
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04482-8

1 3

A model of checkpoint behavior for applications that have
I/O

Betzabeth León1  · Sandra Méndez1,2  · Daniel Franco1  ·
Dolores Rexachs1  · Emilio Luque1 

Accepted: 23 March 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Due to the increase and complexity of computer systems, reducing the overhead of
fault tolerance techniques has become important in recent years. One technique in
fault tolerance is checkpointing, which saves a snapshot with the information that
has been computed up to a specific moment, suspending the execution of the appli-
cation, consuming I/O resources and network bandwidth. Characterizing the files
that are generated when performing the checkpoint of a parallel application is useful
to determine the resources consumed and their impact on the I/O system. It is also
important to characterize the application that performs checkpoints, and one of these
characteristics is whether the application does I/O. In this paper, we present a model
of checkpoint behavior for parallel applications that performs I/O; this depends on
the application and on other factors such as the number of processes, the mapping of
processes and the type of I/O used. These characteristics will also influence scalabil-
ity, the resources consumed and their impact on the IO system. Our model describes
the behavior of the checkpoint size based on the characteristics of the system and
the type (or model) of I/O used, such as the number I/O aggregator processes, the
buffering size utilized by the two-phase I/O optimization technique and components
of collective file I/O operations. The BT benchmark and FLASH I/O are analyzed
under different configurations of aggregator processes and buffer size to explain our
approach. The model can be useful when selecting what type of checkpoint con-
figuration is more appropriate according to the applications’ characteristics and
resources available. Thus, the user will be able to know how much storage space the
checkpoint consumes and how much the application consumes, in order to establish
policies that help improve the distribution of resources.

Keywords  Checkpoint · I/O applications · Storage · HPC · Fault tolerance

 *	 Betzabeth León
	 betzabeth.leon@uab.es

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1778-0237
http://orcid.org/0000-0002-5793-1928
http://orcid.org/0000-0003-0002-7046
http://orcid.org/0000-0001-5500-850X
http://orcid.org/0000-0002-2884-3232
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04482-8&domain=pdf

	 B. León et al.

1 3

1  Introduction

Due to the increase and complexity of computer systems, reducing the overhead
of the protocols used for fault tolerance has become important in recent years.
One of the leading sources of overhead caused by rollback recovery protocols is
storage on a stable storage system resulting from the I/O system.

The models of recovery and reconfiguration are those of direct recovery or for-
ward. In these models, progress is made from a wrong state to a correct one, mak-
ing corrections on parts of the state, and the inverse or rollback recovery, where it
goes back to a previous right state, previously saved. These mechanisms allow us
to keep the systems running because they periodically store the information of the
processes’ states.

The checkpoint (ckpt) is one of these recovery techniques; it has the work of
saving a snapshot with the information that has been computed up to a specific
moment, suspending the execution of the application, consuming I/O resources
and network bandwidth [1]. Because the checkpoint has to access the storage sys-
tem, it could create bottlenecks, which cause this fault tolerance strategy to affect
fault-free application execution significantly. In addition, it can impact the scal-
ability of the application. Thus, the checkpoint can be considered as an I/O inten-
sive application, so its need for storage can have a large impact on the application.
The number of checkpoints to be performed on an application is often related to
the maximum overhead you want to introduce into the application. If we know
the maximum overhead that the user can allow and the overhead that a checkpoint
introduces, we can calculate the number of checkpoints to be performed [2]. This
overhead is heavily dependent on I/O operations. Therefore, since the applica-
tions with I/O and the checkpoint use the I/O system, it is expected that there will
be a greater impact.

Many techniques for improving parallel I/O performance need information
about application access patterns. Models abstract systems, and thus techniques
can explore their parameter space to optimize given objectives, for example, per-
formance, resource utilization, load balancing and so on [3]. In this way, it is also
important to characterize the application that performs checkpoints. One of these
characteristics is whether the application does file I/O, because there are more
specific features of this type of application that the checkpoint must consider
when saving the global state and generating the files with the snapshot. The fea-
tures to consider are whether the applications require keeping the data in memory
or whether they need write or read data to/from the I/O system. In the latter case,
the type of I/O used by the application affects the information that must be saved
at the checkpoint. To know these aspects, it is necessary to model their check-
point behavior to analyze how this impacts on parallel applications that perform
file I/O.

In this paper, we present a model of checkpoint behavior for HPC parallel
applications that uses message passing (MPI) which performs I/O. The model is
an extension of the previously published work, where applications didn’t perform
I/O operations. The research is focused on the checkpoint file sizes in relation

1 3

A model of checkpoint behavior for applications that have I/O﻿	

to different underlying framework (MPI) parameters. We analyze coordinated
checkpoints carried out at user-layer level by the DMTCP library. We focus our
study on the parallel applications that perform parallel I/O at MPI-IO level. Our
model describes the behavior of the checkpoint size based on the number of pro-
cesses and nodes when, concurrently, there are I/O from application processes,
the number I/O aggregator processes and buffering size utilized by the two-phase
I/O optimization technique. The model can be useful when selecting what type
of checkpoint configuration is more appropriate according to the applications’
characteristics and the resources available. Thus, the user will be able to know
how much storage space the checkpoint consumes and how much the applica-
tion consumes, in order to establish policies that help improve the distribution
of resources. Two MPI implementations were considered: OMPIO (OpenMPI)
and ROMIO (MPICH), with The BT of NAS Parallel Benchmark [4] (OMPIO,
ROMIO) is analyzed under different configurations of aggregator processes and
buffer sizes to explain our approach, and FLASH I/O benchmarks (NetCFD,
based on ROMIO).

This paper is structured as follows: Section 2 refers to the background, describing
the I/O optimization techniques and the main concepts of fault tolerance and check-
points for applications with I/O. Section 3 refers to the most relevant related work.
Section 4 proposes a checkpoint behavior model for parallel I/O applications. Sec-
tion 5 presents the experimental results, and Sect. 6 goes on to calculate checkpoint
size for I/O applications and use case. Finally, in Sect. 7, we present our conclusions
and future work.

2 � Background

2.1 � HPC I/O

Parallel I/O has been an essential topic among the high-performance computing
community for decades, motivated by the everlasting gap between processing and
data access speeds and by increases in HPC architectures’ scale and thus in applica-
tions’ I/O requirements [3]. The software stack consists of a collection of independ-
ent components that work together to support an application’s execution. In this way,
parallel applications in HPC access the storage devices through the I/O software
stack, as shown in Fig. 1. As can be seen in the figure, the highest level corresponds
to I/O libraries such as HDF5 [5], Parallel netCDF [6] and NetCDF [7]. The middle
level corresponds to MPI-IO, in which optimization techniques are applied such as
collective buffering and data sieving.

2.2 � I/O optimization techniques

MPI-IO, a submodule of the MPI standard, provides interfaces for parallel shared-
file access. Most MPI-IO libraries are one of two implementations, either ROMIO,

	 B. León et al.

1 3

which ships with MPICH and many system vendor implementations, or OMPIO,
which is the default in newer versions of OpenMPI.

Archiving operations are broken down into collective and non-collective opera-
tions. Collective operations use MPI collective communication calls, and all mem-
bers of the communicator must make the call. Non-collective calls are serial opera-
tions that are invoked separately for each process. Implementations of the collective
I/O functions can coordinate the processes’ operations to achieve better end-to-end
performance compared with independent I/O [8].

2.2.1 � ROMIO

The key to reducing high I/O latency in HPC applications is to perform fewer opera-
tions in larger chunks. As one of the most common HPC patterns is non-contigu-
ous access, ROMIO implements data sieving for non-contiguous requests from one
process and two-phase I/O (also known as collective buffering) for non-contiguous
requests from multiple processes [9].

Data sieving efficiently accesses non-contiguous regions of data in files when
non-contiguous accesses are not provided as a file system primitive. The second
optimization is two-phase I/O; this is an optimization that only applies to collective
I/O operations. In two-phase I/O, the collection of independent I/O operations ana-
lyzes the collective operation to determine which data regions should be transferred
(read or written). These regions are divided into a set of aggregation processes that
will interact with the file system. When there is a read, these aggregators first read
their disk regions and redistribute the data to the final locations. In the case of a
write, the data from the processes are first collected before being written to disk by
the aggregators [10, 11]. Both techniques can be controlled by the user through hints
of ROMIO. In the case of the two-phase technique, they are as follows [12]:

Fig. 1   HPC IO software stack

1 3

A model of checkpoint behavior for applications that have I/O﻿	

•	 cb_buffer_size: This controls the size (in bytes) of the intermediate buffer used
in two-phase collective I/O. If the amount of data that an aggregator will transfer is
larger than this value, then multiple operations are used.

•	 romio_cb_read and romio_cb_write: This controls when collective buff-
ering is applied to collective read or write operations.

