 1 products. 
We can assume n1 < j1. By part (a) of Lemma 4 we have

∫
∂D

p∏
k=1

fnkf jk dm =
∫
∂D

zf j1−n1(z)
p∏

k=2

fnk−n1(z)f jk−n1(z) dm(z).

Let {μα : α ∈ ∂D} be the Aleksandrov-Clark measures of the inner function f j1−n1 . The 
Aleksandrov Desintegration Theorem (2.4) gives that last integral can be written as

∫
∂D

∫
∂D

zα

p∏
k=2

fnk−j1(α)f jk−j1(α) dμα(z) dm(α).

By (2.2) and part (b) of Lemma 4, we have
∫
∂D

z dμα(z) = f ′(0)
j1−n1

α = α

∫
∂D

fn1f j1 dm.

Hence

∫
∂D

p∏
k=1

fnkf jk dm =

⎛
⎝∫
∂D

fn1f j1 dm

⎞
⎠∫

∂D

p∏
k=2

fnk−j1f jk−j1 dm

and we can apply the inductive assumption. The invariance property of part (a) of 
Lemma 4 finishes the proof. �

Our next result is the first important tool in the proof of Theorem 1.

Theorem 6. Let f be an inner function with f(0) = 0. Let Ak, k = 1, 2, . . . , p, be finite 
collections of positive integers such that

max{n : n ∈ Ak} < min{n : n ∈ Ak+1}, k = 1, . . . , p− 1. (2.7)

Consider

ξk =
∑

anf
n.
n∈Ak
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Then
∫
∂D

p∏
k=1

|ξk|2 dm =
p∏

k=1

∫
∂D

|ξk|2 dm.

Proof of Theorem 6. Al almost every point of the unit circle we have

|ξk|2 =
∑
n∈Ak

|an|2 +
∑

(anajfnf j + ajanf jfn),

where the last sum is taken over all indices n, j ∈ Ak with j > n. Hence 
∏

|ξk|2 can be 
written as a linear combination of terms of the form

∏
fnkf jk ,

where nk, jk ∈ Ak. Observe that (2.7) gives the assumption (2.5) in Lemma 5. Now 
Lemma 5 finishes the proof. �
3. Norms of partial sums

In this Section we will use Aleksandrov-Clark measures to estimate the L2 and L4

norms of linear combinations of iterates of an inner function fixing the origin. The main 
result of this Section is Theorem 9. It is worth mentioning that the asymptotic behavior 
of the Aleksandrov-Clark measures of iterates of an inner function has been studied in 
[16], but we will not use their results. As before, if n is a positive integer, we will use 
the notation f−n to denote the function defined by f−n(z) = fn(z), for almost every 
z ∈ ∂D. We start with a technical auxiliary result which will be used later.

Lemma 7. Let f be an inner function with f(0) = 0 which is not a rotation. Let εk = 1
or εk = −1, k = 1, 2, 3, 4.

(a) Let nk, k = 1, 2, 3, 4, be positive integers with max{n1, n2} < min{n3, n4}. Then

I = I(ε1n1,−ε1n2, n3, n4) =
∫
∂D

fε1n1f−ε1n2fn3fn4 dm = 0.

(b) Let n1 < n2 < n3 be positive integers and

II = II(ε1n1, ε2n2, ε3n3) =
∫
∂D

fε1n1(fε2n2)2fε3n3 dm.

Then there exists a constant C = C(f) > 0 independent of the indices n1, n2, n3, 
such that |II| ≤ C|f ′(0)|n3−n1 .
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(c) Let n1 < n2 < n3 be positive integers and

III = III(ε1n1, ε2n2, ε3n3) =
∫
∂D

(fε1n1)2fε2n2fε3n3 dm.

Then there exists a constant C = C(f) > 0 independent of the indices n1, n2, n3, 
such that |III| ≤ 1 if n2 = n1 + 1 and n3 ≤ n2 + 2, and |III| ≤ C|f ′(0)|n3−n1

otherwise.
(d) Let n1 < n2 < n3 < n4 be positive integers and

IV = IV (ε1n1, ε2n2, ε3n3, ε4n4) =
∫
∂D

fε1n1fε2n2fε3n3fε4n4 dm.

Then there exists a constant C = C(f) > 0 independent of the indices n1, n2, n3, n4, 
such that |IV | ≤ C|f ′(0)|n2−n1+n4−n3 if n4 − n3 > 2, and |IV | ≤ C|f ′(0)|n3−n1 if 
n4 − n3 ≤ 2. Moreover |IV | = |f ′(0)|n2−n1+n4−n3 if ε1ε2 = ε3ε4 = −1.

Proof of Lemma 7. Let C denote a positive constant which may depend on the function 
f but not on the indices {ni}, whose value may change from line to line.

(a) We can assume that n1 < n2. Part (a) of Lemma 4 gives that

I =
∫
∂D

zε1f−ε1(n2−n1)(z)fn3−n1(z)fn4−n1(z) dm(z).

Let {μα : α ∈ ∂D} be the Aleksandrov-Clark measures of fn2−n1 . The Aleksandrov 
Desintegration Theorem (2.4) gives

I =
∫
∂D

∫
∂D

zε1α−ε1fn3−n2(α)fn4−n2(α) dμα(z) dm(α).

By (2.2)

∫
∂D

zε1 dμα(z) = aαε1 , α ∈ ∂D,

where |a| = |f ′(0)|n2−n1 . Since f(0) = 0, we deduce

|I| = |f ′(0)|n2−n1

∣∣∣∣∣∣
∫

fn3−n2(α)fn4−n2(α) dm(α)

∣∣∣∣∣∣ = 0.

∂D
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(b) We can assume ε1 = 1. Part (a) of Lemma 4 gives that

II =
∫
∂D

z(fε2(n2−n1)(z))2fε3(n3−n1)(z) dm(z).

Let {μα : α ∈ ∂D} be the Aleksandrov-Clark measures of fn2−n1 . The Aleksandrov 
Desintegration Theorem (2.4) gives

II =
∫
∂D

∫
∂D

zα2ε2fε3(n3−n2)(α) dμα(z) dm(α).

By (2.2)
∫
∂D

z dμα(z) = f ′(0)
n2−n1

α, α ∈ ∂D.

Hence

II = f ′(0)
n2−n1

∫
∂D

α1+2ε2fε3(n3−n2)(α) dm(α)

Since 1 +2ε2 ≤ 3, the modulus of last integral is bounded by C|f ′(0)|n3−n2 if n3−n2 > 2
and by 1 otherwise. This proves (b).

(c) We can assume ε1 = 1. Applying part (a) of Lemma 4 and Aleksandrov Desinte-
gration Theorem as before, we have

III =
∫
∂D

∫
∂D

z2αε2fε3(n3−n2)(α) dμα(z) dm(α),

where {μα : α ∈ ∂D} are the Aleksandrov-Clark measures of g = fn2−n1 . Applying (2.3), 
we obtain

III = g′′(0)
2

∫
∂D

α1+ε2fε3(n3−n2)(α) dm(α) + g′(0)2
∫
∂D

α2+ε2fε3(n3−n2)(α) dm(α).

Since 2 + ε2 ≤ 3, both integrals are bounded by C|f ′(0)|n3−n2 if n3 − n2 > 2, and by 
1 if n3 − n2 ≤ 2. If n2 − n1 > 1, we have that |g′′(0)|/2 + |g′(0)2| ≤ C|f ′(0)|n2−n1 . If 
n2 − n1 = 1, we have that |g′′(0)|/2 + |g′(0)2| ≤ 2. This proves (c).

(d) We can assume ε1 = 1. Arguing as before we have

IV = f ′(0)
n2−n1

∫
α1+ε2fε3(n3−n2)(α)fε4(n4−n2)(α) dm(α)
∂D
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If ε2 = −1, we repeat the argument and prove that |IV | ≤ |f ′(0)|n2−n1+n4−n3 . Moreover 
if ε2 = −1 and if ε3ε4 = −1, we have |IV | = |f ′(0)|n2−n1+n4−n3 , as stated in the last part 
of (d). If ε2 = 1, let {μα : α ∈ ∂D} be the Aleksandrov-Clark measures of g = fn3−n2 . 
The Aleksandrov Desintegration Theorem (2.4) gives that last integral can be written 
as ∫

∂D

∫
∂D

z2αε3fε4(n4−n3)(α) dμα(z) dm(α). (3.1)

By (2.3)

∫
∂D

z2 dμα(z) = g′′(0)
2 α + g′(0)2α2, α ∈ ∂D.

