
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04482-8

1 3

A model of checkpoint behavior for applications that have 
I/O

Betzabeth León1   · Sandra Méndez1,2   · Daniel Franco1   · 
Dolores Rexachs1   · Emilio Luque1 

Accepted: 23 March 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
Due to the increase and complexity of computer systems, reducing the overhead of 
fault tolerance techniques has become important in recent years. One technique in 
fault tolerance is checkpointing, which saves a snapshot with the information that 
has been computed up to a specific moment, suspending the execution of the appli-
cation, consuming I/O resources and network bandwidth. Characterizing the files 
that are generated when performing the checkpoint of a parallel application is useful 
to determine the resources consumed and their impact on the I/O system. It is also 
important to characterize the application that performs checkpoints, and one of these 
characteristics is whether the application does I/O. In this paper, we present a model 
of checkpoint behavior for parallel applications that performs I/O; this depends on 
the application and on other factors such as the number of processes, the mapping of 
processes and the type of I/O used. These characteristics will also influence scalabil-
ity, the resources consumed and their impact on the IO system. Our model describes 
the behavior of the checkpoint size based on the characteristics of the system and 
the type (or model) of I/O used, such as the number I/O aggregator processes, the 
buffering size utilized by the two-phase I/O optimization technique and components 
of collective file I/O operations. The BT benchmark and FLASH I/O are analyzed 
under different configurations of aggregator processes and buffer size to explain our 
approach. The model can be useful when selecting what type of checkpoint con-
figuration is more appropriate according to the applications’ characteristics and 
resources available. Thus, the user will be able to know how much storage space the 
checkpoint consumes and how much the application consumes, in order to establish 
policies that help improve the distribution of resources.
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1  Introduction

Due to the increase and complexity of computer systems, reducing the overhead 
of the protocols used for fault tolerance has become important in recent years. 
One of the leading sources of overhead caused by rollback recovery protocols is 
storage on a stable storage system resulting from the I/O system.

The models of recovery and reconfiguration are those of direct recovery or for-
ward. In these models, progress is made from a wrong state to a correct one, mak-
ing corrections on parts of the state, and the inverse or rollback recovery, where it 
goes back to a previous right state, previously saved. These mechanisms allow us 
to keep the systems running because they periodically store the information of the 
processes’ states.

The checkpoint (ckpt) is one of these recovery techniques; it has the work of 
saving a snapshot with the information that has been computed up to a specific 
moment, suspending the execution of the application, consuming I/O resources 
and network bandwidth [1]. Because the checkpoint has to access the storage sys-
tem, it could create bottlenecks, which cause this fault tolerance strategy to affect 
fault-free application execution significantly. In addition, it can impact the scal-
ability of the application. Thus, the checkpoint can be considered as an I/O inten-
sive application, so its need for storage can have a large impact on the application. 
The number of checkpoints to be performed on an application is often related to 
the maximum overhead you want to introduce into the application. If we know 
the maximum overhead that the user can allow and the overhead that a checkpoint 
introduces, we can calculate the number of checkpoints to be performed [2]. This 
overhead is heavily dependent on I/O operations. Therefore, since the applica-
tions with I/O and the checkpoint use the I/O system, it is expected that there will 
be a greater impact.

Many techniques for improving parallel I/O performance need information 
about application access patterns. Models abstract systems, and thus techniques 
can explore their parameter space to optimize given objectives, for example, per-
formance, resource utilization, load balancing and so on [3]. In this way, it is also 
important to characterize the application that performs checkpoints. One of these 
characteristics is whether the application does file I/O, because there are more 
specific features of this type of application that the checkpoint must consider 
when saving the global state and generating the files with the snapshot. The fea-
tures to consider are whether the applications require keeping the data in memory 
or whether they need write or read data to/from the I/O system. In the latter case, 
the type of I/O used by the application affects the information that must be saved 
at the checkpoint. To know these aspects, it is necessary to model their check-
point behavior to analyze how this impacts on parallel applications that perform 
file I/O.

In this paper, we present a model of checkpoint behavior for HPC parallel 
applications that uses message passing (MPI) which performs I/O. The model is 
an extension of the previously published work, where applications didn’t perform 
I/O operations. The research is focused on the checkpoint file sizes in relation 
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to different underlying framework (MPI) parameters. We analyze coordinated 
checkpoints carried out at user-layer level by the DMTCP library. We focus our 
study on the parallel applications that perform parallel I/O at MPI-IO level. Our 
model describes the behavior of the checkpoint size based on the number of pro-
cesses and nodes when, concurrently, there are I/O from application processes, 
the number I/O aggregator processes and buffering size utilized by the two-phase 
I/O optimization technique. The model can be useful when selecting what type 
of checkpoint configuration is more appropriate according to the applications’ 
characteristics and the resources available. Thus, the user will be able to know 
how much storage space the checkpoint consumes and how much the applica-
tion consumes, in order to establish policies that help improve the distribution 
of resources. Two MPI implementations were considered: OMPIO (OpenMPI) 
and ROMIO (MPICH), with The BT of NAS Parallel Benchmark [4] (OMPIO, 
ROMIO) is analyzed under different configurations of aggregator processes and 
buffer sizes to explain our approach, and FLASH I/O benchmarks (NetCFD, 
based on ROMIO).

This paper is structured as follows: Section 2 refers to the background, describing 
the I/O optimization techniques and the main concepts of fault tolerance and check-
points for applications with I/O. Section 3 refers to the most relevant related work. 
Section 4 proposes a checkpoint behavior model for parallel I/O applications. Sec-
tion 5 presents the experimental results, and Sect. 6 goes on to calculate checkpoint 
size for I/O applications and use case. Finally, in Sect. 7, we present our conclusions 
and future work.

2 � Background

2.1 � HPC I/O

Parallel I/O has been an essential topic among the high-performance computing 
community for decades, motivated by the everlasting gap between processing and 
data access speeds and by increases in HPC architectures’ scale and thus in applica-
tions’ I/O requirements [3]. The software stack consists of a collection of independ-
ent components that work together to support an application’s execution. In this way, 
parallel applications in HPC access the storage devices through the I/O software 
stack, as shown in Fig. 1. As can be seen in the figure, the highest level corresponds 
to I/O libraries such as HDF5 [5], Parallel netCDF [6] and NetCDF [7]. The middle 
level corresponds to MPI-IO, in which optimization techniques are applied such as 
collective buffering and data sieving.

2.2 � I/O optimization techniques

MPI-IO, a submodule of the MPI standard, provides interfaces for parallel shared-
file access. Most MPI-IO libraries are one of two implementations, either ROMIO, 
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which ships with MPICH and many system vendor implementations, or OMPIO, 
which is the default in newer versions of OpenMPI.

Archiving operations are broken down into collective and non-collective opera-
tions. Collective operations use MPI collective communication calls, and all mem-
bers of the communicator must make the call. Non-collective calls are serial opera-
tions that are invoked separately for each process. Implementations of the collective 
I/O functions can coordinate the processes’ operations to achieve better end-to-end 
performance compared with independent I/O [8].

