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Abstract

We obtain symmetrization inequalities in the context of Fractional Hajtasz-Sobolev spaces
in the setting of rearrangement invariant spaces and prove that for a large class of measures
our symmetrization inequalities are equivalent to the lower bound of the measure.

Keywords Sobolev inequality - Fractional Hajtasz-Sobolev spaces - Metric measure spaces

Mathematics Subject Classification (2010) Primary 46E35

1 Introduction

Let us consider a metric measure space (§2, d, ;) where p is a Borel measure on (£2, d)
such 0 < u(B) < oo, for every ball B in £2. We will always assume w(£2) = oo and
n({x}) = 0 for all x € £2. Let X be a rearrangement invariant (r.i.) space on £2 (see
Section 2.2.1 below). In this paper, we introduce the fractional Hajtasz-Sobolev spaces
MsX (£2) for s > 0, and we will focus on understanding the relation between Sobolev
embeddings theorems for spaces M*X (£2) and the growth properties of the measure /.

Lets > O and let X be ar.i. space on £2. We say that f € MsX (£2), if f € X, and there
exits a non-negative measurable function g € X such that

IfG) = fOI <dx,y)° (gx)+g(») pn—ae x,y€s2. )]
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A function g satisfying (1) will be called a s—gradient of f. We denote by Df( f) the
collection of all s—gradients of f. The homogeneous Hajtasz-Sobolev space M** (£2)
consists of all functions f € X for which

s, = inf
1 hipxcoy = nf lgllx

is finite. The Hajtasz-Sobolev space M*-X (£2) is M*X(S) N X equipped with the norm
I agsx 2y = W Il 4 I1F s x 2 -
When X = LP2(£2),1 < p < oo, we shall write M*P (£2) instead of M*X (£2).

Remark 1 In the context of metric spaces, the spaces M!:? (£2) were first introduced by
Hajtasz (see [11] and [12]). They play an important role in the area of analysis called analy-
sis on metric spaces and a lot of papers have focused on this subject (see for example [3, 13—
16], and the references quoted therein). When the measure u is doublingl , spaces M LX)
have been considered in some particular cases, for example, Hajtasz-Lorentz-Sobolev
spaces ML (£2) (see [19]) and Musielak-Orlicz-Hajtasz-Sobolev spaces MuL? (£2),
where L? is an Orlicz space (see [34]). Also in the doubling case, fractional spaces
M*5-P (£2) were introduced and studied in [35] (see also [17] and [18]).

For p > 1, MLP(RY) = WP (R") (see [11]), whereas for p = 1, MM1(R") coin-
cides with the Hardy.Sobolev space H 1’I(R”) (see [24, Thm 1]) and if 0 < s < 1, then
MSP(R") = B‘;,’oo(]R”) (see [35]). Notice that in R”, if s > 1, then M%7 (R") is trivial
(contains only constant functions). However, if 2 is a fractal, then M*?(£2) for s > 1 may
be non-trivial (see [17]).

It is well known that the lower bound for the growth of the measure
Ww(B(x,r)) = br®, @)

implies Sobolev embedding theorems for Hajtasz-Sobolev spaces M L.r(see [11] and [12]).
The converse problem, i.e. when the embedding

MYP(X)Cc LY(X), ¢ > p (3)

implies a lower bound for the growth of the measure, has been considered by several authors
(see [10, 18, 20-23] and the references quoted therein). In the recent paper [2], R. Alvarado,
P. Gorka and P. Hajtasz show that in fact if (3) holds with ¢ = ap/(a — p), then lower
bound for the growth (2) holds.

The purpose of this paper is to obtain an analogous result for M*% spaces. This will be
done by obtaining pointwise estimates between the special difference f**(¢) — f*(¢) (called
the oscillation? of f) and the function g (see Theorem 1 below), i.e. we will see that for a
wide range of measures, condition (2) implies

@) = 50 < Cr'l* g™ @), )
for every f € MSLHL® and g € D*(f). Moreover, if 0 < s < 1, then (4) implies (2).

111 is said to be doubling provided there exists a constant C > 0 such that

n(2B) < Cu(B) for all balls B C £2.

