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ARTICLE INFO ABSTRACT

Keywords: Near Infrared (NIR) spectroscopy was used for inline monitoring the enzymatic production of third-generation

Biodiesel biodiesel from waste cooking oil (WCO) —with fatty acid profile similar to olive oil— under the principles of

Biocatalysis Continued Process Verification (CPV) and Process Analytical Technology (PAT). For this purpose, covalently

ﬂ;a;rs;nfrared spectroscopy immobilized mature Rhizopus oryzae lipase (rROL) was used to transesterify WCO with methanol and ethanol,

Komagataella phaffii firstly in 10 mL vials under orbital stirring and then it was successfully scaled up to a mechanically stirred 50 mL
ag p

laboratory reactor specially designed for use of a NIR probe. Biocatalyst half-life and productivity after ten re-
action cycles with methanol and ethanol were assessed. Slightly higher operational stability with methanol
(337.5 h, 54 batches) vs with ethanol (146.7 h, 44 batches) was observed, but decreased productivity as a result
of the increased reaction times used with the former (219 vs 327 ymol min ). The NIR spectroscopy results were
highly correlated with those of gas chromatography (GC) used as reference. Thus, the root mean-square standard
error of prediction (RMSEP) was 2.0% for methanol and 2.1% for ethanol. Therefore, NIR spectroscopy, which

Inline monitoring

allows data acquisition in real time, is suitable for inline monitoring of enzymatic production of biodiesel.

1. Introduction

Circular economy is gaining momentum for reducing the environ-
mental footprint of mankind and overcoming the widely adopted system
grounded on linear resource use and waste generation. Using alternative
and renewable sources of energy such as biogas, 2,5-dimethylfuran,
hydrogen or biodiesel for transportation has been proposed to alle-
viate the current heavy dependence on fossil fuels [1-3]. The latter is a
mixture of mono-alkyl esters of long-chain fatty acids that can be
directly used by existing combustion engines and is arousing increasing
interest by virtue of its being renewable and biodegradable, accelerating
the carbon cycle and reducing net emissions of greenhouse gases. Bio-
diesel is obtained largely by transesterifying triacylglycerides with
short-chain alcohols (ethanol and methanol, mainly). The resulting
product is classified as first-, second- or third-generation biodiesel ac-
cording to the oil substrate used. Due to the ethical dilemma of food vs
fuel, public institutions are taking steps to shift production from first- to
second- and third-generation biodiesel. The former is produced from
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non-edible oils such as radish and apricot kernel oils [4] while third-
generation biodiesel is produced from substrates like waste cooking oil
(WCO) in a manner that complies with the principles of circular econ-
omy [5,6].

At present, biodiesel is industrially produced mainly by chemical
transesterification of first-generation substrates in the presence of a
homogeneous basic catalyst. Using second- or third-generation sub-
strates requires their pre-treatment to remove free fatty acids (FFAs),
which they typically contain in high proportions [7,8]. In fact, unless
properly neutralized, FFAs favor saponification and give biodiesel of
decreased quality requiring further downstream work. Enzymatic
transesterification with lipases (glycerol ester hydrolases, E.C.3.1.1.3)
has emerged as a solution to avoid unwanted side reactions such as
saponification and hence additional downstream processing. Although
alternatives such as using acids and heterogeneous solid catalysts have
been proposed, most are unfeasible or result in low reaction rates [9,10].
Using lipases for transesterification has additional advantages, such as
more modest energy requirements from milder reaction conditions
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—lower reaction temperatures, close to 30 °C, are required instead of
the higher temperatures, usually over 50 °C, needed for chemical cata-
lysts [11]—, a simplified flowsheet for purification [12] and the need for
no organic solvents, which makes processes compliant with the princi-
ples of green chemistry [13,14].

Rhizopus oryzae lipase (ROL) has been extensively studied as a bio-
catalyst for biodiesel production on the grounds of its 1,3-regiospecific-
ity preventing formation of glycerol during the transesterification
reaction [15] —this alcohol is deemed a residue owing to its worldwide
large scale production [16]. Instead, ROL leads to the formation of 2-
monoacylglycerol, which is a by-product with a high added value by
virtue of its capacity to increase biodiesel quality and its being useful for
the pharmaceutical and food industries [17-19]. Although ROL is a
stable biocatalyst, it is generally used in immobilized form to improve its
industrial suitability. Immobilizing the enzyme allows it to be reused
and usually increases its stability. ROL for biodiesel production has so
far been immobilized in various ways including covalent binding,
adsorption or the use of whole cells [15].

