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A B S T R A C T   

Near Infrared (NIR) spectroscopy was used for inline monitoring the enzymatic production of third-generation 
biodiesel from waste cooking oil (WCO) —with fatty acid profile similar to olive oil— under the principles of 
Continued Process Verification (CPV) and Process Analytical Technology (PAT). For this purpose, covalently 
immobilized mature Rhizopus oryzae lipase (rROL) was used to transesterify WCO with methanol and ethanol, 
firstly in 10 mL vials under orbital stirring and then it was successfully scaled up to a mechanically stirred 50 mL 
laboratory reactor specially designed for use of a NIR probe. Biocatalyst half-life and productivity after ten re
action cycles with methanol and ethanol were assessed. Slightly higher operational stability with methanol 
(337.5 h, 54 batches) vs with ethanol (146.7 h, 44 batches) was observed, but decreased productivity as a result 
of the increased reaction times used with the former (219 vs 327 µmol min− 1). The NIR spectroscopy results were 
highly correlated with those of gas chromatography (GC) used as reference. Thus, the root mean-square standard 
error of prediction (RMSEP) was 2.0% for methanol and 2.1% for ethanol. Therefore, NIR spectroscopy, which 
allows data acquisition in real time, is suitable for inline monitoring of enzymatic production of biodiesel.   

1. Introduction 

Circular economy is gaining momentum for reducing the environ
mental footprint of mankind and overcoming the widely adopted system 
grounded on linear resource use and waste generation. Using alternative 
and renewable sources of energy such as biogas, 2,5-dimethylfuran, 
hydrogen or biodiesel for transportation has been proposed to alle
viate the current heavy dependence on fossil fuels [1–3]. The latter is a 
mixture of mono-alkyl esters of long-chain fatty acids that can be 
directly used by existing combustion engines and is arousing increasing 
interest by virtue of its being renewable and biodegradable, accelerating 
the carbon cycle and reducing net emissions of greenhouse gases. Bio
diesel is obtained largely by transesterifying triacylglycerides with 
short-chain alcohols (ethanol and methanol, mainly). The resulting 
product is classified as first-, second- or third-generation biodiesel ac
cording to the oil substrate used. Due to the ethical dilemma of food vs 
fuel, public institutions are taking steps to shift production from first- to 
second- and third-generation biodiesel. The former is produced from 

non-edible oils such as radish and apricot kernel oils [4] while third- 
generation biodiesel is produced from substrates like waste cooking oil 
(WCO) in a manner that complies with the principles of circular econ
omy [5,6]. 

At present, biodiesel is industrially produced mainly by chemical 
transesterification of first-generation substrates in the presence of a 
homogeneous basic catalyst. Using second- or third-generation sub
strates requires their pre-treatment to remove free fatty acids (FFAs), 
which they typically contain in high proportions [7,8]. In fact, unless 
properly neutralized, FFAs favor saponification and give biodiesel of 
decreased quality requiring further downstream work. Enzymatic 
transesterification with lipases (glycerol ester hydrolases, E.C.3.1.1.3) 
has emerged as a solution to avoid unwanted side reactions such as 
saponification and hence additional downstream processing. Although 
alternatives such as using acids and heterogeneous solid catalysts have 
been proposed, most are unfeasible or result in low reaction rates [9,10]. 
Using lipases for transesterification has additional advantages, such as 
more modest energy requirements from milder reaction conditions 
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—lower reaction temperatures, close to 30 ◦C, are required instead of 
the higher temperatures, usually over 50 ◦C, needed for chemical cata
lysts [11]—, a simplified flowsheet for purification [12] and the need for 
no organic solvents, which makes processes compliant with the princi
ples of green chemistry [13,14]. 

Rhizopus oryzae lipase (ROL) has been extensively studied as a bio
catalyst for biodiesel production on the grounds of its 1,3-regiospecific
ity preventing formation of glycerol during the transesterification 
reaction [15] —this alcohol is deemed a residue owing to its worldwide 
large scale production [16]. Instead, ROL leads to the formation of 2- 
monoacylglycerol, which is a by-product with a high added value by 
virtue of its capacity to increase biodiesel quality and its being useful for 
the pharmaceutical and food industries [17–19]. Although ROL is a 
stable biocatalyst, it is generally used in immobilized form to improve its 
industrial suitability. Immobilizing the enzyme allows it to be reused 
and usually increases its stability. ROL for biodiesel production has so 
far been immobilized in various ways including covalent binding, 
adsorption or the use of whole cells [15]. 