2Here f* is the decreasing rearrangement of f, f**(r) = %fé f*(s)ds, forall t > 0, (see Section 2.2).
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Sobolev Embeddings for Fractional...

Symmetrization inequalities imply Sobolev inequalities in the setting of rearrangement
invariant spaces. Indeed, from (4) we obtain: for any r.i. space X with upper Boyd?® index
ax < 1, we have

=57 @) — f* o]y < cliglx .
where ¢ = c(s, o, X).

Notice that we avoid one common drawback of the usual approaches to Sobolev inequal-
ities which require the choice of specific norms before one starts the analysis. Instead,
we work with pointwise symmetrization inequalities which are *universal* and it is the
inequalities themselves that select the *correct® spaces.

For example, in the particular case of X = L? (see Corollary 1 below) we obtain that if
1>s/a> %, then*

[ @ = f O = [ O o = 1

ap

aope e

([T etrmoy ) =e(fe) "

On the other hand, since p < p} we have that

where pf =

ap
—sp

_er
La—.\'p’p C Lo

in particular, if s = 1, then we get

1/p* o 1/p 1/p
(i) ™= ([ o) )" e ([wan)”
Q 0 t Q

Remark 2 The technique to obtain Sobolev oscillation type inequalities has been developed
by M. Milman and J. Martin (see [27, 28] and [29]) and provide a considerable simpli-
fication in the theory of embeddings of Sobolev spaces based on rearrangement invariant
spaces.

The paper is organized as follows. In Section 2, we introduce the notation and the stan-
dard assumptions used in the paper, in Section 3, we will obtain oscillation type inequalities
for spaces M*-X | we will see that they are equivalent to the lower bound for the growth of
the measure and will obtain Sobolev type embedding of M*X into a rearrangement invari-
ant spaces. Finally, in the Appendix A we will give some properties of the measures we will
be working with.

2 Preliminaries

In this section we establish some further notation and background information and we
provide more details about metrics spaces and r.i. spaces that we will working with.

3The restriction on the Boyd indices is only required to guarantee that the inequality [|g**ly < cx llgllx ,
holds for all g € X.
4As usual, the symbol f ~ g will indicate the existence of a universal constant ¢ > 0 (independent of all
parameters involved) so that (1/¢)f < g < ¢ f, while the symbol f < g means that f < cg, and f > g
means that f > cg.
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2.1 Metric Spaces

Let (£2, d) be a metric space. As usual a ball B in §2 with a center x and radius r > Ois a
set B= B(x,r) :={y € £2;d(x, y) < r}. Throughout the paper by a metric measure space
we mean a triple (£2, d, ), where p is a Borel measure on (£2, d) such 0 < u(B) < oo,
for every ball B in §2, we also assume that p(§2) = oo and u({x}) = 0 for all x € £2.

We will say that a measure u is @« —lower bounded if there are b, @ > 0 such that

w(B(x,r)) = br, &)

forall x € 2 andr > 0.

For simplicity we assume in what follows that u(B(x, r)) > r¢.

In what follows we will, furthermore, assume that the measure w is continuous, i.e.
satisfies that the map r — u(B(x,r)) is continuous® or that y is doubling, i.e. there exists
a constant Cp such that, for all x € §2 and for all r > 0, we have that

u(B(x,2r)) < Cpu(B(x, r)).

Notice that in both cases there is a constant ¢ = ¢, > 1 such that given ¢ > 0, for all
x € £2, there is a positive number r(x) such that

< p(Bx,r(x)) <ct.

In the doubling case, given x € £2, consider ro(x) = sup{r : u(B(x,r)) < t} and take r
such that r < ro(x) < 2r, then

t < u(B(x,2r)) < Cpu(B(x,r)) < Cpt.

In what follows we call these measures ¢—almost continuous®.

2.2 Background on Rearrangement Invariant Spaces

For measurable functions f : £2 — R, the distribution function of f is given by

ppt) =plx € 2:1fWI>1) (> 0).