During chemically or enzymatically catalyzed transesterification for
biodiesel production, the reaction medium contains a mixture of fatty
acid methyl and ethyl esters (FAM/EE), FFA and tri-, di- and mono-
acylglycerols. Production performance is usually assessed by gas chro-
matography (GC), using an offline and sluggish analytical procedure
[20,21]. Moreover, low volatile substances can damage capillary col-
umns and other elements of the chromatographic system, so a number of
alternative techniques including high-performance liquid chromatog-
raphy (HPLC) [22] and proton nuclear magnetic resonance (1H NMR)
spectroscopy [23] are being increasingly used instead. Chromatographic
techniques, however, are expensive and time-consuming; also, they
cannot operate inline, which prevents timely decision-making during
the process and can increase production costs by requiring stops —or
even batch reprocessing if the target quality is not achieved [24]. The
principles of Continued Process Verification (CPV) have made bio-
process automatization and Process Analytical Technology (PAT)
increasingly attractive; also, they have promoted the use of analytical
methods allowing real-time quality assessment, adoption of corrective
measures and a better understanding of bioprocesses [25,26]. Such
methods require in- or online monitoring of the process, and hence
using, for instance, spectroscopic techniques (Raman, fluorescence,
UV-Vis, IR, NIR) in combination with multivariate calibration [27].

NIR spectroscopy is an extensively studied analytical technique
based on the interaction of matter and light radiation in the wavelength
region from 780 to 2500 nm that affords multicomponent, fast, reliable,
inexpensive and non-destructive analysis [20]. Besides, it avoids the
need for sample withdrawal when used inline, waste production, and the
need for complex pre-treatments of samples with solvents or other
chemicals, all of which makes it a safe, clean, energy-saving choice fully
compliant with the principles of green chemistry [28]. NIR spectra are
complex and possess broad overlapping bands that require special
mathematical procedures to accurately interpret spectra and understand
the results, such as principal component analysis (PCA) or partial least-
squares (PLS) regression [29]. NIR spectroscopy has so far been suc-
cessfully used by the biodiesel industry to assess the quality or properties
of biofuel/diesel blends [29,30], and also for inline monitoring of
chemically catalyzed transesterification reactions [20,31,32].

In this work, the mature sequence of ROL (rROL) heterologously
produced in the methylotrophic yeast Komagataella phaffii (Pichia pas-
toris) was immobilized onto a suitable support in order to catalyze the
transesterification of waste cooking oil (WCO) in a solvent-free system
with ethanol or methanol as acyl-acceptor. The main novelty of this
work is the scale up of the transesterification reaction to a laboratory-
scale reactor specially designed for use of an inline near infrared spec-
troscopy probe for monitoring the enzyme catalyzed transesterification
reaction. The results were compared with those obtained by gas chro-
matography as reference in order to confirm the suitability of the NIR
technique for accurate real-time monitoring of transesterification under
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the principles of CPV and PAT while avoiding the environmental and
economic costs of withdrawing samples during the process. Unlike
previous works on the NIR based monitoring of biodiesel production, the
fact of performing a stepwise addition of alcohol and the employment of
immobilized enzyme in this case might generate background noise in the
spectra, making the NIR monitoring more challenging. Besides, the
biocatalyst operational stability and mechanical strength were evalu-
ated and compared with previously reported data.

2. Materials and methods
2.1. Materials

Waste cooking oil (WCO) was obtained from a local public waste
management company and centrifuged prior to use. Polymethacrylate
matrix support D6308 was kindly donated by Purolite® (King of Prussia,
PA, USA). The colorimetric kit (11821729) for the enzymatic assay was
supplied by Roche (Mannheim, Deutschland). Heptane, ethanol and
methanol were purchased from Panreac (Barcelona, Spain). Standards of
methyl/ethyl palmitate, methyl/ethyl stearate, methyl/ethyl oleate,
methyl/ethyl linoleate and methyl linolenate, and all unstated reagents,
were obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Lipase heterologous production

The mature sequence of Rhizopus oryzae lipase (rROL) was heterol-
ogously produced in the methylotrophic yeast Komagataella phaffii by
the Bioprocess Engineering and Applied Biocatalysis Group of the Uni-
versitat Autonoma de Barcelona (Barcelona, Spain) as described else-
where [33]. After fermentation, the culture broth was centrifuged,
microfiltered, ultrafiltered and freeze-dried to remove biomass and
concentrate the enzyme [34].