2.2.1 � ROMIO

The key to reducing high I/O latency in HPC applications is to perform fewer opera-
tions in larger chunks. As one of the most common HPC patterns is non-contigu-
ous access, ROMIO implements data sieving for non-contiguous requests from one 
process and two-phase I/O (also known as collective buffering) for non-contiguous 
requests from multiple processes [9].

Data sieving efficiently accesses non-contiguous regions of data in files when 
non-contiguous accesses are not provided as a file system primitive. The second 
optimization is two-phase I/O; this is an optimization that only applies to collective 
I/O operations. In two-phase I/O, the collection of independent I/O operations ana-
lyzes the collective operation to determine which data regions should be transferred 
(read or written). These regions are divided into a set of aggregation processes that 
will interact with the file system. When there is a read, these aggregators first read 
their disk regions and redistribute the data to the final locations. In the case of a 
write, the data from the processes are first collected before being written to disk by 
the aggregators [10, 11]. Both techniques can be controlled by the user through hints 
of ROMIO. In the case of the two-phase technique, they are as follows [12]:

Fig. 1   HPC IO software stack
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•	 cb_buffer_size: This controls the size (in bytes) of the intermediate buffer used 
in two-phase collective I/O. If the amount of data that an aggregator will transfer is 
larger than this value, then multiple operations are used.

•	 romio_cb_read and romio_cb_write: This controls when collective buff-
ering is applied to collective read or write operations.

•	 cb_config_list: This provides explicit control over aggregators.
•	 cb_nodes: This controls the maximum number of aggregators to be used. By 

default, this is set to the number of unique hosts in the communicator used when 
opening the file.

2.2.2 � OMPIO

This is the default MPI I/O library used by Open MPI. OMPIO has three main objec-
tives: (1) Increasing the modularity of the parallel I/O library by separating the MPI 
I/O functionality in substructure. (2) Allowing frameworks to use different decision 
algorithms at runtime to determine which module to use in a particular scenario. (3) 
Improving the integration of parallel I/O functions with other Open MPI components, 
especially the derived data types engine and the progress engine. When opening a file, 
the OMPIO component initializes a series of substructures and their components [13]:

•	 fs framework: responsible for all file management operations.
•	 fbtl framework: support for individual blocking and non-blocking I/O operations.
•	 fcoll framework: support for collective blocking and non-blocking I/O operations.
•	 sharedfp framework: support for all shared file pointer operations.

And the most important parameters that influence the performance of an I/O operation 
are:

•	 io_ompio_cycle_buffer_size: Data size issued by individual reads/writes per call.
•	 io_ompio_bytes_per_agg: Size of temporary buffers for collective I/O operations 

on aggregator processes.
•	 io_ompio_num_aggregators: Number of aggregators used in collective I/O opera-

tions.
•	 io_ompio_grouping_option: The algorithm used to automatically decide the num-

ber of aggregators used.

In this paper, we focus on the number and buffering size of the aggregators which are 
parameters that can impact on the size of the checkpoint in our model.

2.3 � Fault tolerance

In [14], the authors indicate that for large-scale HPC, faults have become the norm 
rather than the exception for parallel computation on clusters with tens to hun-
dreds of thousands of cores. The causes are attributed to hardware (I/O, memory, 
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processor, power supply, switch failure, etc.) and software (operating system, runt-
ime, unscheduled maintenance interruption).

Checkpoint is an important Fault Tolerance strategy. This approach allows us to 
periodically maintain an application on a reliable storage system, which serves as a 
recovery point in the event of a failure. Fault Tolerance guarantees the availability of 
applications in large-scale systems. Still, these protocols involve using strategies that 
require simultaneous and continuous access to stable storage through I/O operations, 
which can cause a significant source of overhead generated by this protection against 
failure.

The overheads for periodic checkpoint based fault tolerance models can be 
viewed in two ways: (i) the time for saving checkpoint data to persistent storage, and 
(ii) the time to recover the checkpoint data when a failure occurs [15]. Therefore, in 
both cases, it is necessary to observe the elements that can affect the checkpoint’s 
size, since they can increase or decrease the overhead generated.

2.4 � Checkpoint

An important issue in rollback recovery is to decide which strategy the system 
should use to perform the checkpoints. Each strategy has its advantages and dis-
advantages in terms of impact on both computing, communication, and storage; it 
depends on the application’s behavior and the characteristics of the system. Thus, 
checkpoints are classified into coordinated (blocking, non-blocking), uncoordinated 
(event-induced, time-induced, and mixed), and semi-coordinated (group coordina-
tion, non-coordination between groups) [16]. The coordinated checkpoints synchro-
nously generate a file per process. The non-coordinated checkpoints also create a 
file, albeit asynchronously. That is, each process is carried out independently. Both 
checkpoints must store information about internal interactions between processes to 
ensure that a system’s state after a failure is consistent with what it was before the 
failure occurred. This storage task produces a large overhead, consuming time as 
well as communication and storage resources to ensure adequate protection.

Checkpointing permits job execution recovery from failures by recording the exe-
cution state of a running job. It typically requires suspending job execution to take 
the execution state, involving time overhead. Checkpoint files are kept in storage 
for later recovery use when needed, and they involve storage overhead. Overhead 
in time and storage due to checkpointing depend mainly on the checkpoint file sizes 
and the checkpoint frequency, which should be kept as low as possible [17].

In this paper, we employ a user-layer library such as DMTCP (Distributed Mul-
tiThreaded Checkpointing) [18]. This library carries out a single-host or distributed 
computation in user-space transparently with no user code modifications or the O/S. 
To show the impact of the parameters, we analyze the checkpoint size for the BT-IO 
from the NAS parallel benchmark in its subversion FULL (collective operations: 
this means that data scattered in memory among the processors is collected on a 
subset of the participating processors and rearranged before written to file in order 
to increase granularity [19]).
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3 � Related work

In the related literature, there are studies such as [20] & [21] in which compar-
isons have been made between the advantages and disadvantages of the differ-
ent checkpoint schemes that exist, as well as the techniques applied to them to 
improve their performance.

In this way, there are some studies on the checkpoint that propose solutions to 
optimize the I/O of fault tolerance. In [22], the authors made a proposal to opti-
mize I/O in the OpenMP parallel application checkpoint, in which they reduced 
the overhead by balancing the load of this operation among threads, distributing 
a subset of the application’s shared state among them. In order to mitigate the I/O 
impact of checkpointing, [23] proposes a self-adaptive random delay approach to 
control the writing of checkpointing data. Likewise, [24] proposes a congestion 
control mechanism. Preventing the occurrence of congestive crashes can maxi-
mize I/O performance for the scalable Lustre file system. In [25], the authors esti-
mate the overhead generated by the energy for a certain checkpoint policy and 
provide formulas to optimize the checkpoint programming to save energy, with 
or without a limit on execution time. They also analyzed the impact of optimized 
power during the checkpoint on the storage subsystem, identifying the most opti-
mal policies for I/O savings and studied how to optimize power with a limit on 
I/O time.

