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Abstract. In this work we study the local cyclicity of some planar polynomial vector
fields in R3. In particular, we give a quadratic system with 11 limit cycles, a cubic system
with 31 limit cycles, a quartic system with 54 limit cycles, and a quintic system with 92
limit cycles. All limit cycles are small amplitude limit cycles and bifurcate from a Hopf
type equilibrium. We introduce how to find Lyapunov constants in R3 for considering
the usual degenerate Hopf bifurcation with a parallelization approach, which enables to
prove our results for 4th and 5th degrees.

1. Introduction

In 1900, D. Hilbert published a series of problems which would be very influential
for mathematics during the 20th century. Ten of these problems were presented at the
International Congress of Mathematicians in Paris. Among them there is the 16th Hilbert
Problem, a question related to finding the maximum number of limit cycles H(n) that
a planar polynomial system can have as a function of its degree n. See more details in
the review of Y. Ilyashenko in [20]. This problem remains unsolved, but a number of
researchers have made a lot of advances in this problem. J. Li did a good review of the
state of the problem in [21]. About global lower bounds, the work of C. Christopher and
N. Lloyd in [12] is remarkable, improved some years ago by M. Han and J. Li in [19].
Regarding summaries of known lower bounds for H(n) for low values of the degree, the
best ones can be found in [25].

There is a local version of the Hilbert problem that consists on finding the maximum
number of limit cycles of small amplitude that bifurcate from an equilibrium point for
a planar polynomial vector field of degree n. This number is usually called the cyclicity
of the equilibrium. The most standard way to get lower bounds for this number is to
analyze the local return map defined in a neighborhood of a monodromic equilibrium
point, usually by studying the maximum codimension of a degenerated Hopf bifurcation.
The most recent progress in this problem for small degrees can be found in [17], studying
this bifurcation near very special centers that have high codimension.

In this paper, we consider the Hopf bifurcation in families of polynomial differential
systems of equations in R3, and we aim to find as many limit cycles as possible for systems
of several degrees n. It is widely known that, unlike for planar systems, systems in R3 can
exhibit infinitely many limit cycles, as it is the case, for example, in any vector field with
a Shilnikov homoclinic orbit, see [18, 28]. Other interesting bifurcations also exhibiting
infinitely many can be found in [6], where a counterexample to a multidimensional version
of the weakened Hilbert’s 16th problem is presented, or the ones appearing on an infinite
family of algebraic invariant surfaces, even for the quadratic case ([10, 30]). There is also
the example of the bifurcation of infinitely many limit cycles near a Hopf-zero equilibrium
point. Indeed, geometrical arguments to show the existence Shilnikov homoclinic orbits
around a Hopf-zero point were already provided by J. Guckenheimer and P. Holmes ([18]).
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Formal statements were proved in [8] and later in [13], but the first rigorous proof was
done very recently in [1].

In our case, we will restrict the problem of finding lower bounds for the maximum
number of limit cycles of small amplitude to the center manifold. In fact, we will study
bifurcations from systems having an equilibrium point such that the corresponding Jaco-
bian matrix has eigenvalues {± i, 1}, this is having a center in the center manifold and
a hyperbolic eigenvalue in the third direction. The fact that the linear part of the third
equation ż is different from 0 and thus hyperbolic makes that the z direction is tightening
the solutions towards the center manifold, and in this sense the considered problem is
far from the Hopf-zero situation. In this line, the problem is more similar to finding the
cyclicity in a two-dimensional case, and therefore makes sense to consider lower bounds for
the maximum number of local limit cycles despite the global problem being unbounded.
This problem was also considered in [3, 4, 5, 27] and more recently in [15, 16]. We will
also take the advantage that, as explained in some of these works, from the computational
point of view it is not necessary to do the changes of variables to transform the problem to
a planar one. The scenario being considered is then a local cyclicity problem of a certain
object inside a particular class of vector fields which is far from the 0 eigenvalue degen-
eration in the third component. We notice that in the nonpolynomial case this problem
makes no sense because also an infinite number of small limit cycles can bifurcate from
the origin, see [29].

Let us consider then a three-dimensional system




ẋ = αx− y +X(x, y, z),

ẏ = x+ αy + Y (x, y, z),

ż = z + Z(x, y, z),

(1)

where X, Y, Z are polynomials of degree n ≥ 2 having no constant nor linear terms in
x, y, z. Our main result is as follows.

Theorem 1. There exist systems of the form (1) (with α ≈ 0) such that at least 11, 31, 54,
92 limit cycles of small amplitude bifurcate from the origin for n = 2, 3, 4, 5, respectively.

To the best of our knowledge, the highest number of limit cycles found so far for the
degenerate Hopf bifurcation in the quadratic case is 10 (see [30]), and we are not aware of
any studies neither on cubic, quartic, nor quintic polynomial vector fields in R3, probably
due to the computational difficulties.