During chemically or enzymatically catalyzed transesterification for 
biodiesel production, the reaction medium contains a mixture of fatty 
acid methyl and ethyl esters (FAM/EE), FFA and tri-, di- and mono
acylglycerols. Production performance is usually assessed by gas chro
matography (GC), using an offline and sluggish analytical procedure 
[20,21]. Moreover, low volatile substances can damage capillary col
umns and other elements of the chromatographic system, so a number of 
alternative techniques including high-performance liquid chromatog
raphy (HPLC) [22] and proton nuclear magnetic resonance (1H NMR) 
spectroscopy [23] are being increasingly used instead. Chromatographic 
techniques, however, are expensive and time-consuming; also, they 
cannot operate inline, which prevents timely decision-making during 
the process and can increase production costs by requiring stops —or 
even batch reprocessing if the target quality is not achieved [24]. The 
principles of Continued Process Verification (CPV) have made bio
process automatization and Process Analytical Technology (PAT) 
increasingly attractive; also, they have promoted the use of analytical 
methods allowing real-time quality assessment, adoption of corrective 
measures and a better understanding of bioprocesses [25,26]. Such 
methods require in- or online monitoring of the process, and hence 
using, for instance, spectroscopic techniques (Raman, fluorescence, 
UV–Vis, IR, NIR) in combination with multivariate calibration [27]. 

NIR spectroscopy is an extensively studied analytical technique 
based on the interaction of matter and light radiation in the wavelength 
region from 780 to 2500 nm that affords multicomponent, fast, reliable, 
inexpensive and non-destructive analysis [20]. Besides, it avoids the 
need for sample withdrawal when used inline, waste production, and the 
need for complex pre-treatments of samples with solvents or other 
chemicals, all of which makes it a safe, clean, energy-saving choice fully 
compliant with the principles of green chemistry [28]. NIR spectra are 
complex and possess broad overlapping bands that require special 
mathematical procedures to accurately interpret spectra and understand 
the results, such as principal component analysis (PCA) or partial least- 
squares (PLS) regression [29]. NIR spectroscopy has so far been suc
cessfully used by the biodiesel industry to assess the quality or properties 
of biofuel/diesel blends [29,30], and also for inline monitoring of 
chemically catalyzed transesterification reactions [20,31,32]. 

In this work, the mature sequence of ROL (rROL) heterologously 
produced in the methylotrophic yeast Komagataella phaffii (Pichia pas
toris) was immobilized onto a suitable support in order to catalyze the 
transesterification of waste cooking oil (WCO) in a solvent-free system 
with ethanol or methanol as acyl-acceptor. The main novelty of this 
work is the scale up of the transesterification reaction to a laboratory- 
scale reactor specially designed for use of an inline near infrared spec
troscopy probe for monitoring the enzyme catalyzed transesterification 
reaction. The results were compared with those obtained by gas chro
matography as reference in order to confirm the suitability of the NIR 
technique for accurate real-time monitoring of transesterification under 

the principles of CPV and PAT while avoiding the environmental and 
economic costs of withdrawing samples during the process. Unlike 
previous works on the NIR based monitoring of biodiesel production, the 
fact of performing a stepwise addition of alcohol and the employment of 
immobilized enzyme in this case might generate background noise in the 
spectra, making the NIR monitoring more challenging. Besides, the 
biocatalyst operational stability and mechanical strength were evalu
ated and compared with previously reported data. 

2. Materials and methods 

2.1. Materials 

Waste cooking oil (WCO) was obtained from a local public waste 
management company and centrifuged prior to use. Polymethacrylate 
matrix support D6308 was kindly donated by Purolite® (King of Prussia, 
PA, USA). The colorimetric kit (11821729) for the enzymatic assay was 
supplied by Roche (Mannheim, Deutschland). Heptane, ethanol and 
methanol were purchased from Panreac (Barcelona, Spain). Standards of 
methyl/ethyl palmitate, methyl/ethyl stearate, methyl/ethyl oleate, 
methyl/ethyl linoleate and methyl linolenate, and all unstated reagents, 
were obtained from Sigma–Aldrich (St. Louis, MO, USA). 

2.2. Lipase heterologous production 

The mature sequence of Rhizopus oryzae lipase (rROL) was heterol
ogously produced in the methylotrophic yeast Komagataella phaffii by 
the Bioprocess Engineering and Applied Biocatalysis Group of the Uni
versitat Autònoma de Barcelona (Barcelona, Spain) as described else
where [33]. After fermentation, the culture broth was centrifuged, 
microfiltered, ultrafiltered and freeze-dried to remove biomass and 
concentrate the enzyme [34]. 

2.3. Lipase activity measurement 

Enzymatic activity was determined by using the Roche lipase 
colorimetric kit in 200 mM Tris-HCl buffer at pH 7.25 at 30 ◦C on a Cary 
300 spectrophotometer from Varian (Mulgrave, VIC, Australia) oper
ating at 580 nm. All measurements were made in triplicate following an 
already published procedure in which one unit of lipolytic activity was 
defined as the amount of lipase necessary to hydrolyze 1 µmol of ester 
bond per minute under assay conditions [35]. 