2.3. Lipase activity measurement

Enzymatic activity was determined by using the Roche lipase
colorimetric kit in 200 mM Tris-HCI buffer at pH 7.25 at 30 °C on a Cary
300 spectrophotometer from Varian (Mulgrave, VIC, Australia) oper-
ating at 580 nm. All measurements were made in triplicate following an
already published procedure in which one unit of lipolytic activity was
defined as the amount of lipase necessary to hydrolyze 1 umol of ester
bond per minute under assay conditions [35].

2.4. Support functionalization and lipase immobilization

Polymethacrylate-matrix Purolite® D6308 with epoxide and octa-
decyl surface groups (EO) was functionalized as described elsewhere
[10]. Briefly, epoxide functional groups were pre-treated by incubating
1 g of support with 1 M ethylenediamine solution at pH 10 under orbital
stirring at 60 °C for 4 h. Then, the support was rinsed with distilled water
by vacuum filtration and incubated in a 2.5% w/v glutaraldehyde so-
lution in phosphate buffer at pH 8 on a roller at room temperature for 2
h. Finally, the glutaraldehyde-treated support was rinsed for incubation
with a 3500 AU mL™! lipase solution at 4 °C for 42 h. The biocatalyst
thus obtained (EO-rROL) was dried on silica gel and stored at —20 °C
until use.

The specific activity of the biocatalyst was calculated as the differ-
ence between those in the final blank and supernatant solutions divided
by the final dry weight of enzyme.

2.5. Transesterification reactions

Transesterification was done in closed 10 mL vials containing 8 g of
WCO at 30 °C under orbital stirring at 350 rpm [14]. The acyl-acceptor
was added in 5 (ethanol) or 10 pulses (methanol) by splitting the stoi-
chiometric volume of alcohol (2:1 alcohol:oil mixture) during the
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Table 1
Percent fatty acid composition profile for sunflower, olive and waste cooking oil
(WCO).

Acid Sunflower oil Olive oil WCO
Stearic 2.8 2.3 2.46 + 0.04
Oleic 28.0 66.4 70.78 + 0.38
Linoleic 62.2 16.4 10.21 £+ 0.01
Linolenic 0.16 1.6 2.45 £+ 0.02

reaction in order to reach the theoretical maximum yield (200 min re-
action for ethanol and 375 min for methanol) [17]. All substrates and
biocatalysts were previously equilibrated for water activity by using a
saturated KOH solution (a,, = 0.093) for a minimum of 16 h. The re-
action was scaled up to a 50 mL HME-R mini reactor from Scharlab
(Sentmenat, Barcelona, Spain) as described above but using a final oil
mass of 40 g and mechanical stirring at 700 rpm.

The minireactor lid and tank were specially designed in collabora-
tion with Scharlab (Supplementary Material 1). Thus, the lid was
custom-made to include an inlet that allowed the NIR probe to be
inserted in the reaction medium, and a second, slightly curved inlet for
the stirrer, so that both could reach the reaction medium without
colliding. Besides, the stirrer was modified by using an additional pro-
peller —the two were “marine propellers”— to facilitate generation of a
turbulent regime in the reactor.

Operational stability was assessed by allowing the biocatalyst to
settle in the bottom of the reactor. Then, depleted reaction medium was
removed and all components were prepared for the next run [17].
Relative yields of consecutive transesterification reactions cycles were
used as described elsewhere to fit the results to a first-order exponential
decay equation (Eq. (1)) and a two-component first-order exponential
decay equation (Eq. (2)), using the software Sigma Plot v 14 [36-38].

Y(%), = 100" (€))
Y(%), = 100e™" 4 ce ™! ()
where k, k; and k, are deactivation coefficients.

2.6. Gas chromatography (GC) analysis

Fatty acid ethyl esters (FAEEs) and fatty acid methyl esters (FAMEs)
were quantified on a model 7890A gas chromatograph from Agilent
(Santa Clara, CA, USA) equipped with a 19095N-123 capillary column
and an autosampler [39]. Relative standard deviations (RSD) never
exceeded 3%.

2.7. Fatty acid composition

The fatty acid composition of WCO was established by adapting a
previously reported procedure of chemically -catalyzed trans-
esterification [40]. Briefly, 40 g of oil was heated in an HME-R mini-
reactor commercially available from Scharlab (i.e., with the original
tank and lid) at 65 °C under mechanical stirring at 350 rpm. Then, KOH
(1 % w/w) and methanol (6:1 alcohol/oil mixture) were added and the
reaction was allowed to develop for 6 h with periodic sample with-
drawal for GC analysis and calculation of the relative fatty acid
composition.

