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Abstract. The extension of the 16th Hilbert problem to discontinu-
ous piecewise linear differential systems asks for an upper bound for the
maximum number of crossing limit cycles that such systems can exhibit.
The study of this problem is being very active, specially for discontin-
uous piecewise linear differential systems defined in two zones and sep-
arated by one straight line. In the case that the differential systems in
these zones are formed either by linear centers or linear Hamiltonian
saddles it is known that there are no crossing limit cycles. However it
is also known that the number of crossing limit cycles can change if we
change the shape of the discontinuity curve. In this paper we study the
maximum number of crossing limit cycles of discontinuous piecewise dif-
ferential systems formed by either linear Hamiltonian saddles or linear
centers and separated by a conic which intersect the conic in two points.
For this class of discontinuous piecewise differential systems we solve the
extended 16th Hilbert problem.

1. Introduction and statement of the main results

Poincaré [22, 23] was the first in introducing the notion of limit cycle of
a differential system, i.e. a periodic orbit isolated in the set of all periodic
orbits of the differential system. After the limit cycles became of great
importance because they model many real world phenomena. This caused
that the study of their existence, their number and their properties became
very active, see for instance [3, 5, 12, 19, 20, 21, 26, 27].

In general the problem of finding the limit cycles of a given class of differ-
ential systems is very difficult, in especial to provide an upper bound on the
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maximal number of limit cycles that a given class differential systems can
exhibit. One of these classes is the class of discontinuous piecewise linear
differential systems. Such systems were studied by first time by Andronov,
Vitt and Khaikin in [1], and after their appearance it became clear that
they have many applications in different areas, modeling real phenomena
in a quite accurate way (see for instance [5, 25]). So now there is a great
activity in studying these systems.

A discontinuous piecewise differential system on R2 is a pair of Cr (with
r ≥ 1) differential systems in R2 separated by a smooth codimension one
manifold Σ. The line of discontinuity Σ of the discontinuous piecewise dif-
ferential system is defined by Σ = h−1(0), where h : R2 −→ R is a dif-
ferentiable function having 0 as a regular value. Note that Σ is the sep-
arating boundary of the regions Σ+ = {(x, y) ∈ R2 |h(x, y) > 0} and
Σ− = {(x, y) ∈ R2 |h(x, y) < 0}. So the piecewise Cr vector field asso-
ciated to a piecewise differential system with line of discontinuity Σ is

Z(x, y) =

{
X(x, y), if h(x, y) ≥ 0,

Y (x, y), if h(x, y) ≤ 0.
(1)

As usual the vector field associated to system (1) is denoted by Z = (X,Y,Σ)
or simply by Z = (X,Y ), when the separation line Σ is well understood. In
order to establish a definition for the trajectories of Z and investigate its
behavior, we need a criterion for the transition of the orbits between Σ+ and
Σ− across Σ. The contact between the vector field X (or Y ) and the line
of discontinuity Σ is characterized by the derivative of h in the direction of
the vector field X, i.e.

Xh(p) = ⟨∇h(p), X(p)⟩ ,
where ⟨., .⟩ is the usual inner product in R2. The basic results of the discon-
tinuous piecewise differential systems in this context were stated by Filippov
[7]. We can divide the line of discontinuity Σ in the following sets:

(a) Crossing set: Σc : {p ∈ Σ : Xh(x) · Y h(x) > 0}.
(b) Escaping set: Σe : {p ∈ Σ : Xh(x) > 0 and Y h(x) < 0}.
(c) Sliding set: Σs : {p ∈ Σ : Xh(x) < 0 and Y h(x) > 0}.

The escaping Σe or sliding Σs regions are respectively defined on points
of Σ where both vector fields X and Y simultaneously point outwards or
inwards from Σ while the interior of its complement in Σ defines the crossing
region Σc (see Figure 1). The complementary of the union of these regions
is the set formed by the tangency points between X or Y with Σ.

Our goal is to study the so-called crossing limit cycles of the discontinuous
piecewise differential systems formed with linear centers or linear Hamilton-
ian saddles which are separated by conics. A crossing limit cycles is a limit
cycle that have isolated crossing points of intersection with the discontinuity
curve.
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Σ

Figure 1. Crossing, sliding and escaping regions, respectively.