2.4. Support functionalization and lipase immobilization 

Polymethacrylate-matrix Purolite® D6308 with epoxide and octa
decyl surface groups (EO) was functionalized as described elsewhere 
[10]. Briefly, epoxide functional groups were pre-treated by incubating 
1 g of support with 1 M ethylenediamine solution at pH 10 under orbital 
stirring at 60 ◦C for 4 h. Then, the support was rinsed with distilled water 
by vacuum filtration and incubated in a 2.5% w/v glutaraldehyde so
lution in phosphate buffer at pH 8 on a roller at room temperature for 2 
h. Finally, the glutaraldehyde-treated support was rinsed for incubation 
with a 3500 AU mL− 1 lipase solution at 4 ◦C for 42 h. The biocatalyst 
thus obtained (EO-rROL) was dried on silica gel and stored at –20 ◦C 
until use. 

The specific activity of the biocatalyst was calculated as the differ
ence between those in the final blank and supernatant solutions divided 
by the final dry weight of enzyme. 

2.5. Transesterification reactions 

Transesterification was done in closed 10 mL vials containing 8 g of 
WCO at 30 ◦C under orbital stirring at 350 rpm [14]. The acyl-acceptor 
was added in 5 (ethanol) or 10 pulses (methanol) by splitting the stoi
chiometric volume of alcohol (2:1 alcohol:oil mixture) during the 
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reaction in order to reach the theoretical maximum yield (200 min re
action for ethanol and 375 min for methanol) [17]. All substrates and 
biocatalysts were previously equilibrated for water activity by using a 
saturated KOH solution (aw = 0.093) for a minimum of 16 h. The re
action was scaled up to a 50 mL HME-R mini reactor from Scharlab 
(Sentmenat, Barcelona, Spain) as described above but using a final oil 
mass of 40 g and mechanical stirring at 700 rpm. 

The minireactor lid and tank were specially designed in collabora
tion with Scharlab (Supplementary Material 1). Thus, the lid was 
custom-made to include an inlet that allowed the NIR probe to be 
inserted in the reaction medium, and a second, slightly curved inlet for 
the stirrer, so that both could reach the reaction medium without 
colliding. Besides, the stirrer was modified by using an additional pro
peller —the two were “marine propellers”— to facilitate generation of a 
turbulent regime in the reactor. 

Operational stability was assessed by allowing the biocatalyst to 
settle in the bottom of the reactor. Then, depleted reaction medium was 
removed and all components were prepared for the next run [17]. 
Relative yields of consecutive transesterification reactions cycles were 
used as described elsewhere to fit the results to a first-order exponential 
decay equation (Eq. (1)) and a two-component first-order exponential 
decay equation (Eq. (2)), using the software Sigma Plot v 14 [36–38]. 

Y(%)t = 100e− kt (1)  

Y(%)t = 100e− k1 t + ce− k2 t (2)  

where k, k1 and k2 are deactivation coefficients. 

2.6. Gas chromatography (GC) analysis 

Fatty acid ethyl esters (FAEEs) and fatty acid methyl esters (FAMEs) 
were quantified on a model 7890A gas chromatograph from Agilent 
(Santa Clara, CA, USA) equipped with a 19095N-123 capillary column 
and an autosampler [39]. Relative standard deviations (RSD) never 
exceeded 3%. 

2.7. Fatty acid composition 

The fatty acid composition of WCO was established by adapting a 
previously reported procedure of chemically catalyzed trans
esterification [40]. Briefly, 40 g of oil was heated in an HME-R mini
reactor commercially available from Scharlab (i.e., with the original 
tank and lid) at 65 ◦C under mechanical stirring at 350 rpm. Then, KOH 
(1 % w/w) and methanol (6:1 alcohol/oil mixture) were added and the 
reaction was allowed to develop for 6 h with periodic sample with
drawal for GC analysis and calculation of the relative fatty acid 
composition. 

2.8. Acquisition and processing of near infrared (NIR) spectra 

The transesterification reactions were monitored by recording NIR 
spectra at 5 min intervals in each reaction cycle [28]. Spectra were ac
quired in the transflectance mode, using a Model 5000 spectropho
tometer from FOSS NIRSystems (Silver Spring, MD, USA) equipped with 
an immersive optical probe. A reference spectrum for air was obtained 
before the reaction. The wavelength range scanned was 1100–2498 nm, 

the spectral resolution was 2 nm and the optical path length was 1 mm. 
Raw absorbance spectra were exported to NSAS file format by using the 
software Vision 2.51, then transformed to Matlab file format with The 
Unscrambler 10.3 (Camo Analytics, Norway) and finally processed for 
viewing, exploration and multivariate modeling with the software Solo 
(Eigenvector Research Inc., Wenatchee, WA, USA). 

First- and second-derivative spectra were obtained by using the 
Savitzky–Golay algorithm with a 15-point moving window and a 
second-order polynomial. Mean-centered data (X-matrix for spectra) 
were subjected to principal component analysis (PCA). Partial least- 
squares (PLS) calibration models for mean-centered data (X-matrix for 
spectra and Y-matrix for reaction yield) were constructed by cross- 
validation, using the leave-one-out method. Samples for inclusion in 
the calibration and prediction sets were selected by using the Ken
nard–Stone method [41]. The quality of the PLS models and their pre
dictive ability were assessed in terms of the root mean square error of 
calibration (RMSEC) and prediction (RMSEP), defined as:. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Ypred

i − Yref
i

)2

n

√

(3)  

where n is the number of samples used, Yref the reaction yield provided 
by the reference method and Ypred that estimated by the NIR model. 