This work is devoted to prove the above main theorem and is structured as follows.
First, we present a section which introduces the main tools necessary for the proof of our
result: the Lyapunov constants method computation in R3 and a couple of results that
will be useful for the proofs. Sections 3 and 4 use 2-parametric families to study the Hopf
bifurcation and prove Theorem 1 for n = 2 and n = 3, respectively. In the last section,
we extend to R3 the parallelization approach for R2 presented in [22] for the Lyapunov
constants computation and apply it to achieve our above main result for the fourth and
fifth degree cases.

2. Preliminary tools

The usual way to study the Hopf bifurcation in R3 is the restriction to the central
manifold where a center-focus type problem can be considered. But, many times, the
necessary normal form changes to go further in the computations make the problem
impossible to be solved. So, we have opted for the approach of working directly in R3

as in [27] but with the algorithm described in [9]. Additionally, as we will explain later,
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we have avoided when the center manifold is the invariant plane z = 0. Because the
corresponding obtained results are worse than when the center manifold is not a plane.
In fact we will prove that the number of limit cycles in the Hopf bifurcation depends on
the center manifold when the considered vector field is a family depending on parameters.
We will restrict our computations to families with (at most) two parameters because of
the computational difficulties.

2.1. Lyapunov constants in R3. The main tool to study the local cyclicity of a Hopf
equilibrium point are the Lyapunov constants, and we present here a method to find
such quantities in R3. We remark that the approach that we have used does not need to
perform the corresponding transformation to the center manifold in order to consider it
as a planar problem. This approach presents computational advantages.

Even though the center notion can be only considered in even dimensional spaces, some
authors introduce the notion of center in R3 to simplify the reading. With this aim we
can say that the origin is a center for an analytic system in R3 when the eigenvalues
of the Jacobian matrix are {± i, λ}, with λ 6= 0, and the system has a center on the
2-dimensional center manifold. The next result is a classical one in the study of the
existence of 2-dimensional center varieties having centers in a three-dimensional space. It
can be found in [9] and is proved in [2].

Theorem 2 ([9]). The origin is a center for the analytic system (1) if and only if α = 0
and it admits a real analytic local first integral of the form H(x, y, z) = x2+y2+O3(x, y, z)
in a neighborhood of the origin in R3, being O3(x, y, z) a sum of terms of degree at least
3. Moreover, when there is a center, the local center manifold is unique and analytic.

The method we propose to find Lyapunov constants in R3 consists on using Theorem 2
to construct a first integral H(x, y, z) = x2 + y2 + · · · with unknown coefficients up to a
certain degree. It is a well-known fact that condition

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ +

∂H

∂z
ż ≡ 0 (2)

is equivalent to the system having a center at the origin. In contrast, if the center does
not have a center at the origin then (2) is not identically zero, and it can be proved ([14])
that actually it is an analytic function in x2 + y2, this is

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ +

∂H

∂z
ż =

∑

`≥1
L`(x

2 + y2)`+1, (3)

for some coefficients L` ∈ R. In this context, the coefficients L` are the so-called Lyapunov
constants, and they have the property that they all vanish if and only if the system has
a center.

We have developed an algorithm that works as follows. First, we define a first integral
up to a certain degree N having the form

H = x2 + y2 +
N∑

i+j+k=3

hijkx
iyjzk, (4)

being hijk the unknown coefficients for degrees between 3 and N. We aim to find these

coefficients together with Lyapunov constants. First, we calculate Ḣ = ∂H
∂x
ẋ+ ∂H

∂y
ẏ+ ∂H

∂z
ż

for (4). Then, by imposing equality (3), the coefficients of both sides are equated degree by
degree starting at 3, and this allows to recursively determine coefficients hijk together with
the Lyapunov constants when the degree is even. Actually, the extra term L`(x

2 + y2)`+1

is added so that the resulting systems for even degrees are not underdetermined, but in
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our case and for simplicity we have equivalently considered L`x
2`+2 as the adding term

(see [11] for more details on this change).
This is essentially the usual Lyapunov method used to find Lyapunov constants in the

plane but adapted to the three-dimensional case. As we have commented above, this
approach decreases the computational time because the restriction of being on the center
manifold given by Theorem 2 is not necessary.

Remark 3. If the linear part of (1) was not written in its real Jordan normal form, we
could use the same approach but finding which coefficients would make function H(x, y, z) =
a20x

2 + a11xy + a02y
2 +O3(x, y, z) be a first integral.

The algorithm explained here has been computationally implemented with Maple ([23]),
and used to calculate the Lyapunov constants throughout the rest of this work. Actually,
we will see that for the results we want to prove we will only need those Lyapunov
constants up to first order in the perturbative parameters, which highly simplifies the
calculations and reduces the computation time.

2.2. The Poincaré–Miranda’s Theorem. Here we formulate Poincaré–Miranda’s The-
orem, which will be necessary for the proofs of the results in the following sections. This
theorem could be described as a generalization of Bolzano’s Theorem to higher dimen-
sions.