Hence the double integral in (3.1) can be written as

g′′(0)
2

∫
∂D

α1+ε3fε4(n4−n3)(α) dm(α) + g′(0)2
∫
∂D

α2+ε3fε4(n4−n3)(α) dm(α).

Since 2 + ε3 ≤ 3, both integrals are bounded by C|f ′(0)|n4−n3 if n4 − n3 > 2, and by 
1 if n4 − n3 ≤ 2. If n3 − n2 > 1, we have that |g′′(0)|/2 + |g′(0)2| ≤ C|f ′(0)|n3−n2 . If 
n3 −n2 = 1, we just use the trivial estimate |g′′(0)|/2 + |g′(0)2| ≤ 2. This proves (d). �

We will now prove an elementary auxiliary result which will be used several times.

Lemma 8. Let A be a collection of positive integers and let {an} be a sequence of complex 
numbers. Fix λ ∈ C with |λ| < 1. Then

∣∣∣∣∣
∑

n,k∈A,k>n

anakλ
k−n

∣∣∣∣∣ ≤ |λ|
1 − |λ|

∑
n∈A

|an|2.

Proof of Lemma 8. Writing j = k − n we have that
∑

n,k∈A,k>n

anakλ
k−n =

∑
j>0

λj
∑

n,n+j∈A
anan+j ,

where the last sum is taken over all indices n ∈ A such that n + j ∈ A. It is also 
understood that this sum vanishes if there is no n ∈ A such that n + j ∈ A. By Cauchy-
Schwarz’s inequality,

∣∣∣∣∣∣
∑

anan+j

∣∣∣∣∣∣ ≤
∑

|an|2.

n,n+j∈A n∈A



12 A. Nicolau, O. Soler i Gibert / Advances in Mathematics 401 (2022) 108318
This finishes the proof. �
Let H2 be the Hardy space of analytic functions in the unit disc g(w) =

∑
n≥0 anw

n, 
w ∈ D, such that

‖g‖2
2 = sup

r<1

∫
∂D

|g(rz)|2 dm(z) =
∞∑

n=0
|an|2 < ∞.

Any function g ∈ H2 has a finite radial limit g(z) = limr→1 g(rz) at almost every z ∈ ∂D

and

‖g‖2
2 =

∫
∂D

|g(z)|2 dm(z).

See [17]. For 0 < p < ∞ let ‖g‖p denote the Lp norm on the unit circle of the function g. 
Next result provides estimates of the L2 and L4 norms of linear combinations of iterates 
of an inner function. It will be applied to finite linear combinations. For t, z ∈ C, let 
〈t, z〉 = Re(tz) be the standard scalar product in the plane.

Theorem 9. Let f be an inner function with f(0) = 0 which is not a rotation and let 
{an} be a sequence of complex numbers with 

∑
n |an|2 < ∞. Consider

ξ =
∞∑

n=1
anf

n

and

σ2 =
∞∑

n=1
|an|2 + 2 Re

∞∑
k=1

f ′(0)k
∞∑

n=1
anan+k.

(a) We have ‖ξ‖2
2 = σ2 and

κ−1
∞∑

n=1
|an|2 ≤ σ2 ≤ κ

∞∑
n=1

|an|2,

where κ = (1 + |f ′(0)|)(1 − |f ′(0)|)−1.
(b) For any t ∈ C we have

∫
∂D

〈t, ξ〉2 dm = 1
2 |t|

2σ2.

(c) There exists a constant C = C(f) > 0 independent of the sequence {an}, such that 
‖ξ‖4 ≤ C‖ξ‖2.



A. Nicolau, O. Soler i Gibert / Advances in Mathematics 401 (2022) 108318 13
Proof of Theorem 9. At almost every point of the unit circle we have

|ξ|2 =
∞∑

n=1
|an|2 + 2 Reh, (3.2)

where

h =
∑

n,k≥1,k>n

anakf
kfn. (3.3)

Part (b) of Lemma 4 gives

‖ξ‖2
2 =

∞∑
n=1

|an|2 + 2 Re
∑

n,k≥1,k>n

anakf
′(0)k−n, (3.4)

which is the identity in (a). Next we prove the estimate in (a). To that end, let us first 
denote

bk,n =
∫
∂D

fkfn dm

and recall that, by part (b) of Lemma 4, it holds that bn,k = f ′(0)n−k if n ≥ k and 

bn,k = f ′(0)
k−n

if n < k. Now, rewrite identity (3.4) as

∥∥∥∥∑
n

anf
n

∥∥∥∥
2

2
=
∑
n,k

anakbn,k

and consider the Toeplitz matrix T whose entries are bn,k = bn−k,0, n, k = 1, 2, . . . and 
its symbol

s(z) =
∞∑

n=−∞
bn,0z

n, z ∈ ∂D.

It is well known that T diagonalizes and its eigenvalues are contained in the interval in 
the real line whose endpoints are the essential infimum and the essential supremum of 
s. See [7]. Since

s(z) = 1 − |f ′(0)|2

|1 − f ′(0)z|2
, z ∈ ∂D,

the eigenvalues of T are between κ−1 and κ. This finishes the proof of part (a). Since 
f(0) = 0, the mean value property gives that
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∫
∂D

ξ2 dm = 0

and (b) follows. We now prove (c). Let C(f) denote a positive constant only depending 
on f whose value may change from line to line. The identity (3.2) gives that at almost 
every point of the unit circle, we have

|ξ|4 =
( ∞∑

n=1
|an|2

)2

+ 4 Reh
∞∑

n=1
|an|2 + 4(Reh)2,

where h is defined in (3.3). Observe that

∫
∂D

h dm =
∑

n,k≥1,k>n

anakf
′(0)k−n.

Hence Lemma 8 gives that

∣∣∣∣∣∣
∫
∂D

h dm

∣∣∣∣∣∣ ≤
|f ′(0)|

1 − |f ′(0)|

∞∑
n=1

|an|2. (3.5)

Next we will prove that there exists a constant C = C(f) > 0 such that

∫
∂D

|h|2 dm ≤ C

( ∞∑
n=1

|an|2
)2

. (3.6)

Observe that (3.5) and (3.6) give the estimate in (c). Write

cn = an
∑
k>n

akf
kfn.

Using the elementary identity

∣∣∣∣∣
∞∑

n=1
cn

∣∣∣∣∣
2

=
∞∑

n=1
|cn|2 + 2 Re

∞∑
n=1

cn
∑
j>n

cj ,

we can write ∫
∂D

|h|2 dm = A + 2 ReB,

where
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A =
∞∑

n=1
|an|2

∫
∂D

∣∣∣∣∣
∑
k>n

akf
k

∣∣∣∣∣
2

dm

and

B =
∞∑

n=1
an
∑
k>n

ak
∑
j>n

aj
∑
l>j

al

∫
∂D

fkfnf jf l dm. (3.7)

By part (a) we have

∫
∂D

∣∣∣∣∣
∑
k>n

akf
k

∣∣∣∣∣
2

dm ≤ C(f)
∑
k>n

|ak|2

and we deduce that A ≤ C(f) 
(∑

n |an|2
)2. We now estimate B. If n < k and n < j < l, 

we have ∣∣∣∣∣∣
∫
∂D

fnfkf jf l dm

∣∣∣∣∣∣ = |f ′(0)|r−n+|l−s|,

where r = min{k, j} and s = max{k, j}. This estimate follows from last statement in 
part (d) of Lemma 7. Part (b) of Lemma 7 gives that

∣∣∣∣∣∣
∫
∂D

fn(fk)2f l dm

∣∣∣∣∣∣ ≤ C(f)|f ′(0)|l−n,

if n < k < l. The sum over j > n in (3.7) will be splitted in three terms corresponding 
to j > k, j = k and j < k. Then |B| ≤ C(f)(B1 + B2 + B3) where

B1 =
∑
n≥1

|an|
∑
k>n

|ak|
∑
j>k

|aj |
∑
l>j

|al||f ′(0)|k−n+l−j ,

B2 =
∑
n≥1

|an|
∑
k>n

|ak|2
∑
l>k

|al||f ′(0)|l−n,

B3 =
∑
n≥1

|an|
∑
k>n

|ak|
∑

n<j<k

|aj |
∑
l>j

|al||f ′(0)|j−n+|l−k|.