The decreasing rearrangement f; of f is the right-continuous non-increasing function
from [0, 0o) into [0, oo] which is equimeasurable with f. Namely,

f,f(s) =inf{t > 0: ,uf(t) <s}

We will write in what follows f* instead of f;.
In particular, for > 0 we get (see [6, Prop. 1.7. Chapter 2])

n(ffO) =pn(fxe2:|f0)|> 50} <t (6)

It is easy to see that for any measurable set E C £2

H(E)
/ ) du < / F*(5)ds. ™
E 0

Since f* is decreasing, the function f**, defined by

1 t
o = f F*(5)ds. ®)
tJo

SIn the Appendix A we describe measures with this property.
6 An example of an «—lower bounded measure that does not satisfy this condition is given in the Appendix A
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is also decreasing and, moreover,

f* < f**
Remark 3 An elementary computation shows that

. f ) = @)

— )= —>" - -

o S ;

and that the function t — ¢ (f**(¢) — f*(¢)) is increasing. Moreover, it is well known and
easy to see

F(F0) - f40) = f (1F )l = £*()) dr. ©)
{xe2:| f(x)|> f*(1)}

2.2.1 Rearrangement Invariant Spaces

We recall briefly the basic definitions and conventions we use from the theory of
rearrangement-invariant (r.i.) spaces and refer the reader to [6, 25], for a complete treatment.
We say that a Banach function space X = X (£2) on (£2, d, n) is rearrangement-invariant
(r.i.) space, if g € X implies that all ©— measurable functions f with the same decreasing
rearrangement function with respect to the measure w, i.e. such that f* = g*, also belong
to X, and, moreover, || fllx = llgllx-

For any r.i. space X (£2) we have

L®(2)NLYR) c X(2) c LY(R) + LX),
with continuous embedding.

A r.i. space X (§2) can be represented by an r.i. space on the interval (0, u(£2)), with
Lebesgue measure, X = X (0, (£2)), such that

Ifllx = 1f"llg.

for every f € X. A characterization of the norm || - || 7 is available (see [6, Theorem 4.10
and subsequent remarks]). Typical examples of r.i. spaces are the L”-spaces, Lorentz spaces
and Orlicz spaces.

The associated space X'(£2) of X (£2) is the r.i. space of all measurable functions / for
which the r.i. norm given by

Jo lg@)h(x)|du

Al x:(2) = sup (10)
g#0 gl x2)
is finite. Note that by the definition (10), the generalized Holder inequality
[ ls@heoldn < lglyig, Wi, (a1
2

holds.
Let X (£2) be an r.i. space. Then, the function ¢y : [0, c0) — [0, co) given by

ox(s) = || xi0.9 || 5 »

is called the fundamental function of X (£2). The fundamental function ¢x of any r.i. space
X (£2) is quasiconcave, in the sense that it is non-decreasing on [0, 00), ¢x(s) = 0 and
¢x (s)/s is non-increasing on (0, co). Moreover, one has that (see [6, Theroem 5.2. Chapter

2.
¢x(s)px(s) =5, (s >0). 12)
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Classically conditions on r.i. spaces are given in terms of the Hardy defined by

11t 1/q 1 00 d 1/q
PO f(1) = <—f |f<x)|q> L0 r() = <7f F 1—3) L 1=0,
tJo t J; X

here0 < g <00, 0 <A < 1.
The boundedness of these operators on r.i. spaces can be described in terms of the so
called Boyd indices’ defined by
lnhx(s) lnhx(s)
n p—————

and oy =su
s>1  Ins s<1 Ins

9

where hx (s) denotes the norm of the compression/dilation operator Eg on X, defined for
s >0,by Egf(t) = f*(f). For example if X = L? with p > 1,thenay = ay = %. Itis
well known that (see [26], and [33])

1
@x < — < PP isbounded on X, (13)
q

A
ay > — & Qiq) is bounded on X. (14)
q

3 Symmetrization Inequalities and Embeddings for Fractional
Hajtasz-Sobolev Spaces

The method of proof of the following theorem follows the ideas of [30, Theorem 2] (see
also [31]).

