
����������
�������

Citation: Morell, A.; Machado, E.D.;

Miranda, E.; Boquet, G.; Vicario, J.L.

Ternary Neural Networks Based

on on/off Memristors: Set-Up and

Training. Electronics 2022, 11, 1526.

https://doi.org/10.3390/

electronics11101526

Academic Editor: Kris Campbell

Received: 25 March 2022

Accepted: 3 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Ternary Neural Networks Based on on/off Memristors: Set-Up
and Training

Antoni Morell 1,* , Elvis Díaz Machado 1 , Enrique Miranda 2 , Guillem Boquet 3 and Jose Lopez Vicario 1

1 Departament de Telecomunicació i Enginyeria de Sistemes, Universitat Autònoma de Barcelona (UAB),
08193 Bellaterra, Spain; elvis.diaz@uab.cat (E.D.M.); jose.vicario@uab.cat (J.L.V.)

2 Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
enrique.miranda@uab.cat

3 Wireless Networks (WiNe) Research Laboratory, Internet Interdisciplinary Institute (IN3), Universitat Oberta
de Catalunya (UOC), 08860 Castelldefels, Spain; gboquet@uoc.edu

* Correspondence: antoni.morell@uab.cat

Abstract: Neuromorphic systems based on hardware neural networks (HNNs) are expected to be
an energy and time-efficient computing architecture for solving complex tasks. In this paper, we
consider the implementation of deep neural networks (DNNs) using crossbar arrays of memris-
tors. More specifically, we considered the case where such devices can be configured in just two
states: the low-resistance state (LRS) and the high-resistance state (HRS). HNNs suffer from several
non-idealities that need to be solved when mapping our software-based models. A clear exam-
ple in memristor-based neural networks is conductance variability, which is inherent to resistive
switching devices, so achieving good performance in an HNN largely depends on the develop-
ment of reliable weight storage or, alternatively, mitigation techniques against weight uncertainty.
In this manuscript, we provide guidelines for a system-level designer where we take into ac-
count several issues related to the set-up of the HNN, such as what the appropriate conductance
value in the LRS is or the adaptive conversion of current outputs at one stage to input voltages
for the next stage. A second contribution is the training of the system, which is performed via offline
learning, and considering the hardware imperfections, which in this case are conductance fluctuations.
Finally, the resulting inference system is tested in two well-known databases from MNIST, showing
that is competitive in terms of classification performance against the software-based counterpart.
Additional advice and insights on system tuning and expected performance are given throughout
the paper.

Keywords: hardware neural networks; ternary networks; on/off memristors

1. Introduction

Neuromorphic computing, which imitates the principle behind biological synapses
with a high degree of parallelism, has recently emerged as a very promising candidate
for novel and sustainable computing technologies [1]. Among these technologies, neuro-
morphic systems based on hardware neural networks (HNNs) implemented with memris-
tive devices have emerged as a promising solution for building energy-efficient computing
frameworks for solving most of the tasks carried out in machine learning [2–4]. This is
because memristors (1) behave as a resistor with memory that is electrically programmable
and matches the functionality of the connections in a software neural network and (2) are
efficiently integrated thanks to the crossbar array structure (i.e., aggressive size scaling is
possible) [1,5,6].

Focusing on specific implementations that use memristors based on the crossbar array
structure, it is worth noting first that this is one common approach found in the literature [7].
By using this structure, vector-matrix multiplications, which are a fundamental building
block in all types of neural networks, are efficiently implemented by following an analog
approach (i.e., by adding current flows). The efficiency of the operation is both in terms

Electronics 2022, 11, 1526. https://doi.org/10.3390/electronics11101526 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101526
https://doi.org/10.3390/electronics11101526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2249-8594
https://orcid.org/0000-0002-6583-8547
https://orcid.org/0000-0003-0470-5318
https://orcid.org/0000-0002-8683-0421
https://orcid.org/0000-0002-3574-4697
https://doi.org/10.3390/electronics11101526
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101526?type=check_update&version=2


Electronics 2022, 11, 1526 2 of 17

of (1) power consumption, because the involved currents are small, and (2) computational
time [8], because the whole operation is performed by reading the outputs of the array.
Note that a vector-matrix operation in software has a computational time that is O(m · n)
and that individual memristors in the crossbar array play the role of the matrix coefficients
or, in terms of neural networks, the weights. The interested reader can find in [9] a spe-
cific sound localization application based on memristor arrays. Energy consumption is
reduced a factor of 184 with regard to the existing Application-Specific Integrated Circuit
(ASIC) design.