In [26], different alternatives are discussed to reduce the size of checkpoint files 
generated by application-level checkpoint approaches, such as live variable analysis, 
zero-block removal, incremental checkpoints, and data compression. Furthermore, 
in [27] the author proposed a technique to reduce the size of checkpoints for par-
allel application programs based on MPI. With static data mappings, information 
collected dynamically at runtime was used, employing the Pin-based binary instru-
mentation tool to facilitate data similarity detection. Some research addresses the 
reduction of checkpoint latency as a method, it combining the reduction of the num-
ber of transmissions and the optimization of the transmission algorithm [28].

Likewise, there are other works that consider the use of I/O strategies, which have 
relevant information for our work, because everything that influences the execution 
of the application can impact the behavior of the checkpoint. In this sense, in [29] 
the authors present a runtime approach to determine the number of aggregation pro-
cesses that will be used in a collective I/O operation based on the view of the file, 
the topology of the process, the write saturation point per process, and the actual 
amount of data written in a collective write operation. In [8], the authors explored 
the communication cores available for two-phase I/O communication. They gen-
eralized the expansion algorithm to accommodate the two-phase I/O all-to-many 
communication pattern by reducing the effect of communication lag. Additionally, 
in order to reduce communication cost, in [30] the authors presented a design for 
collective I/O by adding an additional communication layer that performs request 
aggregation between processes within the same compute nodes.

In [31], the authors proposed a set of MPI-IO hint extensions that allow users 
to take advantage of fast locally attached storage devices to boost collective I/O 
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performance by increasing parallelism and reducing the impact of global synchro-
nization on the implementation of ROMIO. In [32], the authors compared two 
MPI-IO libraries, ROMIO and OMPIO, based on the application’s access pattern 
and underlying file system. This study shows that you cannot reliably choose a 
single data layout and expect uniform performance portability between these two 
libraries.

Our research is related to the works presented in this section because they use 
various strategies to minimize the impact of I/O on application execution, as well 
as taking into account the elements that can impact the storage of the checkpoint 
and therefore which can influence the scalability of the application. In these related 
works, they did not carry out a detailed study of the structure of the checkpoint con-
tent, nor did they analyze the I/O strategies that can impact the size of the checkpoint 
in order to predict its size. This is an aspect that we have addressed in this paper. 
Thus, the size of the checkpoint and the structure that makes up its image are both 
important in making the appropriate configuration decisions for fault tolerance in 
large-scale applications. This prediction can be made from a few resources, in order 
to predict the amount of storage needed for our fault-tolerant application. As well as 
other elements involved in the size of the checkpoint, such as the number of most 
suitable processes and nodes, among others, without having to carry out long execu-
tions. This way, this paper presents a model of checkpoint behavior for HPC appli-
cations with I/O operations. The model is an extension to the previously published 
work, where applications didn’t perform I/O operations. The research is focused on 
the checkpoint file sizes in relation to different underlying framework (MPI) param-
eters, such as the process number, cluster size or aggregator distribution.

4 � Checkpoint model for applications with I/O

Parallel scientific applications in general try to optimize I/O, frequently making 
large sequential accesses to a file [33]. The I/O of an application has a more regular 
I/O behavior pattern than the I/O behavior of the checkpoint of the same application, 

Fig. 2   I/O behavior (writes size and time)
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in terms of the number and continuity of the size of the write bursts. An example 
of both I/O behaviors is shown in Fig. 2. The application is a BT.C.mpi.io.full of 
NAS Parallel Benchmark that performs 440 writes in forty bursts of 10 writes, with 
each write being 16 MiB and the last of each burst 2.18 MiB. In the second graph 
of Fig. 2, the I/O behavior of a checkpoint executed in BT.C.16.mpi.io.full can be 
observed. In this case, it carried out a total of 241 writes of different sizes. There 
are a large number of very small ones of 4 KiB and few big ones of up to 111.73 
MiB. In the same way, the time varies if we compare when performing small writes, 
which can take thousandths of a second, while a large write can take more than 12 
seconds. Therefore, the I/O behavior of the checkpoint is not regular. In both cases, 
we can see that the time depends on the size of the writing.

BT.C.16.mpi.io.full uses MPI-IO, with which a single serial order file can be 
written instead of many separate files, using collective write operations (MPIO-
Write-all), in which 16 processes all write to a shared file. The I/O of the applica-
tion influences the I/O of the checkpoint, because as the checkpoint stores the global 
state of a process, in this case it must also save information from the I/O buffers, 
which makes it originate new zones to be stored by the checkpoint.

In general, Fig. 3 shows the steps necessary to generate the checkpoint files. First, 
the configuration of the elements that can impact the size of the checkpoint is car-
ried out, such as the workload, whether the files are to be compressed or not and the 
File System. Then, depending on the MPI Implementation to be used, the I/O strate-
gies will be established with ROMIO for MPICH or with OMPIO with OpenMPI. 
These also store information from libraries. The mapping is a very important 

Fig. 3   Checkpoint configuration
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element, because according to this, the number of necessary processes and nodes 
will be assigned. From these, the shared memory area and the I/O Buffer will be 
configured according to the MPI implementation selected previously. These configu-
rations are made with respect to the number of aggregators and the size of the I/O 
buffer. Then the application is executed with the checkpoint and the files that save 
the status of each process being stored, in this case the application data, the librar-
ies, the communications buffer and the I/O buffer are stored. The size of each zone 
depends fundamentally on the parameters that we have previously indicated.

To determine the size of each checkpoint file, we calculate it based on the param-
eters shown in Equation 1. As can be seen, the checkpoint’s size is in function of the 
workload (W), the number of processes(Np), and the number of nodes(Nn)).

In the checkpoints performed by applications without I/O, the information stored 
by the checkpoint is made up of three zones [34]. Figure 4 shows which zones that 
make up the checkpoint are.

Therefore, as can be seen in Fig. 4, the image of the checkpoint is composed of 
three zones. The data zone is closely linked with the application information. The 
size of this area varies according to the workload assigned as well as according to 
the distribution of this load among the number of processes used. Regarding the 
library zone, this area depends on what the application needs to run in the system. 
The shared memory zone is more variable, since it depends on the number of pro-
cesses used within the same node due to communications issues. When we use the 
MPICH implementation, this zone’s size increases as we increase the number of 
processes within the same node.

In the case of parallel applications with I/O, when they use collective operations, 
there are optimization techniques enabled to improve its performance by using addi-
tional buffers at library I/O level. Therefore, there are temporary file I/O operations 
in buffers that require being restored if a failure occurs. In this way, the I/O optimi-
zation techniques also impact on the size of the checkpoint. In Fig. 5, we can see 
the files generated by a checkpoint for the BT and BT-IO classes B and C, with 16 
processes in 4 nodes, in its FULL and SIMPLE (without collective buffering, which 

(1)CkptSizei = f (W,Npi,Nn)

Fig. 4   Zones that make up the checkpoints performed by applications without I/O
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means that no data rearrangement takes place, so that many seek operations are 
required to write the data to file [19]) version with different workloads. As an I/O 
benchmark, BT-IO SIMPLE utilizes independent I/O operations, and its FULL ver-
sion performs collective I/O operations. BT-IO writes/reads to/from a single shared 
file where each MPI process accesses non-contiguous patterns in both versions.