Theorem 4 ([24]). (Poincaré–Miranda’s Theorem) Let B = {x ∈ Rm : |xj| ≤ h, for 1 ≤
j ≤ m} and suppose that the mapping F = (f1, f2, . . . , fm) : B → Rm is continuous on B
and such that F (x) 6= (0, 0, . . . , 0) for x on the boundary ∂B of B, and

(i) fj(x1, x2, . . . , xj−1,−h, xj+1, . . . , xm) ≥ 0 for 1 ≤ j ≤ m, and
(ii) fj(x1, x2, . . . , xj−1,+h, xj+1, . . . , xm) ≤ 0 for 1 ≤ j ≤ m.

Then, F (x) = (0, 0, . . . , 0) has a solution in B.
We observe that in all our examples of using the above result, the inequalities on ∂B

are always strict.

2.3. A result on the number of limit cycles of parametric systems. The idea
behind the proof of Theorem 1 is studying the structure of the Lyapunov constants near
centers up to first order Taylor development and analyzing the rank of such linear parts.
The last preliminary tool we present is a theorem which, given a family of centers which
depends on some parameters and under certain conditions, enables to obtain extra limit
cycles to those seen only with the ranks of linear parts. The following result is based on
the fact that we study the local cyclicity on a center component, which takes a generical
value that can be increased on some special curves. For example, in Proposition 6 we have
a 2-dimensional space of center parameters (a, b) such that, generically, 9 limit cycles of
small amplitude bifurcate from the origin under quadratic perturbations. But there exists
a curve of special centers where 10 limit cycles bifurcate and, on this curve, there exist
special points (we prove the existence of at least one) for which, from the corresponding
center, 11 limit cycles bifurcate. In fact, this is like describing a bifurcation diagram on
the center component because the local cyclicity depends on the parameters of the center
family. In all our results we are only providing lower bounds for the local cyclicity value.

Theorem 5 ([17]). We denote by L
(1)
j (λ, b) the first-order development, with respect to

λ ∈ Rk, of the j-Lyapunov constant of system
{
ẋ = αy + Pc(x, y, µ) + P (x, y, λ),

ẏ = αx+Qc(x, y, µ) +Q(x, y, λ),
(5)



HOPF BIFURCATION IN 3-DIMENSIONAL POLYNOMIAL VECTOR FIELDS 5

being (ẋ, ẏ) = (Pc(x, y, µ), Qc(x, y, µ)) a family of polynomial centers of degree n depending
on a parameter µ ∈ R` and having a non-degenerate center equilibrium point at the origin,
and being P (x, y, λ), Q(x, y, λ) polynomials of degree n having no constant nor linear terms

with perturbative parameters λ ∈ Rn2+3n−4. We assume that, after a change of variables
in the parameter space if necessary, we can write

Lj =




λj +O2(λ), for j = 1, . . . , k − 1,
k−1∑
l=1

gj,l(µ)λl + fj−k(µ)λk +O2(λ), for j = k, . . . , k + `,

where with O2(λ) we denote all the monomials of degree higher or equal than 2 in λ with
coefficients analytic functions in µ. If there exists a point µ∗ such that f0(µ

∗) = · · · =
f`−1(µ∗) = 0, f`(µ

∗) 6= 0, and the Jacobian matrix of (f0, . . . , f`−1) with respect to µ has
rank ` at µ∗, then system (5) has k+` hyperbolic limit cycles of small amplitude bifurcating
from the origin.

This result is proved in [17], where it is used to study the cyclicity of some planar
families of vector fields. Even though we aim to study cyclicity in R3, the same technique
from Theorem 5 can be automatically extrapolated to vector fields in the space as the
whole problem is analogous.

3. 11 limit cycles for a quadratic system

In this section we present a quadratic system in R3 and show that it unfolds 11 limit
cycles by using the techniques from Section 2. This proves the case n = 2 in Theorem 1.

The presented result improves by one the lower bound found in [30]. In such work, the
authors use a family of planar centers inspired by a family of Lotka-Volterra systems in
R2, because this family defines a center component (depending on parameters) denoted
by QLV

3 according to the classification of quadratic planar centers provided by [31]. But
this family does not have the maximum generic local cyclicity unlike family Q4. Family
Q4 has a first integral of the form F 3G−2, as detailed in [5], but no free parameters. Our
goal is to take advantage of Theorem 5 in a family of centers extending Q4 to R3. Hence,
we add parameters in the third component instead of the first two, and from Theorem 2
we know the existence of a local center manifold. We remark that the next result is saying
that the local cyclicity can increase when the parameters change.

From the computational point of view, it is important to remark that the best centers
are the ones whose linear part is in the usual Jordan normal form, (x′, y′, z′) = (−y, x, z).
But sometimes, as in our case, the changes of variables to achieve this form add square
roots in the coefficients, and this increases the computational complexity, so we use Re-
mark 3 to avoid these difficulties.

The following result provides, up to our knowledge, the best lower bound for the local
cyclicity near a Hopf point in quadratic vector fields in R3.

Proposition 6. The quadratic system




ẋ = −1
3
y − 5x2 − 2xy + 1

3
y2,

ẏ = x− 3x2 − 10xy + y2,

ż = z + z2 + ax2 + by2,

(6)

has a center at the origin and unfolds 11 limit cycles under a complete quadratic pertur-
bation.
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Proof. The two first equations in (6) define a center in the plane, as it can be trivially
checked that the corresponding system has a rational first integral of the form

H2(x, y) =
(36x2 − 24xy + 4y2 − 8y + 1)3

(108x3 − 108x2y + 36xy2 − 4y3 − 36xy + 12y2 − 12y + 1)2
.