Observe that

B1 =
∑
n≥1

|an|
∑
k>n

|ak||f ′(0)|k−n
∑
j>k

|aj |
∑
l>j

|al||f ′(0)|l−j .

Applying Lemma 8 we deduce that B1 ≤ C(f) 
(∑

n≥1 |an|2
)2

. Similarly
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B2 ≤

⎛
⎝∑

k≥1

|ak|2
⎞
⎠∑

n≥1
|an|

∑
l>n

|al||f ′(0)|l−n,

which again by Lemma 8 is bounded by C(f) 
(∑

k≥1 |ak|2
)2

. Finally

B3 =
∑
n≥1

|an|
∑
k>n

|ak|
∑

n<j<k

|aj ||f ′(0)|j−n

⎛
⎝∑

l>k

|al||f ′(0)|l−k +
∑

j<l≤k

|al||f ′(0)|k−l

⎞
⎠ .

Using the trivial estimate
∑

n<j<k

|aj ||f ′(0)|j−n ≤
∑
j>n

|aj ||f ′(0)|j−n,

we deduce that B3 ≤ B4 + B5 where

B4 =
∑
n≥1

|an|
∑
j>n

|aj ||f ′(0)|j−n
∑
k>n

|ak|
∑
l>k

|al||f ′(0)|l−k

and

B5 =
∑
n≥1

|an|
∑
j>n

|aj ||f ′(0)|j−n
∑
k>n

|ak|
∑

n<l≤k

|al||f ′(0)|k−l.

Applying Lemma 8 we have B4 ≤ C(f) 
(∑

n≥1 |an|2
)2

. Writing t = k − l we have

∑
k>n

|ak|
∑
l<k

|al||f ′(0)|k−l ≤
∑
t≥1

|f ′(0)|t
∑
l≥1

|al||al+t| ≤
|f ′(0)|

1 − |f ′(0)|
∑
n≥1

|an|2.

We deduce that B5 ≤ C(f) 
(∑

n≥1 |an|2
)2

. This finishes the proof. �
4. Higher order correlations

Next we will use Aleksandrov-Clark measures to estimate certain integrals which will 
appear in the proof of Theorem 1. The main result of this Section is Theorem 13. We 
start giving bounds for the size of the iterates fn and of their derivatives at the origin.

Lemma 10. Let f be an analytic mapping from the unit disc into itself with f(0) = 0 and 
0 < |f ′(0)| < 1. Then, there exists an integer d = d(f) > 0 such that

|fn(w)| < |f ′(0)|n(1 − |w|)−d, w ∈ D,

for every n ≥ 1.
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Proof of Lemma 10. This is a minor modification of [21, Lemma 2]. We include the 
argument for completeness. Let us denote a = |f ′(0)| and consider the function

ψ(w) = w
a + w

1 + aw
, w ∈ D,

denote its n-th iterate by ψn and observe that, by Schwarz’s Lemma and induction, we 
have

|fn(w)| ≤ ψn(|w|), w ∈ D, (4.1)

for every n ≥ 1. Next we use the construction of the Königs function of ψ (see [25, 
pp. 89–93]). Define for each n ≥ 1 the function

gn(w) = 1
an

ψn(w), w ∈ D.

It is known that {gn} converges uniformly on compact subsets of D to g(w) = w + . . .

for w ∈ D, satisfying g(ψ(w)) = ag(w). Moreover, for 0 ≤ x < 1 we have that

gn+1(x) = ψ(ψn(x))
an+1 = gn(x)1 + an−1gn(x)

1 + an+1gn(x) ≥ gn(x),

so that gn(x) ≤ g(x) for every n ≥ 1.
Next, since a > 0, there exists δ = δ(f) > 0 such that ψ is univalent on {|w| < δ}

and, thus, ψn and gn are also univalent in this region by Schwarz’s Lemma. By Koebe 
Distortion Theorem, there exists ε = ε(f) > 0 such that |g(w)| < 1 if |w| < ε. Now take 
x0 = ε and, for n ≥ 1, let xn+1 = ψ−1(xn). Observe that Schwarz’s Lemma implies that 
xn+1 > xn for every n ≥ 0. Let d be a positive integer that will be determined later on. 
We want to show that

g(x) < (1 − x)−d, 0 ≤ x ≤ xn, (4.2)

for every n ≥ 0. By the choice of x0, it is clear that (4.2) holds for n = 0. Assume that 
(4.2) holds for n and let x0 ≤ x ≤ xn+1. By construction, we have that 0 < ψ(x) ≤ xn. 
Therefore, we get

g(x) = 1
a
g(ψ(x)) < 1

a
(1 − ψ(x))−d = 1

a

(
1 + ax

1 + x

)d

(1 − x)−d.

Since x ≥ x0 = ε, we get the bound

g(x) < 1
(

1 + aε
)d

(1 − x)−d.

a 1 + ε
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Hence, using that a = |f ′(0)| < 1, we can choose d = d(f) large enough and independent 
of n so that (4.2) holds. Note that, since xn → 1, one has in fact that (4.2) is valid for 
0 ≤ x < 1. Taking (4.1) and applying (4.2), we get

|fn(w)| ≤ angn(|w|) ≤ ang(|w|) < an(1 − |w|)−d

as we wanted to see. �
Lemma 11. Let f be an analytic mapping from the unit disc into itself with f(0) = 0 and 
a = |f ′(0)| < 1. Let k, l, n be positive integers with l ≤ n and consider g(w) = (fn(w))k
for w ∈ D. Then there exists n0 = n0(f) > 0 such that for n ≥ n0 we have

|gl)(0)|
l! ≤ akn/2.

Proof of Lemma 11. Observe first that if a = 0, the result holds trivially. Indeed, if f
has a zero at the origin of multiplicity m ≥ 1, then g has a zero of multiplicity kmn at 
the origin. Thus, if m ≥ 2 and l ≤ n, we have that gl)(0) = 0.

Assume now that a > 0. In this case, Lemma 10 asserts that there is a positive integer 
d = d(f) for which

|fn(w)| ≤ an(1 − |w|)−d, w ∈ D,

for n = 1, 2, . . .. Hence, Cauchy’s estimate gives

|gl)(0)|
l! ≤ max{|g(w)| : |w| = r}

rl
≤ akn

rl(1 − r)kd , 0 < r < 1.

Since l ≤ n we obtain

|gl)(0)|
l! ≤ akn

rn(1 − r)kd , 0 < r < 1. (4.3)

Fix r such that a1/4 < r < 1. Then there exists n0 = n0(f, r) such that

an/2

rn(1 − r)d ≤ an/4

(1 − r)d < 1,

if n ≥ n0. Since k ≥ 1 we deduce that

akn/2

rn(1 − r)kd ≤ an/2

rn(1 − r)d < 1.

Hence, estimate (4.3) gives

|gl)(0)| ≤ akn/2. �

l!
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Let f be an inner function with f(0) = 0 and let {μα : α ∈ ∂D} be its Aleksandrov-
Clark measures. Recall that (2.1) gives that for any α ∈ ∂D, there exists a constant 
Cα ∈ R such that

α + f(w)
α− f(w) =

∫
∂D

z + w

z − w
dμα(z) + iCα, w ∈ D.

Expanding both terms in power series, for any positive integer l we have

∫
∂D

zl dμα(z) =
l∑

k=1

αk

∫
∂D

f(z)kzl dm(z), α ∈ ∂D.