The case of finding an upper bound for the number of crossing limit cycles
for discontinuous piecewise linear differential systems separated by a straight
line has been studied by many authors (see for instance [2, 6, 8, 9, 24] and
there is a conjecture claiming that discontinuous piecewise linear systems
in the plane separated by one straight line have at most three limit cycles,
but although there are examples with three limit cycles (the first ones were
[10, 13]) the conjecture is still open.

Here we will work with two classes of Hamiltonian linear differential sys-
tems the linear centers and the linear Hamiltonian saddles. In the case in
which the linear systems are either centers or Hamiltonian saddles and are
separated by a straight line it was proved in [16, 17] that they do not have
crossing limit cycles, however it is known that the number of crossing limit
cycles can change if we change the shape of the discontinuity curve. In
[11, 15, 18] it was studied the number of limit cycles of discontinuous piece-
wise differential systems formed by linear centers, separated by a conic.

In the present paper we will study the number of limit cycles of discon-
tinuous piecewise differential systems formed by linear Hamiltonian saddles
or linear centers and separated by a conic Σ.

Using an affine change of coordinates, i.e. (x, y) → (ax+by+c, αx+βy+γ)
with aβ − bα ̸= 0, it is well known that any conic that separates the plane
in connected regions can be written in one of following six canonical forms:
(DL): x2 = 0 one double real straight line;
(PL): x2 − 1 = 0 two real parallel straight lines;
(LV): xy = 0 two real straight lines intersecting at a real point;
(E): x2 + y2 − 1 = 0 ellipse;
(H): x2 − y2 − 1 = 0, hyperbola;
(P): y − x2 = 0 parabola.
For more details see [4].

Of course any conic that does not separate the plane in connected regions
can be either two complex straight lines intersecting at areal point, two
complex parallel straight lines, and the complex ellipse, but these conics
will not be considered.

We observe that we have two options for crossing limit cycles of discontin-
uous piecewise linear differential Hamiltonian saddles separated by a conic
Σ. First we have the crossing limit cycles that intersect the discontinuity
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curve in exactly two points and second we have the crossing limit cycles that
intersect the discontinuity curve Σ in four points. In this paper we study the
crossing limit cycles such that intersect the discontinuity curve in exactly
two points and we denote by F the class of piecewise differential systems
separated by a conic such that in any region of the conic we can have either
a linear Hamiltonian saddle or a linear center.

The maximum number of crossing limit cycles of piecewise linear differ-
ential systems in class F separated by a conic Σ such that intersect Σ in
exactly two points is given in the following theorems.

Theorem 1. Consider a planar discontinuous piecewise differential system
in class F where Σ is a conic. If Σ is of the type (LV), (PL) or (DL), then
there are no crossing limit cycles.

Analyzing the case of discontinuous piecewise linear differential systems in
class F with discontinuity curve a conic of the type (LV), (PL) or (DL) the
maximum number of crossing limit cycles is equal to the maximum number
of crossing limit cycles in discontinuous piecewise linear differential of class
F in the plane separated by a single straight line which was studied in [16].
In this paper it was proved that such class of piecewise differential systems
have no crossing limit cycles. This proves Theorem 1.

(a) (b) (c)

Figure 2. The three limit cycles of the discontinuous piecewise
differential systems: (a) (10)-(11) the discontinuous line is the
parabola y = x2, (b) (14)-(15) the discontinous line is the cir-
cle x2 + y2 = 1, (c) (14)-(15) the discontinuous line is a branch of
the hyperbola y − x2 + xy/5000 = 0. The three limit cycles are
travelled in counterclockwise sense.

Now we consider the other conics.

Theorem 2. Consider a planar discontinuous piecewise differential system
in class F , where Σ is either a parabola (P), or an ellipse (E), or a hyperbola
(H). Then the following statements hold.

(a) For this family of systems the maximum number of crossing limit
cycles that intersect Σ in two points is three.
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(b) There are systems having exactly three crossing limit cycles that in-
tersect Σ in two points, see (a), (b) and (c) of Figure 2 for the cases
of (P), (E) and (H), respectively.

The proofs of Theorem 2 for the parabola, ellipse and hyperbola are given
in sections 2, 3 and 4, respectively.

2. Proof of Theorem 2 for the parabola

For the proof of Theorem 2 we will use the following two results which
provide a normal form for a linear differential Hamiltonian saddle (for a
proof see [16, 17]) and for a linear center (for a proof see [14]).