This center in R2 can be embedded in R3 by adding a third component that, from Theo-
rem 2, adds a 2-dimensional center manifold where system (6) has a center and the origin
is a equilibrium point of Hopf type. Let us add a quadratic perturbation and the trace
parameter to (6) in the following way





ẋ = αx− 1
3
y − 5x2 − 2xy + 1

3
y2 +

2∑
i+j+k=2

aijkx
iyjzk,

ẏ = x+ αy − 3x2 − 10xy + y2 +
2∑

i+j+k=2

bijkx
iyjzk,

ż = z + z2 + ax2 + by2 +
2∑

i+j+k=2

cijkx
iyjzk,

(7)

for α, aijk, bijk, cijk ∈ R perturbative parameters.
The next step is to find, for α = 0, the first 11 Lyapunov constants of (7) up to first

order in the perturbative parameters. Notice that, due to Remark 3, in this case we will
consider a first integral with the form H(x, y, z) = 1

2
x2 + 1

6
y2 +O3(x, y, z). Once we have

the linear parts of the 11 first Lyapunov constants of the system, we check that their rank
is generically 9. Hence, by the Implicit Function Theorem and adding α, we generically
have 9 limit cycles of small amplitude bifurcating from the origin.

After a linear change of coordinates in the parameters space, we obtain that the Lya-
punov constants have the following form:

Lk = uk +O2, for k = 1, . . . , 8,

L9 =
f1(a, b)

d(a, b)
u9 +O2,

L10 =
f2(a, b)

d(a, b)
u9 +O2,

L11 =
f3(a, b)

d(a, b)
u9 +O2,

being f1(a, b), f2(a, b), f3(a, b), d(a, b) certain polynomials with integer coefficients in the
variables a and b. We do not show the complete polynomials here due to their large size.
They have respectively total degree 38, 39, 40, and 29, their number of monomials are
respectively 744, 784, 825, and 444, and the coefficients are integers having between 72
and 158 figures. Then, by Theorem 5, to prove the bifurcation of 11 limit cycles we just
have to check that there exists a point (â, b̂) in the parameters space such that f1(â, b̂) =

f2(â, b̂) = 0, f3(â, b̂) 6= 0, d(â, b̂) 6= 0, and the Jacobian determinant det Jac(f1,f2)(â, b̂) 6= 0.
The situation is represented on the graph in Figure 1, where the zero level curves of the

considered polynomials are represented. In it, we can see how the curves f1(a, b) = 0 and

f2(a, b) = 0 intersect at a point (â, b̂) which does not belong to the curves f3(a, b) = 0 and
d(a, b) = 0. We aim to analytically prove the existence of such point by means of Poincaré–
Miranda’s Theorem (Theorem 4). To do this, we will provide a computer-assisted proof
by using rational interval analysis.

Let us start by finding a numerical approximation for an intersection point

(â, b̂) ≈ (−15.87687966375324925, 12.23255254136248609) (8)
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Figure 1. Plot of the zero level curves of f1(a, b), f2(a, b), f3(a, b), and
d(a, b) in color red, blue, green, and black, respectively.

of f1(a, b) = 0 and f2(a, b) = 0, which can be seen in Figure 1. To simplify the application
of Poincaré–Miranda’s Theorem, we will perform a linear change of variables (a, b) →
(u, v) with rational coefficients. To this end, we will consider the approximation (â, b̂) ≈
(−159

10
, 61

5
) = (−15.9, 12.2) and define u and v as the numerical tangent lines at this point.

Then, one can isolate (a, b) as a function of (u, v), consider the solution with 3 significant
digits and convert it to rational values, obtaining

(a, b) =

(
−159

10
− 577

100
u+

577

100
v,

61

5
+

129

500
u+

371

500

)
. (9)

If we substitute (9) in f1(a, b), f2(a, b), f3(a, b), and d(a, b) we obtain the polynomials in
the new variables, which we will denote by F1(u, v), F2(u, v), F3(u, v), and D(u, v). These
new polynomials are represented in Figure 2, where we can see that now the intersection
point (û, v̂) of F1(u, v) = 0 and F2(u, v) = 0 has shifted near (0, 0) and the application of
Poincaré–Miranda’s Theorem will be easier.

Figure 2. Plot of the zero level curves of F1(u, v), F2(u, v), F3(u, v), and
D(u, v) in color red, blue, green, and black, respectively.

Taking h = 1/10 in Theorem 4, we will shown that in the square [−h, h]2 there must be
a zero of F1(u, v) and F2(u, v). The proof follows by checking also that F3(u, v), D(u, v),
and the Jacobian determinant J(u, v) := det Jac(F1,F2)(u, v) do not vanish in the whole
square. Observe that F1(u, v) and F2(u, v) are continuous because they are polynomials.
Then, there will be a point (û, v̂) ∈ (−h, h)2 such that F1(û, v̂) = 0 and F2(û, v̂) = 0 by
applying the Poincaré–Miranda’s Theorem because the following conditions hold.