•	 cb_config_list: This provides explicit control over aggregators.
•	 cb_nodes: This controls the maximum number of aggregators to be used. By

default, this is set to the number of unique hosts in the communicator used when
opening the file.

2.2.2 � OMPIO

This is the default MPI I/O library used by Open MPI. OMPIO has three main objec-
tives: (1) Increasing the modularity of the parallel I/O library by separating the MPI
I/O functionality in substructure. (2) Allowing frameworks to use different decision
algorithms at runtime to determine which module to use in a particular scenario. (3)
Improving the integration of parallel I/O functions with other Open MPI components,
especially the derived data types engine and the progress engine. When opening a file,
the OMPIO component initializes a series of substructures and their components [13]:

•	 fs framework: responsible for all file management operations.
•	 fbtl framework: support for individual blocking and non-blocking I/O operations.
•	 fcoll framework: support for collective blocking and non-blocking I/O operations.
•	 sharedfp framework: support for all shared file pointer operations.

And the most important parameters that influence the performance of an I/O operation
are:

•	 io_ompio_cycle_buffer_size: Data size issued by individual reads/writes per call.
•	 io_ompio_bytes_per_agg: Size of temporary buffers for collective I/O operations

on aggregator processes.
•	 io_ompio_num_aggregators: Number of aggregators used in collective I/O opera-

tions.
•	 io_ompio_grouping_option: The algorithm used to automatically decide the num-

ber of aggregators used.

In this paper, we focus on the number and buffering size of the aggregators which are
parameters that can impact on the size of the checkpoint in our model.

2.3 � Fault tolerance

In [14], the authors indicate that for large-scale HPC, faults have become the norm
rather than the exception for parallel computation on clusters with tens to hun-
dreds of thousands of cores. The causes are attributed to hardware (I/O, memory,

	 B. León et al.

1 3

processor, power supply, switch failure, etc.) and software (operating system, runt-
ime, unscheduled maintenance interruption).

Checkpoint is an important Fault Tolerance strategy. This approach allows us to
periodically maintain an application on a reliable storage system, which serves as a
recovery point in the event of a failure. Fault Tolerance guarantees the availability of
applications in large-scale systems. Still, these protocols involve using strategies that
require simultaneous and continuous access to stable storage through I/O operations,
which can cause a significant source of overhead generated by this protection against
failure.

The overheads for periodic checkpoint based fault tolerance models can be
viewed in two ways: (i) the time for saving checkpoint data to persistent storage, and
(ii) the time to recover the checkpoint data when a failure occurs [15]. Therefore, in
both cases, it is necessary to observe the elements that can affect the checkpoint’s
size, since they can increase or decrease the overhead generated.

2.4 � Checkpoint

An important issue in rollback recovery is to decide which strategy the system
should use to perform the checkpoints. Each strategy has its advantages and dis-
advantages in terms of impact on both computing, communication, and storage; it
depends on the application’s behavior and the characteristics of the system. Thus,
checkpoints are classified into coordinated (blocking, non-blocking), uncoordinated
(event-induced, time-induced, and mixed), and semi-coordinated (group coordina-
tion, non-coordination between groups) [16]. The coordinated checkpoints synchro-
nously generate a file per process. The non-coordinated checkpoints also create a
file, albeit asynchronously. That is, each process is carried out independently. Both
checkpoints must store information about internal interactions between processes to
ensure that a system’s state after a failure is consistent with what it was before the
failure occurred. This storage task produces a large overhead, consuming time as
well as communication and storage resources to ensure adequate protection.

Checkpointing permits job execution recovery from failures by recording the exe-
cution state of a running job. It typically requires suspending job execution to take
the execution state, involving time overhead. Checkpoint files are kept in storage
for later recovery use when needed, and they involve storage overhead. Overhead
in time and storage due to checkpointing depend mainly on the checkpoint file sizes
and the checkpoint frequency, which should be kept as low as possible [17].

In this paper, we employ a user-layer library such as DMTCP (Distributed Mul-
tiThreaded Checkpointing) [18]. This library carries out a single-host or distributed
computation in user-space transparently with no user code modifications or the O/S.
To show the impact of the parameters, we analyze the checkpoint size for the BT-IO
from the NAS parallel benchmark in its subversion FULL (collective operations:
this means that data scattered in memory among the processors is collected on a
subset of the participating processors and rearranged before written to file in order
to increase granularity [19]).

1 3

A model of checkpoint behavior for applications that have I/O﻿	

3 � Related work

In the related literature, there are studies such as [20] & [21] in which compar-
isons have been made between the advantages and disadvantages of the differ-
ent checkpoint schemes that exist, as well as the techniques applied to them to
improve their performance.

In this way, there are some studies on the checkpoint that propose solutions to
optimize the I/O of fault tolerance. In [22], the authors made a proposal to opti-
mize I/O in the OpenMP parallel application checkpoint, in which they reduced
the overhead by balancing the load of this operation among threads, distributing
a subset of the application’s shared state among them. In order to mitigate the I/O
impact of checkpointing, [23] proposes a self-adaptive random delay approach to
control the writing of checkpointing data. Likewise, [24] proposes a congestion
control mechanism. Preventing the occurrence of congestive crashes can maxi-
mize I/O performance for the scalable Lustre file system. In [25], the authors esti-
mate the overhead generated by the energy for a certain checkpoint policy and
provide formulas to optimize the checkpoint programming to save energy, with
or without a limit on execution time. They also analyzed the impact of optimized
power during the checkpoint on the storage subsystem, identifying the most opti-
mal policies for I/O savings and studied how to optimize power with a limit on
I/O time.

In [26], different alternatives are discussed to reduce the size of checkpoint files
generated by application-level checkpoint approaches, such as live variable analysis,
zero-block removal, incremental checkpoints, and data compression. Furthermore,
in [27] the author proposed a technique to reduce the size of checkpoints for par-
allel application programs based on MPI. With static data mappings, information
collected dynamically at runtime was used, employing the Pin-based binary instru-
mentation tool to facilitate data similarity detection. Some research addresses the
reduction of checkpoint latency as a method, it combining the reduction of the num-
ber of transmissions and the optimization of the transmission algorithm [28].

Likewise, there are other works that consider the use of I/O strategies, which have
relevant information for our work, because everything that influences the execution
of the application can impact the behavior of the checkpoint. In this sense, in [29]
the authors present a runtime approach to determine the number of aggregation pro-
cesses that will be used in a collective I/O operation based on the view of the file,
the topology of the process, the write saturation point per process, and the actual
amount of data written in a collective write operation. In [8], the authors explored
the communication cores available for two-phase I/O communication. They gen-
eralized the expansion algorithm to accommodate the two-phase I/O all-to-many
communication pattern by reducing the effect of communication lag. Additionally,
in order to reduce communication cost, in [30] the authors presented a design for
collective I/O by adding an additional communication layer that performs request
aggregation between processes within the same compute nodes.

In [31], the authors proposed a set of MPI-IO hint extensions that allow users
to take advantage of fast locally attached storage devices to boost collective I/O

	 B. León et al.

1 3

performance by increasing parallelism and reducing the impact of global synchro-
nization on the implementation of ROMIO. In [32], the authors compared two
MPI-IO libraries, ROMIO and OMPIO, based on the application’s access pattern
and underlying file system. This study shows that you cannot reliably choose a
single data layout and expect uniform performance portability between these two
libraries.

Our research is related to the works presented in this section because they use
various strategies to minimize the impact of I/O on application execution, as well
as taking into account the elements that can impact the storage of the checkpoint
and therefore which can influence the scalability of the application. In these related
works, they did not carry out a detailed study of the structure of the checkpoint con-
tent, nor did they analyze the I/O strategies that can impact the size of the checkpoint
in order to predict its size. This is an aspect that we have addressed in this paper.
Thus, the size of the checkpoint and the structure that makes up its image are both
important in making the appropriate configuration decisions for fault tolerance in
large-scale applications. This prediction can be made from a few resources, in order
to predict the amount of storage needed for our fault-tolerant application. As well as
other elements involved in the size of the checkpoint, such as the number of most
suitable processes and nodes, among others, without having to carry out long execu-
tions. This way, this paper presents a model of checkpoint behavior for HPC appli-
cations with I/O operations. The model is an extension to the previously published
work, where applications didn’t perform I/O operations. The research is focused on
the checkpoint file sizes in relation to different underlying framework (MPI) param-
eters, such as the process number, cluster size or aggregator distribution.