2.8. Acquisition and processing of near infrared (NIR) spectra

The transesterification reactions were monitored by recording NIR
spectra at 5 min intervals in each reaction cycle [28]. Spectra were ac-
quired in the transflectance mode, using a Model 5000 spectropho-
tometer from FOSS NIRSystems (Silver Spring, MD, USA) equipped with
an immersive optical probe. A reference spectrum for air was obtained
before the reaction. The wavelength range scanned was 1100-2498 nm,
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the spectral resolution was 2 nm and the optical path length was 1 mm.
Raw absorbance spectra were exported to NSAS file format by using the
software Vision 2.51, then transformed to Matlab file format with The
Unscrambler 10.3 (Camo Analytics, Norway) and finally processed for
viewing, exploration and multivariate modeling with the software Solo
(Eigenvector Research Inc., Wenatchee, WA, USA).

First- and second-derivative spectra were obtained by using the
Savitzky-Golay algorithm with a 15-point moving window and a
second-order polynomial. Mean-centered data (X-matrix for spectra)
were subjected to principal component analysis (PCA). Partial least-
squares (PLS) calibration models for mean-centered data (X-matrix for
spectra and Y-matrix for reaction yield) were constructed by cross-
validation, using the leave-one-out method. Samples for inclusion in
the calibration and prediction sets were selected by using the Ken-
nard-Stone method [41]. The quality of the PLS models and their pre-
dictive ability were assessed in terms of the root mean square error of
calibration (RMSEC) and prediction (RMSEP), defined as:.

S (v - v’
n

RMSE = 3

where n is the number of samples used, Y**' the reaction yield provided
by the reference method and Y*™®¢ that estimated by the NIR model.

The number of PLS factors required to define each model was chosen
from the minimum of a plot of RMSEP vs number of factors. The pre-
dictive ability was also assessed by statistical evaluation of the least-
squares regression line between the reference GC reaction yield and
the NIR-predicted value.

The aim of quantitative multivariate modeling is reducing prediction
errors by using the simplest possible model (i.e., that with the fewest
factors). PLS models were evaluated over wide or narrow spectral in-
tervals selected from different calculations, namely: regression co-
efficients, X-loadings, XY correlation vector, variable importance in
projection and selectivity ratio. These tools allow simple numerical
assessment of the usefulness of each X-variable in a regression model.
The higher were the results obtained with these calculations over the
significant threshold, the greater was the usefulness of the variables for
regression and prediction. Selection of the spectral interval was com-
bined with different spectral processing methods, first in the absorbance
mode, and then as their first and second derivatives, and also upon
standard normal variate SNV-based scaling. The combination of SNV
followed by derivatization was also tested.

3. Results and discussion
3.1. Fatty acid composition of the waste cooking oil

Local public waste management companies typically collect and mix
large amounts of waste cooking oil (WCO). As a result, WCO composi-
tion can vary widely depending on consumption patterns and regional or
local cooking traditions. In Spain, most oil based cooking is done with
olive or sunflower oil, which leave vast amounts of oleaginous waste
[42].

Because it was obtained from a public waste management company
not implementing traceability, the oil used here was of unknown origin.
Analysis of its fatty acid composition was performed as described in
Section 2.6 to compare it with published profile of olive and sunflower
oil and results exhibited that the fatty acid profile for the WCO was
similar to that for olive oil (Table 1) [43]. The acidity of WCO, which is
another relevant factor having influence on the performance of the
biocatalyst during transesterification, has already been analyzed in a
previous publication exhibiting a low acidity value (0.77%) suggesting
that oil was not extensively cooked [14].



J. Lopez-Fernandez et al.

Fuel 319 (2022) 123794

©1 A 1B g8 8

- . | o 3 ¢

50 50 §

g o

s s
S 40 g é40— ) §
ke 2 [}
= >

30 ° 30 §

20 20

°
) 8
10 A 104
0 T T T T 0 T T T T T T T
0 50 100 150 200 0 50 100 150 200 250 300 350 400
Time (min) Time (min)

1004 _ 100 =

80 80 M e
ko] ke
2 60 2 601
)
2 2
3 :
X 404 oY 40

20 20

0 L LI L 0 L L L

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Cycles

Cycles

Fig. 1. Yield profile for WCO transesterification with 5 pulses of ethanol (A) and 10 of methanol (B) in the presence of EO-rROL. Relative yield of consecutive
transesterification cycles with 5 pulses of ethanol (C) and 10 of methanol (D). White bars and points correspond to the reaction in 10 mL vials and grey bars and
points to that in the laboratory minireactor. Relative yields were calculated against that of the first cycle (100%).