Memristor-based networks can be trained by offline (or ex situ) or online (or in situ)-
learning methods. In the first case, which is the focus of this manuscript, the weights are
calculated on a precursor software-based network and then imported sequentially into the cross-
bar circuit. In the second case, training is implemented in situ in hardware and only for small
neural networks [10], so the weights are adjusted in parallel, which is significantly more de-
manding [5]. In both cases, a high precision weight import is required to implement complex
networks and achieve the expected performance when the network is operating. However,
various properties of memristors are known to negatively affect the performance of neuro-
morphic systems [1]. Specifically, the conductance response of any real nonvolatile memory
(NVM) device exhibits non-idealities that can surface in the form of unreliable performance
of the network. Those imperfections include non-linearity, stochasticity, varying maxima, asym-
metry between increasing and decreasing responses, and unresponsive devices at low or high
conductance [11–14]. For example, most memristive devices exhibit a nonlinear weight update,
where the conductance gradually saturates [1]. In addition, related to HNNs from the perspec-
tive of high-performance computing, recent trends show a growing interest in hardware
that is capable of accelerating both training and inference in neural networks, especially
when dealing with deep learning schemes. That is the case, for example, with many
Field-Programmable Gate Array (FPGA) implementations [15], which emphasize the idea
of quantized neural network designs due to the nature of FPGA devices. In particular,
binary [16] and also ternary [17] implementations have been raised as very interesting
options. The main motivation of this alternative approach is the reduction of both power
consumption and the FPGA specs (required area). Memristor-based neural networks
can also benefit from the power and area. However, the operational principles of mem-
ristors are completely different to those found in FPGAs, and at the end of the day, all
HNN solutions require solving very specific challenges, as far as a straightforward conver-
sion from the ideal (or software-based) model does not exist. As commented above, one
of the challenges in memristor-based neural networks, which work from an analog per-
spective, is the development of reliable weight implementation due to the variability that is
common to all nano-electronic devices but is significantly important in memristors [18].

In that direction, the authors of [4] stated that many issues still need to be resolved
at the material, device, and system levels to simultaneously achieve high accuracy, low
variability, high speed, energy efficiency, a small area, low cost, and good reliability.
Thus, the first step is to obtain memristor-based networks that are competitive in compari-
son to software-based networks. In order to achieve that, we need to cope with the hardware.
This can be accomplished at the hardware level with more advanced mitigation techniques or
at the analgorithmic level by taking into account the non-idealities. In that sense, the authors
of [10] presented a mask technique to capture the sneak path problem, stating that any kind
of training incorporating the knowledge of the crossbar array behavior will likely improve
the accuracy of memristor-based networks significantly. This idea was explored by several
recent works following different strategies. In [19], for instance, a tailored training method
was proposed to address the voltage drop due to the interconnected wire resistance. Basically,
the voltage drop is estimated to recompute the weights at the forward propagation stage during
the training procedure. In [20], the authors considered the mapping of neural network weights
by analyzing the parasitic resistance effects at the different areas of the crossbar array. By
identifying those hardware cells providing higher accuracy as “safe zones”, adaptive weight
allocation was performed to properly map the weights to the hardware. In [21], the authors
mathematically modeled the sensitivity of the output of the neural network with respect to hard-
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ware impairments. Then, the cost function of the training algorithm was adapted to consider
this sensitivity as an additional term (i.e., the weights were calculated to minimize the impact
of hardware impairments as well).

The aim of our work is also to consider hardware impairments during the design
and training of the memristor-based neural network. To do so, we depart from software
models that emulate the behavior of the memristor-based neural network. More specifically,
this work is an extension of the work in [22], and we consider building ternary networks
using crossbar arrays. The goal is to achieve performances close to the software models,
even when we consider a simple configuration of the memristors operating like ON/OFF
switches. It is worth noting that we adopt ternary weights because they have stronger
expressive abilities than their binary counterpart [17]. As shown in Section 2, a ternary
option does not modify the proposed crossbar array architecture, and the hardware remains
the same (i.e., two conductance levels at the memristor weights).

The main contributions of this work are as follows:

• The behavior of a ternary memristor-based HNN adopting crossbar arrays is emulated;
• Practical configuration strategies to tune the crossbar array structure from a system-

level designer point of view are proposed;
• An offline (ex situ) training mechanism is derived to optimize the neural network’s weights

by minimizing the impact of conductance imperfections in the memristors’ hardware.

In what follows, Section 2 defines the problem under study, including the crossbar
array architecture that we are considering to emulate ternary networks. Section 3 the
encompasses configuration issues as well as the algorithm considered to fix the memristors
to either the ON or the OFF status. Finally, Section 4 provides the experimental results, and
Section 5 concludes the paper.

2. Scenario Description and Assumptions

Let us consider a generic feedforward neural network (FFNN) that is dedicated to a
classification task, as depicted in Figure 1. The network has inputs x = [1, x1, . . . , xN ]

T ,
where (·)T stands for the matrix transpose and the first input is manually set to 1 in order
to accommodate the bias term. The FFNN operates as described next. First, the inputs are
linearly combined by means of a matrix multiplication with W1, thus generating the values
z1 = [z1

1, . . . , z1
N1
], i.e., z1 = W1x (see Figure 1). Superindex 1 here stands for the first layer

of the network. The values in z1 go through a nonlinear function f (typically the sigmoid,
the hyperbolic tangent or the rectified linear unit) to generate the activations at the first
layer (i.e., a1 = [a1

1, . . . , a1
N1
] with a1

i = f (z1
i )). This process is repeated at the subsequent

layers of the FFNN, such as the output at the second layer being computed from a1 by
first computing z2 = W2a1 and then transforming the values in z2 by using the non-
linear function f again. Finally, at the last layer, also called the output layer, f is replaced
by the softmax function. In this case, the output is normalized (i.e., ∑

NJ
i=1 aJ

i = 1), and
the value of aJ

i indicates our confidence level in that x corresponds to the ith class. Therefore,
the network takes the output with largest value as the resulting classification.