(a) F1(h, v) > 0 and F1(−h, v) < 0 for v ∈ [−h, h].
To prove this, we will show that F1(h, v) is inferiorly bounded by a positive number in
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v ∈ [−h, h] and F1(−h, v) is superiorly bounded by a negative number in v ∈ [−h, h].
Indeed,

4 · 10145 < F1(h, 0)−
38∑

i=1

|Ai|hi ≤ F1(h, 0) +
38∑

i=1

Aiv
i = F1(h, v),

F1(−h, v) = F1(−h, 0) +
38∑

i=1

Biv
i ≤ F1(−h, 0) +

38∑

i=1

|Bi|hi < −8 · 10145,

where Ai, Bi ∈ Q are the coefficients of the corresponding polynomials. Notice that,
due to how Theorem 4 is formulated, it should be applied to −F1(u, v) rather than
F1(u, v), but the conclusion is exactly the same.

(b) F2(u,−h) > 0 and F2(u, h) < 0 for u ∈ [−h, h].
Analogously, we will show that F2(u,−h) is inferiorly bounded by a positive number
in u ∈ [−h, h] and F2(u, h) is superiorly bounded by a negative number in u ∈ [−h, h].
Indeed,

1 · 10158 < F2(0,−h)−
39∑

i=1

|Ci|hi ≤ F2(0,−h) +
39∑

i=1

Ciu
i = F2(u,−h),

F2(u, h) = F2(0, h) +
39∑

i=1

Diu
i ≤ F2(0, h) +

39∑

i=1

|Di|hi < −8 · 10157,

where Ci, Di ∈ Q are the coefficients of the corresponding polynomials.

The last step of the proof is to ensure that both F3(u, v), D(u, v), and J(u, v) do not
vanish in [−h, h]2. More concretely, we will check that the three functions are negative in
the whole square by seeing that they are superiorly bounded by a negative number,

F3(u, v) = F3(0, 0) +
40∑

i+j=1

Giju
ivj ≤ F3(0, 0) +

40∑

i+j=1

|Gij|hi+j < −6 · 10171,

D(u, v) = D(0, 0) +
29∑

i+j=1

Hiju
ivj ≤ D(0, 0) +

29∑

i+j=1

|Hij|hi+j < −7 · 10128,

J(u, v) = J(0, 0) +
75∑

i+j=1

Kiju
ivj ≤ J(0, 0) +

75∑

i+j=1

|Kij|hi+j < −3 · 10305,

where Gij, Hij, Kij ∈ Q are the coefficients of the corresponding polynomials. Hence, all
the above bounds are obtained by adding rational numbers with no error in the compu-
tations.

All the computations have been done with α = 0, and 10 limit cycles are obtained. The
proof follows by adding an extra limit cycle which bifurcates from the origin when using
the usual Hopf bifurcation moving the trace parameter α adequately. �

From the proof of Proposition 6, we can extract from Figure 1 the bifurcation diagram
as we explained at the beginning of Section 2.3, obtaining Figure 3. In fact, there are
other intersection points for the zero level curves of f1 and f2, but they are more difficult
to find and to prove their transversal intersection. See Figure 4 for a better understanding
of the difficulty of finding intersection points like (8).

Before finishing this section, we would like to make two final comments about quadratic
systems in R3.
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Figure 3. Avoiding the dots line, we have (generically) 9 small limit cycles
bifurcating from (6), 10 on the red line, and 11 on the black point.

Figure 4. Plot of the zero level curves of f1, f2, f3, and d in color red, blue,
green, and black, respectively, in different zones of the plane (a, b).

In Proposition 6, we have added a third component in (6) to extend the problem from
R2 to R3. This procedure can be done in many different ways and for each third component
we obtain different center manifolds. We have tested different possibilities, and we have
observed that when the center manifold is z = 0, the number of limit cycles is the same
as in the planar problem. For this reason, we have added some terms including x or
y, for increasing such number. Furthermore, we have observed by adding different third
components which include x and y that the result does not improve.

We believe that the result obtained in Proposition 6 is the maximum cyclicity that can
be obtained by using the presented technique. In (7) we have a total of 18 perturbative
parameters, and we have observed in our calculations that only 12 of them actually play
a role when finding the ranks of linear parts of the Lyapunov constants. Actually, the
ones which play a role are aijk and bijk, these are the ones in ẋ and ẏ; parameters cijk in ż
do not appear in the computation of the linear parts of the Lyapunov constants. Perhaps
more limit cycles could be obtained by studying higher-order developments, but this is
a very difficult computational problem due to the size of the corresponding polynomials,
assuming that such polynomials could be found.