Fig. 2. (A) Customized reactor for use of the NIR probe. (B) The EO-rROL biocatalyst after 10 consecutive reaction cycles as seen under a binocular loupe.

3.2. Transesterification reaction: scale-up, productivity and half-life

The transesterification reactions initially conducted in 10 mL vials
under orbital stirring were successfully scaled up to a 50 mL laboratory
reactor under mechanical stirring (mimicking industrial large-scale
conditions), which was specially designed for use with a NIR probe.
Already optimized conditions, regarding the biocatalyst and the alcohol

addition strategy for biodiesel production from WCO were employed
[14], and as can be seen from Fig. 1A and B, the yield profiles for the first
reaction batch were almost identical with ethanol and methanol in both
the vial and the reactor —because of the 1,3-regioespecificity of ROL,
the theoretical maximum yield in the absence of acyl-migration phe-
nomena is 66%, resulting in the formation of the corresponding alkyl
esters and 2-monoacylglycerol [44]. The results therefore suggest that
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Table 2

EO-rROL productivity and half-life in biodiesel production with ethanol and
methanol as calculated by fitting to a first-order exponential decay (Eq. (1)) and
two-component first-order exponential decay (Eq. (2)) deactivation model.

Acyl Model R? Half-life (h) Productivity (pmol
acceptor equation min~1)
Ethanol 1 0.87 170 [51] 327

2 0.96 146.7 [44]
Methanol 1 0.87 225 [36] 219

2 0.95 337.5 [54]

* The numbers in square brackets represent the number of cycles for those of
reaction hours.
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Fig. 3. NIR absorbance spectra recorded at the start (green) and end (red) of
the reaction as compared with those for each pure alcohol (blue): ethanol (A)
and methanol (B). The arrows represent evolution of the reactions.

mass transfer and reaction performance in the vials and the reactor were
essentially identical under the employed conditions, and also that the
presence of the NIR probe did not detract from homogeneity in the re-
action medium. Thus, the 50 mL reactor with a customized lid and tank,
and a second stirrer (Fig. 2A), reproducibly echoed the results obtained
with 10 mL vials. In fact, both systems led to similar relative yields after
5 consecutive cycles (Fig. 1C and 1D).

Biodiesel productivity with each alcohol was calculated as the
combined figure for all 10 cycles performed in the laboratory-scale
reactor. As expected, FAEE productivity (ethanol as acyl-acceptor) was
1.5 times higher than FAME productivity (methanol as acyl-acceptor) as
a result of the longer reaction times required for transesterification with
the latter alcohol (Table 2), even though, the final transesterification
yields with methanol were slightly higher than those obtained with
ethanol (Fig. 1A and B). In fact, splitting the amount of alcohol used into
10 pulses is unproductive with alcohols such as ethanol —it has scarce
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Table 3
Dimensions of the X-dataset and Y-dataset.

Reaction with ethanol Reaction with methanol

Reaction time (min) 200 375
X-matrix (1100-2350 nm) 322 rows and 626 columns 684 rows and 626 columns
Y-matrix (Reaction yield %) 123 rows and 1 column 243 rows and 1 column

negative impact on the operational stability of the biocatalyst— but can
be useful with others such as methanol with severe influence on enzyme
stability [17,45]. Thus, the biocatalyst half-life in hours with methanol
as acyl-acceptor was about 1.5-2.5 times higher than it was with ethanol
as a result of the amount of methanol used being split into more pulses
than that of ethanol (Table 2). However, when reaction cycles corre-
sponding to these hours were compared, half-lives (t;,» values into
square brackets in Table 2) tended to be similar with both alcohols as a
consequence of the reaction times differing between the two.

ROL has exhibited widely variable operational stability in biodiesel
production from various substrates. For instance, ROL covalently
immobilized onto Relizyme™ OD403 was used to transesterify olive
pomace oil with methanol and the relative yield found to decrease to
60% after 26.7 h reaction (7 batches) [46]. In another study with soy-
bean oil, the transesterification yield with glutaraldehyde cross-linked
whole-cell biocatalysts decreased from 84 to 65% after 2520 h reac-
tion (35 batches) [47]. By contrast, the ROL catalyzed transesterification
of WCO has been the subject of little study, so comparison with the
previous results is challenging [15]. Therefore, although a number of
half-life values for ROL based biocatalysts used in biodiesel trans-
esterification reactions have been reported with several substrates,
comparison with WCO would be more accurate since this substrate may
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deactivate the enzyme more markedly as the likely result of its con-
taining detrimental components such as phenolics or varying widely in
acidity [10,48,49].