Hence for any integer l, the l-th moment of μα is a trigonometric polynomial in the 
variable α of degree less or equal than |l|. We will need to estimate the coefficients of 
this trigonometric polynomial.

Lemma 12. Let f be an inner function with f(0) = 0 and a = |f ′(0)| < 1. Let l, n be 
integers with 1 ≤ |l| ≤ n and let {μα : α ∈ ∂D} be the Aleksandrov-Clark measures of 
fn. Then there exists a constant n0 = n0(f) > 0 such that if n ≥ n0, the coefficients of 
the trigonometric polynomial

∫
∂D

zl dμα(z)

are bounded by an/2 for any α ∈ ∂D.

Proof of Lemma 12. We can assume l > 0. Then

∫
∂D

zl dμα(z) =
l∑

k=1

αk g
l)
k (0)
l! , α ∈ ∂D,

where gk(w) = (fn(w))k, w ∈ D. Lemma 11 gives that

|gl)k (0)|
l! ≤ akn/2

if n is sufficiently large. Since k ≥ 1, the proof is completed. �
We are now ready to prove the main result of this Section. As before, if n is a positive 

integer, we will use the notation f−n to denote the function defined by f−n(z) = fn(z), 
for almost every z ∈ ∂D.
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Theorem 13. Let f be an inner function with f(0) = 0 and a = |f ′(0)| < 1. Let 1 ≤ k ≤ q

be positive integers. Let ε = {εj}kj=1 where εj = 1 or εj = −1, and let n = {nj}kj=1 where 
n1 < n2 < . . . < nk are positive integers with nj+1 − nj > q for any j = 1, 2, . . . , k − 1. 
Consider

I(ε,n) =

∣∣∣∣∣∣
∫
∂D

k∏
j=1

fεjnj dm

∣∣∣∣∣∣
Then there exist constants C = C(f) > 0, q0 = q0(f) > 0 independent of ε and of n, 
such that if q ≥ q0 we have

I(ε,n) ≤ Ckk!aΦ(ε,n), k = 1, 2, . . . ,

where Φ(ε, n) =
∑k−1

j=1 δj(nj+1 − nj), with δj ∈ {0, 1/2, 1} for any j = 1, . . . , k − 1, and 
with δ1 = 1 and δk−1 ≥ 1/2. In addition, for j = 2, . . . , k − 1 the coefficient δj = 1 if 
and only if δj−1 = 0. Furthermore, if δj−1 > 0, the coefficient δj depends on εj+1, . . . , εk
and nj , . . . , nk for j = 2, . . . , k − 1.

Proof of Theorem 13. We first prove the following estimate

Claim 14. We have

I(ε,n) ≤ |f ′(0)|n2−n1 max
{
I({ε3, . . . , εk}, {n3 − n2, . . . , nk − n2}),

∣∣∣∣∣∣
∫
∂D

z2
k∏

i=3
fεi(ni−n2)(z) dm(z)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∫
∂D

z−2
k∏

i=3
fεi(ni−n2)(z) dm(z)

∣∣∣∣∣∣
}

To prove Claim 14 we can assume ε1 = 1. By Lemma 4 and Aleksandrov Desintegra-
tion Theorem we have

I(ε,n) =

∣∣∣∣∣∣
∫
∂D

∫
∂D

zαε2

k∏
i=3

fεi(ni−n2)(α) dμα(z) dm(α)

∣∣∣∣∣∣ ,
where {μα : α ∈ ∂D} are the Aleksandrov-Clark measures of fn2−n1 . By (2.2) we have

∫
∂D

z dμα(z) = f ′(0)
n2−n1

α, α ∈ ∂D.

Hence if ε2 = −1, we obtain

I(ε,n) = an2−n1I({ε3, . . . , εk}, {n3 − n2, . . . , nk − n2})
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and if ε2 = 1, we obtain

I(ε,n) = an2−n1

∣∣∣∣∣∣
∫
∂D

z2
k∏

i=3
fεi(ni−n2)(z) dm(z)

∣∣∣∣∣∣ .
This proves Claim 14. We now prove

Claim 15. For any integers k, l, j with 0 < |l| < j and 0 < j < k, we have
∣∣∣∣∣∣
∫
∂D

zl
k∏

i=j

fεi(ni−nj−1)(z) dm(z)

∣∣∣∣∣∣ ≤

≤ ja(nj−nj−1)/2max|n|≤|l|+1

⎧⎨
⎩
∣∣∣∣∣∣
∫
∂D

zn
k∏

i=j+1
fεi(ni−nj)(z) dm(z)

∣∣∣∣∣∣
⎫⎬
⎭

By Aleksandrov Desintegration Theorem (2.4) we have

∫
∂D

zl
k∏

i=j

fεi(ni−nj−1)(z) dm(z) =
∫
∂D

∫
∂D

zlαεj

k∏
i=j+1

fεi(ni−nj)(α) dμα(z) dm(α),

where {μα : α ∈ ∂D} are the Aleksandrov-Clark measures of fnj−nj−1 . Since l �= 0, 
according to Lemma 12, the moment

∫
∂D

zl dμα(z), α ∈ ∂D,

is a polynomial in the variable α of degree at most |l| < j whose coefficients are bounded 
by a(nj−nj−1)/2. This proves Claim 15.

The proof of Theorem 13 proceeds as follows. We first estimate I(ε, n) by the modulus 
of one of the three integrals in the right hand side of Claim 14 and the factor an2−n1 , 
that corresponds to choosing δ1 = 1. Note that any of these three integrals involve k− 2
products of iterates of f . In addition, the integral yielding the maximum in Claim 14
depends only on ε3, . . . , εk and on n2, . . . , nk. Now if the integral giving the maximum is 
the first one, we apply Claim 14 again, obtaining the factor an4−n3 and this gives δ2 = 0
and δ3 = 1. Otherwise we apply Claim 15, obtaining a factor 2a(n3−n2)/2, which corre-
sponds to choosing δ2 = 1/2. Assume that we have applied this procedure to determine 
the values of δ1, . . . , δj−1. We continue applying Claim 14 or 15 depending on which 
integral is yielding the maximum in the previous step, which depends on εj+1, . . . , εk
and nj , . . . , nk. Observe that when Claim 14 is applied, the number of factors of iterates 
of f is reduced by two units and we obtain the factor anj+2−nj+1 , which corresponds to 
fixing δj = 0 and δj+1 = 1. When Claim 15 is applied, we obtain the factor ja(nj+1−nj)/2, 
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corresponding to taking δj = 1/2, and the number of factors of iterates of f is reduced 
by one unit. We continue applying this process at least k/2 times and at most k − 2
times, until we reach integrals of the form

∫
∂D

zlfεk(nk−nk−1)(z) dm(z), |l| < k − 1

or ∫
∂D

fεk−1(nk−1−nk−2)fεk(nk−nk−2) dm.

Let g = fnk−nk−1 . The modulus of the first integral is |gl)(0)|/l!. Since |l| < q <

nk − nk−1, if q is sufficiently large, Lemma 11 gives that last expression is bounded by 
a(nk−nk−1)/2. The modulus of the second integral is bounded by ank−nk−1 . This shows 
that δk−1 ≥ 1/2 and concludes the proof. �

In the proof of Theorem 1 we will split the partial sum into finitely many terms such 
that the sum of the variances of these terms is asymptotically equivalent to the variance 
of the initial partial sum. Next auxiliary result provides sufficient conditions for this 
splitting.

Lemma 16. Let {an} be a sequence of complex numbers and λ ∈ C with |λ| < 1. Consider 
the sequence

σ2
N =

N∑
n=1

|an|2 + 2 Re
N∑

k=1

λk
N−k∑
n=1

anan+k, N = 1, 2 . . .

For N > 1, let Aj = Aj(N), j = 1, . . . , M = M(N), be pairwise disjoint sets of 
consecutive positive integers smaller than N . Consider

σ2(Aj) =
∑
n∈Aj

|an|2 + 2 Re
∑
k≥1

λk
∑

n∈Aj : n+k∈Aj

anan+k, j = 1, 2 . . . ,M.