The number of PLS factors required to define each model was chosen 
from the minimum of a plot of RMSEP vs number of factors. The pre
dictive ability was also assessed by statistical evaluation of the least- 
squares regression line between the reference GC reaction yield and 
the NIR-predicted value. 

The aim of quantitative multivariate modeling is reducing prediction 
errors by using the simplest possible model (i.e., that with the fewest 
factors). PLS models were evaluated over wide or narrow spectral in
tervals selected from different calculations, namely: regression co
efficients, X-loadings, XY correlation vector, variable importance in 
projection and selectivity ratio. These tools allow simple numerical 
assessment of the usefulness of each X-variable in a regression model. 
The higher were the results obtained with these calculations over the 
significant threshold, the greater was the usefulness of the variables for 
regression and prediction. Selection of the spectral interval was com
bined with different spectral processing methods, first in the absorbance 
mode, and then as their first and second derivatives, and also upon 
standard normal variate SNV-based scaling. The combination of SNV 
followed by derivatization was also tested. 

3. Results and discussion 

3.1. Fatty acid composition of the waste cooking oil 

Local public waste management companies typically collect and mix 
large amounts of waste cooking oil (WCO). As a result, WCO composi
tion can vary widely depending on consumption patterns and regional or 
local cooking traditions. In Spain, most oil based cooking is done with 
olive or sunflower oil, which leave vast amounts of oleaginous waste 
[42]. 

Because it was obtained from a public waste management company 
not implementing traceability, the oil used here was of unknown origin. 
Analysis of its fatty acid composition was performed as described in 
Section 2.6 to compare it with published profile of olive and sunflower 
oil and results exhibited that the fatty acid profile for the WCO was 
similar to that for olive oil (Table 1) [43]. The acidity of WCO, which is 
another relevant factor having influence on the performance of the 
biocatalyst during transesterification, has already been analyzed in a 
previous publication exhibiting a low acidity value (0.77%) suggesting 
that oil was not extensively cooked [14]. 

Table 1 
Percent fatty acid composition profile for sunflower, olive and waste cooking oil 
(WCO).  

Acid Sunflower oil Olive oil WCO 

Stearic 2.8 2.3 2.46 ± 0.04 
Oleic 28.0 66.4 70.78 ± 0.38 

Linoleic 62.2 16.4 10.21 ± 0.01 
Linolenic 0.16 1.6 2.45 ± 0.02  
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3.2. Transesterification reaction: scale-up, productivity and half-life 

The transesterification reactions initially conducted in 10 mL vials 
under orbital stirring were successfully scaled up to a 50 mL laboratory 
reactor under mechanical stirring (mimicking industrial large-scale 
conditions), which was specially designed for use with a NIR probe. 
Already optimized conditions, regarding the biocatalyst and the alcohol 

addition strategy for biodiesel production from WCO were employed 
[14], and as can be seen from Fig. 1A and B, the yield profiles for the first 
reaction batch were almost identical with ethanol and methanol in both 
the vial and the reactor —because of the 1,3-regioespecificity of ROL, 
the theoretical maximum yield in the absence of acyl-migration phe
nomena is 66%, resulting in the formation of the corresponding alkyl 
esters and 2-monoacylglycerol [44]. The results therefore suggest that 

Fig. 1. Yield profile for WCO transesterification with 5 pulses of ethanol (A) and 10 of methanol (B) in the presence of EO-rROL. Relative yield of consecutive 
transesterification cycles with 5 pulses of ethanol (C) and 10 of methanol (D). White bars and points correspond to the reaction in 10 mL vials and grey bars and 
points to that in the laboratory minireactor. Relative yields were calculated against that of the first cycle (100%). 

Fig. 2. (A) Customized reactor for use of the NIR probe. (B) The EO-rROL biocatalyst after 10 consecutive reaction cycles as seen under a binocular loupe.  
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mass transfer and reaction performance in the vials and the reactor were 
essentially identical under the employed conditions, and also that the 
presence of the NIR probe did not detract from homogeneity in the re
action medium. Thus, the 50 mL reactor with a customized lid and tank, 
and a second stirrer (Fig. 2A), reproducibly echoed the results obtained 
with 10 mL vials. In fact, both systems led to similar relative yields after 
5 consecutive cycles (Fig. 1C and 1D). 