4. 31 limit cycles for a cubic system

Here we prove the case n = 3 in Theorem 1, by presenting a cubic system in R3 having
a Hopf point at the origin from which 31 limit cycles bifurcate.
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Proposition 7. The cubic system




ẋ = −y(1− 68x+ 1183x2),

ẏ = x− 58x2 − 44xy + 30y2 + 672x3 + 1484x2y − 945xy2 − 84y3,

ż = z + x2 + ax3 + by3,

(10)

has a center at the origin and unfolds 31 limit cycles of small amplitude under a complete
cubic perturbation.

Proof. The two first equations in (10) define a system in the plane with a center at the
origin because it has a rational first integral (see [7]). Then, we extend this system to
(10) by adding a third equation, and there exists a center manifold tangent to z = 0
guaranteed by Theorem 2 on which (10) has a center. Let us add a perturbation with
cubic and quadratic terms to (10) and the trace parameter as follows,




ẋ = αx− y(1− 68x+ 1183x2) +
3∑

i+j+k=2

aijkx
iyjzk,

ẏ = x+αy−58x2−44xy+30y2+672x3+1484x2y−945xy2−84y3+
3∑

i+j+k=2

bijkx
iyjzk,

ż = z + x2 + ax3 + by3 +
3∑

i+j+k=2

cijkx
iyjzk,

(11)
for α, aijk, bijk, cijk ∈ R perturbative parameters.

The proof for the unfolding of 31 limit cycles is analogous to that of Proposition 6. We
first take α = 0 and find the linear parts of the first 31 Lyapunov constants of (11) with
respect to the perturbative parameters. We see then that generically their rank is 29.
After a linear change of coordinates in the parameters space we obtain that the first 28
Lyapunov constants have the following form:

Lk = uk +O2, for k = 1, . . . , 28.

Next, we consider an analytic change of coordinates, by using the Implicit Function The-
orem, such that the Lyapunov constants write as Lk = vk, for k = 1, . . . , 28. Assuming
that vk = 0, for k = 1, . . . , 28, and vanishing the non essential perturbative parameters,
we get

L29 =
f1(a, b)

d(a, b)
u29 +O2(u29),

L30 =
f2(a, b)

d(a, b)
u29 +O2(u29),

L31 =
f3(a, b)

d(a, b)
u29 +O2(u29),

being f1(a, b), f2(a, b), f3(a, b), d(a, b) certain polynomials with integer coefficients in the
variables a and b. We do not show the complete polynomials here due to their large size,
but we see that both f1(a, b), f2(a, b), and f3(a, b) have degree 28 and 434 monomials,
and d(a, b) has degree 25 and 350 monomials. To see the bifurcation of 31 limit cycles

we can use Theorem 5 and check the conditions on it, this is to find a point (â, b̂) in

the parameters space such that f1(â, b̂) = f2(â, b̂) = 0, f3(â, b̂) 6= 0, d(â, b̂) 6= 0, and the

Jacobian determinant det Jac(f1,f2)(â, b̂) 6= 0.
We have drawn f1(a, b) = 0, f2(a, b) = 0, f3(a, b) = 0, and d(a, b) = 0 in Figure 5.

Although it is not discernible in this graph, what is happening is that curves f1(a, b) =
0, f2(a, b) = 0, and f3(a, b) = 0 are practically overlapping, so the intersection point that
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we are searching cannot be appreciated; d(a, b) = 0 is not shown because it remains out
of the plotted region. To sight the intersection point of f1(a, b) = 0 and f2(a, b) = 0 we
will perform a change of variables such that the intersection is transversal, and we will
apply Poincaré–Miranda’s Theorem (Theorem 4) to analytically show its existence. This
will be done by means of a computer-assisted proof and using rational interval analysis.

Figure 5. Plot of the zero level curves of f1(a, b), f2(a, b), and f3(a, b) in
color red, blue and green, respectively.

First we find a numerical approximation

(â, b̂) = (− 0.2618746696871324942811545745396788956798,

− 0.4750062727838396305466509058484908194011)

for an intersection point of f1(a, b) = 0 and f2(a, b) = 0. We need a good rational approx-
imation so that the zero level curves drawn in Figure 5 are separated, and this way the
transversality can be appreciated. Let us perform a change of variables (a, b) → (u, v)

such that u and v are the first order Taylor expansion at (â, b̂) of f1(a, b) and f2(a, b),
respectively. Now we can find the inverse of such change and convert the coefficients to
rational numbers, which gives

(a, b) =
(
− 3125780069700516145310827

11936168066330948602492655
+

1427237216612

940600247814793427315253720871652057
u

− 6400609904497

4224724520267912944601259158052139159
v,

− 2950612633153916740411853

6211734038503208283147559
− 3951139552423

4971433349089293973487138537373615874
u

+
2249793630741

2835231811366846850770950557241968074
v
)
.

These expressions can be substituted in f1(a, b), f2(a, b), f3(a, b), and d(a, b) to obtain
the polynomials in the new variables, which we will be denoted respectively by F1(u, v),
F2(u, v), F3(u, v), and D(u, v). The new polynomials are represented in Figure 6, where
we can see that now the intersection point (û, v̂) of F1(u, v) = 0 and F2(u, v) = 0 has
shifted near (0, 0) and its transversality can be clearly seen. F3(u, v) and D(u, v) are not
in the graph because they stay out of the plotted region, so they will be nonvanishing at
the intersection point.