All the operations described above are computed in floating-point arithmetic.
We will refer to it as the software implementation. In this work, we employ the cross-
bar array to compute the vector-matrix multiplications at the neural network layers
(i.e., zj = W jaj−1). Figure 2 depicts the operational principle of a crossbar array. Let us first
consider the memristor in its linear zone, where it can be modeled simply as a resistor of con-
ductance value g (adjustable) so that the memristor current is i = g · v when the voltage v
is applied. By scaling this to a crossbar of the size M× N and arranging the conductance
values in the matrix G, we have i = Gv with i = [i1, . . . , iM]T and v = [v1, . . . , vN ]

T (see
Figure 2). In other words, the collected currents at the output of the crossbar array are
in fact a vector-matrix multiplication between the input voltages v and the memristor
conductances in G.
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Figure 1. Feedforward neural network. [W1]N1 x represents the matrix multiplication of the last row
in W1 with the column vector x, which includes all the input values plus the ‘1’ to accommodate
the bias term.
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i = Gv
Figure 2. Crossbar array as a matrix multiplication.

Let us briefly comment on the linearity of the memristor we are considering.
According to the memdiode model [23], the I–V characteristic of a memristor reads as

I = I0(λ) sinh[α(V − IR)] (1)

where I0 is an increasing function of the parameter 0 ≤ λ ≤ 1 (the memory state), R is
the series resistance, and α is a fitting parameter. Notice that Equation (1) is an implicit
equation for the current I. Let us consider two extreme cases. The first is the high-resistance
state (HRS) regime (with λ = 0). In this case, for low voltages, we have sinh(x) ≈ x, and
the potential drop across the series resistance can also be neglected such that

I = I0(0)αV (2)

Second, for the low-resistance state (LRS) (with λ = 1), the difference is that the poten-
tial drop across R cannot be disregarded, and so

I = I0(1)α(V − IR) (3)

which can be solved as

I =
I0(1)α

1 + I0(1)αR
V (4)
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The linear regime of the memristor corresponds to a case in between these two extreme
situations so that the corresponding conductance reads as

G(λ) = I0(λ)α(1− λ) +
I0(λ)α

1 + I0(λ)αR
λ (5)

which is independent of the voltage (i.e., it behaves as a simple resistor). This is the regime
we are considering in our paper.

From an FFNN application point of view, the weights in W in the software model
are equivalent to the conductances in G. Usually, both positive and negative weights
are represented, even when we consider only two possible values as in binary neural
networks [16]. We may add a third possible value, a zero, as in ternary networks so that
a particular input or activation does not affect the net outputs. As shown below, this
ternary option does not modify the proposed hardware architecture (based on two crossbar
arrays), as the zero weight is built naturally by combining the same conductance levels with
opposite polarization. We are also exploiting the advantage of having a higher granularity
when compared with its binary counterpart, as proven in [17]. Note, however, that some
differences between the software model (i.e., complementary metal–oxide–semiconductor
(CMOS)-based) and the memristor-based model arise. We next list the considerations in
this paper:

• We need to transform the output currents at the crossbar array to voltages by means
of I-to-V converters. The scale factor of the I-to-V converters is defined as aI2V .

• The input voltages to the different layers shall be in the linear zone of the mem-
ristor (i.e., in the range [0, Vmax]). Therefore, we need to scale both the inputs and
the activations, because these are the inputs to the next network layers.

• We use the sigmoid as the nonlinear function f , which ranges from 0 to 1.
Therefore, a scale factor of an amplitude equal to Vmax is required.

• Memristors are set to either LRS, where the conductance is set to gH , or HRS, where
the conductance is set to gL (ON/OFF).

• Since the conductance values are strictly positive, a single crossbar array cannot
emulate both positive and negative weights, as we have in the software model. To
overcome this, we need a second crossbar array that considers the negative weights
as depicted in Figure 3. Equivalently, the value of each weight in the software model
wj

m,n is emulated by the combination g+,j
m,n − g−,j

m,n, where the superindexes + and −
distinguish the first and second crossbar arrays at the jth layer, respectively.

• The memristors are programmed ex situ; that is, we first compute in the software
the weights of the memristor-based neural network (considering non-idealities), and
once obtained, we fix the conductances in the memristors. From that moment on,
the crossbar arrays remain unchanged.