Biodiesel productivity with each alcohol was calculated as the 
combined figure for all 10 cycles performed in the laboratory-scale 
reactor. As expected, FAEE productivity (ethanol as acyl-acceptor) was 
1.5 times higher than FAME productivity (methanol as acyl-acceptor) as 
a result of the longer reaction times required for transesterification with 
the latter alcohol (Table 2), even though, the final transesterification 
yields with methanol were slightly higher than those obtained with 
ethanol (Fig. 1A and B). In fact, splitting the amount of alcohol used into 
10 pulses is unproductive with alcohols such as ethanol —it has scarce 

negative impact on the operational stability of the biocatalyst— but can 
be useful with others such as methanol with severe influence on enzyme 
stability [17,45]. Thus, the biocatalyst half-life in hours with methanol 
as acyl-acceptor was about 1.5–2.5 times higher than it was with ethanol 
as a result of the amount of methanol used being split into more pulses 
than that of ethanol (Table 2). However, when reaction cycles corre
sponding to these hours were compared, half-lives (t1/2 values into 
square brackets in Table 2) tended to be similar with both alcohols as a 
consequence of the reaction times differing between the two. 

ROL has exhibited widely variable operational stability in biodiesel 
production from various substrates. For instance, ROL covalently 
immobilized onto RelizymeTM OD403 was used to transesterify olive 
pomace oil with methanol and the relative yield found to decrease to 
60% after 26.7 h reaction (7 batches) [46]. In another study with soy
bean oil, the transesterification yield with glutaraldehyde cross-linked 
whole-cell biocatalysts decreased from 84 to 65% after 2520 h reac
tion (35 batches) [47]. By contrast, the ROL catalyzed transesterification 
of WCO has been the subject of little study, so comparison with the 
previous results is challenging [15]. Therefore, although a number of 
half-life values for ROL based biocatalysts used in biodiesel trans
esterification reactions have been reported with several substrates, 
comparison with WCO would be more accurate since this substrate may 

Table 2 
EO-rROL productivity and half-life in biodiesel production with ethanol and 
methanol as calculated by fitting to a first-order exponential decay (Eq. (1)) and 
two-component first-order exponential decay (Eq. (2)) deactivation model.  

Acyl 
acceptor 

Model 
equation 

R2 Half-life (h) 
* 

Productivity (μmol 
min− 1) 

Ethanol 1 0.87 170 [51] 327 
2 0.96 146.7 [44] 

Methanol 1 0.87 225 [36] 219 
2 0.95 337.5 [54]  

* The numbers in square brackets represent the number of cycles for those of 
reaction hours. 

Fig. 3. NIR absorbance spectra recorded at the start (green) and end (red) of 
the reaction as compared with those for each pure alcohol (blue): ethanol (A) 
and methanol (B). The arrows represent evolution of the reactions. 

Fig. 4. Second-derivative NIR spectra obtained in the first reaction batch with 
(A) ethanol and (B) methanol as acyl-acceptor. The arrows represent reac
tion time. 

Table 3 
Dimensions of the X-dataset and Y-dataset.   

Reaction with ethanol Reaction with methanol 

Reaction time (min) 200 375 
X-matrix (1100–2350 nm) 322 rows and 626 columns 684 rows and 626 columns 
Y-matrix (Reaction yield %) 123 rows and 1 column 243 rows and 1 column  
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deactivate the enzyme more markedly as the likely result of its con
taining detrimental components such as phenolics or varying widely in 
acidity [10,48,49]. 

The biocatalysts were imaged with a binocular loupe after the whole 
sequence of reaction with each acyl-acceptors in order to check whether 
they had retained their structure without fracturing by effect of me
chanical stress under agitation (Fig. 2B). No substantial breaks were 
detected after the ten cycles, which confirms the strength of the support 
and its suitability for industrial use, as indicated by the supplier 
(Purolite®). 

3.3. Near infrared (NIR) spectra: A useful tool for the biodiesel industry 

Once the biocatalyst suitability for biodiesel production under con
ditions mimicking industrial work was confirmed, the development of a 
system enabling inline monitoring and compliance with CPV and PAT 
principles was sought. In this sense, NIR spectroscopy was employed by 
inserting a probe in a customized reactor in combination with two 
different calibration models. 

3.3.1. Spectral data 
Absorbance spectra acquired across the NIR spectral range 

(1100–2498 nm) were visually inspected to identify gross outliers and 
noisy spectral regions. The range from 2352 to 2498 nm exhibited little 
variability and considerable noise typical of fiber optic probes, so only 
that from 1100 to 2350 nm was used. Fig. 3 shows the first and last 

spectra obtained in a reaction run with ethanol and methanol as 
compared with those for the pure alcohols. Ethanol and methanol 
(Fig. 3, blue plots) exhibited the following major spectral bands: 
1425–1475 nm (OH first overtone), 1650–1750 nm (CH first overtone), 
2000–2100 nm (OH combinations) and 2200–2450 nm (CH + CH 
combinations and CC + CH combinations). Expectedly, methanol 
spectra presented less bands than that of ethanol at 1650–1750 nm and 
2200–2450 nm due to the absence of CH2; the bands corresponding with 
CH first overtone, CH + CH and CH + CC combinations are only related 
with the CH3 group from methanol. The spectra at the start of the re
action (Fig. 3, green plots) exhibited the following spectral bands: high 
absorbance at 1650–1750 nm (CH first overtone), very low absorbance 
at 1875–1950 nm (CO second overtone), low absorbance at 2000–2100 
nm (OH combinations) and very high absorbance at 2200–2450 nm (CH 
+ CH and CC + CH combinations). The spectra at the end of the reaction 
(Fig. 3, red plots) showed higher absorbance than that of the starting 
point almost throughout the whole studied spectral range (1100–2400 
nm). The final yield after the two batches showed in Fig. 3 was 61.0% 
with ethanol and 65.9% with methanol. 