Analyzing the data of the checkpoint files, we could break down the checkpoint 
as shown in Eq. 2:

Fig. 5   Generated Ckpt files BT.B, BT.B.MPI.IO.SIMPLE and BT.B.MPI.IO.FULL (above plot), BT.C, 
BT.C.MPI.IO.SIMPLE and BT.C.MPI.IO.FULL (below plot)
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A new element arises (Na), which is related to the I/O aggregators utilized by 
the Two-Phase I/O strategy [30]. This technique reduces the communication cost 
for collective I/O by adding an extra communication layer that performs request 
aggregation among processes within the same compute nodes. This approach can 
significantly reduce inter-node communication congestion when redistributing the 
I/O requests. A subset of the MPI processes, defined as I/O aggregators, act as I/O 
proxies for the rest of the processes. Therefore, as can observed in Fig. 6, all the 
processes send their I/O requests to the aggregator processes in the communication 
phase, and then in the I/O phase, the aggregator processes make calls to the file sys-
tem to read or write the received requests. Therefore, when a checkpoint is carried 
out for applications that perform collective I/O operations, this new element must be 
taken into account, because the aggregators manage I/O buffers that have impact on 
the size of their checkpoint files.

We have analyzed the coordinated checkpoint behavior carried out at the user 
layer and generated by the DMTCP library for applications that perform I/O. A 
detailed study of the checkpoint’s image has been performed to know the impact 
of the I/O aggregators on its size when using collective operations (FULL). From 
this analysis, a checkpoint behavior model for parallel applications that perform 
I/O was defined based on workload, number of processes, number of compute 

(2)CkptSize(APPIOfull) = f (W,Npi,Nn,Nai)

Fig. 6   Checkpoint data layout for a parallel application that performs I/O by using collective operations 
run in four compute nodes. The mapping is of four MPI processes per compute node. A# are aggrega-
tors, P# the processes that send I/O data to the aggregators and F# the checkpointing file created by each 
process
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nodes and number of aggregator processes. Once the checkpoint has been charac-
terized, the zones are identified and we can analyze what happens when changes 
occur in the system. In this way, we observe what happens when some of the 
parameters in Eq. 2 change.

Applications without I/O:
In Fig.  7, the user-configurable elements are shown in diamonds: workload 

(input), number of processes, number of nodes. In this sense, in order to know 
the storage space necessary for a fault-tolerant application, in [34] we proposed 
a methodology that predicted the size of the checkpoint (run with MPICH) for 
applications without I/O. For this, the size of the DTAPP zones, LB and SHMEM, 
was estimated, which can be predicted as follows:

–	 DTAPP zone:

–	 The workload (input) directly influences the DTAPP Zone, which can be 
estimated from the characterization of the application with the checkpoint 
through regression equations for any number of processes.

–	 LB zone:

Fig. 7   Checkpoint file size model
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–	 After characterizing the application with the checkpoint, it is enough to iden-
tify the LB zone only once, because it does not change between the different 
executions carried out with the same environment or stack software, regard-
less of the change in the workload or the number of processes or nodes. There 
is a difference when using MPICH or OpenMPI.

–	 SHMEM zone:

–	 It can be determined through regression equations for any number of pro-
cesses and nodes.

–	 The model proposed in [34] can be used directly.

Thus, in Fig. 7 the effect if the workload increases is observed. The data zone 
of the application will increase at the checkpoint, which does not affect the library 
zone or the shared memory zone. Similarly, if we reduce the workload, the data zone 
will decrease and it will not affect the rest of the zones. As the number of processes 
increases, the data zone in each checkpoint file normally decreases because the 
information is fragmented into more parts and distributed among the processes. The 
library zone remains constant. The shared memory zone grows with more processes 
communicating within a node. The opposite occurs when reducing the number of 
processes. With reference to the number of nodes, if we increase them, this does 
not affect the data zone, but if we increase the nodes and decrease the number of 
processes per node, the shared memory zone will decrease due to there being fewer 
processes in each node.

Applications with I/O:
When applications have I/O, the size of the checkpoint files increases due to the 

I/O buffers. The size of some files increases due to the aggregators that are gener-
ated in the SHMEM zone, where the dynamic memory information is stored, and 

Fig. 8   Size (MiB) of the zones that make up the checkpoint files in applications with I/O Full



1 3

A model of checkpoint behavior for applications that have I/O﻿	

the rest of the zones are not impacted by this element. In Fig.8, the SHMEM zone 
has been divided into two parts (Communications Buffer and I/O Buffer) for a bet-
ter visualization. It can be seen how there is a file in each node bigger than the rest 
by the BUFFER I/O. So I/O is an element that impacts the size of the checkpoint by 
increasing the size of some of its files.

In the cases where the application does I/O, there are additional elements to take 
into account regarding the I/O Buffer. Among these is the number of aggregator pro-
cesses. If the number of aggregators is increased, the files from aggregator processes 
will also increase. If the size of the I/O Buffer is increased, the size of the aggrega-
tors will also increase.

If ROMIO is used, in the case of checkpoint the operation is "the writing", so the 
data sieving strategy can be used to write data. However, a read-modify-write must 
be performed to avoid destroying the data already present in the gaps between con-
tiguous data segments. ROMIO also uses another user-controllable parameter that 
defines the maximum amount of contiguous data that a process can write at one 
time during data sieving. Since writing requires locking the part of the file that is 
accessed, ROMIO uses a smaller default buffer size for writing (512 KiB) to reduce 
lock contention. ROMIO uses two user-controllable parameters for collective I/O: 
the number of processes that perform I/O in the I/O phase and the maximum size 
in each process of the temporary buffer needed for two-phase I/O. By default, all 
processes perform I/O in the I/O phase, and the maximum buffer size is 4 MiB per 
process [35].

In OMPIO, some components related to collective I/O operations can be config-
ured, otherwise the default configuration is taken. In addition to the aggregators in 
OpenMPI, collective operations can be managed with the fcoll command, which 
provides different implementations, at different levels of data reorganization in all 
processes. Two-phase, dynamic segmentation, static and individual segmentation 
offer decreasing communication costs during the reorganization phase of collective 
I/O operations, but they also offer decreasing contiguity guarantees of data elements 
before which aggregators read/write data to/from the file [13].

A Two-phase algorithm divides the collective I/O operations into two phases. For 
write operations, phase one redistributes the data between processes to match the 
layout of the data in the file. This allows you to create fewer or larger I/O requests 
and allows you to combine data from different processes. In phase two, it executes 
the actual write operation, and a subset of the application processes are the ones that 
actually do the writing of operations to the file, the aggregators [29]. The following 
modules of the collective IO layer are derived from the two-phase component by 
changing the IO communication optimizations in various ways.

Dynamic segmentation. The main objective of this algorithm is to combine data 
from multiple processes to minimize the number of I/O operations presented to 
the file system. Unlike the two-phase I/O algorithm, the segmentation is dynamic, 
that is, it does not create a globally ordered data matrix based on offsets in the file. 
Instead, each aggregator is assigned to a process group and performs classification 
and data collection/dispersal only within its group [29].