The biocatalysts were imaged with a binocular loupe after the whole
sequence of reaction with each acyl-acceptors in order to check whether
they had retained their structure without fracturing by effect of me-
chanical stress under agitation (Fig. 2B). No substantial breaks were
detected after the ten cycles, which confirms the strength of the support
and its suitability for industrial use, as indicated by the supplier
(Purolite®).

3.3. Near infrared (NIR) spectra: A useful tool for the biodiesel industry

Once the biocatalyst suitability for biodiesel production under con-
ditions mimicking industrial work was confirmed, the development of a
system enabling inline monitoring and compliance with CPV and PAT
principles was sought. In this sense, NIR spectroscopy was employed by
inserting a probe in a customized reactor in combination with two
different calibration models.

3.3.1. Spectral data

Absorbance spectra acquired across the NIR spectral range
(1100-2498 nm) were visually inspected to identify gross outliers and
noisy spectral regions. The range from 2352 to 2498 nm exhibited little
variability and considerable noise typical of fiber optic probes, so only
that from 1100 to 2350 nm was used. Fig. 3 shows the first and last

spectra obtained in a reaction run with ethanol and methanol as
compared with those for the pure alcohols. Ethanol and methanol
(Fig. 3, blue plots) exhibited the following major spectral bands:
1425-1475 nm (OH first overtone), 1650-1750 nm (CH first overtone),
2000-2100 nm (OH combinations) and 2200-2450 nm (CH + CH
combinations and CC + CH combinations). Expectedly, methanol
spectra presented less bands than that of ethanol at 1650-1750 nm and
2200-2450 nm due to the absence of CHy; the bands corresponding with
CH first overtone, CH + CH and CH + CC combinations are only related
with the CH3 group from methanol. The spectra at the start of the re-
action (Fig. 3, green plots) exhibited the following spectral bands: high
absorbance at 1650-1750 nm (CH first overtone), very low absorbance
at 1875-1950 nm (CO second overtone), low absorbance at 2000-2100
nm (OH combinations) and very high absorbance at 2200-2450 nm (CH
+ CH and CC + CH combinations). The spectra at the end of the reaction
(Fig. 3, red plots) showed higher absorbance than that of the starting
point almost throughout the whole studied spectral range (1100-2400
nm). The final yield after the two batches showed in Fig. 3 was 61.0%
with ethanol and 65.9% with methanol.

The typically extensive overlap of bands and fairly low resolution of
the NIR technique required increasing resolution by using a spectral
derivative treatment. The spectral ranges 1400-1700 nm and
1900-2300 nm were adequate to visualize the spectral changes during
the reaction because of the low absorbance of the WCO and high
absorbance of the alcohols. Fig. 4 shows the second derivative spectra of
the first cycle with ethanol (Fig. 4A) and with methanol (Fig. 4B), in the
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Table 4
Number of spectra used to construct the calibration and prediction sets, figures
of merit of the calibration models and predictive ability.

Reaction Reaction
with ethanol with
methanol
Calibration
Number of spectra 24 (4 cycles) 27 (3 cycles)
PLS factors 2 2
Yield range (%) 0.0-61.0 6.2-68.9
Cumulative Y-variance explained
Factor 1 66.9 91.4
Factor 2 98.1 99.6
NIR vs GC regression
Slope 0.98 + 0.06 0.99 + 0.03
Intercept 0.6 +2.1 0.2+1.2
Correlation coefficient (r) 0.990 0.998
RMSEC (%) 2.4 1.3
Prediction
Number of spectra (total) 298 (8 657 (9 cycles)
cycles)
Number of spectra (with GC reaction yield value) 99 203
Number of spectra (without GC reaction yield 199 454
value)
Yield range (%) 0.0-59.4 6.3-68.8
NIR vs GC regression
Slope 0.98 + 0.03 0.99 + 0.01
Intercept 1.0+1.1 -0.3£0.6
Correlation coefficient (r) 0.989 0.996
RMSEP (%) 2.1 2.0

wavelength range between 2200 and 2275 nm. As can be seen, the bands
were highly ordered in terms of yield and reaction time. This result is
also observed throughout the entire wavelength range of 1100-2350
nm.