The typically extensive overlap of bands and fairly low resolution of 
the NIR technique required increasing resolution by using a spectral 
derivative treatment. The spectral ranges 1400–1700 nm and 
1900–2300 nm were adequate to visualize the spectral changes during 
the reaction because of the low absorbance of the WCO and high 
absorbance of the alcohols. Fig. 4 shows the second derivative spectra of 
the first cycle with ethanol (Fig. 4A) and with methanol (Fig. 4B), in the 

Fig. 5. PCA scores plot constructed from second-derivative spectra over the range 1100–2350 nm obtained with ethanol (A1 and A2) and methanol as acyl-acceptor 
(B1 and B2). The 1 and 2 subplots stand for different symbol related to cycles and reaction time, respectively. 
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wavelength range between 2200 and 2275 nm. As can be seen, the bands 
were highly ordered in terms of yield and reaction time. This result is 
also observed throughout the entire wavelength range of 1100–2350 
nm. 

Table 3 summarizes the dimensions of the X- and Y- datasets. The 
number of rows coincided with that of measured spectra and the number 
of columns with that of variables (wavelengths and reaction yield). The 
reaction with methanol took almost twice as long as that with ethanol 
(375 min vs 200 min). Since the spectrum acquisition frequency was 
identical with both alcohols (1 spectrum every 5 min), the available X- 
matrix for the reaction with methanol contained many more rows than 
that for ethanol (684 vs 322). The sampling frequency for GC analysis 
was approximately 1 sample every 15 min. As a result, the number of 
rows in the Y-matrix for which a yield value was available was roughly 
one-third of all (viz., 123 out of 322 for ethanol and 243 out of 684 for 
methanol). 

Data from second-derivative spectra spanning the range 1100–2350 
nm were initially explored through PCA method. One PCA for each 
alcohol was calculated by using the whole X-matrix. The scores plot of 
the second principal component against the first (PC2 vs PC1) explained 
approximately 95% of the variance in X (Fig. 5). Fig. 5A were calculated 
from the reactions with ethanol, and 5B with methanol. There were two 
main sources of spectral variability, namely: reaction time and reaction 
cycle. For the reaction with ethanol (5A1 and 5A2), the reaction cycle is 

mostly explained by the PC1, accounting for 81% of the X-variance, and 
the reaction time by the PC2 (21%). For the reaction with methanol (5B1 
and 5B2), the reaction time is mostly explained by the PC1 (74%) and 
the reaction cycle by the PC2 (12%). Neither standard normal variate 
(SNV) scaling nor first-derivative treatment, whether individually or in 
combination, provided better results for the reaction with ethanol —at 
least not on a par with the scores plots for methanol. The spectral 
variability of the reaction cycle depended on the normal laboratory 
conditions of sample and instrument. 

3.3.2. Calibration 
The Kennard–Stone method selects a subset of calibration samples 

which provide a very uniformly distributed network of selected points 
over the dataset and includes samples on its boundary. Table 4 shows the 
number of spectra used for calibration and prediction. The calibration 
set for the ethanol reaction included 24 samples from reaction cycles 1, 
2, 3 and 6, which spanned an FAEE yield range of 0.0–61.0%, while the 
set for methanol comprised 27 samples from reaction cycles 2, 3 and 10, 
with an FAME yield of 6.2–68.9%. No spectrum for a near-zero yield was 
available for methanol owing to instrumental issues arising at the 
beginning of the reaction. All other spectra were included in the pre
diction set. 

Reaction yields were quantified by using PLS calibration models 
constructed from independent calibration and prediction sets of NIR 
spectra. Models spanning a narrow spectral range failed to reduce cali
bration or prediction errors relative to the whole spectral range. Also, 
narrow ranges failed to reduce the number of factors required by each 
model. Second-derivative spectra proved the best choice in any case. 

Table 4 summarizes the calibration and prediction results obtained 
with the PLS model for each alcohol. Both were constructed with two 
factors and explained a cumulative Y-variance higher than 98%. The 
only difference between the two was the Y-variance captured by the first 
factor, which was 66.9% with ethanol and 91.4% with methanol. This 
was a result of the distribution of PCA scores and the two sources of 
variability observed (reaction time and reaction cycle; Fig. 5). The Y- 
variable (yield) was explained mainly by PC1 in the reaction with 
methanol, and by both PC1 and PC2 in the reaction with ethanol. The 
model using PC1 alone was more robust for methanol than it was for 
ethanol. With PC1 and PC2 jointly, however, the two models captured 
almost the same Y-variance (98.1% for ethanol and 99.6% for meth
anol). The upper range of biodiesel yield for the reaction with methanol 
(68.9%) was higher by effect of the increased experimental reaction 
yield. Calibration errors (RMSEC), expressed in the same units as yield, 
were 2.4% for ethanol and 1.3% for methanol and the correlation co
efficients were higher than 0.99. 