Let A = ∪Aj. Assume

lim
N→∞

∑
n∈A |an|2∑N
n=1 |an|2

= 1 (4.4)

and

lim
j→∞

max{|an|2 : n ∈ Aj}∑
|a |2 = 0. (4.5)
n∈Aj
n
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Then

lim
N→∞

∑M
j=1 σ

2(Aj)
σ2
N

= 1.

Proof of Lemma 16. Let B be the set of positive integers smaller or equal to N which 
are not in the collection A. Then

σ2
N −

M∑
j=1

σ2(Aj) = A + 2 ReB + 2 ReC,

where

A =
∑
n∈B

|an|2,

B =
N∑

k=1

λk
∑
B(k)

anan+k,

where B(k) = {n ∈ B, n ≤ N − k} and

C =
M∑
j=1

∑
k≥1

λk
∑

A(j,k)

anan+k,

where A(j, k) = {n ∈ Aj : n ≤ N − k, n + k /∈ Aj}. According to part (a) of Theorem 9
we have

σ2
N ≥ 1 − |λ|

1 + |λ|

N∑
n=1

|an|2. (4.6)

Then,

A

σ2
N

≤ 1 + |λ|
1 − |λ|

A∑N
n=1 |an|2

which by assumption (4.4), tends to 0 as N → ∞. Similarly

|B|
σ2
N

≤ 1 + |λ|
1 − |λ|

∑N
k=1 |λ|k

∑
B(k) |an||an+k|∑N

n=1 |an|2

By Cauchy-Schwarz’s inequality

∑
|an||an+k| ≤

(∑
|an|2

)1/2( N∑
|an|2

)1/2
B(k) n∈B n=1
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and we deduce

B

σ2
N

≤ |λ| 1 + |λ|
(1 − |λ|)2

(∑
n∈B |an|2

)1/2
(∑N

n=1 |an|2
)1/2

which according to (4.4), tends to 0 as N → ∞. We now estimate C. For any k ≥ 1, 
Cauchy-Schwarz’s inequality gives

M∑
j=1

∑
A(j,k)

|an||an+k| ≤
∑

n∈A : n≤N−k

|an||an+k| ≤
N∑

n=1
|an|2.

Hence, applying (4.6), for any positive integer k0 we have

∑
k≥k0

|λ|k
∑M

j=1
∑

n∈A(j,k) |an||an+k|
σN

2 ≤ |λ|k0
1 + |λ|

(1 − |λ|)2 (4.7)

Fix ε > 0 and use assumption (4.5) to pick j0 = j0(ε) > 0 large enough so that

sup{|an|2 : n ∈ Aj} ≤ ε
∑
n∈Aj

|an|2 (4.8)

if j > j0. Pick also k0 such that |λ|k0 < ε. Fix k ≤ k0 and note that there are at most k
indices n ∈ Aj such that n + k /∈ Aj . Hence

∑
A(j,k)

|an||an+k| ≤ k|anj
||anj+k|,

where nj = nj(k) ∈ Aj is the index in Aj with nj +k ≤ N , where the product |an||an+k|
is maximum. Hence

M∑
j≥j0

∑
A(j,k)

|an||an+k| ≤ k

M∑
j≥j0

|anj
||anj+k

| ≤ k

⎛
⎝ M∑

j≥j0

|anj
|2
⎞
⎠

1/2⎛
⎝ M∑

j=1
|anj+k|2

⎞
⎠

1/2

.

Note that (4.8) gives that

∑
j≥j0

|anj
|2 ≤ ε

∑
j≥j0

∑
n∈Aj

|an|2 ≤ ε
N∑

n=1
|an|2.

Since there are at most k indices n ∈ Aj such that n + k /∈ Aj , we also have

M∑
|anj+k|2 ≤ k

N∑
|an|2.
j=1 n=1
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Applying (4.6) again, we deduce

∑
k≤k0

|λ|k
∑M

j≥j0

∑
A(j,k) |an||an+k|

σN
2 ≤ ε1/2 1 + |λ|

1 − |λ|C1, (4.9)

where C1 =
∑

k≥1 |λ|kk3/2. The estimates (4.7) and (4.9) give that

|C|
σ2
N

≤
∑

k≤k0
|λ|k

∑
j<j0

∑
A(j,k) |an||an+k|

σ2
N

+ 1 + |λ|
(1 − |λ|)2 ε + C1

1 + |λ|
1 − |λ|ε

1/2.

This finishes the proof. �
We close this Section with an elementary result which will be used in the proof of 

Theorem 1.

Lemma 17. Let {fn}, {gn} be two sequences of measurable functions defined at almost 
every point of the unit circle. Assume that there exists a constant C > 0 such that the 
following conditions hold

(a) supn ‖fn‖2 ≤ C and

lim
n→∞

∫
∂D

fn dm = 1

(b) gn(z) > −C for almost every z ∈ ∂D and limn→∞ ‖gn‖2 = 0.

Then

lim
n→∞

∫
∂D

fne
−gn dm = 1.

Proof of Lemma 17. Cauchy-Schwarz’s inequality gives

∣∣∣∣∣∣
∫
∂D

fn(e−gn − 1) dm

∣∣∣∣∣∣ ≤ ‖fn‖2‖e−gn − 1‖2.

Note that there exists a constant M = M(C) > 0 such that |e−x−1| ≤ M |x| if x ≥ −C. 
Hence ‖e−gn − 1‖2 ≤ M‖gn‖2, n = 1, 2, . . .. This finishes the proof. �
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5. Proof of Theorem 1

Proof of Theorem 1. Let

S2
N =

N∑
n=1

|an|2, N = 1, 2, . . .

Recall that by part (a) of Theorem 9, we have κ−1σ2
N ≤ S2

N ≤ κσ2
N , N = 1, 2, . . ., where 

κ = (1 + |f ′(0)|)(1 − |f ′(0)|)−1. Pick 0 < ε < η, pN = S1+ε
N and qN = S1−ε

N . Let C(f)
denote a positive constant only depending on f whose value may change from line to 
line. The proof is organized in several steps.

1. Splitting the Sum. In this first step, for N large, we will recursively find indices 
0 ≤ Mk < Nk < Mk+1 ≤ N , 1 ≤ k ≤ QN , such that if

ξk =
Nk∑

n=Mk+1
anf

n, ηk =
Mk+1∑

n=Nk+1
anf

n,

we have

lim
N→∞

QN

qN
= 1, (5.1)

∥∥∥∥∥
N∑

n=1
anf

n −
QN∑
k=1

(ξk + ηk)

∥∥∥∥∥
2

2

≤ 2C(f)pN , (5.2)

pN ≤
Nk∑

n=Mk+1
|an|2 ≤ 2pN , qN ≤

Mk+1∑
n=Nk+1

|an|2 ≤ 2qN , k = 1, 2, . . . , QN , (5.3)

lim
N→∞

1
σN

∥∥∥∥∥
N∑

n=1
anf

n −
QN∑
k=1

ξk

∥∥∥∥∥
2

= 0, (5.4)

Mk+1 −Nk ≥ qβN , Nk −Mk ≥ pγN , k = 1, 2, . . . , QN − 1, (5.5)

where β = (η − ε)(1 − ε)−1 and γ = (η + ε)(1 + ε)−1.
Pick M1 = 0 and let N1 be the smallest positive integer such that

N1∑
n=1

|an|2 ≥ pN .

The minimality of N1 gives that

N1∑
|an|2 ≤ pN + |aN1 |2.
n=1
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Now let M2 be the smallest positive integer such that

M2∑
n=N1+1

|an|2 ≥ qN .

As before, the minimality of M2 gives that

M2∑
n=N1+1

|an|2 ≤ qN + |aM2 |2.