• The memristors are programmed to either gL or gH , but the conductance values

actually written add a random additive component. In particular, gj,±
m,n ∈ {gL +

nj,±
gL ,m,n, gH + nj,±

gH ,m,n}, where nj,±
gL ,m,n ∼ N (0, σ2

gL
) and nj,±

gH ,m,n ∼ N (0, σ2
gH
) ∀m, n. σ2

gL

and σ2
gH

represent the variances of the conductance in the HRS and LRS, respec-
tively. We assume there are uncorrelated random additive components among the
memristors.

• We consider gH − gL to emulate the positive weight, say +1, gL − gH to emulate
the negative weight, say −1, and gL − gL to emulate the null weight. Table 1 shows
the set-up of the memristors in the positive and negative crossbar arrays and the cor-
responding weights. Alternatively, the null weight can be gH − gH , too. Note that our
first option reduces the current and thus the power consumption.
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Table 1. Set-up of memristors in Gj,+ and Gj,− and corresponding ternary weights.

g j,+
m,n g j,−

m,n Ternary Weight

gH gL +1
gL gL 0
gL gH −1

The goals in this work are the following:

• To adjust the conductance values in Gj,+ and Gj,− (i.e., to decide which memristors
are set to gH and which are set to gL);

• To adjust the value of gH , taking into account that memristors can be configured
in the range gH ∈ [gmin

H , gmax
H ]. Note that all the memristors are programmed to the same

gH value;
• To adjust the value of aI2V ;
• To consider conductance randomness in the training process.

Note that we consider devices operating in the linear regime (i.e., in the low-voltage re-
gion), and thus nonlinearities in the I–V characteristic can be disregarded [23].
Beyond this point, the conductance of the devices may change as we move to the pro-
gramming region, which is out of the scope of this work. Aside from that, line resistance,
which does not affect the linearity of the devices, may also be considered, and the synaptic
weights probably need to be recalculated because of the parasitic potential drops. If the
devices operate in the low-voltage regime and the array is not too large, these voltage drops
can be disregarded as well. This ultimately depends on the integration technology.

The next section describes the algorithm developed for the ex situ training of the
memristor-based FFNN.
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Figure 3. Implementation of an FFNN using crossbar arrays.

3. Proposed Algorithm

In this section, we consider the equivalent software model in Figure 1 in order to train
and configure our memristor-based FFNN, depicted in Figure 3.

3.1. Training of Quantized Neural Networks

Training of the resulting quantized neural network is accomplished using the so-called
backpropagation algorithm as described in [16]. The idea is simple: the forward pass
in the backpropagation applies the quantization, whereas the backward pass computes the
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gradients as usual in order to update the weights. Stochastic and efficient optimization
is accomplished by randomly shuffling the data and by training consecutively on small
subsets of the data, respectively. Algorithm 1 shows the steps of the training process.

Algorithm 1 Algorithm for training a quantized network.

Input: Batch of training examples and labels

Output: Ŵ
1
, . . . , Ŵ

J

Initialization:
1: Randomly initialize the weights W1

0, . . . , W J
0 at the J layers in the FFNN

LOOP Process
2: for k = 1 to Nepochs do
3: for t = 1 to Nmini-batch do
4: Ŵ

j
t = q

(
W j

t

)
∀j (q is defined in Equation (6) below)

5: Forward propagation: compute network activations and outputs using Ŵ
j
t

6: Backward propagation: use W j
t to compute gradients

7: W j
t+1 ←−W j

t + α∇W j
t

8: end for
9: end for

10: return Ŵ
j
t

3.2. Ternarization

We considered the following quantization function q(x), which is defined as

q(x) =




−gH + gL x < −∆

0 −∆ ≤ x ≤ ∆
gH − gL x > ∆

(6)

We considered two options to fix ∆. The first one was to set it to a fixed value. The
second one was to try to optimize the value of ∆ according to the current weights at time
t in W j

t so that ∆ was updated at each iteration of the algorithm. We followed the work
in [17] to adjust the value of ∆ as

∆t =
0.7

Ntotal

J

∑
j=1

1TW j
t1 (7)

where 1 is the all-ones column vector and Ntotal is the total number of weights in the FFNN.
The aim was to adapt the threshold to the current distribution of the weights. Note that
∆t is the same for all network layers in our work, although different thresholds per layer
could also be considered.

3.3. Adaptation of gH

The proposed crossbar structure has two additional parameters to configure.
Recall that we assumed an ON/OFF memristor model and that the conductances for the LRS
and HRS were common to all memristors in the array. Notwithstanding, memristors can be
programmed to different conductance values in the LRS. In this subsection, we develop
the tuning of the conductance in gH . Recall that in Algorithm 1, we configured the memris-
tors in our network to either the LRS or the HRS, relying on backpropagation. In particular,
note that the unquantized weights that are written in the memristor network, as the LRS
will generally differ from gH . In other words, usually we have

|wj
m,n,t| 6= gH − gL ∀m, n, j s.t. |ŵj

m,n,t| = gH − gL (8)
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Therefore, we can use the values in wt
m,n,t to also update gH and reach a consensus

value g∗H . Consider the following update rule:

gt+1
H = (1− αgH ) · gt

H

+ αgH

[
gL +

1
Nt+1
6=0

J

∑
j=1

1TM
(

W j
t+1

)
1

]
(9)

where αgH is the forgetting factor andM is a masking function that operates element-wise
in order to consider only the weights that have influence in gH (i.e., not the null weights).
WhenM is applied to a scalar in W j

t+1, say wj
m,n,t+1, it produces the following output:

M(wj
m,n,t+1) =





−wj
m,n,t+1, ŵj

m,n,t+1 = −gH + gL

0, ŵj
m,n,t+1 = 0

wj
m,n,t+1, ŵj

m,n,t+1 = gH − gL

(10)

Additionally, Nt+1
6=0 is the total number of weights whose quantization is different

from zero at iteration t + 1.
However, note that a single weight in the neural network, say wj

m,n,t, once quan-
tized, requires three elements in our hardware model to be represented: two memristors
(one in Gj,+

t and one in Gj,−
t ) and an I-to-V converter. In other words, ŵj

m,n,t is represented

in our physical model as (gj,+
m,n,t− gj,−

m,n,t) · aI2V . Furthermore, we set aI2V = 1/gH (assuming
1/(gH − gL) ≈ 1/gH when gH � gL) in order to map the weights {−1, 0, 1}, as is the case
in software-based ternary networks [17]. However, the conductance variance σ2

gH
, which

does not depend on the particular value of gH , now plays an important role, and the best
choice is to set gH to the largest value allowed. Note that after division by gH in the I-to-V
converter, the resulting conductance variance is also downsized.

In short, the discussion above is to point out that the best strategy is to set gH as large
as possible and then fine-tune our memristor-based neural network by adjusting the gain
in the I-to-V converter, as we show next.

3.4. Adaptation of aI2V

Let us consider that each output at the crossbar array could be adjusted separately
(i.e., we have aj

I2V,n). In this case, it is not complicated to compute the gradients for these
parameters. It is similar to the weight gradients in backpropagation. For example, consider
the scores zJ = aJ

I2V �W J aJ−1, where � stands for the Hadamard product at the output
layer of the neural network. If we train it using cross-entropy (assuming a classification
task) (i.e., L = −∑

NJ
i=1 ti log yi, where NJ is the number of classes, ti (0 or 1) are the targets

and yi are the network outputs), the gradients are found as follows:

∂L

∂aJ
I2V,i

=
∂L

∂zJ
i

· ∂zJ
i

∂aJ
I2V,i

= (yi − ti) ·
([

W J
]

i

)T
aJ−1 (11)

where [X]i selects the ith row of matrix X.
Let us analyze the effect of this gradient in the network, depicted in Figure 4.

Assume that ti = 1 (so the current example belongs to the ith class). Unless we get a perfect
classification, yi < 1 and the first term (yi − ti) of the gradient will be negative. Therefore,

if
([

W J
]

i

)T
aJ−1 is positive (i.e., we are at the positive side of the sigmoid or softmax),

the gradient is negative, and aJ
I2V,i should be increased according to Equation (11). The ef-

fect is to shrink the sigmoid or softmax in order to increase the value of yi. If
([

W J
]

i

)T
aJ−1

is negative, we are on the negative x-axis of the sigmoid or softmax, and the update of aJ
I2V,i
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stretches the curve. This increases the value of yi and therefore diminishes the classification
error. The reader can refer to Figure 4 for a graphical visualization of the discussion above.
The analysis for ti = 0 is similar and not included here for the sake of brevity.
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Figure 4. Effect of adapting aJ
I2V,i on the sigmoid.

Having separate conversion gains at all crossbar outputs that are individually adapted
is a real possibility. However, since we assume a common converter value, we must build
a consensus gradient from all individual gradients such that

∂L
∂aI2V

=
1

Nout

J

∑
j=1

1T ∂L

∂ aj
I2V

(12)

where Nout = ∑J
j=1 Nj (i.e., the total number of outputs in the J layers of the FFNN). We

can now apply gradient-descent-based solutions to optimize aI2V .
Another option is to simply consider aI2V as a hyperparameter of the neural network

(it is a scalar value) and optimize.

3.5. Including Robustness in Perturbed Conductances

The last issue we consider is the perturbation of the conductances that are written
to the memristors; that is, we want to set the memristor to a conductance level gL or gH ,
but the level we actually achieve differs by a Gaussian perturbation term (zero-mean and
variances σ2

gL
and σ2

gH
, respectively).

In order to cope with this physical impairment, we adopted an approach that resembles
the training of quantized networks. Specifically, in the backward pass of backpropagation,
we added a Gaussian term to the weights. The variance of that random contribution was
set to σ2

gP
, which is a hyperparameter of the network. In other words, we considered

the following approach (in algorithmic style). This step substitutes step 7 in Algorithm 1.