Proposition 3. Any linear differential system having a Hamiltonian saddle
can be written as

ẋ = −bx− δy + d, ẏ = αx+ by + c, (2)

with α ∈ {0, 1}, b, δ, c, d ∈ R. Moreover, if α = 1 then δ = b2−ω with ω > 0
and if α = 0 then b = 1. A first integral of this system is

H(x, y) = −α

2
x2 − bxy − δ

2
y2 − cx+ dy. (3)

Proposition 4. Any linear differential system having a center can be writ-
ten as

ẋ = −bx− δy + d, ẏ = x+ by + c, (4)

where δ = b
2
+ ω with ω > 0. A first integral of system (4) is

F (x, y) = −1

2
x2 − bxy − δ

2
y2 − cx+ dy. (5)

Note that any of the Hamiltonians (3) and (5) can be written as

G(x, y) = −A

2
x2 −Bxy − ∆

2
y2 − Cx+Dy,

where A = 1 and ∆ = B2 + ω with ω > 0 if we have a linear center and in
case we have a linear Hamiltonian saddle then A ∈ {0, 1}, so that if A = 1
then ∆ = B2 − ω with ω > 0 and if A = 0 then B = 1 and ∆ ∈ R.

2.1. Proof of Theorem 2 for the parabola. For the systems of the class
F0 we have following regions in the plane:

R1 = {(x, y) ∈ R2 : y < x2},
which is the bounded region, and the region

R2 = {(x, y) ∈ R2 : y > x2},
which is the unbounded region.
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Without loss of generality we can assume that in R1 we have either a
linear center or a linear Hamiltonian saddle with first integral

G1(x, y) = −A1

2
x2 −B1xy −

∆1

2
y2 − C1x+D1y (6)

and in the region R2 we have either a linear center or a linear Hamiltonian
saddle with first integral

G2(x, y) = −A2

2
x2 −B2xy −

∆2

2
y2 − C2x+D2y (7)

To have a crossing limit cycle, which intersects the parabola y = x2 in
two different points p = (x1, y1) and q = (x2, y2), these points must satisfy
the closing equations

G1(x1, y1) = G1(x2, y2),
G2(x2, y2) = G2(x1, y1),

y1 − x21 = 0,
y2 − x22 = 0.

(8)

that can be written as

e1 := G1(x1, x
2
1)−G1(x2, x

2
2) = 0, e2 := G2(x1, x

2
1)−G2(x2, x

2
2) = 0.

(9)

Proof of statement (a) of Theorem 2 for the parabola. To study the number
of limit cycles it is necessary to compute the common zeros of e1 and e2 in
(9). For doing so we will compute Res (e1, e2, x1) and Res (e1, e2, x2), that
is, the resultant of e1 and e2 with respect to x1 and x2, respectively. By
the symmetry of e1 and e2 we know that both resultants have the same
expression and so we only need to compute one of them. We compute
R = Res (e1, e2, x2). Doing so we get

R = C0 + C1x1 + C2x
2
1 + C3x

3
1 + C4x

4
1 + C5x

5
1 + C6x

6
1,

where

C6 =
1

8
(B2∆1 −B1∆2)

3,

C5 =
1

8
(B2∆1 −B1∆2)

2(−A1∆2 +A2∆1 + 2D1∆2 − 2∆1D2),

C4 = − 1

16
(B1∆2 −B2∆1)

(
A2

1∆
2
2 +A2

2∆
2
1 − 2A1A2∆1∆2 + 2A2B

2
1∆2 − 2A2B1B2∆1 + 4A2D1∆1∆2

− 4A2∆
2
1D2 − 4B2

1∆2D2 − 2A1B1B2∆2 + 4B1B2D1∆2 + 4B1B2∆1D2 + 2B1C1∆
2
2 − 2B1C2∆1∆2

+ 2A1B
2
2∆1 − 4B2

2D1∆1 − 2B2C1∆1∆2 + 2B2C2∆
2
1 + 4D2

1∆
2
2 − 4A1D1∆

2
2 − 8D1∆1∆2D2 + 4∆2

1D
2
2

+ 4A1∆1∆2D2

)
,

C3 =
1

4
(B2∆1 −B1∆2)