Table 3 summarizes the dimensions of the X- and Y- datasets. The
number of rows coincided with that of measured spectra and the number
of columns with that of variables (wavelengths and reaction yield). The
reaction with methanol took almost twice as long as that with ethanol
(375 min vs 200 min). Since the spectrum acquisition frequency was
identical with both alcohols (1 spectrum every 5 min), the available X-
matrix for the reaction with methanol contained many more rows than
that for ethanol (684 vs 322). The sampling frequency for GC analysis
was approximately 1 sample every 15 min. As a result, the number of
rows in the Y-matrix for which a yield value was available was roughly
one-third of all (viz., 123 out of 322 for ethanol and 243 out of 684 for
methanol).

Data from second-derivative spectra spanning the range 1100-2350
nm were initially explored through PCA method. One PCA for each
alcohol was calculated by using the whole X-matrix. The scores plot of
the second principal component against the first (PC2 vs PC1) explained
approximately 95% of the variance in X (Fig. 5). Fig. 5A were calculated
from the reactions with ethanol, and 5B with methanol. There were two
main sources of spectral variability, namely: reaction time and reaction
cycle. For the reaction with ethanol (5A1 and 5A2), the reaction cycle is
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mostly explained by the PC1, accounting for 81% of the X-variance, and
the reaction time by the PC2 (21%). For the reaction with methanol (5B1
and 5B2), the reaction time is mostly explained by the PC1 (74%) and
the reaction cycle by the PC2 (12%). Neither standard normal variate
(SNV) scaling nor first-derivative treatment, whether individually or in
combination, provided better results for the reaction with ethanol —at
least not on a par with the scores plots for methanol. The spectral
variability of the reaction cycle depended on the normal laboratory
conditions of sample and instrument.

3.3.2. Calibration

The Kennard-Stone method selects a subset of calibration samples
which provide a very uniformly distributed network of selected points
over the dataset and includes samples on its boundary. Table 4 shows the
number of spectra used for calibration and prediction. The calibration
set for the ethanol reaction included 24 samples from reaction cycles 1,
2, 3 and 6, which spanned an FAEE yield range of 0.0-61.0%, while the
set for methanol comprised 27 samples from reaction cycles 2, 3 and 10,
with an FAME yield of 6.2-68.9%. No spectrum for a near-zero yield was
available for methanol owing to instrumental issues arising at the
beginning of the reaction. All other spectra were included in the pre-
diction set.

Reaction yields were quantified by using PLS calibration models
constructed from independent calibration and prediction sets of NIR
spectra. Models spanning a narrow spectral range failed to reduce cali-
bration or prediction errors relative to the whole spectral range. Also,
narrow ranges failed to reduce the number of factors required by each
model. Second-derivative spectra proved the best choice in any case.

Table 4 summarizes the calibration and prediction results obtained
with the PLS model for each alcohol. Both were constructed with two
factors and explained a cumulative Y-variance higher than 98%. The
only difference between the two was the Y-variance captured by the first
factor, which was 66.9% with ethanol and 91.4% with methanol. This
was a result of the distribution of PCA scores and the two sources of
variability observed (reaction time and reaction cycle; Fig. 5). The Y-
variable (yield) was explained mainly by PC1 in the reaction with
methanol, and by both PC1 and PC2 in the reaction with ethanol. The
model using PC1 alone was more robust for methanol than it was for
ethanol. With PC1 and PC2 jointly, however, the two models captured
almost the same Y-variance (98.1% for ethanol and 99.6% for meth-
anol). The upper range of biodiesel yield for the reaction with methanol
(68.9%) was higher by effect of the increased experimental reaction
yield. Calibration errors (RMSEC), expressed in the same units as yield,
were 2.4% for ethanol and 1.3% for methanol and the correlation co-
efficients were higher than 0.99.