W j
t+1 ←W j

t + α∇W j
t +N (0, σ2

gP
)

The approach has a well-established foundation that connects to the regularization
methods in neural networks. Primarily used in the context of recurrent neural networks,
as described in [24] (Ch. 7.5), noise injection (i.e., adding random values to the weights)
adds robustness to the network in the sense that the model learned is somehow insensitive
to small variations in the weights. In other words, our approach can be interpreted as a form
of regularization.
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4. Experimental Results

In this section, we experimented with the proposed ternary network in order to evaluate
the effects of the different adaptation mechanisms (conductance at the LRS and the conversion
factor at the I-to-V stage), as well as the effect of quantizing the weights and the incorporation
of weight variability during training. We considered two different datasets widely employed
as benchmark datasets in machine learning: the Modified National Institute of Standards and
Technology(MNIST) dataset [25] and the fashion MNIST dataset [26]. Both datasets consist
of grayscale images of 28 × 28 pixels. The former contains images of handwritten numbers
(from 0 to 9), whereas the latter also contains also different types (or classes) of images all related
to clothes (e.g., t-shirts, pullovers or sandals, among others). In both cases, an 80–20 random
split for training and testing was conducted.

In terms of neural network architecture, we considered an FFNN with two hidden lay-
ers of a size 1000 units/neurons. Taking into account 784 (=28 × 28) values at the input layer
and 10 output classes, the whole architecture was 784–1000–1000–10, with a total of 7.85 G
weights/parameters to be trained (including bias terms) in a full-software implementation
and 15.7 G memristors to be set at either the LRS or HRS in the memristor-based neural
network implementation. Training and evaluation were performed by means of Python
programming using the Tensorflow library for deep neural networks [27]. The memristors
were modelled in Python and Tensorflow according to the assumptions in Section 2.

Table 2 summarizes the electrical parameters considered in our experiments.
We considered values that were in agreement with the state of the art of the memristive
technology [10,28], but we also took into account larger conductance deviations in order
to accommodate other fabrication technologies. Our goal here was to test the practical
importance of synthesizing reliable devices in terms of conductance fluctuations. The
conductance values are always relative to G0, the quantum conductance.

Table 2. Electrical parameters in the memristor-based neural network.

Parameter Value or Range

Vmax 0.2 V
gL 1
gH [14, 140]
σgL 1
σgH 1–10

Finally, ternarization was applied with the adaptive threshold in Equation (7), and
the performance metric employed was classification accuracy, which measured the number
of examples (images in this case) correctly classified with respect to the total number
of images (i.e., it was the percentage of images correctly classified).

4.1. Adaptation of gH

Our first experiment dealt with the adjustment of the conductance value for the LRS
(i.e., gH). In Figures 5 and 6, we considered violin plots that showed the distribution
of accuracies obtained after 1000 realizations. Remember that memristor conductances
incorporate a random term (i.e., g+,j

m,n = gH + n+,j
gH ,m,n and g−,j

m,n = gL + n−,j
gL ,m,n). Although

the weights computed during training remained unchanged, their mapping to memristor
conductances changed from one realization to another due to the random term. That aside,
we considered here aI2V=1/gH , the threshold used for the ternarization of the weights set
as in Equation (7), and σgP = 0. Figure 5 considers σgH = 1 · G0, and Figure 6 considers
σgH = 10 · G0.
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Figure 5. MNIST handwritten digit classification accuracy as a function of the value of gH .
Conductance fluctuations are σgH = 1 · G0.
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Figure 6. MNIST fashion classification accuracy as a function of the value of gH . Conductance
fluctuations are σgH = 10 · G0.

As we can appreciate in Figure 5, where the conductance perturbations were moderate,
the average accuracy was above 95% with all the tested adjustments of gH . However,
the distribution of accuracy values was spread out significantly more for the case gH = 14
(ranging from 0.845 to 0.976), whereas the dispersion diminished for the case of gH = 30
(ranging from 0.939 to 0.977) and practically vanished for gH = 60 (ranging from 0.965
to 0.978) and more notably for gH = 140 (ranging from 0.976 to 0.979).
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Figure 6 involves experiments with a severe conductance perturbation. In this case,
the classification task was more complex, and with equal network configuration, the
performance dropped. We appreciated the dispersion in the accuracy distributions for all
cases of gH , although the dispersion tended to reduce as gH increased. In this best case,
the accuracy ranged from 0.551 to 0.825, so the difference between the max and min value
was 0.274. In this application, it is important to note the mean values for the accuracy. For
the two lowest conductance values, the mean accuracy was 25.8% for gH = 14 · G0 and
41.9% for gH = 30 · G0. This value grew up to 61.1% for gH = 60 and to 73% for gH = 140.

In conclusion, both experiments confirmed that gH should be adjusted to the highest
possible value (depending on the available technology) in order to achieve the best possible
performance.