The proof follows as in the case of Proposition 6, also taking h = 1/10 and applying
the Poincaré–Miranda’s Theorem, since the following conditions hold:
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Figure 6. Plot of the zero level curves of F1(u, v) and F2(u, v) in color red
and blue, respectively.

(a) F1(h, v) > 0 and F1(−h, v) < 0 for v ∈ [−h, h].
We will see that F1(h, v) is inferiorly bounded by a positive number in v ∈ [−h, h]
and F1(−h, v) is superiorly bounded by a negative number in v ∈ [−h, h]. Indeed,

9

100
< F1(h, 0)−

28∑

i=1

|Ai|hi ≤ F1(h, 0) +
28∑

i=1

Aiv
i = F1(h, v),

F1(−h, v) = F1(−h, 0) +
28∑

i=1

Biv
i ≤ F1(−h, 0) +

28∑

i=1

|Bi|hi < −
1

10
,

where Ai, Bi ∈ Q are the coefficients of the corresponding polynomials.
(b) F2(u, h) > 0 and F2(u,−h) < 0 for u ∈ [−h, h].

Analogously, we will show that F2(u, h) is inferiorly bounded by a positive number in
u ∈ [−h, h] and F2(u,−h) is superiorly bounded by a negative number in u ∈ [−h, h] :

9

100
< F2(0, h)−

28∑

i=1

|Ci|hi ≤ F2(0, h) +
28∑

i=1

Ciu
i = F2(u, h),

F2(u,−h) = F2(0,−h) +
28∑

i=1

Diu
i ≤ F2(0,−h) +

28∑

i=1

|Di|hi < −
1

10
,

where Ci, Di ∈ Q are the coefficients of the corresponding polynomials.

Notice that, due to how Theorem 4 is formulated, it should be applied to −F1(u, v) and
−F2(u, v) rather than F1(u, v) and F2(u, v), but the conclusion is exactly the same.

Finally, we will check that F3(u, v) is negative in [−h, h]2, and D(u, v) and J(u, v) are
positive, so none of those functions vanish in the whole square.

F3(u, v) = F3(0, 0) +
28∑

i+j=1

Giju
ivj ≤ F3(0, 0) +

28∑

i+j=1

|Gij|hi+j < −2 · 1020,

2 · 101032 < D(0, 0)−
25∑

i+j=1

|Hij|hi+j ≤ D(0, 0) +
25∑

i+j=1

Hiju
ivj = D(u, v),

99

100
< J(0, 0)−

54∑

i+j=1

|Kij|hi+j ≤ J(0, 0) +
54∑

i+j=1

Kiju
ivj = J(u, v)



HOPF BIFURCATION IN 3-DIMENSIONAL POLYNOMIAL VECTOR FIELDS 13

where Gij, Hij, Kij ∈ Q are the coefficients of the corresponding polynomials.
The proof finishes adding, as in Proposition 6, the trace parameter. �

As we already noticed for quadratic systems, we think that we have almost obtained
the maximum cyclicity for the cubic case in R3 by using this approach. Here we have
48 perturbative parameters and, by considering linear Taylor developments, only 32 do
appear.

5. A parallelization approach for quartic and quintic systems

In this section we will show how the cases n = 4 and n = 5 from Theorem 1 are
achieved. The idea, as we have done in the previous sections, is to consider centers in the
plane such that generically unfold a high number of limit cycles, and then extend them
to R3 by adding the third equation. For this case, we will not use the technique described
in Theorem 5 as we did for quadratic and cubic systems of taking the best known quartic
and quintic systems due to the difficulty to deal with the obtained constants because of
their huge size. We have considered the cubic system (10) adding one or two straight lines
of equilibria. Furthermore, for the Lyapunov constants computation during this section
we will consider a parallelization approach in order to reduce the executing times of the
processes.

The technique we have used to parallelize the computation of linear parts of Lyapunov
constants is inspired by [22], and is described as follows. Let us consider a system with
perturbative parameters λ1, . . . , λd. We select some k ∈ {1, . . . , d} and consider the same
system with λl = 0 for l ∈ {1, . . . , d}\{k}, this is a system with only one perturbative

parameter λk. Then, we find its Lyapunov constants up to first order L
(1)
j,k , and repeat this

process for every k = 1, . . . , d. This step can be easily parallelized by assigning to each
thread of the execution the computation of the Lyapunov constants of the system with a
different nonzero perturbative parameter λk, so we would have a parallelization paradigm
with d threads, as many as perturbative parameters. Once this has been done, the linear
part of the jth Lyapunov constant Lj of the original system with all the perturbative
parameters λ1, . . . , λd would be

L
(1)
j =

d∑

k=1

L
(1)
j,k .

These calculations have been performed using a cluster of servers. The parallelization
has been implemented by using PBala ([26]), which is a parallellization interface for single
threaded scripts and allows to distribute executions in Parallel Virtual Machine enabled
clusters using single program multiple data paradigm. This interface lets the user execute
a same script/program over multiple input data in several CPUs located at the cluster.
It supports memory management, so nodes do not run out of RAM due to too many
processes being started at the same node.