Theorem 1 Let (£2,d, ) be a metric measure space such that u is c—almost continuous

and a—lower bounded. Let s > 0, f € ML and g € D*(f). Let 0 < p < 1. Then,
forallt > 0, we have

((F17) &) = (1F17) )7 < sl ((g?)™ )7, (15)

where C = C(c, p) is a constant that just depends on c and p.

Proof Take t > 0if (| £17)™ (t) — (1 £17)" () = 0, then (15) is obvious, otherwise let
A={xe:1f®" > (If1") 0},

notice that by (9) the set A is not empty. Given x € A, since i is c—almost continuous,
there is a radius r (x) such that

2t < w(B(x,rx))) < 2ct.
Let r = min((2)'/%, r(x)), and for every x € A, set
Ar={y e BGe,r): IfMI” < (If17)" 0}.

From
B(x,r)=(Bx,r)NA)UA,

"Introduced by D.W. Boyd in [7].
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we see that
2t < u(B(x, 1)) < u(A) + pn(Ay) <t + p(Ay), (by(6)
whence
< pu(Ay). (16)
Then
I = /A (ILF @I = (IF17)" (1)) dp(x)

1
P _ pd d
< /A(If(x)l g ] o M(y)) ()
1
P _ Y4 4
/A<u(AX) i, (If 7 =1fOI7) M(y)> 1 (x)

1

IA

IA

1

! / / 1 COIP — LFOIP|du()dutx) (sinced C B(x. r))
t JAJBG,r)

=J.

Taking into account that
[1x1” = [y1P| < 1x = yI7,
we get

1
J<! / / 1F () — FONP du(y)dp(x)
t JAJBG,r)

1
< f// d(x, y)*P (g(x) + g()P du(y)du(x).
rJa B(x,r)

IA

1
*// r'P (gx)P 4+ g(P) du(y)du(x)
t JAaJBx.r)

(zl)sp/a
t

(2[)517/04
( / / (0P () du(x) + f f g(y)"du(y)du(X)>
t A JB@x,r) A JB@,r)

(zl)sp/a u(B(x,r)) .
/Ag(x)”u(B(x,r))du(x)+/A /0 g (@Pdz|dux)) (by (7))

IA

/ / (8()” + g(MP) d(y)dpu(x)
A JB(x,r)

IA

IA

t

spla t 2ct
20) (th/ g¥()Pdz +/ (/ g*(z)pdz> du(X))
t 0 A 0

(zt)sp/a t 2ct
; 2ct/0 g5 (2)Pdz +t/0 g*(2)Pdz | (by(8))

t
(2c)22xp/°‘tsp/“/ g5 (2)?dz.
0

IA

IA

IA

Finally, the formula (see Remark 3)

H((F17)" 0 = (1117)" ) = /A (f 1P = (1£17)" ) dpu(x)
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yields
((F17) @) = (1F1P) )7 < sl ((gP)™ ) /7

as we wished to show. O
Theorem 2 Let (£2,d, 1) be a metric measure space such that u is c—almost continuous.
Then the following statements are equivalent

(i) wis a—lower bounded.
(i) If0 < s <1, then forevery f € ML and g € D°(f), we have that

@) — fX(1) < Cr/"g™ (). (17)

Proof 1f (i) holds, then by Theorem 1 we get (ii). Assume that (17) holds. Fix xo € £2 and
r > 0. Define the function f;,x, by

_ | r —dxo, x))* ifd(xo,x) <,
Jrovg ) = { 0 if d(xo, x) > r

It is easy see that g,,, (X) = XB(x,r) Satisfies that

|frsxo (x) = froxo ()’)’ <d(x,y)’ (gr’xo () + &rsxo (y)) .