Static segmentation extends the dynamic segmentation algorithm. With this algo-
rithm, an aggregator collects a fixed number of bytes from each of the processes that 
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are assigned to it in each cycle. This keeps communication channels continuously 
busy and prevents mass communication. It does reduce the number of processes that 
execute these I/O requests compared to the total number of application processes 
that publish the request for collective writing [29].

Individual: Read and write directly, no communication at all.
To estimate the size of the aggregators, the MPI implementation used must be 

taken into account, in this sense:

•	 If MPICH is used, the size of the I/O buffer (approximately 16 MiB) is added to 
a file for each node, to estimate the size of the file used by the aggregator func-
tion.

•	 If OpenMPI is used, the size of the I/O buffer must be added (32 MiB) to a file 
for each node. If you have used a certain configuration of fcoll, this also influ-
ences the size of the aggregator files. These, depending on the optimization (two-
phase, dynamic, static, individual) that is used, will increase the size of some of 
the aggregators. This is because they use different I/O communication optimiza-
tion strategies.

In the end, the characteristics of the application and the system where the applica-
tion is executed influence the size of the checkpoint files. Thus the checkpoint file is 
obtained according to the configuration carried out regarding the workload, number 
of processes, number of nodes, number of aggregators processes per node, size of 
aggregators, and selected I/O optimization strategy.

Summarizing the aforementioned, Fig.  9 describes the behavior of the coordi-
nated checkpoint. In this sense, for example, an application that runs with four pro-
cesses, a checkpoint is performed at each time interval, all processes stop to perform 

Fig. 9   Coordinated checkpoint
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the checkpoint in a coordinated way. Thus, each process generates a file. In addition, 
other smaller files are also generated with information necessary for management and 
communication. All these files must be kept in a stable storage system. Each file has the 
information of the checkpoint, which for applications that do not I/O, stores the applica-
tion data, the libraries used and the communication buffers. On the other hand, applica-
tions that do I/O, in addition to storing the aforementioned, also store what is related to 
the I/O buffers. If a failure occurs, the application could restart from the last checkpoint 
performed, so as not to lose all the information already processed. In this work, we will 
highlight the most relevant configurable I/O elements that can influence the checkpoint 
size. Therefore, in the experimental phase, the number of aggregators and the size of 
the I/O buffer will be studied in depth, from two different MPI implementations, and 
different benchmarks will be used for the execution and verification of the experiments.

5 � Experimental validation

In this section, we present the validation of the proposed behavior model by running 
the BT of NAS Parallel Benchmark [4] and with the FLASH I/O Benchmark [36] in 
its HDF5 [5] version. This was executed for a different number of procesess, work-
loads, mapping and compute nodes. The experiments have been carried out on different 
types of machines, with two different architectures, which we will identify as follows 
(A:Architecture). Below is the following technical description:

–	 Compute nodes:

–	 AMD Athlon(TM) II X4 610e CPU 2.4GHz, processors: 1, CPU cores: 4, mem-
ory: 16 GiB (A1).

–	 AMD Opteron(TM) 6200 @ CPU 1.56 GHz, processors: 4, CPU cores: 16, 
memory: 256 GiB (A2).

–	 I/O system: NFS.
–	 Software stack: MPICH 3.2.1, OpenMPI 4.1.1 and DMTCP-2.4.5.
–	 I/O Library: ROMIO as part of the MPICH 3.2.1 with hints values as follows:

–	 buffer size by default for collective I/O = 16 MiB
–	 one agreggator process per compute node

–	 OMPIO Component as part of the Open MPI 4.1.1 with hints values as follows:

–	 buffer size by default for collective I/O = 32 MiB
–	 one agreggator process per compute node
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5.1 � Analyzing the impact of the number of aggregator processes 
on the checkpoint file size

5.1.1 � IO benchmark the block‑tridiagonal (BTIO)

The Application simulates the I/O required by a pseudo-time stepping flow solver 
that periodically writes its solution matrix. This is accomplished by implementing 
the Approximate Factorization Benchmark (called BT because it involves finding 
the solution to a block tridiagonal system of equations), as well as writing the solu-
tion matrix every 5th time step (out of a total of 200 time steps) to a single serial 
order [37].

We have analyzed the checkpoint’s size concerning the BT benchmark with dif-
ferent workloads and number of processes, as well as taking an in-depth look at one 
of them (BT.B.16.MPI.IO) to observe in detail the zones created by the check-
point and their sizes. This includes the new subzone’s size created by the aggregator 
process, the impact of the number of aggregators and the size of the I/O buffer.

5.1.2 � ROMIO (MPICH)

In Table 1, a comparison of the BT is carried out for its full subtype for collective 
I/O, with different workloads and for 4, 9, 16, and 25 processes.

Table 1 shows that an aggregator per node has been generated. These are related 
to the mapping used in each case; if we observe the difference between the file size 
of the process that incorporates the collective I/O management (aggregator) shown 
in bold with the rest of the files in the same node, we see that there is a variation 
between 14 MiB and 17 MiB, although the two cases are reflected in the order of 
20 MiB. For example, looking at this table in the column corresponding to BT.B 
with 4 processes, if we analyze the difference in the size of the F0 file (which corre-
sponds to the aggregator) and the F1, F2 or F3 files, we see that the F0 file is always 
larger and that the difference with the size of the rest of the files is approximately 
16 MiB. It is also observed that mapping is a very significant element, since it can 
also impact on the size of processes and aggregators. In those cases in which a sin-
gle process was executed in a node, the aggregator’s size was smaller. For example, 
in the case of execution with BT B and C with 25 processes, we can see that the 
size of the F24 file is similar to the size of the files that do not include the aggrega-
tor information. For BT B, the aggregator’s size in this node (File: F24) was 73.34 
MiB, which is approximately 13 MiB smaller than that of the other aggregators of 
the other nodes. The same happens with BT C, in which the aggregator that is only 
in one node has a size of 137.12 MiB, that is, approximately 15 MiB smaller than 
the rest. This indicates that when there is a process only in one node, the file of its 
aggregator is smaller than that of other aggregators in nodes where there are more 
processes.