4 � Checkpoint model for applications with I/O

Parallel scientific applications in general try to optimize I/O, frequently making
large sequential accesses to a file [33]. The I/O of an application has a more regular
I/O behavior pattern than the I/O behavior of the checkpoint of the same application,

Fig. 2   I/O behavior (writes size and time)

1 3

A model of checkpoint behavior for applications that have I/O﻿	

in terms of the number and continuity of the size of the write bursts. An example
of both I/O behaviors is shown in Fig. 2. The application is a BT.C.mpi.io.full of
NAS Parallel Benchmark that performs 440 writes in forty bursts of 10 writes, with
each write being 16 MiB and the last of each burst 2.18 MiB. In the second graph
of Fig. 2, the I/O behavior of a checkpoint executed in BT.C.16.mpi.io.full can be
observed. In this case, it carried out a total of 241 writes of different sizes. There
are a large number of very small ones of 4 KiB and few big ones of up to 111.73
MiB. In the same way, the time varies if we compare when performing small writes,
which can take thousandths of a second, while a large write can take more than 12
seconds. Therefore, the I/O behavior of the checkpoint is not regular. In both cases,
we can see that the time depends on the size of the writing.

BT.C.16.mpi.io.full uses MPI-IO, with which a single serial order file can be
written instead of many separate files, using collective write operations (MPIO-
Write-all), in which 16 processes all write to a shared file. The I/O of the applica-
tion influences the I/O of the checkpoint, because as the checkpoint stores the global
state of a process, in this case it must also save information from the I/O buffers,
which makes it originate new zones to be stored by the checkpoint.

In general, Fig. 3 shows the steps necessary to generate the checkpoint files. First,
the configuration of the elements that can impact the size of the checkpoint is car-
ried out, such as the workload, whether the files are to be compressed or not and the
File System. Then, depending on the MPI Implementation to be used, the I/O strate-
gies will be established with ROMIO for MPICH or with OMPIO with OpenMPI.
These also store information from libraries. The mapping is a very important

Fig. 3   Checkpoint configuration

	 B. León et al.

1 3

element, because according to this, the number of necessary processes and nodes
will be assigned. From these, the shared memory area and the I/O Buffer will be
configured according to the MPI implementation selected previously. These configu-
rations are made with respect to the number of aggregators and the size of the I/O
buffer. Then the application is executed with the checkpoint and the files that save
the status of each process being stored, in this case the application data, the librar-
ies, the communications buffer and the I/O buffer are stored. The size of each zone
depends fundamentally on the parameters that we have previously indicated.

To determine the size of each checkpoint file, we calculate it based on the param-
eters shown in Equation 1. As can be seen, the checkpoint’s size is in function of the
workload (W), the number of processes(Np), and the number of nodes(Nn)).

In the checkpoints performed by applications without I/O, the information stored
by the checkpoint is made up of three zones [34]. Figure 4 shows which zones that
make up the checkpoint are.

Therefore, as can be seen in Fig. 4, the image of the checkpoint is composed of
three zones. The data zone is closely linked with the application information. The
size of this area varies according to the workload assigned as well as according to
the distribution of this load among the number of processes used. Regarding the
library zone, this area depends on what the application needs to run in the system.
The shared memory zone is more variable, since it depends on the number of pro-
cesses used within the same node due to communications issues. When we use the
MPICH implementation, this zone’s size increases as we increase the number of
processes within the same node.

In the case of parallel applications with I/O, when they use collective operations,
there are optimization techniques enabled to improve its performance by using addi-
tional buffers at library I/O level. Therefore, there are temporary file I/O operations
in buffers that require being restored if a failure occurs. In this way, the I/O optimi-
zation techniques also impact on the size of the checkpoint. In Fig. 5, we can see
the files generated by a checkpoint for the BT and BT-IO classes B and C, with 16
processes in 4 nodes, in its FULL and SIMPLE (without collective buffering, which

(1)CkptSizei = f (W,Npi,Nn)

Fig. 4   Zones that make up the checkpoints performed by applications without I/O

1 3

A model of checkpoint behavior for applications that have I/O﻿	

means that no data rearrangement takes place, so that many seek operations are
required to write the data to file [19]) version with different workloads. As an I/O
benchmark, BT-IO SIMPLE utilizes independent I/O operations, and its FULL ver-
sion performs collective I/O operations. BT-IO writes/reads to/from a single shared
file where each MPI process accesses non-contiguous patterns in both versions.

Analyzing the data of the checkpoint files, we could break down the checkpoint
as shown in Eq. 2:

Fig. 5   Generated Ckpt files BT.B, BT.B.MPI.IO.SIMPLE and BT.B.MPI.IO.FULL (above plot), BT.C,
BT.C.MPI.IO.SIMPLE and BT.C.MPI.IO.FULL (below plot)

	 B. León et al.

1 3

A new element arises (Na), which is related to the I/O aggregators utilized by
the Two-Phase I/O strategy [30]. This technique reduces the communication cost
for collective I/O by adding an extra communication layer that performs request
aggregation among processes within the same compute nodes. This approach can
significantly reduce inter-node communication congestion when redistributing the
I/O requests. A subset of the MPI processes, defined as I/O aggregators, act as I/O
proxies for the rest of the processes. Therefore, as can observed in Fig. 6, all the
processes send their I/O requests to the aggregator processes in the communication
phase, and then in the I/O phase, the aggregator processes make calls to the file sys-
tem to read or write the received requests. Therefore, when a checkpoint is carried
out for applications that perform collective I/O operations, this new element must be
taken into account, because the aggregators manage I/O buffers that have impact on
the size of their checkpoint files.

We have analyzed the coordinated checkpoint behavior carried out at the user
layer and generated by the DMTCP library for applications that perform I/O. A
detailed study of the checkpoint’s image has been performed to know the impact
of the I/O aggregators on its size when using collective operations (FULL). From
this analysis, a checkpoint behavior model for parallel applications that perform
I/O was defined based on workload, number of processes, number of compute

(2)CkptSize(APPIOfull) = f (W,Npi,Nn,Nai)

Fig. 6   Checkpoint data layout for a parallel application that performs I/O by using collective operations
run in four compute nodes. The mapping is of four MPI processes per compute node. A# are aggrega-
tors, P# the processes that send I/O data to the aggregators and F# the checkpointing file created by each
process

1 3

A model of checkpoint behavior for applications that have I/O﻿	

nodes and number of aggregator processes. Once the checkpoint has been charac-
terized, the zones are identified and we can analyze what happens when changes
occur in the system. In this way, we observe what happens when some of the
parameters in Eq. 2 change.

Applications without I/O:
In Fig. 7, the user-configurable elements are shown in diamonds: workload

(input), number of processes, number of nodes. In this sense, in order to know
the storage space necessary for a fault-tolerant application, in [34] we proposed
a methodology that predicted the size of the checkpoint (run with MPICH) for
applications without I/O. For this, the size of the DTAPP zones, LB and SHMEM,
was estimated, which can be predicted as follows:

–	 DTAPP zone:

–	 The workload (input) directly influences the DTAPP Zone, which can be
estimated from the characterization of the application with the checkpoint
through regression equations for any number of processes.

–	 LB zone:

Fig. 7   Checkpoint file size model

	 B. León et al.

1 3

–	 After characterizing the application with the checkpoint, it is enough to iden-
tify the LB zone only once, because it does not change between the different
executions carried out with the same environment or stack software, regard-
less of the change in the workload or the number of processes or nodes. There
is a difference when using MPICH or OpenMPI.

–	 SHMEM zone:

–	 It can be determined through regression equations for any number of pro-
cesses and nodes.

–	 The model proposed in [34] can be used directly.

Thus, in Fig. 7 the effect if the workload increases is observed. The data zone
of the application will increase at the checkpoint, which does not affect the library
zone or the shared memory zone. Similarly, if we reduce the workload, the data zone
will decrease and it will not affect the rest of the zones. As the number of processes
increases, the data zone in each checkpoint file normally decreases because the
information is fragmented into more parts and distributed among the processes. The
library zone remains constant. The shared memory zone grows with more processes
communicating within a node. The opposite occurs when reducing the number of
processes. With reference to the number of nodes, if we increase them, this does
not affect the data zone, but if we increase the nodes and decrease the number of
processes per node, the shared memory zone will decrease due to there being fewer
processes in each node.

Applications with I/O:
When applications have I/O, the size of the checkpoint files increases due to the

I/O buffers. The size of some files increases due to the aggregators that are gener-
ated in the SHMEM zone, where the dynamic memory information is stored, and

Fig. 8   Size (MiB) of the zones that make up the checkpoint files in applications with I/O Full

1 3

A model of checkpoint behavior for applications that have I/O﻿	

the rest of the zones are not impacted by this element. In Fig.8, the SHMEM zone
has been divided into two parts (Communications Buffer and I/O Buffer) for a bet-
ter visualization. It can be seen how there is a file in each node bigger than the rest
by the BUFFER I/O. So I/O is an element that impacts the size of the checkpoint by
increasing the size of some of its files.