An elementary computation shows that

B(xg,r — AY9) if 0 < & < r,
gy ) = {“( Go.r =AD) O <2 <r (18)
By hypothesis,
(Froxe)™ @) = (Froxg )" (1) < CE* (grvxy )™ (1)
Thus,
(o)™ 0 = (froxg )™ Qu(B(xo,7)))
2u(B(xp,r)) o N dt
= /0 ((frsxo) (z)_(fraxg) (Z))T
2u(B(xq,r)) o
=cf 19 (g0 ) (. (19)
0
But .
1 . u(B(xg, 1))
(8rx)" () = ;/O X[0,11(B(xo,r))) ($)ds = min (17 %> ,
thus
2u(Bxo.r)) »
1= / 21 (grng )™ (1) (20)
0
w(B(xq,r)) 2u(B(xp,r))
= / ts/"‘_ldt—i—/L(B(xg,r))/ 124y
0 w(B(xo,r))
< w(B(xg, 1))/
Combining (19) and (20) we get
(froxe )™ 0) = (froxo )™ Q(B(x0, 1)) = w(B(xo, 1)) @21
On the other hand
(froxg) O = | froxo | joo =7 (22)
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so from (18) we get that (f,.x, )" (t) = 0if t > w(B(xo, r)), therefore

2u(B(x0,r))
m/ (fra)(o) (t)dt

w(B(xq,r))
- m [ )

= 2u<B(xo,r>) I 550

(froxo )™ @u(B(x0,7)))

< (uBmern) =" (23)
= 2u(B(xo.r)) © 0=
Thus
rS rS
S =r-5s (froxg )™ ) = (froxg )™ (2(B(x0,7))) (by (22) and (21))
< u(B(xo, r)"* (by (21))
which implies that u is « —lower bounded up to constants. O

Remark 4 In Kalis’ 2007 PhD thesis at FAU (see also [20]) was proved that Sobolev embed-
dings estimates for Homander vector fields imply a lower bound for the growth of the
measure.

Theorem 3 provides us the following Sobolev embedding result for Fractional Hajtasz-
Sobolev spaces.

Theorem 3 Let (£2,d, ) be a metric measure space such that u is c—almost continuous
and a—lower bounded. Let X be a r.i. space. Let f € M*X and g € D*(f).

i Ifs/a <1,
() Ifay > s/a, then
[ @) g < gl -
(b) Ifax < s/a, then
I fllzee = lgllx + 1Al p1yre-
() Ifs/a =1, then
sup () L)y

t>0
(iii) Ifs/a > 1, then
Ifllzee = lgllx + 1Az ypre -

Proof Case (i) Assume s/a < 1, then:
(a) Condition ay > s/c, implies f**(oc) = 0, so

mslo prs(ry _ ool fwzg U@ = @)z _ [(f**( ) - f*())} o

s 2
t ze Z @

()a
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Hence

| @)z = HQ&-“ [(f(z)_f())} ()

o

bt

<c PANOF 0] (since ay > s/a).
ts/a X

< Clel o)z

Therefore, if @x < 1, we have that
=t ol = | (59|

X
< llg"™ Mg
< llglx-
Incase thatay = 1, let0 < p < 1, and consider the function | f|”. By (15) we have that
_ 1 1
(P (LF17)™ @ = (1F17) @) < (7)™ )" (24)

The formula

(IF17)™ (1) = [too (17 @ — (1F17) @) %

o0 sp sp Kk * ]/ P d
- [T ([F oo e)]T) £
yields
s Kok sp X _ s % % d I/p
o) = ([ R )T o0 @l ) )
= 04 (OF [((A17)" = (1717 O)]"") .
Since ay > ;4, the operator Q(ip ) is bounded on X (by (14)), thus
= sy o))
= HQL”) (O L7 O =) )]7") @
< [ @ = @y @)

(GO AT
= llgllx (by (13)).

e

X

IA

A

(b) If x < s/, by Theorem 2.3 of [8], we have that
J 0 = f*(0)

s/

[fllLee <

B + ||f||L1+Loo
X

< gm0z = lglx-
Case (ii) If s/a = 1, then

k3k _ k 1 t ,
PO D ccomm = [ s < gy 20

(by (11)).
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Consequently,

Case Q) Ifs/a > 1

e - @ Ll

On the other hand

1 d
F0) = f*(1) = /O (F*@) - £*2)) f

ox (1)

VOO < gy oy a2,

, then

ox (1)
—

t
*
o = ;/0 g (s)ds < llglx

Zs/(x

1
< lglly / =1 $XD)
0 z
! 2
< ||g||x¢X’(1)/0 =2,
< lglx-

Finally, using that || f]; = f**(0), we obtain

As we wished to show.