The prediction results of Table 4 were obtained from pure indepen
dent sets which were not employed during calibration. Regression lines 
for NIR yield versus GC yield plots were evaluated through different tests 
and analysis. In this sense, the correlation coefficients were high (viz., 
0.989 and 0.996 for ethanol and methanol, respectively). The residuals 
were randomly distributed around 0 and their normal distribution was 
demonstrated with the Anderson-Darling, Ryan-Joiner and Kolmogorov- 
Smirnov tests (95% of significance). The Mandel test for linearity was 
calculated for the two regressions and the F-tests (95% of significance) 
concluded that quadratic models do not performe better than linear 
ones. The absence of significant differences between the two techniques 
was demonstrated through the t-tests (95% of significance) of the slope 

Table 4 
Number of spectra used to construct the calibration and prediction sets, figures 
of merit of the calibration models and predictive ability.   

Reaction 
with ethanol 

Reaction 
with 

methanol 

Calibration   
Number of spectra 24 (4 cycles) 27 (3 cycles) 
PLS factors 2 2 
Yield range (%) 0.0–61.0 6.2–68.9  

Cumulative Y-variance explained   
Factor 1 66.9 91.4 
Factor 2 98.1 99.6  

NIR vs GC regression   
Slope 0.98 ± 0.06 0.99 ± 0.03 
Intercept 0.6 ± 2.1 0.2 ± 1.2 
Correlation coefficient (r) 0.990 0.998 
RMSEC (%) 2.4 1.3  

Prediction   
Number of spectra (total) 298 (8 

cycles) 
657 (9 cycles) 

Number of spectra (with GC reaction yield value) 99 203 
Number of spectra (without GC reaction yield 

value) 
199 454 

Yield range (%) 0.0–59.4 6.3–68.8  

NIR vs GC regression   
Slope 0.98 ± 0.03 0.99 ± 0.01 
Intercept 1.0 ± 1.1 –0.3 ± 0.6 
Correlation coefficient (r) 0.989 0.996 
RMSEP (%) 2.1 2.0  

Table 5 
RMSEP (%) value for each reaction cycle.  

RMSEP Cycle Overall 

1 2 3 4 5 6 7 8 9 10 

Reaction with ethanol 2.4 2.0 2.7 2.1 1.9 2.1 1.6 N/A N/A 1.6 2.1 
Reaction with methanol 2.0 1.0 1.9 2.1 2.1 N/A 2.5 1.9 2.0 2.3 2.0 

N/A: not available. 
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and intercept of the NIR versus GC regressions. In fact, the slopes and 
intercepts were not significantly different from 1 and 0, respectively, 
which highlights the accuracy of the NIR method. Finally, the satisfac
tory predictive ability was also assessed with the low RMSEP prediction 
errors (2.1% for ethanol and 2.0% for methanol). As can be seen in 
Table 5, RMSEP for the individual reaction cycles ranged from 1.0 to 
2.7%. Although RMSEC for the methanol model was lower than for the 
ethanol model (1.3% vs 2.4%), there were virtually no differences in 
predictive ability between the two on an individual batch basis. 

3.3.3. Validation 
Figures 6 and 7 show the NIR profiles of yield vs time used to validate 

the results of the reaction cycles with the two alcohols. The figures 
represent the NIR predictions from the whole set of prediction spectra 
(with or without a matching reaction yield obtained by GC), namely: 
298 spectra for ethanol and 657 for methanol. These spectra were 
distributed among the 8 reaction cycles examined for ethanol and the 9 
for methanol. As can be seen, there was high correlation between the 
NIR and GC results. Uncertainty in the prediction of each spectrum was 
assessed via the estimated error, which is a measure of goodness of 
prediction and calibration error, and was used in reaction yield units. 
This error measure is software specific (Solo) and it uses the equation 9 
of a previously reported work [50]. The 298 NIR predictions of the re
action with ethanol were subject to an estimated average error of 2.94% 
(min = 2.84, max = 3.13), while the 657 NIR predictions of the reaction 
with methanol had an estimated average error of 1.51% (min = 1.47, 
max = 1.65). The magnitude of the error was not constant throughout 
the reaction, however; rather, it was smallest in the middle of each 

batch, and peaked at the beginning and end. This result is consistent 
with the typical distribution of interpolation errors observed with least- 
squares regression. The PCA scores plot (Fig. 5) affected the larger 
estimated error for the reaction with ethanol compared with the reaction 
with methanol. The Y-variable (yield) in the reaction with ethanol was 
explained by both PC1 and PC2. This led to a PLS model for the reaction 
of ethanol with a Y-explained variance of the first factor of 66.9% 
(Table 4). The yield in the reaction with methanol was explained mostly 
by PC1 and the Y-explained variance of the PLS model was 91.4%. The 
PLS for both reactions used two factors, achieving 98.1% and 99.6% of 
the Y-explained variance. The previous results testify to the robustness 
of NIR spectroscopy for monitoring biodiesel production by enzymatic 
transesterification with ethanol or methanol as acyl-acceptor. 