In the cases where the application does I/O, there are additional elements to take
into account regarding the I/O Buffer. Among these is the number of aggregator pro-
cesses. If the number of aggregators is increased, the files from aggregator processes
will also increase. If the size of the I/O Buffer is increased, the size of the aggrega-
tors will also increase.

If ROMIO is used, in the case of checkpoint the operation is "the writing", so the
data sieving strategy can be used to write data. However, a read-modify-write must
be performed to avoid destroying the data already present in the gaps between con-
tiguous data segments. ROMIO also uses another user-controllable parameter that
defines the maximum amount of contiguous data that a process can write at one
time during data sieving. Since writing requires locking the part of the file that is
accessed, ROMIO uses a smaller default buffer size for writing (512 KiB) to reduce
lock contention. ROMIO uses two user-controllable parameters for collective I/O:
the number of processes that perform I/O in the I/O phase and the maximum size
in each process of the temporary buffer needed for two-phase I/O. By default, all
processes perform I/O in the I/O phase, and the maximum buffer size is 4 MiB per
process [35].

In OMPIO, some components related to collective I/O operations can be config-
ured, otherwise the default configuration is taken. In addition to the aggregators in
OpenMPI, collective operations can be managed with the fcoll command, which
provides different implementations, at different levels of data reorganization in all
processes. Two-phase, dynamic segmentation, static and individual segmentation
offer decreasing communication costs during the reorganization phase of collective
I/O operations, but they also offer decreasing contiguity guarantees of data elements
before which aggregators read/write data to/from the file [13].

A Two-phase algorithm divides the collective I/O operations into two phases. For
write operations, phase one redistributes the data between processes to match the
layout of the data in the file. This allows you to create fewer or larger I/O requests
and allows you to combine data from different processes. In phase two, it executes
the actual write operation, and a subset of the application processes are the ones that
actually do the writing of operations to the file, the aggregators [29]. The following
modules of the collective IO layer are derived from the two-phase component by
changing the IO communication optimizations in various ways.

Dynamic segmentation. The main objective of this algorithm is to combine data
from multiple processes to minimize the number of I/O operations presented to
the file system. Unlike the two-phase I/O algorithm, the segmentation is dynamic,
that is, it does not create a globally ordered data matrix based on offsets in the file.
Instead, each aggregator is assigned to a process group and performs classification
and data collection/dispersal only within its group [29].

Static segmentation extends the dynamic segmentation algorithm. With this algo-
rithm, an aggregator collects a fixed number of bytes from each of the processes that

	 B. León et al.

1 3

are assigned to it in each cycle. This keeps communication channels continuously
busy and prevents mass communication. It does reduce the number of processes that
execute these I/O requests compared to the total number of application processes
that publish the request for collective writing [29].

Individual: Read and write directly, no communication at all.
To estimate the size of the aggregators, the MPI implementation used must be

taken into account, in this sense:

•	 If MPICH is used, the size of the I/O buffer (approximately 16 MiB) is added to
a file for each node, to estimate the size of the file used by the aggregator func-
tion.

•	 If OpenMPI is used, the size of the I/O buffer must be added (32 MiB) to a file
for each node. If you have used a certain configuration of fcoll, this also influ-
ences the size of the aggregator files. These, depending on the optimization (two-
phase, dynamic, static, individual) that is used, will increase the size of some of
the aggregators. This is because they use different I/O communication optimiza-
tion strategies.

In the end, the characteristics of the application and the system where the applica-
tion is executed influence the size of the checkpoint files. Thus the checkpoint file is
obtained according to the configuration carried out regarding the workload, number
of processes, number of nodes, number of aggregators processes per node, size of
aggregators, and selected I/O optimization strategy.

Summarizing the aforementioned, Fig. 9 describes the behavior of the coordi-
nated checkpoint. In this sense, for example, an application that runs with four pro-
cesses, a checkpoint is performed at each time interval, all processes stop to perform

Fig. 9   Coordinated checkpoint

1 3

A model of checkpoint behavior for applications that have I/O﻿	

the checkpoint in a coordinated way. Thus, each process generates a file. In addition,
other smaller files are also generated with information necessary for management and
communication. All these files must be kept in a stable storage system. Each file has the
information of the checkpoint, which for applications that do not I/O, stores the applica-
tion data, the libraries used and the communication buffers. On the other hand, applica-
tions that do I/O, in addition to storing the aforementioned, also store what is related to
the I/O buffers. If a failure occurs, the application could restart from the last checkpoint
performed, so as not to lose all the information already processed. In this work, we will
highlight the most relevant configurable I/O elements that can influence the checkpoint
size. Therefore, in the experimental phase, the number of aggregators and the size of
the I/O buffer will be studied in depth, from two different MPI implementations, and
different benchmarks will be used for the execution and verification of the experiments.

5 � Experimental validation

In this section, we present the validation of the proposed behavior model by running
the BT of NAS Parallel Benchmark [4] and with the FLASH I/O Benchmark [36] in
its HDF5 [5] version. This was executed for a different number of procesess, work-
loads, mapping and compute nodes. The experiments have been carried out on different
types of machines, with two different architectures, which we will identify as follows
(A:Architecture). Below is the following technical description:

–	 Compute nodes:

–	 AMD Athlon(TM) II X4 610e CPU 2.4GHz, processors: 1, CPU cores: 4, mem-
ory: 16 GiB (A1).

–	 AMD Opteron(TM) 6200 @ CPU 1.56 GHz, processors: 4, CPU cores: 16,
memory: 256 GiB (A2).

–	 I/O system: NFS.
–	 Software stack: MPICH 3.2.1, OpenMPI 4.1.1 and DMTCP-2.4.5.
–	 I/O Library: ROMIO as part of the MPICH 3.2.1 with hints values as follows:

–	 buffer size by default for collective I/O = 16 MiB
–	 one agreggator process per compute node

–	 OMPIO Component as part of the Open MPI 4.1.1 with hints values as follows:

–	 buffer size by default for collective I/O = 32 MiB
–	 one agreggator process per compute node

	 B. León et al.

1 3

5.1 � Analyzing the impact of the number of aggregator processes
on the checkpoint file size

5.1.1 � IO benchmark the block‑tridiagonal (BTIO)

The Application simulates the I/O required by a pseudo-time stepping flow solver
that periodically writes its solution matrix. This is accomplished by implementing
the Approximate Factorization Benchmark (called BT because it involves finding
the solution to a block tridiagonal system of equations), as well as writing the solu-
tion matrix every 5th time step (out of a total of 200 time steps) to a single serial
order [37].

We have analyzed the checkpoint’s size concerning the BT benchmark with dif-
ferent workloads and number of processes, as well as taking an in-depth look at one
of them (BT.B.16.MPI.IO) to observe in detail the zones created by the check-
point and their sizes. This includes the new subzone’s size created by the aggregator
process, the impact of the number of aggregators and the size of the I/O buffer.

5.1.2 � ROMIO (MPICH)

In Table 1, a comparison of the BT is carried out for its full subtype for collective
I/O, with different workloads and for 4, 9, 16, and 25 processes.

Table 1 shows that an aggregator per node has been generated. These are related
to the mapping used in each case; if we observe the difference between the file size
of the process that incorporates the collective I/O management (aggregator) shown
in bold with the rest of the files in the same node, we see that there is a variation
between 14 MiB and 17 MiB, although the two cases are reflected in the order of
20 MiB. For example, looking at this table in the column corresponding to BT.B
with 4 processes, if we analyze the difference in the size of the F0 file (which corre-
sponds to the aggregator) and the F1, F2 or F3 files, we see that the F0 file is always
larger and that the difference with the size of the rest of the files is approximately
16 MiB. It is also observed that mapping is a very significant element, since it can
also impact on the size of processes and aggregators. In those cases in which a sin-
gle process was executed in a node, the aggregator’s size was smaller. For example,
in the case of execution with BT B and C with 25 processes, we can see that the
size of the F24 file is similar to the size of the files that do not include the aggrega-
tor information. For BT B, the aggregator’s size in this node (File: F24) was 73.34
MiB, which is approximately 13 MiB smaller than that of the other aggregators of
the other nodes. The same happens with BT C, in which the aggregator that is only
in one node has a size of 137.12 MiB, that is, approximately 15 MiB smaller than
the rest. This indicates that when there is a process only in one node, the file of its
aggregator is smaller than that of other aggregators in nodes where there are more
processes.