4.2. Adaptation of aI2V and Robustness to Perturbed Conductance Values

In Figure 7, we tested how sensitive the classification accuracy was to adjustment
of the value in aI2V and to the weight perturbance introduced during training (i.e., σgP ),
assuming gH = 140 · G0. We considered both datasets under study (handwritten digits
and fashion MNIST), and we plotted the classification accuracy as a function of gh · aI2V ,
testing different combinations of σgH and σgH , particularly σgH ∈ {1 · G0, 5 · G0, 10 · G0}
and σgP ∈ {0, 1 · G0, 5 · G0, 10 · G0, 20 · G0, 50 · G0}. As we can appreciate in the figure,
setting aI2V = 1/gH (i.e., aI2V · gH = 1) gave us a particularly good initial adjustment.
In the applications tested, the plots show that the performance could be just slightly
increased by choosing the optimal value of aI2V , as long as the sensitivity around the initial
adjustment was low. Note that the perturbance introduced during training (i.e., the value
in σgP ) had a larger influence on the classification accuracy (i.e., the different accuracy curves
became more separated), especially for the fashion MNIST dataset when σgH = 5 · G0
and σgH = 10 · G0. Note also that in general, the higher σgH was, the more variation
in performance we observed. As a rule of thumb, setting σgP to a value in the range
[σgH , 5 · σgH ] provided a proper adjustment.
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Figure 7. Classification accuracy as a function of the value of aI2V and σgP for gH = 140 · G0.

4.3. Comparison with the Software-Based Neural Network

We then tested how a memristor-based neural network (MBNN) compared to a software-
based neural network (SBNN). For this occasion, we took into account ternarization of the weights
as well as mitigation of the conductance perturbations and optimization of aI2V. Aside from
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the reference network architecture (i.e., 784–1000–1000–10), we also considered 784–500–500–10
and 784–100–100–10 for the MBNN and SBNN models. The results reported the empirical cumu-
lative density functions (ecdf). Note that the SBNN suffered no perturbation once the weights
were fixed, but the performance slightly varied due to the random initialization of weights
in training, too. In order to reflect this issue, we then considered 1000 realizations in total
for each model containing 10 different training processes. In other words, the same set of weights
was used to perform 100 inferences. Note that in the SBNN, all inferences that used the same
set of weights produced the same results, whereas in the MBNN, this was not the case due
to conductance fluctuations. We considered here the classification of the fashion MNIST dataset,
which is a more complex task than handwritten digit classification, assuming gH = 140 ·G0 and
σgH = 10 ·G0.

In Figure 8, we next compare the following methods: (1) SBNNs with 1000, 500 and
100 units in the two hidden layers; (2) an MBNN (1000 units in the hidden layers) with
σgP = 0, aI2V = 1/gH (i.e., we did not consider conductance fluctuations in training),
an MBNN with σgP = 10 · G0, aI2V = 1/gH (i.e., a default set-up assuming fluctuations
in training) and a fine-tuned MBNN (in this case requires increasing σgP to 50 · G0); and
(3) the fine-tuned MBNN version with 500 and 100 units in the hidden layers.
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MBNN aI2V = 1/gH, gP = 50 G0, 1000 nodes
MBNN aI2V = 1/gH, gP = 50 G0, 500 nodes
MBNN aI2V = 1/gH, gP = 50 G0, 100 nodes

Figure 8. Performance of SBNN and MBNN with different configurations in the classification
of fashion MNIST data.

The results essentially show two issues when we considered 1000 units at each hidden layer.
First of all, there was the importance of considering memristor fluctuations during training. Note
the spreading in the ecdf for σgP = 0, which had a maximum value of 0.8724 and a minimum
value of 0.6274 (i.e., the gap was 0.245). This gap significantly reduced to 0.042 in the case
of the default set-up and practically vanished in the tuned MBNN and also the SBNN. Second,
a properly tuned MBNN achieved a performance that was similar to the SBNN counterpart. If
we look at the worst performance in all the set-ups, the SBNN archived an accuracy of 0.8788,
the MBNN with σgP = 0 yielded 0.6274 (a 28.6% reduction with respect to the SBNN), and
the MBNN with σgP = 50 · G0 obtained 0.8905 (a 1.3% increase with respect to the SBNN).
This slightly better performance might have been due to the regularization effect produced
when we included robustness to perturbed conductance values by means of σgP . For the cases
of 500 and 100 hidden units per layer, the MBNN performed close the SBNN for 500 units and
suffered a reduction of about 3% in accuracy for the case with 100 hidden units. Therefore,
weight quantization affected the performance more as the complexity of the model was further
constrained.
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4.4. Summary and Extension of Results

To summarize the results so far, we saw that the performance in general depended
on the task complexity, the network configuration as well as on the memristor quality, where
the larger the gH and the lower the σgH , the better. Regarding task complexity, Figure 7
plots the results of the exact same models applied to two different tasks. In the top row,
the less complex task showed less variability among models such that a proper adjustment
of σgP was less critical. In the bottom row, the more complex task showed more variability
and required a good adjustment of σgP . In order to complete our analysis, now with a lower
quality memristor,we could reproduce in Figure 9 the same experiments while considering
gH = 14 · G0 instead of gH = 140 · G0. As we can appreciate in the figure, the classification
accuracy in the different models was far more sensitive to the proper adjustment of σgP . The
worst performing models in the classification of handwritten digits (top row) then achieved
accuracies around or below 20%, whereas the worst accuracy in Figure 7 was above 75%.
Something similar occurred in the classification of clothes; the worst performing models
achieved values around 20% whereas in Figure 7, the worst performance was above 65%.