I fllpee < Ngllx 4 1Al L1y poe -

/1ZW_1 (M) dz
0

O

Remark 5 In the classical setting, embedding theorems for W7 (R") have different

behavior when p < n,

p = n,or p > n. The point is that
|B(x,r)| >~ r".

(25)

In the metric-measure context the counterpart condition (25) is provided by the lower bound
for the growth of the measure (5). Notice also the different character on the embeddings for
p <n, p=n,or p > nin the r.i. context is done by the role of the Boyd index.

Corollary 1 Under conditions of Theorem 3, in the particular case of X = LP, (0 < p <

0), we obtain
G Ifs/a <1,
@ Ifsfoe> 1,

where p* =

) If 5 =s/a,

© 5 <s/,

(i) Ifs/a =1, then

then
Al per < llglpe-

ap
a—sp*
then
| p 1/p

(@) dt
[ 05 ) =t +10
0 1+ln(%) t
then

I fllpee < lglipr + 1 p14p00 -

sup!/?
t>0

= liglgr-

(f™ @) — f*®)
t
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In particular, if LP = L', we obtain ”f”Lg? = N fllys.Lr , where LY is the weak
L —space®
(i) Ifs/a > 1, then
Ifllpee < llglpr + 1N p1ypoo -

Proof Except (i.b), the remaining statements are a particular case of Theorem 3. To see
(i.b), by Theorem 1, we have that

172 (f ) — fH (D) < Cg™ ().

Hence
1/p

© —1/p ok * p
Y ("0 — o)) dr) =gl
and by [4, Lemma 5.4] we have that
1/p

1 ok b e e
/ S ) dr) ( / (7 (7 - f*(t)))pdt> 1 s
0 \'1+1In (%) f 0

O

Appendix A
A.1 Description of Measures p Satisfying that the Map r — w(B(x, r)) is Continuous

Let (£2, d) be a metric measure space, we say that a measure p is metrically continuous
with respect to metric d if all x € §2 and all » > 0 it holds that
li B(x,r)AB(y,r)) =0
d(x’lglﬁou( (x,r)AB(y,r))

where AA B stands for a symmetric difference of sets A, B C £2 and is defined as follows:
AAB := (A\B) U (B\A).

The following lemma collects some basic facts about continuity of a measure with
respect to the metric (see [9] and [1] for the proof).

Lemma 1 Let ($2,d, ) be a metric space with a Borel regular measure . Then the
following hold:

(1) If pn is continuous with respect to the metric d, then the map x — w(B(x,r)) is
continuous in d.
(ii) If for every x € $2 and every r > 0 it holds that w(0B(x,r)) = 0, then u is
continuous with respect to the metric d.
(iii) If for every x € $2 the function r — (B(x, r)) is continuous, then | is continuous
with respect to the metric d.

It is easy to see that if we take R" with Lebesgue measure (or with an absolutely
continuous measure respect to the Lebesgue measure) with the Euclidean distance, then

8Bennett, DeVore and Sharpley introduced the space weak L> defined as || f || Lo = SuP;g ( () — f*@0)
in [5] where studied its relationship with functions of bounded mean oscillation
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this measure is metrically continuous. In fact we have more (see [9, Proposition 2.1]) if
(£2,d, ) and (£2,d, v) are metric measure spaces then if @ << v and v is metrically
continuous, then p is metrically continuous too.

An important example is the following (see [32]).

Lemma 2 Let i be a nonnegative Radon measure on R". Assume that for any point p € R”",
w{ph) = 0, then we choose the coordinate axes in such a way that w(0 Q) = 0 for all
cubes Q with sides parallel to the axes. In particular the function £ — u(Q(x, £)) where £
denotes the length of the edge and x is the center of Q, is continuous.

A.2 An Example of an « —lower Bounded Measure which is not c—almost Continuous

Consider R? with the distance da (x, y) = max {|x|, |y|} and the measure u = Lebesgue
measure in the plane + length measure in vertical axis + length measure in vertical straight
line passing through (1, 0). It is easy to see that
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however, is not c—almost continuous.

=< u(B(x,r))
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