In the case of BT.B., it can also be observed that the greater the number of pro-
cesses used, the more the file size decreases, including the files that carry informa-
tion from the aggregators. With four processes, it went from having an aggregator
file with 182.10 MiB to 25 processes having six aggregators files of approximately

1 3

A model of checkpoint behavior for applications that have I/O﻿	

Table 1   Comparison of the size (MiB) of checkpoint files for the BT-IO benchmark Class B and C in
their subversion FULL. The size of the aggregator’s checkpoint files is shown in bold (MPICH) (A1)

Bench. BT.B.MPI.IO FULL BT.C.MPI.IO FULL

Np. 4 9 16 25 4 9 16 25

Map. 1n x 4p 2n x 4p 4n x 4p 6n x 4p 1n x 4p 3n x 3p 4n x 4p 6n x 4p

1n x 1p 1n x 1p 1n x 1p

F0 182.10 122.11 98.43 88.24 482.90 266.10 184.01 149.95
F1 165.60 106.26 83.74 74.34 466.18 249.05 164.99 128.72
F2 166.63 106.00 84.02 74.60 466.16 248.80 165.25 128.98
F3 166.64 106.00 83.80 74.34 466.16 248.79 165.17 128.75
F4 122.12 98.48 85.21 266.00 183.96 149.84
F5 106.22 83.74 74.48 248.79 165.00 128.71
F6 105.99 83.96 74.59 248.84 165.25 129.02
F7 106.26 83.74 74.34 249.08 165.05 128.76
F8 108.32 98.35 86.32 253.23 184.02 149.85
F9 83.70 74.21 164.99 128.46
F10 83.96 74.48 165.25 128.72
F11 83.75 74.47 165.04 128.72
F12 98.38 86.64 184.00 149.78
F13 83.71 74.48 165.03 128.72
F14 84.08 74.50 165.25 128.71
F15 83.75 74.40 165.03 128.46
F16 86.40 152.08
F17 74.36 128.70
F18 74.59 129.02
F19 74.57 128.72
F20 86.23 149.91
F21 74.46 128.70
F22 74.73 129.02
F23 74.47 128.76
F24 73.34 137.12

Table 2   Checkpoint files sizes
(MiB) for the BT-IO Class B
FULL benchmark generated
on another system architecture
(A2). (MPICH)

Bench. BT.B.MPI.IO FULL

Np. 16

Map. 2n x 8p
F0 F1 F2 F3 F4 F5 F6 F7
107.11 88.60 88.86 88.60 88.59 88.84 88.84 88.62
F8 F9 F10 F11 F12 F13 F14 F15
106.46 88.59 88.85 88.59 88.59 88.83 88.86 88.61

	 B. León et al.

1 3

86 MiB. In this way, the number of aggregator files increases but their size
decreases, just like the size of the rest of the files that do not come from an aggrega-
tor process. This happens because the information in the buffer is decreasing and the
aggregator takes the information from the process it protects plus the information
from the IO buffer.

In Table 2, the BT.B.16 MPI IO FULL has been executed again, with 2n x 8p
mapping, in order to validate our model in another architecture. In this way, it can be
seen that the results are similar to those presented in Table 1, regarding the default
size of the generated aggregator files of approximately 17 MiB.

Table 3 shows a comparison of the size of the aggregators by a checkpoint zone
for BT.B.16 MPI-IO FULL, with a default configuration (4 aggregators, that is 1
aggregator per node) and with 1, 2 and 3 aggregators. In this table, it can be seen
that in the aggregator file, the DTAPP zone corresponding to the data is a little
larger than the rest of the other files, and the LB zone corresponding to the libraries
remains similar in all the files stored by the checkpoint. In the SHMEM zone cor-
responding to the shared memory zone, we can see the size of the aggregator, with
an approximate size of 58MiB when the configuration is by default and with 62 MiB
when the number of aggregators is modified. If we subtract from these values, the
size that the SHMEM zone must have for four processes in a node (the mapping is 4
processes in 4 nodes), which according to the Model "Estimating the size of shared
memory within a node" [34] is approximately 43.07 MiB. The remaining size is
approximately for the default configuration of 15 MiB and for the configuration of
the number of aggregators of 19 MiB. Therefore, this difference is the one that has
been dedicated to the buffer I/O.

The default buffer size for collectives in ROMIO is 16 MiB; therefore, those
obtained in the results of Table 3 are consistent, since they are between 15MiB and
19 MiB. In this way, we could detail the following aspects:

•	 If the default aggregator configuration is maintained, it generates one aggregator
per node.

•	 By obviating the default configuration and assigning the number of aggregators,
these are generated with a larger size than those caused by default because as
there are fewer aggregators, they must handle more information.

•	 The mapping is an important aspect to consider as it influences the aggregators’
size and, therefore, the size of the checkpoint.

5.1.3 � OMPIO (Open MPI)

For the experiments in Table 4, the Open MPI implementation was used. In this
table the BT is compared for its complete subtype of collective I/O, with different
workloads and for 4, 9, 16 and 25 processes. Similar to the experiment performed in
Table 1 with MPICH, here it is also shown that in most cases one aggregator file per
node has been generated. Another important aspect to note in this experiment is that
in cases where there are several aggregator files, one of the aggregators is larger than
the rest of the aggregator files. In cases where the number of aggregator processes is
less than the number of nodes, such as the one with 25 processes in six nodes, it only

1 3

A model of checkpoint behavior for applications that have I/O﻿	

Table 3   Aggregator size (MiB) comparison by zone, configuration by default and with 1, 2 and 3 aggre-
gator processes. The size of the aggregator’s checkpoint files is shown in bold (MPICH)(A1)

Agg. N o Agg. Default Bench: BT.B.16.MPI.IO.FULL SHMEM size

Size: Mapping: 4n x 4p model: 43.07 MiB

Files DTAPP LB SHMEM Ckpt BUFFER

(MiB) (MiB) (MiB) size (MiB) I/O (MiB)

DEFAULT F0 32.15 7.71 58.05 97.91 14.98
F1 31.72 7.71 43.52 82.96 0.45
.
F4 32.15 7.71 58.10 97.96 15.03
F5 31.78 7.71 43.68 83.17 0.61
.
F8 32.15 7.71 58.19 98.05 15.12
F9 31.74 7.71 43.11 82.56 0.04
.
F12 32.15 7.71 58.12 97.98 15.05
F13 31.81 7.71 43.59 83.11 0.52
.
F15 31.77 7.71 43.52 83.01 0.45

1 F0 34.50 7.71 62.37 104.59 19.30
F1 32.75 7.71 43.68 84.14 0.61
.
F12 32.75 7.71 43.69 84.15 0.62
F13 32.76 7.71 43.67 84.14 0.60
.
F15 32.76 7.71 43.68 84.15 0.61

2 F0 33.06 7.71 62.40 103.17 19.33
F1 32.31 7.71 43.67 83.70 0.60
.
F4 33.06 7.71 62.40 103.18 19.33
F5 32.31 7.71 43.67 83.70 0.60
.
F15 32.31 7.71 43.65 83.68 0.58

3 F0 32.44 7.71 62.09 102.24 19.02
F1 31.77 7.71 43.67 83.16 0.60
.
F4 32.44 7.71 62.09 102.24 19.02
F5 31.77 7.71 43.67 83.16 0.60
.
F8 32.44 7.71 62.09 102.24 19.02
F9 31.77 7.71 43.67 83.16 0.60
.
F15 31.77 7.71 43.67 83.16 0.60

	 B. León et al.

1 3

Table 4   Comparison of the size (MiB) of checkpoint files for the BT-IO benchmark Class B and C in
their subversion FULL. The size of the aggregator checkpoint files is shown in bold (OpenMPI)(A1)

Bench. BT.B.MPI.IO FULL BT.C.MPI.IO FULL

Np. 4 9 16 25 4 9 16 25

Map. 1n x 4p 3n x 3p 4n x 4p 6n x 4p
1n x 1p

1n x 4p 3n x 3p 4n x 4p 6n x 4p
1n x 1p

F0 178 132.54 81.76 110.64 484.46 270.96 190.25 159.93
F1 142 53.05 34.62 26.46 449.97 175.10 105.78 73.34
F2 142 53.14 34.69 26.09 449.95 174.87 105.43 72.87
F3 142 89.14 34.71 26.25 449.82 230.68 105.85 73.38
F4 53.11 65.88 26.48 174.94 105.69 73.49
F5 53.13 34.74 26.14 174.98 105.35 73.53
F6 89.22 34.65 26.28 230.74 149.17 73.45
F7 53.28 34.48 56.26 174.93 105.76 73.35
F8 53.13 65.79 25.91 174.87 105.59 112.14
F9 34.73 26.49 105.40 73.07
F10 34.64 25.83 105.50 72.66
F11 34.55 25.99 148.18 73.31
F12 65.81 26.44 105.81 73.14
F13 34.64 56.82 148.23 72.93
F14 34.70 26.24 105.85 73.33
F15 34.60 25.98 105.55 112.93
F16 25.84 73.47
F17 25.86 73.51
F18 26.55 72.93
F19 60.26 73.12
F20 26.13 73.22
F21 26.29 73.60
F22 26.22 115.93
F23 26.30 72.81
F24 26.49 73.30

Table 5   Checkpoint size
(MiB) varying the number of
aggregators. The size of the
aggregator’s checkpoint files is
shown in bold (OpenMPI)(A1)

Mapping No Agregators BT.B.4.MPI.IO FULL

F0 F1 F2 F3

1n × 4p Default 186.63 150.01 150.08 150.04
1 186.79 150.01 150.08 150.04
2 170.10 152.03 170.02 152.00
4 155.54 155.59 155.48 155.34

1 3

A model of checkpoint behavior for applications that have I/O﻿	

generates four aggregator files. Therefore, there is an aggregator process that carries
more information than the other aggregator processes and it is therefore larger.