We repeat this process until we arrive at an index Nk or Mk bigger than N . Let QN be 
the number of times this process is repeated, that is, k = 1, 2, . . . , QN . Then

RN =
N∑

MQN
+1

|an|2 ≤ 2pN . (5.6)

Since

N∑
n=1

anf
n −

QN∑
k=1

(ξk + ηk) =
N∑

n=MQN
+1

anf
n,

the estimate (5.2) follows from part (a) of Theorem 9. By construction we have

pN ≤
Nk∑

n=Mk+1
|an|2 ≤ pN + |aNk

|2 (5.7)

qN ≤
Mk+1∑

n=Nk+1
|an|2 ≤ qN + |aMk+1 |2, (5.8)

for k = 1, 2, . . . , QN . Fix δ > 0. Observe that the assumption (1.2) gives that |aNk
|2 +

|aMk+1 |2 < δqN if N is sufficiently large. Taking δ < 1 one deduces that (5.3) holds if N
is sufficiently large. Moreover the estimates (5.7) give that

(pN + qN )QN ≤ S2
N −RN ≤ (1 + δ)(pN + qN )QN , (5.9)

if N is large enough. Since pNqN = S2
N and because of the estimate (5.6), (5.1) follows 

from (5.9) tending δ to 0. Observe that

Mk+1∑
|an|2 ≥ qN = S1−ε

N . (5.10)

n=Nk+1
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By (1.2), if N is sufficiently large, we have that |an|2 ≤ SN
1−η for any n ≤ N . We deduce 

from (5.10) that SN
1−η(Mk+1 − Nk) ≥ qN and Mk+1 − Nk ≥ qβN . A similar argument 

shows that Nk −MK ≥ pγN . This proves (5.5). We are now going to prove (5.4). Observe 
that at almost every point of the unit circle we have

∣∣∣∣∣
QN∑
k=1

ηk

∣∣∣∣∣
2

=
QN∑
k=1

|ηk|2 + 2 Re
QN−1∑
k=1

QN∑
j>k

ηkηj .

Since ‖ηk‖2
2 ≤ 2C(f)qN , we have

QN∑
k=1

∫
∂D

|ηk|2 dm ≤ 2C(f)qNQN ≤ 3C(f)q2
N , (5.11)

if N is sufficiently large. On the other hand, if j > k we have
∣∣∣∣∣∣
∫
∂D

ηkηj dm

∣∣∣∣∣∣ ≤
∑

|ar||at||f ′(0)|t−r,

where the sum is taken over all indices r, t with Nk < r ≤ Mk+1 and Nj < t ≤ Mj+1. 
Observe that by (5.5), we have t − r ≥ pγN . Writing l = t − r and applying Cauchy-
Schwarz’s inequality, we obtain

∣∣∣∣∣∣
∫
∂D

ηkηj dm

∣∣∣∣∣∣ ≤
∑
l≥pγ

N

|f ′(0)|l
∑

|ar||al+r| ≤ C(f)|f ′(0)|p
γ
NS2

N .

Hence

QN−1∑
k=1

QN∑
j>k

∣∣∣∣∣∣
∫
∂D

ηkηj dm

∣∣∣∣∣∣ ≤ C(f)q2
NS2

N |f ′(0)|p
γ
N . (5.12)

Using (5.11) and (5.12) we obtain that

∥∥∥∥∥
QN∑
k=1

ηk

∥∥∥∥∥
2

2

≤ 4C(f)q2
N ,

if N is sufficiently large. Since σ2
N > C(f)S2

N = C(f)pNqN , we deduce that

lim

∥∥∥∑QN

k=1 ηk

∥∥∥2

2
2 = 0. (5.13)
N→∞ σN
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Now (5.2) and (5.13) give (5.4).
The main idea in the rest of the proof is that {ηk} are irrelevant while due to (5.5), 

{ξk} act as independent random variables.
2. Arranging the Fourier Transform. Applying (5.4), the proof of Theorem 1 reduces 

to show that

TN = 1√
2−1σN

QN∑
k=1

ξk, N = 1, 2, . . .

converge in distribution to a standard complex normal variable. By the Levi Continuity 
Theorem, it is sufficient to show that for any complex number t we have

ϕN (t) =
∫
∂D

ei〈t,TN 〉 dm → e−|t|2/2, as N → ∞ (5.14)

Here 〈t, w〉 = Re(tw) is the standard scalar product in the plane. In this second step of 
the proof we will show that

lim
N→∞

ϕN (t) −
∫
∂D

QN∏
k=1

(
1 + i〈t, ξk〉√

2−1σN

)
exp

(
−〈t, ξk〉2

σN
2

)
dm = 0 (5.15)

Fixed δ > 0, consider the sets Ek = {z ∈ ∂D : |ξk(z)| > δSN}, k = 1, 2, . . . , QN . By part 
(c) of Theorem 9 we have ‖ξk‖4

4 ≤ C(f)p2
N . Chebyshev inequality and (5.1) give

QN∑
k=1

m(Ek) ≤
C(f)p2

NQN

δ4S4
N

≤ 2C(f)
δ4qN

if N is sufficiently large. For μ > 1, consider the set

E0 =
{
z ∈ ∂D :

QN∑
k=1

〈t, ξk(z)〉2 > μS2
N

}
.

By part (a) of Theorem 9 we have ‖ξk‖2 ≤ C(f)pN . Chebyshev inequality and (5.1) give

m(E0) ≤
C(f)|t|2QN

μqN
≤ 2C(f)|t|2

μ
,

if N is sufficiently large. Hence the set

E =
QN⋃
k=0

Ek

satisfies
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m(E) ≤ 2C(f)
(

1
δ4qN

+ |t|2
μ

)
.

Using the elementary identity

exp (z) = (1 + z) exp
(
z2

2 + o(|z2|)
)
,

where o(|z|2)/|z|2 → 0 as z → 0, we deduce

exp (i〈t, TN 〉) =
(

QN∏
k=1

(
1 + i〈t, ξk〉√

2−1σN

)
exp

(
−〈t, ξk〉2

σ2
N

))
exp

(
QN∑
k=1

o

(
〈t, ξk〉2

σ2
N

))

Fix ε > 0. Taking δ > 0 sufficiently small we have

QN∑
k=1

o

(
〈t, ξk(z)〉2

σ2
N

)
≤ C(f)εμ, z ∈ ∂D \ E.

Hence∣∣∣∣∣∣∣
∫

∂D\E

exp (i〈t, TN 〉) dm−
∫

∂D\E

QN∏
k=1

(
1 + i〈t, ξk〉√

2−1σN

)
exp

(
−〈t, ξk〉2

σ2
N

)
dm

∣∣∣∣∣∣∣ ≤

≤
(
eC(f)εμ − 1

) ∫
∂D\E

QN∏
k=1

(
1 + 〈t, ξk〉2

2−1σ2
N

)1/2

exp
(
−〈t, ξk〉2

σ2
N

)
dm ≤ eC(f)εμ − 1.

Last inequality follows from the elementary estimate (1 +x)1/2e−x/2 ≤ 1 if x ≥ 0. Hence
∣∣∣∣∣∣ϕN (t) −

∫
∂D

QN∏
k=1

(
1 + i〈t, ξk〉√

2−1σN

)
exp−

(
〈t, ξk〉2

σ2
N

)
dm

∣∣∣∣∣∣ ≤ 2m(E) + eC(f)εμ − 1,

which proves (5.15). Therefore to prove (5.14) it is sufficient to show that for any t ∈ C

one has

lim
N→∞

∫
∂D

QN∏
k=1

(
1 + i〈t, ξk〉√

2−1σN

)
exp

(
−〈t, ξk〉2

σ2
N

)
dm = exp (−|t|2/2).

This will follow from Lemma 17 applied to the functions

fN =
QN∏(

1 + i〈t, ξk〉√
2−1σ

)
,

k=1 N
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gN = 1
σ2
N

QN∑
k=1

〈t, ξk〉2 −
|t|2
2 .