In the case of BT.B., it can also be observed that the greater the number of pro-
cesses used, the more the file size decreases, including the files that carry informa-
tion from the aggregators. With four processes, it went from having an aggregator 
file with 182.10 MiB to 25 processes having six aggregators files of approximately 
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Table 1   Comparison of the size (MiB) of checkpoint files for the BT-IO benchmark Class B and C in 
their subversion FULL. The size of the aggregator’s checkpoint files is shown in bold (MPICH) (A1)

Bench. BT.B.MPI.IO FULL BT.C.MPI.IO FULL

Np. 4 9 16 25 4 9 16 25

Map. 1n x 4p 2n x 4p 4n x 4p 6n x 4p 1n x 4p 3n x 3p 4n x 4p 6n x 4p

1n x 1p 1n x 1p 1n x 1p

F0 182.10 122.11 98.43 88.24 482.90 266.10 184.01 149.95
F1 165.60 106.26 83.74 74.34 466.18 249.05 164.99 128.72
F2 166.63 106.00 84.02 74.60 466.16 248.80 165.25 128.98
F3 166.64 106.00 83.80 74.34 466.16 248.79 165.17 128.75
F4 122.12 98.48 85.21 266.00 183.96 149.84
F5 106.22 83.74 74.48 248.79 165.00 128.71
F6 105.99 83.96 74.59 248.84 165.25 129.02
F7 106.26 83.74 74.34 249.08 165.05 128.76
F8 108.32 98.35 86.32 253.23 184.02 149.85
F9 83.70 74.21 164.99 128.46
F10 83.96 74.48 165.25 128.72
F11 83.75 74.47 165.04 128.72
F12 98.38 86.64 184.00 149.78
F13 83.71 74.48 165.03 128.72
F14 84.08 74.50 165.25 128.71
F15 83.75 74.40 165.03 128.46
F16 86.40 152.08
F17 74.36 128.70
F18 74.59 129.02
F19 74.57 128.72
F20 86.23 149.91
F21 74.46 128.70
F22 74.73 129.02
F23 74.47 128.76
F24 73.34 137.12

Table 2   Checkpoint files sizes 
(MiB) for the BT-IO Class B 
FULL benchmark generated 
on another system architecture 
(A2). (MPICH)

Bench. BT.B.MPI.IO FULL

Np. 16

Map. 2n x 8p
F0 F1 F2 F3 F4 F5 F6 F7
107.11 88.60 88.86 88.60 88.59 88.84 88.84 88.62
F8 F9 F10 F11 F12 F13 F14 F15
106.46 88.59 88.85 88.59 88.59 88.83 88.86 88.61
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86 MiB. In this way, the number of aggregator files increases but their size 
decreases, just like the size of the rest of the files that do not come from an aggrega-
tor process. This happens because the information in the buffer is decreasing and the 
aggregator takes the information from the process it protects plus the information 
from the IO buffer.

In Table 2, the BT.B.16 MPI IO FULL has been executed again, with 2n x 8p 
mapping, in order to validate our model in another architecture. In this way, it can be 
seen that the results are similar to those presented in Table 1, regarding the default 
size of the generated aggregator files of approximately 17 MiB.

Table 3 shows a comparison of the size of the aggregators by a checkpoint zone 
for BT.B.16 MPI-IO FULL, with a default configuration (4 aggregators, that is 1 
aggregator per node) and with 1, 2 and 3 aggregators. In this table, it can be seen 
that in the aggregator file, the DTAPP zone corresponding to the data is a little 
larger than the rest of the other files, and the LB zone corresponding to the libraries 
remains similar in all the files stored by the checkpoint. In the SHMEM zone cor-
responding to the shared memory zone, we can see the size of the aggregator, with 
an approximate size of 58MiB when the configuration is by default and with 62 MiB 
when the number of aggregators is modified. If we subtract from these values, the 
size that the SHMEM zone must have for four processes in a node (the mapping is 4 
processes in 4 nodes), which according to the Model "Estimating the size of shared 
memory within a node" [34] is approximately 43.07 MiB. The remaining size is 
approximately for the default configuration of 15 MiB and for the configuration of 
the number of aggregators of 19 MiB. Therefore, this difference is the one that has 
been dedicated to the buffer I/O.

The default buffer size for collectives in ROMIO is 16 MiB; therefore, those 
obtained in the results of Table 3 are consistent, since they are between 15MiB and 
19 MiB. In this way, we could detail the following aspects:

•	 If the default aggregator configuration is maintained, it generates one aggregator 
per node.

•	 By obviating the default configuration and assigning the number of aggregators, 
these are generated with a larger size than those caused by default because as 
there are fewer aggregators, they must handle more information.

•	 The mapping is an important aspect to consider as it influences the aggregators’ 
size and, therefore, the size of the checkpoint.

5.1.3 � OMPIO (Open MPI)

For the experiments in Table  4, the Open MPI implementation was used. In this 
table the BT is compared for its complete subtype of collective I/O, with different 
workloads and for 4, 9, 16 and 25 processes. Similar to the experiment performed in 
Table 1 with MPICH, here it is also shown that in most cases one aggregator file per 
node has been generated. Another important aspect to note in this experiment is that 
in cases where there are several aggregator files, one of the aggregators is larger than 
the rest of the aggregator files. In cases where the number of aggregator processes is 
less than the number of nodes, such as the one with 25 processes in six nodes, it only 
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Table 3   Aggregator size (MiB) comparison by zone, configuration by default and with 1, 2 and 3 aggre-
gator processes. The size of the aggregator’s checkpoint files is shown in bold (MPICH)(A1)

Agg. N o Agg. Default Bench: BT.B.16.MPI.IO.FULL SHMEM size

Size: Mapping: 4n x 4p model: 43.07 MiB

Files DTAPP LB SHMEM Ckpt BUFFER

(MiB) (MiB) (MiB) size (MiB) I/O (MiB)

DEFAULT F0 32.15 7.71 58.05 97.91 14.98
F1 31.72 7.71 43.52 82.96 0.45
. . . . . .
F4 32.15 7.71 58.10 97.96 15.03
F5 31.78 7.71 43.68 83.17 0.61
. . . . . .
F8 32.15 7.71 58.19 98.05 15.12
F9 31.74 7.71 43.11 82.56 0.04
. . . . . .
F12 32.15 7.71 58.12 97.98 15.05
F13 31.81 7.71 43.59 83.11 0.52
. . . . . .
F15 31.77 7.71 43.52 83.01 0.45

1 F0 34.50 7.71 62.37 104.59 19.30
F1 32.75 7.71 43.68 84.14 0.61
. . . . . .
F12 32.75 7.71 43.69 84.15 0.62
F13 32.76 7.71 43.67 84.14 0.60
. . . . . .
F15 32.76 7.71 43.68 84.15 0.61

2 F0 33.06 7.71 62.40 103.17 19.33
F1 32.31 7.71 43.67 83.70 0.60
. . . . . .
F4 33.06 7.71 62.40 103.18 19.33
F5 32.31 7.71 43.67 83.70 0.60
. . . . . .
F15 32.31 7.71 43.65 83.68 0.58

3 F0 32.44 7.71 62.09 102.24 19.02
F1 31.77 7.71 43.67 83.16 0.60
. . . . . .
F4 32.44 7.71 62.09 102.24 19.02
F5 31.77 7.71 43.67 83.16 0.60
. . . . . .
F8 32.44 7.71 62.09 102.24 19.02
F9 31.77 7.71 43.67 83.16 0.60
. . . . . .
F15 31.77 7.71 43.67 83.16 0.60
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Table 4   Comparison of the size (MiB) of checkpoint files for the BT-IO benchmark Class B and C in 
their subversion FULL. The size of the aggregator checkpoint files is shown in bold (OpenMPI)(A1)