In OpenMPI, the default value of the temporary buffer for I/O operations is 32
MiB. Table 5 shows the number of aggregators by default (1 aggregator because the
mapping is 1n x 4p), and with 1, 2 and 4 aggregators for the execution of a BT.B.
4.MPI.IO.FULL on a node. This table shows how a number of larger files was gen-
erated in each execution, consistent with the number of aggregators configured.

In the case of execution with the predetermined number of aggregators, the size
of the aggregator process files is similar to that of the configuration of one aggrega-
tor per node, having approximately 36 MiB for the I/O buffer. In the case of two
aggregators, the difference is 18.07 MiB in each aggregator file in respect to the rest
of the files. With four aggregators, all the files were a similar size of approximately
155 MiB. In this way, the configuration of these parameters not only impacts the
application, it also affects the behavior of the checkpoint. Likewise, it is observed in
this table that when the number of aggregators is configured, the size of all aggrega-
tors is similar.

Figure 10 shows the variation of the OpenMPI fcoll component with the param-
eters dynamic, dynamic_gen2, individual, vulcan and two-phase. Regarding the size
of the generated files, one with 111MiB and three with 65MiB are similar for the
files generated with dynamic, dynamic_gen2 and vulcan, in the case of two phases,

Fig. 10   Variation of the fcoll component (BT.B.16.MPÌ.IO FULL on 4 nodes)

Table 6   Time spent by the checkpoint and by the application with the checkpoint (OpenMPI)(A1)

Mapping 4n x 4p BT.B.16.MPI.IO FULL

Dynamic Dynamic_gen2 Vulcan Two-phase Individual

Ckpt time (s) 9.83 9.87 10.92 10.62 8.56
App+ckpt time (s) 88.97 130.89 92.74 121.62 2217.12

	 B. León et al.

1 3

the slightly larger aggregators, one with 145 MiB and three with 70 MiB and in the
case of the smallest individual configuration, all their aggregators are approximately
62 MiB.

In relation to the time used, the results are shown in Table 6. In the case of check-
point latency, the results varied between 8.56 and 10.92 seconds approximately, with
the fastest being the execution with the individual configuration and the slowest the
execution with the vulcan configuration. However, the difference between these is
very little, close to a couple of seconds. Regarding the time of the application with
the checkpoint, these times between configurations of the fcoll component do
present more significant differences, where the execution with the individual config-
uration was too slow at 2217.12 seconds and the fastest execution was with dynamic
at 88.97 seconds.

Regarding Table 7, it shows the execution times of the application, of the check-
point and of the application with checkpoint. Changed mapping, number of aggre-
gators, and I/O buffer size to 32 MiB and 64 MiB. In this table it can be seen that
with more aggregator processes, the time of the app increases but the checkpoint
time decreases. In this way, when there is a single aggregator process for so many
processes in a node, the files generated are larger and therefore occupy more time. In
this way, the configuration of some parameters such as in this case the mapping, the
number and size of the aggregators influence the behavior of the checkpoint. Both
Tables 6 and 7 show that the best configuration for the checkpoint will not always be
the best configuration for the application.

5.1.4 � FLASH I/O benchmark routine ‑ parallel HDF5

FLASH I/O measures the performance of the HDF 5 output in parallel FLASH I/O.
Recreating the primary data structures in FLASH I/O generates three files: a plot
file with corner data, a plot file with centered data and a checkpoint file. Plot files
have single precision data. The purpose of this routine is to tune I/O performance in
a controlled environment. FLASH I/O code is scalable to thousands of processors
and it is generally configured to use as much memory as possible for a given node or
processor. In this sense, FLASH I/O is typically used in a weak scaling form, so that
the size of the problem increases proportionally with the number of processors [38].

Table 7   Time spent by the checkpoint and by the application without checkpoint and with checkpoint
with different mapping and I/O buffer size (BT.B.16.MPI.IO FULL)(MPICH)(A2)

Aggregator N o: 1 2 4 1 2 4
Aggregator size: 32MiB 32MiB 32MiB 64MiB 64MiB 64MiB

Mapping: 1n × 16p 2n × 8p 4n × 4p 1n × 16p 2n × 8p 4n × 4p

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

App 70.77 86.49 122.47 70.21 89.57 235.38
Ckpt 51.09 26.76 23.24 47.01 27.17 25.52
App+Ckpt 122.09 111.55 145.38 118.77 114.69 262.2

1 3

A model of checkpoint behavior for applications that have I/O﻿	

Table 8 shows the results of the Benchmark FLASH I/O execution with 4, 8 and
16 processes and different mapping and different numbers of aggregators. In this
way, it can be seen that all the files are approximately 300 MiB in size, some a little
larger and other files a little smaller. The difference in size between files that come
from an aggregator process and those that do not is approximately 5 MiB. Most of
the content of these files is made up of the data zone that occupies approximately
270 MiB, the size of the checkpoint, and the rest is occupied by the library zone and
the shared memory zone.

5.2 � Analyzing the impact of collective buffer size on the checkpoint file size

In this section, we show how the collective buffer size can also impact on the check-
point file size of the aggregators. We have configured the size of the buffer size (cb_
buffer_size) that manages the I/O, as shown in Fig. 11. This buffer has been config-
ured to 8 MiB and 32 MiB, and 1, 2 and 3 aggregators have been assigned for the
execution of BT.B.16.MPI.IO.FULL in four nodes (Mapping: 4n x 4p).

As can be seen in Fig. 11, for a buffer size of 8 MiB, the aggregator increases
its checkpoint file size to almost 95 MiB with one, two and three aggregators. In
the case of 32 MiB, when there is a single aggregator, it has a file size of 124 MiB,
110 MiB for two aggregators and 102 MiB for three aggregators. In this case, there
is a more significant difference in the size of the aggregators when their number is

Table 8   Checkpoint file
size (MiB) benchmark
FLASH I/O. The size of the
aggregator’s checkpoint files is
shown in bold (MPICH)(A1)

Bench. Checkpoint benchmark FLASH I/O files

No Aggreg. 1 2 2 2 4 4

No Proc. 4 4 8 8 8 16

Mapping 1n x 4p 2n x 2p 2n x 4p 4n x 2p 4n x 2p 4n x 4p

F0 312.19 303.05 312.20 303.05 303.05 311.67
F1 307.17 298.67 307.18 298.56 298.55 307.18
F2 307.17 303.04 307.18 302.78 303.04 306.91
F3 307.17 298.67 307.18 298.28 298.55 306.94
F4 312.20 298.77 303.05 311.55
F5 307.18 298.28 298.55 307.18
F6 307.18 298.77 303.04 306.91
F7 307.21 298.29 298.55 306.94
F8 311.56
F9 307.18
F10 306.94
F11 306.94
F12 311.68
F13 307.18
F14 306.91
F15 306.94

	 B. León et al.

1 3

Fig. 11   Comparison of the checkpoint file size for 1 (above plot), 2 (middle plot) and 3 (below plot)
aggregators by using a buffer size of 8 MiB and 32 MiB (MPICH)

1 3

A model of checkpoint behavior for applications that have I/O﻿	

greater and the size of the buffer is greater. Therefore, it is observed that the size of
an aggregator is greater than where there are two and three aggregators. The reason
for this is that where there is a single aggregator, it must take over I/O management
for the rest of all processes. On the other hand, with two or three aggregators, the
work is divided among several, so they do not need a larger size.

6 � Steps to calculate checkpoint size for I/O applications and use case

To find the size of the checkpoint for applications with I/O, Algorithm 1 is presented
below which summarizes the necessary steps and then a use case is implemented
that shows the applicability of the model.