The parallelization approach presented here has proved to be highly efficient. For in-
stance, to find the necessary Lyapunov constants to prove Proposition 8, the computing
time has been reduced from 30 hours to 4 hours when parallelizing. However, the com-
putational requirements of the studied problem have caused that we cannot go further
than 5th degree, which is the case solved in Proposition 9 and for which about 10 days of
computing were needed even with parallelization in a cluster with 5 servers

The first result, related to a quartic system, is as follows.
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Proposition 8. The quartic system



ẋ = −y(1− 68x+ 1183x2)(1− x− y),

ẏ = (x− 58x2 − 44xy + 30y2 + 672x3 + 1484x2y − 945xy2 − 84y3)(1− x− y),

ż = z + x2 + x3 + x4,

(12)
has a center at the origin and unfolds 54 limit cycles of small amplitude under a complete
quartic perturbation.

Proof. The two first equations in (12) define a system in the plane with a center at
the origin because they are the same center defined by the two first equations of (10)
multiplied by a fixed points straight line. Then, by adding the third equation with a
center manifold tangent to z = 0 we have a center in R3. The proof follows as the first
part of the proofs of Propositions 6 and 7. First, we consider a perturbation having the
trace parameter terms and a quartic perturbation starting with degree 2 terms. Second,
we take α = 0 and compute the first 54 Lyapunov constants of the perturbed system
up to first order with respect to the perturbative parameters by using the parallelization
algorithm described above. Finally, we see that generically they have rank 54, which by
adding the trace parameter proves the unfolding of 54 limit cycles of small amplitude.
We notice that the generical rank does not increase when we compute 6 more Lyapunov
constants. �

In all our computations we have observed that, for none of the systems studied so far,
the perturbative parameters cijk from the third equation ż appear in the expressions of
any first-order Taylor series of the Lyapunov constants. Even though this fact has not
been proved, we believe that this is a general behavior. Therefore, in this sense, when
considering the perturbed system for the following quintic system in Proposition 9 we will
ignore the perturbation in the third equation to simplify the computations and reduce the
execution times, as we think that this will make no difference. Actually, for this quintic
system (13) we have checked that the linear parts of the first 70 Lyapunov constants do
not include the perturbative parameters in ż, which confirms what we expected. This
fact also reduces by 2/3 the maximum cyclicity that can be obtained by only looking at
Lyapunov constants up to first order regarding the number of perturbative parameters,
as 1/3 of such parameters will not increase the cyclicity of the system.

For the quintic case we have the following result.

Proposition 9. The quintic system



ẋ = −y(1− 68x+ 1183x2)f(x, y),

ẏ = (x− 58x2 − 44xy + 30y2 + 672x3 + 1484x2y − 945xy2 − 84y3)f(x, y),

ż = z + x2 + x3 + x4 + x5,

(13)

with f(x, y) = (1 − x − y)(1 + 2x − y), has a center at the origin and unfolds 92 limit
cycles under a complete quintic perturbation.

Proof. System (13) has a center at the origin for the same reason that system (12), in
this case with two straight lines filled with equilibrium points and also having a center
manifold tangent to z = 0. To simplify the calculations we have considered perturbations
only on the first two equations. The proof finishes as the previous one. Here we have
computed the first 92 Lyapunov constants, and we have checked that when computing
three more the rank does not increase. �

We have also made an attempt to find the linear parts of Lyapunov constants for a
degree n = 6 system, but as we already commented the problem soon becomes highly
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demanding computationally speaking. In particular, for the tested sextic case we have
reached the memory limit and the process is using 16GB of RAM memory. We have
reached the 124th Lyapunov constant, and to find only this constant for only one pertur-
bative parameter the required time has been approximately 3 days. For this reason, we
have stopped the problem at 5th degree, as we believe that going higher in the degree is
impossible at this stage in computational terms.

It is worth making a final comment about the expected local cyclicity from the used
approach. The total number of perturbative parameters –also considering the trace
parameter– is (n3 + 6n2 + 11n− 16)/2 but, as we explained above, the parameters from
the third equation do not seem to appear in the linear part of the Lyapunov constants.
Hence, the maximum number of essential parameters is (n3 + 6n2 + 11n − 15)/3 and,
consequently, the best lower bound for the number of limit cycles of small amplitude in
Hopf point in R3 will be one less, that is C(n) ≥ (n3 + 6n2 + 11n− 18)/3. This function
takes the values 12 and 32 for degrees n = 2 and n = 3, respectively, which are very close
to the ones obtained in our main result, but the values corresponding to n = 4 and n = 5
is a bit quite far from the ones we obtained. The reason is that the first two systems
are built from optimal planar systems. Our achievement is that we have been able to
work with such degrees –4th and 5th– because of the designed parallelized algorithm. We
notice that, up to our knowledge, all the obtained values are the highest ones found so
far.
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Barcelona, Catalonia, Spain

Email address: isanchez@mat.uab.cat
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