The prediction results of Table 4 were obtained from pure indepen-
dent sets which were not employed during calibration. Regression lines
for NIR yield versus GC yield plots were evaluated through different tests
and analysis. In this sense, the correlation coefficients were high (viz.,
0.989 and 0.996 for ethanol and methanol, respectively). The residuals
were randomly distributed around 0 and their normal distribution was
demonstrated with the Anderson-Darling, Ryan-Joiner and Kolmogorov-
Smirnov tests (95% of significance). The Mandel test for linearity was
calculated for the two regressions and the F-tests (95% of significance)
concluded that quadratic models do not performe better than linear
ones. The absence of significant differences between the two techniques
was demonstrated through the t-tests (95% of significance) of the slope

Table 5
RMSEP (%) value for each reaction cycle.
RMSEP Cycle Overall
1 2 3 4 5 6 7 8 9 10
Reaction with ethanol 2.4 2.0 2.7 21 1.9 2.1 1.6 N/A N/A 1.6 21
Reaction with methanol 2.0 1.0 1.9 2.1 2.1 N/A 2.5 1.9 2.0 2.3 2.0

N/A: not available.
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Fig. 6. NIR prediction of reaction yields (solid line) with ethanol as acyl-acceptor. Dots represent reference GC yield values.

and intercept of the NIR versus GC regressions. In fact, the slopes and
intercepts were not significantly different from 1 and 0, respectively,
which highlights the accuracy of the NIR method. Finally, the satisfac-
tory predictive ability was also assessed with the low RMSEP prediction
errors (2.1% for ethanol and 2.0% for methanol). As can be seen in
Table 5, RMSEP for the individual reaction cycles ranged from 1.0 to
2.7%. Although RMSEC for the methanol model was lower than for the
ethanol model (1.3% vs 2.4%), there were virtually no differences in
predictive ability between the two on an individual batch basis.

3.3.3. Validation

Figures 6 and 7 show the NIR profiles of yield vs time used to validate
the results of the reaction cycles with the two alcohols. The figures
represent the NIR predictions from the whole set of prediction spectra
(with or without a matching reaction yield obtained by GC), namely:
298 spectra for ethanol and 657 for methanol. These spectra were
distributed among the 8 reaction cycles examined for ethanol and the 9
for methanol. As can be seen, there was high correlation between the
NIR and GC results. Uncertainty in the prediction of each spectrum was
assessed via the estimated error, which is a measure of goodness of
prediction and calibration error, and was used in reaction yield units.
This error measure is software specific (Solo) and it uses the equation 9
of a previously reported work [50]. The 298 NIR predictions of the re-
action with ethanol were subject to an estimated average error of 2.94%
(min = 2.84, max = 3.13), while the 657 NIR predictions of the reaction
with methanol had an estimated average error of 1.51% (min = 1.47,
max = 1.65). The magnitude of the error was not constant throughout
the reaction, however; rather, it was smallest in the middle of each

batch, and peaked at the beginning and end. This result is consistent
with the typical distribution of interpolation errors observed with least-
squares regression. The PCA scores plot (Fig. 5) affected the larger
estimated error for the reaction with ethanol compared with the reaction
with methanol. The Y-variable (yield) in the reaction with ethanol was
explained by both PC1 and PC2. This led to a PLS model for the reaction
of ethanol with a Y-explained variance of the first factor of 66.9%
(Table 4). The yield in the reaction with methanol was explained mostly
by PC1 and the Y-explained variance of the PLS model was 91.4%. The
PLS for both reactions used two factors, achieving 98.1% and 99.6% of
the Y-explained variance. The previous results testify to the robustness
of NIR spectroscopy for monitoring biodiesel production by enzymatic
transesterification with ethanol or methanol as acyl-acceptor.

4. Conclusions

Waste cooking oil (WCO), which based on its fatty acid composition
was probably of olive oil origin, was used to obtain third-generation
biodiesel with immobilized Rhizopus oryzae lipase and to successfully
scale up the reaction from orbitally stirred 10 mL vials to a mechanically
stirred 50 mL laboratory reactor obtaining similar yields and operational
stability. EO-rROL exhibited a high operational stability in terms of half-
life (t1/2), over 35 reaction batches with both ethanol and methanol.
However, methanol-based reaction showed decreased productivity as a
result of the increased reaction times (219 vs 327 umol min_l). Besides,
transesterification reaction with both alcohols was monitored by NIR
spectroscopy in the 50 mL reactor. The GC and NIR results were highly
correlated, with a prediction error (RMSEP) of 2.0% for methanol and
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Fig. 7. NIR prediction of reaction yields (solid line) with methanol as acyl-acceptor. Dots represent GC yield values.

2.1% for ethanol. Based on these results, using immobilized enzymes
and adding the alcohol stepwise, which might have increased back-
ground noise in spectral measurements, was no issue here. Conse-
quently, NIR spectroscopy stands as a robust tool for monitoring
industrial biodiesel production in compliance with CPV and PAT prin-
ciples. Inline monitoring of the reaction can help identify the most
suitable time for addition of alcohol pulses and renewal of the biocata-
lyst for optimal performance.
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