4. Conclusions 

Waste cooking oil (WCO), which based on its fatty acid composition 
was probably of olive oil origin, was used to obtain third-generation 
biodiesel with immobilized Rhizopus oryzae lipase and to successfully 
scale up the reaction from orbitally stirred 10 mL vials to a mechanically 
stirred 50 mL laboratory reactor obtaining similar yields and operational 
stability. EO-rROL exhibited a high operational stability in terms of half- 
life (t1/2), over 35 reaction batches with both ethanol and methanol. 
However, methanol-based reaction showed decreased productivity as a 
result of the increased reaction times (219 vs 327 µmol min− 1). Besides, 
transesterification reaction with both alcohols was monitored by NIR 
spectroscopy in the 50 mL reactor. The GC and NIR results were highly 
correlated, with a prediction error (RMSEP) of 2.0% for methanol and 

Fig. 6. NIR prediction of reaction yields (solid line) with ethanol as acyl-acceptor. Dots represent reference GC yield values.  

J. López-Fernández et al.                                                                                                                                                                                                                      



Fuel 319 (2022) 123794

9

2.1% for ethanol. Based on these results, using immobilized enzymes 
and adding the alcohol stepwise, which might have increased back
ground noise in spectral measurements, was no issue here. Conse
quently, NIR spectroscopy stands as a robust tool for monitoring 
industrial biodiesel production in compliance with CPV and PAT prin
ciples. Inline monitoring of the reaction can help identify the most 
suitable time for addition of alcohol pulses and renewal of the biocata
lyst for optimal performance. 
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J. López-Fernández et al.                                                                                                                                                                                                                      

https://doi.org/10.1016/j.fuel.2022.123794
https://doi.org/10.1016/j.fuel.2022.123794
https://doi.org/10.1016/j.rser.2016.02.025
https://doi.org/10.1016/j.rser.2016.02.025
https://doi.org/10.1016/j.fuel.2020.119622
https://doi.org/10.1016/j.fuel.2020.119622
https://doi.org/10.1016/J.FUEL.2020.119140
https://doi.org/10.1002/APJ.2390
https://doi.org/10.1002/APJ.2390
http://refhub.elsevier.com/S0016-2361(22)00657-3/h0025
http://refhub.elsevier.com/S0016-2361(22)00657-3/h0025
http://refhub.elsevier.com/S0016-2361(22)00657-3/h0025


Fuel 319 (2022) 123794

10

[6] Unglert M, Bockey D, Bofinger C, Buchholz B, Fisch G, Luther R, et al. Action areas 
and the need for research in biofuels. Fuel 2020;268:117227. https://doi.org/ 
10.1016/j.fuel.2020.117227. 

[7] Ogunkunle O, Ahmed NA. A review of global current scenario of biodiesel adoption 
and combustion in vehicular diesel engines. Energy Rep 2019;5:1560–79. https:// 
doi.org/10.1016/j.egyr.2019.10.028. 

[8] Günay ME, Türker L, Tapan NA. Significant parameters and technological 
advancements in biodiesel production systems. Fuel 2019;250:27–41. https://doi. 
org/10.1016/j.fuel.2019.03.147. 

[9] Singh D, Sharma D, Soni SL, Sharma S, Kumar Sharma P, Jhalani A. A review on 
feedstocks, production processes, and yield for different generations of biodiesel. 
Fuel 2020;262:116553–68. https://doi.org/10.1016/j.fuel.2019.116553. 

[10] Bonet-Ragel K, Canet A, Benaiges MD, Valero F. Synthesis of biodiesel from high 
FFA alperujo oil catalysed by immobilised lipase. Fuel 2015;161:12–7. https://doi. 
org/10.1016/j.fuel.2015.08.032. 

[11] Biernat K, Matuszewska A, Samson-Bręk I, Owczuk M. Biological methods in 
biodiesel production and their environmental impact. Appl Sci 2021;11:10946. 
https://doi.org/10.3390/APP112210946. 

[12] Harding KG, Dennis JS, von Blottnitz H, Harrison STL. A life-cycle comparison 
between inorganic and biological catalysis for the production of biodiesel. J Clean 
Prod 2008;16:1368–78. https://doi.org/10.1016/J.JCLEPRO.2007.07.003. 

[13] Cavalcante FTT, Neto FS, Rafael de Aguiar Falcão I, Erick da Silva Souza J, de 
Moura Junior LS, da Silva Sousa P, et al. Opportunities for improving biodiesel 
production via lipase catalysis. Fuel 2021;288:119577. 
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