	 B. León et al.

1 3

First you must select the application, the workload (input), the number of pro-
cesses, number of nodes and mapping. Next you must choose the moment to per-
form the checkpoint (interval), since this element can influence the size of the ckpt
files. Then the application is characterized with the checkpoint and the size of the
zones that compose it is obtained (DTAPP, LB and SHMEM) [34]. Therefore, here
you already have the size of the checkpoint for a mapping, a size and a library. In the
case of the SHMEM zone, this must be found a number of different times according
to the number of different mappings that have been assigned (number of processes

1 3

A model of checkpoint behavior for applications that have I/O﻿	

on a node). If the number of processes is the same in all nodes, the size of the check-
point file is calculated by adding the three zones. If the number of files is different in
the nodes (different number of mapping), the size will be calculated for each case. If
the application has I/O and the default I/O values are used, the size of the aggregator
files is calculated, one for each node and with the buffer size predefined by ROMIO,
which is approximately 16 MiB. Otherwise, the new values are requested and the
size is calculated with these new values for the number and size of aggregators. At
the end, the size of the checkpoint files and the size of the checkpoint aggregator
files must be obtained.

Next, in Fig. 12, a use case is presented following Algorithm 1. For this, we select
the BT.C.25.MPI.IO.FULL with a mapping of 6 nodes with 4 processes and 1 node
with 1 process (6n × 4p, 1n × 1p).

In the use case presented, the default ROMIO values were used and the assigned
mapping of 6n × 4p and 1n × 1p generated two (tm) types of different file sizes, due

Fig. 12   Use case

	 B. León et al.

1 3

to the SHMEM zone being different for both, since they have different numbers of
processes per node. In this sense, the size of the checkpoint files and aggregator files
for both mappings is calculated. Therefore, Fig. 12 shows the amount and approxi-
mate size of checkpoint files generated, 18 files of 125.22 MiB were generated, 6
aggregator files of 141.22 MiB and 1 aggregator file of 129.22 MiB. Regarding the
real measured size and the size calculated through this algorithm of the checkpoint
files generated, with the execution of a BT.C.25.MPI.IO.FULL with the previously
assigned mapping, an error has been obtained for the aggregator files of approxi-
mately 5% and for files that are not aggregators of 2.7%.

In this way, this model can help estimate the sizes of checkpoint files of applica-
tions with I/O. With few resources, what happens in a node is analyzed and it is
calculated when the number of nodes and/or the number of processes change. As
well as if the application has I/O, the number, distribution and size of the aggrega-
tor processes must be indicated. The model can be useful when selecting what type
of checkpoint configuration is more appropriate according to the applications’ char-
acteristics and resources available. Thus, the user will be able to know how much
storage space the checkpoint consumes and how much the application consumes, in
order to establish policies that help improve the distribution of resources.

7 � Conclusions and future work

A model of checkpoint behavior for parallel applications performing file I/O has
been presented and described. The model is an extension to the previously published
work, where applications didn’t perform I/O operations. The research is focused on
the checkpoint file sizes in relation to different underlying framework (MPI) param-
eters. Our model describes the behavior of the checkpoint size based on the number
of processes and nodes when, concurrently, there are I/O from application processes,
the number I/O aggregator processes and buffering size. By analyzing the coordi-
nated behavior of the checkpoint generated in the user layer by the DMTCP library,
we identified the impact of the I/O strategy parameters on the different zones of the
checkpoint file. In this type of application, an essential parameter has been observed,
such as the I/O aggregators that access the collective buffer of the optimization tech-
nique applied by the MPI-IO implementation, as well as various strategies used by
different implementations of the I/O operations collective. In this sense, a detailed
study of the checkpoint snapshot has been carried out to know the impact of this
element on its size. It could be observed that these aggregators are created in the
SHMEM zone, where the dynamic memory information is stored, and the rest of the
zones are not affected by this parameter. Likewise, the configuration of the dynamic,
static or two-phase components influences the size of the checkpoint files. There-
fore, on a large scale, the configuration of the aggregators and these I/O components
that impact the size of the checkpoint could be significant. On the other hand, with
this model the size of the checkpoint files of applications with I/O can be estimated
with few resources, analyzing what happens in a node with few processes and the
size can be known when the number of nodes changes the number of processes and/
or the configuration of the aggregator processes. In this way, the size of the stable

1 3

A model of checkpoint behavior for applications that have I/O﻿	

storage necessary to save the files generated by the checkpoint can be previously
known. This is an important aspect for a system administrator, because it can more
efficiently allocate storage resources for fault-tolerant applications.

Therefore, as future work, we will focus on other layers of the software stack to
understand the influence of the different buffering implemented in each layer of the
I/O and its impact on the checkpoint and other fault tolerance strategies.

Acknowledgements  This publication is supported under contract PID2020-112496GB-I00, funded
by the Agencia Estatal de Investigación (AEI), Spain and the Fondo Europeo de Desarrollo Regional
(FEDER) UE and partially funded by a research collaboration agreement with the Fundación Escuelas
Universitarias Gimbernat (EUG).

Funding  Open Access Funding provided by Universitat Autonoma de Barcelona.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Ouyang X, Gopalakrishnan K, Gangadharappa T, Panda DK (2009) Fast checkpointing by Write
Aggregation with Dynamic Buffer and Interleaving on multicore architecture. In 2009 International
Conference on High Performance Computing (HiPC), pp 99–108. https://​doi.​org/​10.​1109/​HIPC.​
2009.​54332​18

	 2.	 Leon B, Gomez P, Franco D, Rexachs D, Luque E (2020) Analysis of Checkpoint I/O behavior.
In: International Conference on Computational Science (ICCS), S. N. S. A. 2020, Ed., ser. Lecture
Notes in Computer Science, vol. 12137, Springer Nature Switzerland AG, pp 191–205

	 3.	 Boito FZ, Inacio EC, Bez JL, Navaux PO, Dantas MA, Denneulin Y (2018) A checkpoint of
research on parallel I/O for high-performance computing. ACM Comput Surv (CSUR) 51(2):1–35

	 4.	 Bailey DH, Barszcz E, Barton JT et al (1991) The NAS parallel benchmarks. The Int J Supercomput
Appl 5(3):63–73

	 5.	 The HDF Group. Hierarchical Data Format, version 5. (1997-2018), [Online]. Available: http://​
www.​hdfgr​oup.​org/​HDF5/

	 6.	 Li J, Liao W-k, Choudhary A, et al. (2003) Parallel netCDF: a high - performance scientific I/O
interface. In: Supercomputing, 2003 ACM/IEEE Conference, Nov. 2003, pp 39–39. https://​doi.​org/​
10.​1109/​SC.​2003.​10053

	 7.	 Unidata. Network Common Data Form (netCDF) (2018) [Online]. Available: http://​doi.​org/​10.​
5065/​D6H70​CW6

	 8.	 Kang Q, Ross R, Latham R, et al. (2020) Improving all-to-many personalized communication in
two-phase I/O. In: SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp 1–13. https://​doi.​org/​10.​1109/​SC414​05.​2020.​00014

	 9.	 Thakur R, Gropp W, Lusk E (1999) Data sieving and collective I/O in ROMIO. In: Proceedings of
the The 7th Symposium on the Frontiers of Massively Parallel Computation, ser. FRONTIERS ’99,
Washington, DC, USA: IEEE Computer Society, pp 182–, isbn: 0-7695-0087-0. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=795668. 796733

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/HIPC.2009.5433218
https://doi.org/10.1109/HIPC.2009.5433218
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1109/SC.2003.10053
https://doi.org/10.1109/SC.2003.10053
http://doi.org/10.5065/D6H70CW6
http://doi.org/10.5065/D6H70CW6
https://doi.org/10.1109/SC41405.2020.00014

	 B. León et al.

1 3

	10.	 Ohta K, Kimpe D, Cope J, Iskra K, Ross R, Ishikawa Y (2010) Optimization techniques at the I/O
forwarding layer. IEEE Int Conf Clust Comput 2010:312–321. https://​doi.​org/​10.​1109/​CLUST​ER.​
2010.​36

	11.	 Filgueira R, Carretero J, Singh DE, Calderon A, Núñez A (2012) Dynamic - CoMPI: dynamic opti-
mization techniques for MPI parallel applications. J Supercomput 59(1):361–391

	12.	 Thakur R, Ross R, Lusk E, Gropp W, Latham R (2010) Users guide for ROMIO: a high-perfor-
mance. portable MPI-IO implementation. [Online]. Available: https://​www.​mcs.​anl.​gov/​proje​cts/​
romio

	13.	 Project TOM (2021) Tuning the OMPIO parallel I/O component, [Online]. Available: http://​www.​
open-​mpi.​org/​faq/?​categ​ory=​ompio#​how-​can-i-​use-​omio

	14.	 Elliott J, Kharbas K, Fiala D, Mueller F, Ferreira K, Engelmann C (2012) Combining partial redun-
dancy and checkpointing for HPC. In: 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pp 615–626

	15.	 Akber, S Muhammad Abrar, Chen H, Wang Y, Jin H (2018) Minimizing overheads of checkpoints
in distributed stream processing systems. In: 2018 IEEE 7th International Conference on Cloud Net-
working (CloudNet), pp 1–4. https://​doi.​org/​10.​1109/​Cloud​Net.​2018.​85495​48