Bench. BT.B.MPI.IO FULL BT.C.MPI.IO FULL

Np. 4 9 16 25 4 9 16 25

Map. 1n x 4p 3n x 3p 4n x 4p 6n x 4p
1n x 1p

1n x 4p 3n x 3p 4n x 4p 6n x 4p
1n x 1p

F0 178 132.54 81.76 110.64 484.46 270.96 190.25 159.93
F1 142 53.05 34.62 26.46 449.97 175.10 105.78 73.34
F2 142 53.14 34.69 26.09 449.95 174.87 105.43 72.87
F3 142 89.14 34.71 26.25 449.82 230.68 105.85 73.38
F4 53.11 65.88 26.48 174.94 105.69 73.49
F5 53.13 34.74 26.14 174.98 105.35 73.53
F6 89.22 34.65 26.28 230.74 149.17 73.45
F7 53.28 34.48 56.26 174.93 105.76 73.35
F8 53.13 65.79 25.91 174.87 105.59 112.14
F9 34.73 26.49 105.40 73.07
F10 34.64 25.83 105.50 72.66
F11 34.55 25.99 148.18 73.31
F12 65.81 26.44 105.81 73.14
F13 34.64 56.82 148.23 72.93
F14 34.70 26.24 105.85 73.33
F15 34.60 25.98 105.55 112.93
F16 25.84 73.47
F17 25.86 73.51
F18 26.55 72.93
F19 60.26 73.12
F20 26.13 73.22
F21 26.29 73.60
F22 26.22 115.93
F23 26.30 72.81
F24 26.49 73.30

Table 5   Checkpoint size 
(MiB) varying the number of 
aggregators. The size of the 
aggregator’s checkpoint files is 
shown in bold (OpenMPI)(A1)

Mapping No Agregators BT.B.4.MPI.IO FULL

F0 F1 F2 F3

1n × 4p Default 186.63 150.01 150.08 150.04
1 186.79 150.01 150.08 150.04
2 170.10 152.03 170.02 152.00
4 155.54 155.59 155.48 155.34
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generates four aggregator files. Therefore, there is an aggregator process that carries 
more information than the other aggregator processes and it is therefore larger.

In OpenMPI, the default value of the temporary buffer for I/O operations is 32 
MiB. Table 5 shows the number of aggregators by default (1 aggregator because the 
mapping is 1n x 4p), and with 1, 2 and 4 aggregators for the execution of a BT.B. 
4.MPI.IO.FULL on a node. This table shows how a number of larger files was gen-
erated in each execution, consistent with the number of aggregators configured.

In the case of execution with the predetermined number of aggregators, the size 
of the aggregator process files is similar to that of the configuration of one aggrega-
tor per node, having approximately 36 MiB for the I/O buffer. In the case of two 
aggregators, the difference is 18.07 MiB in each aggregator file in respect to the rest 
of the files. With four aggregators, all the files were a similar size of approximately 
155 MiB. In this way, the configuration of these parameters not only impacts the 
application, it also affects the behavior of the checkpoint. Likewise, it is observed in 
this table that when the number of aggregators is configured, the size of all aggrega-
tors is similar.

Figure 10 shows the variation of the OpenMPI fcoll component with the param-
eters dynamic, dynamic_gen2, individual, vulcan and two-phase. Regarding the size 
of the generated files, one with 111MiB and three with 65MiB are similar for the 
files generated with dynamic, dynamic_gen2 and vulcan, in the case of two phases, 

Fig. 10   Variation of the fcoll component (BT.B.16.MPÌ.IO FULL on 4 nodes)

Table 6   Time spent by the checkpoint and by the application with the checkpoint (OpenMPI)(A1)

Mapping 4n x 4p BT.B.16.MPI.IO FULL

Dynamic Dynamic_gen2 Vulcan Two-phase Individual

Ckpt time (s) 9.83 9.87 10.92 10.62 8.56
App+ckpt time (s) 88.97 130.89 92.74 121.62 2217.12
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the slightly larger aggregators, one with 145 MiB and three with 70 MiB and in the 
case of the smallest individual configuration, all their aggregators are approximately 
62 MiB.

In relation to the time used, the results are shown in Table 6. In the case of check-
point latency, the results varied between 8.56 and 10.92 seconds approximately, with 
the fastest being the execution with the individual configuration and the slowest the 
execution with the vulcan configuration. However, the difference between these is 
very little, close to a couple of seconds. Regarding the time of the application with 
the checkpoint, these times between configurations of the fcoll component do 
present more significant differences, where the execution with the individual config-
uration was too slow at 2217.12 seconds and the fastest execution was with dynamic 
at 88.97 seconds.

Regarding Table 7, it shows the execution times of the application, of the check-
point and of the application with checkpoint. Changed mapping, number of aggre-
gators, and I/O buffer size to 32 MiB and 64 MiB. In this table it can be seen that 
with more aggregator processes, the time of the app increases but the checkpoint 
time decreases. In this way, when there is a single aggregator process for so many 
processes in a node, the files generated are larger and therefore occupy more time. In 
this way, the configuration of some parameters such as in this case the mapping, the 
number and size of the aggregators influence the behavior of the checkpoint. Both 
Tables 6 and 7 show that the best configuration for the checkpoint will not always be 
the best configuration for the application.

5.1.4 � FLASH I/O benchmark routine ‑ parallel HDF5

FLASH I/O measures the performance of the HDF 5 output in parallel FLASH I/O. 
Recreating the primary data structures in FLASH  I/O generates three files: a plot 
file with corner data, a plot file with centered data and a checkpoint file. Plot files 
have single precision data. The purpose of this routine is to tune I/O performance in 
a controlled environment. FLASH I/O code is scalable to thousands of processors 
and it is generally configured to use as much memory as possible for a given node or 
processor. In this sense, FLASH I/O is typically used in a weak scaling form, so that 
the size of the problem increases proportionally with the number of processors [38].

Table 7   Time spent by the checkpoint and by the application without checkpoint and with checkpoint 
with different mapping and I/O buffer size (BT.B.16.MPI.IO FULL)(MPICH)(A2)

Aggregator N o: 1 2 4 1 2 4
Aggregator size: 32MiB 32MiB 32MiB 64MiB 64MiB 64MiB

Mapping: 1n × 16p 2n × 8p 4n × 4p 1n × 16p 2n × 8p 4n × 4p

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

App 70.77 86.49 122.47 70.21 89.57 235.38
Ckpt 51.09 26.76 23.24 47.01 27.17 25.52
App+Ckpt 122.09 111.55 145.38 118.77 114.69 262.2
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Table 8 shows the results of the Benchmark FLASH I/O execution with 4, 8 and 
16 processes and different mapping and different numbers of aggregators. In this 
way, it can be seen that all the files are approximately 300 MiB in size, some a little 
larger and other files a little smaller. The difference in size between files that come 
from an aggregator process and those that do not is approximately 5 MiB. Most of 
the content of these files is made up of the data zone that occupies approximately 
270 MiB, the size of the checkpoint, and the rest is occupied by the library zone and 
the shared memory zone.