Finally, we tested our memristor-based solution as part of a convolutional neural
network (CNN) implementation applied to the classification of the fashion MNIST dataset.
The input in this case was grayscale images of 28 × 28 pixels (i.e., 2D data). The configuration
of our CNN was as follows:

• 2D convolutional layer with 32 filters, 3 × 3 kernels and rectified linear unit (ReLU)
activation;

• 2D max pooling 2 × 2 layer;
• 2D convolutional layer with 64 filters, 3 × 3 kernels and ReLU activation;
• 2D max pooling 2 × 2 layer;
• 2D convolutional layer with 128 filters, 3 × 3 kernels and ReLU activation;
• Flatten layer (1152 values at output);
• Fully connected layer (1000 values at output);
• Fully connected layer (1000 values at output);
• Fully connected layer (10 values at the output to identify each of the 10 classes in the dataset).
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Figure 9. Performance in the classification of handwritten digits and fashion MNIST data using
memristors with gH = 14 · G0.
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Convolutional, max pooling and flatten layers were implemented in the software. This first
block transformed each image into 1152 positive values at the output of the flatten layer (1D).
The second block embraced the fully connected layers and was identical to the FFNN tested so
far, except for the number of input values (768 before vs. 1152 now). This second block was
implemented both in the software and using the proposed memristor-based neural network. In
the latter case, the outputs at the flatten layer were scaled to fit the range [0, Vmax]. Note that the
memristors could also be considered in the first block, but this introduces additional complexity
in so far as more peripheral circuitry is required. This point is beyond the scope of the paper. In
Figure 10, we reproduced the results in Figure 8 using the described CNN approach.
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Figure 10. Performance of the SBNN and MBNN with different configurations in the classification
of fashion MNIST, using the CNN approach.

The results show that the performance, in terms of prediction accuracy, increased for all
the configurations tested with respect to the FFNN approach. This was due to the high-level
features processed at the convolutional and max pooling layers. The second observation is
that increasing the value of σgP gave robustness to the system (i.e., the accuracy values were
less spread out). This result is coherent with the results obtained so far. Finally, we observed
that the MBNN with a proper configuration was close in performance to the SBNN. These
preliminary results encourage us to explore the application of memristors to more complex
neural network architectures.

5. Conclusions

In this paper, we analyzed the implementation of deep neural networks using cross-
bar arrays of memristors, and more specifically, we considered the case where these de-
vices can be configured in only two different states: a low-resistance state (LRS) and a
high-resistance state (HRS). The natural usage of crossbar arrays in the context of neu-
ral networks is in performing vector-matrix multiplications in an analog fashion (i.e.,
by adding currents), thus reducing the power consumption and computational time.
Our approach aims at emulating ternary neural networks, which sets the weights in the neu-
ral network to a value in the range of {−1, 0, 1}. In order to achieve this behavior, we
need to implement two crossbar arrays for each feedforward layer in the network (i.e.,
one to represent the positive weights and the other one to represent the negative weights).
Additionally, some other adaptation issues in relation to software-based neural networks
arise: (1) the currents at the output of the crossbar arrays have to be converted to voltages
for the next stage, resulting in a conversion factor that can be potentially tuned to boost
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network performance and (2) memristor device experiment conductance fluctuations that
also impinge on performance. Taking these issues into account, we designed an algorithm
to train the weights in the network and later map these weights to the network, where
memristors are programmed to either the LRS or the HRS.

The results show that the proposed system design and offline training method repre-
sent a real alternative to the traditional software-based (i.e., CMOS-based) neural networks.
The lessons learned in this work are as follows: (1) the higher the conductance of the mem-
ristor in the LRS, the better performance we can achieve; (2) the conversion factor that maps
the output currents at one layer to input voltages at the next layer can be fine-tuned, but it is
not a sensitive parameter; and (3) it is very important to consider mitigation of the conduc-
tance variability, as performance is very sensitive to this. In our experiments, we achieved
accuracies that were similar to the software-based counterpart, but without considering
conductance variability during training, we observed large gaps in terms of classification
accuracy between the worst realizations. This gap could be above 50% in the 10-class
classification tasks (handwritten digits and fashion MNIST data) we tested.

Future work could consider additional hardware issues such as nonlinearity, stochas-
ticity, varying maxima, asymmetry between increasing and decreasing responses, non-
responsive devices at low or high conductance, mixed time-varying delays or the sneak-
path problem in crossbar arrays [10–14]. We also need to evaluate the performance using
more complex and widely used neural network models, such as convolutional or recur-
rent networks. The preliminary results have been presented for a CNN here, showing
the potential of memristor-based approaches.
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