	16.	 Coti C, Herault T, Lemarinier P, et al. (2006) Blocking vs. non-blocking coordinated checkpointing
for large-scale fault tolerant MPI. In: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, pp 1–18. https://​doi.​org/​10.​1109/​SC.​2006.​15

	17.	 Estahbanati M Gholami, Schintke F (2019) Multilevel checkpoint/restart for large computational
jobs on distributed computing resources. In: 2019 38th Symposium on Reliable Distributed Systems
(SRDS), pp 143– 149. https://​doi.​org/​10.​1109/​SRDS4​7363.​2019.​00025

	18.	 Ansel J, Arya K, Cooperman G (2009) DMTCP: transparent checkpointing for cluster computations
and the desktop. In: IEEE International Symposium on Parallel & Distributed Processing. IEEE
2009:1–12

	19.	 Wong P, Van der Wijngaart RF (2003) NAS parallel benchmarks I/O version 2.4. NAS Technical
Report NAS-03-00. [Online]. Available: https://​www.​nas.​nasa.​gov/​assets/​pdf/​techr​eports/​2003/​nas-​
03-​ 002.​pdf

	20.	 Kumar M, Choudhary A, Kumar V (2014) A comparison between different checkpoint schemes
with advantages and disadvantages. Int J Comput Appl Nat Semin Recent Adv Wirel Netw Com-
mun 3:36–39

	21.	 Dauwe D, Pasricha S, Maciejewski AA, Siegel HJ (2018) An analysis of multilevel checkpoint per-
formance models. IEEE Int Parallel Distrib Process Symp Workshops (IPDPSW) 2018:783–792

	22.	 Losada N, Martín MJ, Rodríguez G, Goznález P (2015) I/O optimization in the checkpointing of
openMP parallel applications. In: 2015 23rd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pp 222–229

	23.	 Wang N, Sun Q, Liu Y, Qian D (2018) Mitigating I/O impact of checkpointing on large scale par-
allel systems. In: 2018 IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS), pp 117–123. https://​doi.​org/​10.​
1109/​HPCC/​Smart​City/​DSS.​2018.​00047

	24.	 Qian Y, Yi R, Du Y, Xiao N, Jin S (2013) Dynamic i/o congestion control in scalable lustre file
system. In: 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), May
2013, pp 1–5. https://​doi.​org/​10.​1109/​MSST.​2013.​65584​32

	25.	 El-Sayed N, Schroeder B (2014) To checkpoint or not to checkpoint: understanding energy-perfor-
mance-i/o tradeoffs in hpc checkpointing. IEEE Int Conf Cluster Comput (CLUSTER) 2014:93–102

	26.	 Cores I, Rodrıguez G, González P, Osorio RR et al (2013) Improving scalability of application-level
checkpoint-recovery by reducing checkpoint sizes. New Gener Comput 31(3):163–185

	27.	 Kongmunvattana A (2015) Reducing checkpoint creation overhead using data similarity. Int J Com-
put 4(4):199–206

	28.	 Rusu C, Grecu C, Anghel L (2008) Improving the scalability of checkpoint recovery for net-
works-on-chip. In: 2008 IEEE International Symposium on Circuits and Systems, May 2008, pp
2793–2796

	29.	 Chaarawi M, Gabriel E (2011) Automatically selecting the number of aggregators for collective I/O
operations. In: 2011 IEEE International Conference on Cluster Computing, IEEE, 2011, pp 428–437

	30.	 Kang Q, Lee S, Hou K et al (2020) Improving MPI collective I/O for high volume non-contiguous
requests with intra-node aggregation. IEEE Trans Parallel Distrib Syst 31(11):2682–2695. https://​
doi.​org/​10.​1109/​TPDS.​2020.​30004​58

https://doi.org/10.1109/CLUSTER.2010.36
https://doi.org/10.1109/CLUSTER.2010.36
https://www.mcs.anl.gov/projects/romio
https://www.mcs.anl.gov/projects/romio
http://www.open-mpi.org/faq/?category=ompio#how-can-i-use-omio
http://www.open-mpi.org/faq/?category=ompio#how-can-i-use-omio
https://doi.org/10.1109/CloudNet.2018.8549548
https://doi.org/10.1109/SC.2006.15
https://doi.org/10.1109/SRDS47363.2019.00025
https://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-%20002.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-%20002.pdf
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00047
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00047
https://doi.org/10.1109/MSST.2013.6558432
https://doi.org/10.1109/TPDS.2020.3000458
https://doi.org/10.1109/TPDS.2020.3000458

1 3

A model of checkpoint behavior for applications that have I/O﻿	

	31.	 Congiu G, Narasimhamurthy S, Süß T, Brinkmann A (2016) Improving collective I/O performance
using non-volatile memory devices. IEEE Int Conf Cluster Comput (CLUSTER) 2016:120–129.
https://​doi.​org/​10.​1109/​CLUST​ER.​2016.​37

	32.	 Bagbaba A (2021) A comparative study of MPI-IO libraries for offloading of collective I/O tasks.
In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp 1–6.
https://​doi.​org/​10.​1109/​ICEET​53442.​2021.​96597​67

	33.	 Méndez S, Rexachs D, Luque E (2012) Evaluating utilization of the I/O system on computer clus-
ters. In: Proceedings of the International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA), The Steering Committee of The World Congress in Computer
Science, 2012, pp 1–7

	34.	 León B, Franco D, Rexachs D, Luque E (2020) Analysis of parallel application checkpoint storage
for system configuration, J Supercomput, 1–36

	35.	 Thakur R, Gropp W, Lusk E (1999) Data sieving and collective I/O in ROMIO. In: Proceedings.
Frontiers ’99. Seventh Symposium on the Frontiers of Massively Parallel Computation, IEEE, pp
182–189

	36.	 A. Laboratory, Flash IO Benchmark, Tech. Rep., (2013) [Online]. Available: http://​www.​mcs.​anl.​
gov/​resea​rch/​proje​cts/​pio-​bench​mark/

	37.	 Fineberg S, Wong P, Nitzberg B, Kuszmaul C (1996) PMPIO-a portable implementation of MPI-IO.
In: Proceedings of 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers
’96), pp 188–195. https://​doi.​org/​10.​1109/​FMPC.​1996.​558082

	38.	 Shan H, Antypas K, Shalf J (2008) Characterizing and predicting the I/O performance of HPC
applications using a parameterized synthetic benchmark. In: SC ’08: Proceedings of the 2008 ACM/
IEEE Conference on Supercomputing, pp 1–12. https://​doi.​org/​10.​1109/​SC.​2008.​52227​21

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Betzabeth León1  · Sandra Méndez1,2  · Daniel Franco1  ·
Dolores Rexachs1  · Emilio Luque1 

	 Sandra Méndez
	 sandra.mendez@uab.es; sandra.mendez@bsc.es

	 Daniel Franco
	 daniel.franco@uab.es

	 Dolores Rexachs
	 dolores.rexachs@uab.es

	 Emilio Luque
	 emilio.luque@uab.es

1	 Computer Architecture and Operating Systems Department, Universitat Autònoma de
Barcelona, Bellaterra, Barcelona, Spain

2	 Computer Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona,
Barcelona, Spain

https://doi.org/10.1109/CLUSTER.2016.37
https://doi.org/10.1109/ICEET53442.2021.9659767
http://www.mcs.anl.gov/research/projects/pio-benchmark/
http://www.mcs.anl.gov/research/projects/pio-benchmark/
https://doi.org/10.1109/FMPC.1996.558082
https://doi.org/10.1109/SC.2008.5222721
http://orcid.org/0000-0003-1778-0237
http://orcid.org/0000-0002-5793-1928
http://orcid.org/0000-0003-0002-7046
http://orcid.org/0000-0001-5500-850X
http://orcid.org/0000-0002-2884-3232

	A model of checkpoint behavior for applications that have IO
	Abstract
	1 Introduction
	2 Background
	2.1 HPC IO
	2.2 IO optimization techniques
	2.2.1 ROMIO
	2.2.2 OMPIO

	2.3 Fault tolerance
	2.4 Checkpoint

	3 Related work
	4 Checkpoint model for applications with IO
	5 Experimental validation
	5.1 Analyzing the impact of the number of aggregator processes on the checkpoint file size
	5.1.1 IO benchmark the block-tridiagonal (BTIO)
	5.1.2 ROMIO (MPICH)
	5.1.3 OMPIO (Open MPI)
	5.1.4 FLASH IO benchmark routine - parallel HDF5

	5.2 Analyzing the impact of collective buffer size on the checkpoint file size

	6 Steps to calculate checkpoint size for IO applications and use case
	7 Conclusions and future work
	Acknowledgements
	References