5.2 � Analyzing the impact of collective buffer size on the checkpoint file size

In this section, we show how the collective buffer size can also impact on the check-
point file size of the aggregators. We have configured the size of the buffer size (cb_
buffer_size) that manages the I/O, as shown in Fig. 11. This buffer has been config-
ured to 8 MiB and 32 MiB, and 1, 2 and 3 aggregators have been assigned for the 
execution of BT.B.16.MPI.IO.FULL in four nodes (Mapping: 4n x 4p).

As can be seen in Fig. 11, for a buffer size of 8 MiB, the aggregator increases 
its checkpoint file size to almost 95 MiB with one, two and three aggregators. In 
the case of 32 MiB, when there is a single aggregator, it has a file size of 124 MiB, 
110 MiB for two aggregators and 102 MiB for three aggregators. In this case, there 
is a more significant difference in the size of the aggregators when their number is 

Table 8   Checkpoint file 
size (MiB) benchmark 
FLASH I/O. The size of the 
aggregator’s checkpoint files is 
shown in bold (MPICH)(A1)

Bench. Checkpoint benchmark FLASH I/O files

No Aggreg. 1 2 2 2 4 4

No Proc. 4 4 8 8 8 16

Mapping 1n x 4p 2n x 2p 2n x 4p 4n x 2p 4n x 2p 4n x 4p

F0 312.19 303.05 312.20 303.05 303.05 311.67
F1 307.17 298.67 307.18 298.56 298.55 307.18
F2 307.17 303.04 307.18 302.78 303.04 306.91
F3 307.17 298.67 307.18 298.28 298.55 306.94
F4 312.20 298.77 303.05 311.55
F5 307.18 298.28 298.55 307.18
F6 307.18 298.77 303.04 306.91
F7 307.21 298.29 298.55 306.94
F8 311.56
F9 307.18
F10 306.94
F11 306.94
F12 311.68
F13 307.18
F14 306.91
F15 306.94
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Fig. 11   Comparison of the checkpoint file size for 1 (above plot), 2 (middle plot) and 3 (below plot) 
aggregators by using a buffer size of 8 MiB and 32 MiB (MPICH)
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greater and the size of the buffer is greater. Therefore, it is observed that the size of 
an aggregator is greater than where there are two and three aggregators. The reason 
for this is that where there is a single aggregator, it must take over I/O management 
for the rest of all processes. On the other hand, with two or three aggregators, the 
work is divided among several, so they do not need a larger size.

6 � Steps to calculate checkpoint size for I/O applications and use case

To find the size of the checkpoint for applications with I/O, Algorithm 1 is presented 
below which summarizes the necessary steps and then a use case is implemented 
that shows the applicability of the model. 
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First you must select the application, the workload (input), the number of pro-
cesses, number of nodes and mapping. Next you must choose the moment to per-
form the checkpoint (interval), since this element can influence the size of the ckpt 
files. Then the application is characterized with the checkpoint and the size of the 
zones that compose it is obtained (DTAPP, LB and SHMEM) [34]. Therefore, here 
you already have the size of the checkpoint for a mapping, a size and a library. In the 
case of the SHMEM zone, this must be found a number of different times according 
to the number of different mappings that have been assigned (number of processes 
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on a node). If the number of processes is the same in all nodes, the size of the check-
point file is calculated by adding the three zones. If the number of files is different in 
the nodes (different number of mapping), the size will be calculated for each case. If 
the application has I/O and the default I/O values are used, the size of the aggregator 
files is calculated, one for each node and with the buffer size predefined by ROMIO, 
which is approximately 16 MiB. Otherwise, the new values are requested and the 
size is calculated with these new values for the number and size of aggregators. At 
the end, the size of the checkpoint files and the size of the checkpoint aggregator 
files must be obtained.

Next, in Fig. 12, a use case is presented following Algorithm 1. For this, we select 
the BT.C.25.MPI.IO.FULL with a mapping of 6 nodes with 4 processes and 1 node 
with 1 process (6n × 4p, 1n × 1p).

In the use case presented, the default ROMIO values were used and the assigned 
mapping of 6n × 4p and 1n × 1p generated two (tm) types of different file sizes, due 

Fig. 12   Use case
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to the SHMEM zone being different for both, since they have different numbers of 
processes per node. In this sense, the size of the checkpoint files and aggregator files 
for both mappings is calculated. Therefore, Fig. 12 shows the amount and approxi-
mate size of checkpoint files generated, 18 files of 125.22 MiB were generated, 6 
aggregator files of 141.22 MiB and 1 aggregator file of 129.22 MiB. Regarding the 
real measured size and the size calculated through this algorithm of the checkpoint 
files generated, with the execution of a BT.C.25.MPI.IO.FULL with the previously 
assigned mapping, an error has been obtained for the aggregator files of approxi-
mately 5% and for files that are not aggregators of 2.7%.

In this way, this model can help estimate the sizes of checkpoint files of applica-
tions with I/O. With few resources, what happens in a node is analyzed and it is 
calculated when the number of nodes and/or the number of processes change. As 
well as if the application has I/O, the number, distribution and size of the aggrega-
tor processes must be indicated. The model can be useful when selecting what type 
of checkpoint configuration is more appropriate according to the applications’ char-
acteristics and resources available. Thus, the user will be able to know how much 
storage space the checkpoint consumes and how much the application consumes, in 
order to establish policies that help improve the distribution of resources.

7 � Conclusions and future work

A model of checkpoint behavior for parallel applications performing file I/O has 
been presented and described. The model is an extension to the previously published 
work, where applications didn’t perform I/O operations. The research is focused on 
the checkpoint file sizes in relation to different underlying framework (MPI) param-
eters. Our model describes the behavior of the checkpoint size based on the number 
of processes and nodes when, concurrently, there are I/O from application processes, 
the number I/O aggregator processes and buffering size. By analyzing the coordi-
nated behavior of the checkpoint generated in the user layer by the DMTCP library, 
we identified the impact of the I/O strategy parameters on the different zones of the 
checkpoint file. In this type of application, an essential parameter has been observed, 
such as the I/O aggregators that access the collective buffer of the optimization tech-
nique applied by the MPI-IO implementation, as well as various strategies used by 
different implementations of the I/O operations collective. In this sense, a detailed 
study of the checkpoint snapshot has been carried out to know the impact of this 
element on its size. It could be observed that these aggregators are created in the 
SHMEM zone, where the dynamic memory information is stored, and the rest of the 
zones are not affected by this parameter. Likewise, the configuration of the dynamic, 
static or two-phase components influences the size of the checkpoint files. There-
fore, on a large scale, the configuration of the aggregators and these I/O components 
that impact the size of the checkpoint could be significant. On the other hand, with 
this model the size of the checkpoint files of applications with I/O can be estimated 
with few resources, analyzing what happens in a node with few processes and the 
size can be known when the number of nodes changes the number of processes and/
or the configuration of the aggregator processes. In this way, the size of the stable 
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storage necessary to save the files generated by the checkpoint can be previously 
known. This is an important aspect for a system administrator, because it can more 
efficiently allocate storage resources for fault-tolerant applications.

Therefore, as future work, we will focus on other layers of the software stack to 
understand the influence of the different buffering implemented in each layer of the 
I/O and its impact on the checkpoint and other fault tolerance strategies.
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