According to Lemma 17 it is sufficient to show

sup
N

‖fN‖2 < ∞, (5.16)

lim
N→∞

‖gN‖2 = 0, (5.17)

lim
N→∞

∫
∂D

fNdm = 1. (5.18)

3. Estimating ‖fN‖2. Observe that

QN∏
k=1

(
1 + 〈t, ξk〉2

2−1σ2
N

)
= 1 +

QN∑
k=1

1
2−kσ2k

N

∑
〈t, ξj1〉

2
. . . 〈t, ξjk〉

2
,

where the last sum is taken over all collections of indices 1 ≤ j1 < . . . < jk ≤ QN . Since 
〈t, ξn〉2 ≤ |t|2|ξn|2, Theorem 6 and part (a) of Theorem 9 give that

∫
∂D

〈t, ξj1〉
2
. . . 〈t, ξjk〉

2
dm ≤ C(f)k|t|2kpkN .

Since the total number of distinct collections of indices j1, . . . , jk verifying 1 ≤ j1 <

. . . < jk ≤ QN is 
(
QN

k

)
, we deduce

∫
∂D

QN∏
k=1

(
1 + 〈t, ξk〉2

2−1σN
2

)
dm ≤ 1 +

QN∑
k=1

(
QN

k

)
C(f)k|t|2kpkN

2−kσ2k
N

.

Since σ2
N ≥ C(f)−1S2

N = C(f)−1pNqN , we deduce

∫
∂D

QN∏
k=1

(
1 + 〈t, ξk〉2

2−1σ2
N

)
dm ≤ 1 +

QN∑
k=1

(
QN

k

)
C(f)2k|t|2k

2−kqkN
=
(

1 + C(f)2|t2|
2−1qN

)QN

.

Hence (5.1) gives that ‖fN‖2
2 ≤ exp (3C(f)2|t|2) if N is sufficiently large. This gives 

(5.16).
4. Estimating ‖gN‖2. Consider the set of indices Ak = {n ∈ N : Mk < n ≤ Nk}, 

k = 1, . . . , QN . Then

ξk =
∑
n∈Ak

anf
n, k = 1, . . . , QN . (5.19)

Let A =
⋃QN

k=1 Ak. Observe that (5.4) gives
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lim
N→∞

∑
n∈A |an|2
S2
N

= 1.

This is assumption (4.4) of Lemma 16. Assumption (4.5) follows from (1.2). Thus, 
Lemma 16 gives

lim
N→∞

∑QN

k=1 ‖ξk‖2
2

σ2
N

= 1. (5.20)

Denote λ = t/|t|. We have

gN = |t|2
4σ2

N

QN∑
k=1

(
2|ξk|2 + λ2ξ2

k + λ2ξ2
k − 2σN

2

QN

)
.

Applying (5.20), the proof of (5.17) reduces to show

lim
N→∞

∥∥∥∥∥ 1
σ2
N

QN∑
k=1

ψk

∥∥∥∥∥
2

= 0,

where ψk = 2(|ξk|2 − ‖ξk‖2
2) + λ2ξ2

k + λ2ξ2
k. Now

∥∥∥∥∥
QN∑
k=1

ψk

∥∥∥∥∥
2

2

=
QN∑
k=1

‖ψk‖2
2 + 2 Re

QN−1∑
k=1

QN∑
j>k

∫
∂D

ψkψj dm. (5.21)

Since |ψk| ≤ 4|ξk|2 + 2‖ξk‖2
2, parts (a) and (c) of Theorem 9 give that ‖ψk‖2

2 ≤ C(f)p2
N . 

Hence

QN∑
k=1

‖ψk‖2
2 ≤ C(f)p2

NQN

and we deduce

lim
N→∞

1
σ4
N

QN∑
k=1

‖ψk‖2
2 = 0.

The second term in (5.21) is splitted as

QN−1∑
k=1

QN∑
j>k

∫
∂D

ψkψj dm = A + B + C + D,

where
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A = 4
QN−1∑
k=1

QN∑
j>k

∫
∂D

(
|ξk|2 − ‖ξk‖2

2
) (

|ξj |2 − ‖ξj‖2
2
)
dm,

B = 2
QN−1∑
k=1

QN∑
j>k

∫
∂D

(
|ξk|2 − ‖ξk‖2

2
) (

λ2ξ2
j + λ2ξ2

j

)
dm,

C = 2
QN−1∑
k=1

QN∑
j>k

∫
∂D

(
λ2ξ2

k + λ2ξ2
k

) (
|ξj |2 − ‖ξj‖2

2
)
dm,

D =
QN−1∑
k=1

QN∑
j>k

∫
∂D

(
λ2ξ2

k + λ2ξ2
k

)(
λ2ξ2

j + λ2ξ2
j

)
dm.

By Theorem 6, ‖ξkξj‖2 = ‖ξk‖2‖ξj‖2 if k �= j and we deduce A = 0. Since the mean of 
ξ2
j over the unit circle vanishes and at almost every point in the unit circle one has

|ξk|2 =
∑
n∈Ak

|an|2 + 2 Re
∑
n∈Ak

∑
j∈Ak,j>n

anajfnf j , (5.22)

the integrals in B can be written as a linear combination of
∫
∂D

fn1f j1

(
λ2ξ2

j + λ2ξ2
j

)
dm,

where n1, j1 ∈ Ak and hence max{n1, j1} < min{n : n ∈ Aj}. According to part (a) of 
Lemma 7,

∫
∂D

fn1f j1ξ2
j dm = 0

and we deduce B = 0. Since the mean of ξ2
k over the unit circle vanishes, we have

C = 4 Reλ2
QN−1∑
k=1

QN∑
j>k

∫
∂D

ξ2
k|ξj |2 dm.

For the same reason, using the formula (5.22), we have
∫
∂D

ξ2
k|ξj |2 dm =

∫
∂D

ξ2
k Rehj dm,

where

hj = 2
∑

aralfrf l.

r,l∈Aj ,l>r
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Using formula (5.19) to expand ξ2
k, we obtain

∫
∂D

ξ2
k|ξj |2 dm = E + F,

where

E =
∑
n∈Ak

∑
r,l∈Aj ,l>r

a2
n

∫
∂D

(fn)2
(
aralfrf l + aralf

rf l
)
dm,

F = 2
∑

n,s∈Ak : s>n

anas
∑

r,l∈Aj ,l>r

∫
∂D

fnfs
(
aralfrf l + aralf

rf l
)
dm.

By part (c) of Lemma 7 we have

∣∣∣∣∣∣
∫
∂D

(fn)2frf l dm

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
∂D

(fn)2f lfr dm

∣∣∣∣∣∣ ≤ C(f)|f ′(0)|l−n, if n < r < l.

We deduce that

|E| ≤ C(f)
∑
n∈Ak

|an|2
∑

r,l∈Aj ,l>r

|ar||al||f ′(0)|l−n.

According to (5.5), we have r − n ≥ qβN for any r ∈ Aj and any n ∈ Ak, j > k. Now

∑
r,l∈Aj ,l>r

|ar||al||f ′(0)|l−n ≤ |f ′(0)|q
β
N

∑
t≥1

|f ′(0)|t
∑

r∈Aj : r+t∈Aj

|ar||ar+t|.

By Cauchy-Schwarz’s inequality, last sum is bounded by 
∑

r∈Aj
|ar|2 ≤ 2pN . Hence

|E| ≤ C(f)|f ′(0)|q
β
N p2

N (5.23)

Similarly, part (d) of Lemma 7 gives that

∣∣∣∣∣∣
∫
∂D

fnfsfrf l dm

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
∂D

fnfsfrf l dm

∣∣∣∣∣∣ ≤ C(f)|f ′(0)|l−n, n < s < r < l − 2,

and
∣∣∣∣∣∣
∫

fnfsfrf l dm

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

fnfsfrf l dm

∣∣∣∣∣∣ ≤ C(f)|f ′(0)|r−n, n < s < r < l, r ≥ l − 2.

∂D ∂D
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Using the trivial estimate |ak| ≤ SN for any k ≤ N , we deduce that

|F | ≤ C(f)S4
N

∑
n,s∈Ak : s>n

∑
r,l∈Aj ,l>r

|f ′(0)|l−n.

As before, l − n ≥ qβN for any r ∈ Aj and any n ∈ Ak, j > k. We deduce

|F | ≤ C(f)S4
N |f ′(0)|q

β
N/2.

Now, the exponential decay in (5.23) and (5.16) give that

lim
N→∞

C

σ2
N

= 0. (5.24)

The corresponding estimate for D follows from the estimate
∣∣∣∣∣∣
∫
∂D

ξk
2ξj

2 dm

∣∣∣∣∣∣ ≤ C(f)S4
N |f ′(0)|q

β
N , k < j.

As before this last estimate follows from (5.5) and from

∣∣∣∣∣∣
∫
∂D

fnfsf lf t dm

∣∣∣∣∣∣ ≤ C(f)|f ′(0)|t−n, n < s < l < t− 2,

which follows from part (d) of Lemma 7. This finishes the proof of (5.17).
5. Integrating fN . In this last step we will prove (5.18). Observe that at almost every 

point in the unit circle we have

fN = 1 +
QN∑
k=1

ik

2−k/2σk
N

∑
〈t, ξi1〉 . . . 〈t, ξik〉,

where the second sum is taken over all collections of indices 1 ≤ i1 < . . . ik ≤ QN . Fix 
1 ≤ i1 < . . . ik ≤ QN . The integral

∫
∂D

〈t, ξi1〉 . . . 〈t, ξik〉 dm = 2−k

∫
∂D

k∏
n=1

(
tξin + tξin

)
dm

is a multiple of a sum of 2k integrals of the form

t
r
tl
∫

ξε1i1 . . . ξεkik dm,
∂D
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where r + l = k, εi = 1 or εi = −1 for i = 1, . . . , k and we denote ξi
−1(z) = ξi(z), 

z ∈ ∂D. Now, each ξi is a linear combination of iterates of f ,

ξj =
∑

n∈A(j)

anf
n.

Hence

∫
∂D

ξε1i1 . . . ξεkik dm =
∑
n∈C

k∏
j=1

aεjnj

∫
∂D

fn1ε1 . . . fnkεk dm,

where 
∑

n∈C means the sum over all possible k-tuples n = {nj}kj=1 of indices such that 
nj ∈ A(ij) for j = 1, . . . , k. Since |an| ≤ SN , n ≤ N , we have

∣∣∣∣∣∣
∫
∂D

ξε1i1 . . . ξεkik dm

∣∣∣∣∣∣ ≤ Sk
N

∑
n∈C

∣∣∣∣∣∣
∫
∂D

fn1ε1 . . . fnkεk dm

∣∣∣∣∣∣ .

Let ε = {εj}k−1
j=1 be fixed and consider Φ(n) = Φ(ε, n) =

∑k−1
j=1 δj(nj+1 − nj) where 

δj ∈ {0, 1/2, 1} for j = 1, . . . , k − 1, with δ1 = 1 and δk−1 ≥ 1/2, and with δj = 1 if 
and only if δj−1 = 0 for j = 2, . . . , k − 1, as defined in Theorem 13. Let a = |f ′(0)|. 
Theorem 13 gives ∣∣∣∣∣∣

∫
∂D

ξε1i1 . . . ξεkik dm

∣∣∣∣∣∣ ≤ k!Sk
NC(f)k

∑
n∈C

aΦ(n).

We split the sum over n ∈ C as follows. Let D denote the set of (k−1)-tuples δ = {δj}k−1
j=1

of coefficients that can appear in Φ(n). That is, those tuples with δj ∈ {0, 1/2, 1} for 
j = 1, . . . , k − 1, with δ1 = 1 and δk−1 ≥ 1/2, and with δj = 1 if and only if δj−1 = 0, 
for j = 2, . . . , k − 1. Observe that there are less than 2k such tuples. Given a k-tuple 
n ∈ C, let us denote by δ(n) the (k− 1)-tuple δ of coefficients appearing in Φ(n). Then 
we have that

∑
n∈C

aΦ(n) =
∑
δ∈D

∑
{n∈C : δ(n)=δ}

aΦ(n).

Given δ = {δj}k−1
j=1 ∈ D, we define Φδ(n) =

∑k−1
j=1 δj(nj+1 − nj) for every n ∈ C. We 

clearly have that
∑
n∈C

aΦ(n) ≤
∑
δ∈D

∑
n∈C

aΦδ(n). (5.25)

Consider now a fixed δ = (δ1, . . . , δk−1), and recall that δ1 = 1. Let l(1) be the minimum 
integer such that δl(1)+1 = 0 (we set l(1) = k − 1 if δj �= 0 for all 1 ≤ j ≤ k − 1). 
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In particular, observe that if l(1) > 1, we have that δj = 1/2 for 2 ≤ j ≤ l(1) by 
Theorem 13. Thus, to find a bound for the right-hand side of (5.25), we need to estimate 
sums of the form

l∑
j=1

∑
nj∈A(ij)

a(n2−n1)+(nl−n2)/2 =
l∑

j=1

∑
nj∈A(ij)

a(n2−n1)/2+(nl−n1)/2 (5.26)

for some 1 < l ≤ k−1. Denote here n1 = maxA(i1), n2 = minA(i2) and nl = minA(il), 
and observe that n2 −n1 ≥ qβN because of (5.5). Assume l > 2. Summing over n1 and n2
we get that (5.26) is bounded by

Caq
β
N/2

l∑
j=3

∑
nj∈A(ij)

a(nl−n1)/2.

Next, summing over nj for j up to l− 1 yields the factor |A(i3)| + . . .+ |A(il−1)|, while 
summing over nl we get the factor a(nl−n1)/2. Here, |A(ij)| denotes the number of indices 
in the set A(ij). Using (5.5), we have that |A(ij)| ≥ pγN > qβN for any j = 1, . . . , k and, 
thus, we get that nl − n1 ≥ qβN + |A(i2)| + . . . + |A(il−1)| > lqβN . Hence, we find that

l∑
j=1

∑
nj∈A(ij)

a(n2−n1)+(nl−n2)/2 ≤ Calq
β
N/4. (5.27)

Note that if l = 1 or l = 2, then (5.27) is obvious. Assume now that we have determined 
l(m −1). If l(m −1) < k−1, then let l(m) be the minimum integer such that l(m −1) <
l(m) ≤ k−1 and such that δl(m)+1 = 0. We iterate this process until we set l(r) = k−1 for 
some integer 1 ≤ r ≤ k. Observe that, by Theorem 13, we have that l(m) ≥ l(m −1) +2. 
Taking l(0) = 0, the full sum over n ∈ C in the right-hand side of (5.25) becomes 
a product of sums of the form (5.26) with j ranging from l(m − 1) + 1 to l(m), for 
m = 1, . . . , r. Thus, applying the bound (5.27) we get that

∑
n∈C

aΦδ(n) ≤
r∏

m=1
Ca(l(m)−l(m−1))qβN/4 ≤ Ckakq

β
N/4.

Now, summing over δ ∈ D and using the fact that there are at most 2k such tuples, we 
get that ∑

n∈C
aΦ(n) ≤ Ckakq

β
N/4.

Thus ∣∣∣∣∣∣
∫

ξε1i1 . . . ξεkik dm

∣∣∣∣∣∣ ≤ k!Sk
NC(f)kakq

β
N/4.
∂D
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We deduce that ∣∣∣∣∣∣
∫
∂D

〈t, ξi1〉 . . . 〈t, ξik〉 dm

∣∣∣∣∣∣ ≤ k!Sk
NC(f)k|t|kakq

β
N/4.

Since the total number of collections of indices 1 ≤ i1 < . . . < ik ≤ QN is 
(
QN

k

)
, we 

deduce that ∣∣∣∣∣∣
∫
∂D

fN dm− 1

∣∣∣∣∣∣ ≤
QN∑
k=1

(
QN

k

)
k!2k/2σ−k

N (C(f)SN |t|)kakq
β
N/4.

Last sum is smaller than
(

1 + C(f)|t|SNQNaq
β
N/4

√
2−1σN

)QN

− 1,

which tends to 0 as N → ∞ because

lim
N→∞

SNQ2
Naq

β
N/4

σN
= 0. �
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Teor. Funktsĭı., XV, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986) 
103–106, 188.

[3] A.B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. 
SSR Ser. Mat. 22 (5) (1987) 490–503, 515.

[4] A.B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, in: Issled. 
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