(
−A2C1∆1∆2 +A2C2∆

2
1 + 2B2

1C2∆2 − 2B1B2C1∆2 − 2B1B2C2∆1 + 2B2
2C1∆1

+A1C1∆
2
2 − 2C1D1∆

2
2 + 2C1∆1∆2D2 −A1C2∆1∆2 + 2C2D1∆1∆2 − 2C2∆

2
1C2

)
,

C2 =
1

32

(
−B1∆

2
1A

3
2 + 2C2∆

3
1A

2
2 − 2B2D1∆

2
1A

2
2 + 6B1D2∆

2
1A

2
2 +B2A1∆

2
1A

2
2 + 4B2

1B2∆1A
2
2 − 4B3

1∆2A
2
2
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− 2C1∆
2
1∆2A

2
2 − 4B1D1∆1∆2A

2
2 + 2B1A1∆1∆2A

2
2 − 8C2D2∆

3
1A2 − 12B1D

2
2∆

2
1A2 + 8B2

2C1∆
2
1A2

− 4B1B2C2∆
2
1A2 + 8B2D1D2∆

2
1A2 − 4B2D2A1∆

2
1A2 − 4B1D

2
1∆

2
2A2 −B1A

2
1∆

2
2A2 + 4B2

1C1∆
2
2A2

+ 4B1D1A1∆
2
2A2 − 8C1D1∆1∆

2
2A2 + 4C1A1∆1∆

2
2A2 + 16B1B

2
2D1∆1A2 − 16B2

1B2D2∆1A2

− 8B1B
2
2A1∆1A2 + 8C2D1∆

2
1∆2A2 + 8C1D2∆

2
1∆2A2 − 4C2A1∆

2
1∆2A2 − 16B2

1B2D1∆2A2

+ 16B3
1D2∆2A2 + 8B2

1B2A1∆2A2 − 8B2D
2
1∆1∆2A2 − 2B2A

2
1∆1∆2A2 − 12B1B2C1∆1∆2A2

+ 4B2
1C2∆1∆2A2 + 16B1D1CD2∆1∆2A2 + 8B2D1A1∆1∆2A2 − 8B1D2A1∆1∆2A2 + 4B2C

2
2∆

3
1

+ 8C2D
2
2∆

3
1 − 4B1C

2
1∆

3
2 − 8C1D

2
1∆

3
2 − 2C1A

2
1∆

3
2 + 8C1D1A1∆

3
2 + 8B1D

3
2∆

2
1 − 8B2D1D

2
2∆

2
1

+ 8B2
2C2D1∆

2
1 − 16B2

2C1D2∆
2
1 + 8B1B2C2D2∆

2
1 + 4B2D

2
2A1∆

2
1 − 4B2

2C2A1∆
2
1 − 8B2D

3
1∆

2
2

+B2A
3
1∆

2
2 − 6B2D1A

2
1∆

2
2 + 2B1D2A

2
1∆

2
2 − 8B1B2C1D1∆

2
2 + 16B2

1C2D1∆
2
2 + 8B1D

2
1D2∆

2
2

− 8B2
1C1D2∆

2
2 + 12B2D

2
1A1∆

2
2 + 4B1B2C1A1∆

2
2 − 8B2

1C2A1∆
2
2 − 8B1D1D2A1∆

2
2 + 4B2C

2
1∆1∆

2
2

+ 8C2D
2
1∆1∆

2
2 + 2C2A

2
1∆1∆

2
2 + 8B1C1C2∆1∆

2
2 + 16C1D1D2∆1∆

2
2 − 8C2D1A1∆1∆

2
2

− 8C1D2A1∆1∆
2
2 + 16B3

2D
2
1∆1 + 16B2

1B2D2∆1 + 4B3
2A

2
1∆1 − 32B1B

2
2D1D2∆1 − 16B3

2D1A1∆1

+ 16B1B
2
2D2A1∆1 − 16B1B

2
2D

2
1∆2 − 16B3

1D
2
2∆2 − 4B1B

2
2A

2
1∆2 − 4B1C

2
2∆

2
1∆2 − 8C1D

2
2∆

2
1∆2

− 8B2C1C2∆
2
1∆2 − 16C2D1D2∆

2
1∆2 + 8C2D2A1∆

2
1∆2 + 32B2

1B2D1D2∆2 + 16B1B
2
2D1A1∆2

− 16B2
1B2D2A1∆2 − 16B1D1D

2
2∆1∆2 + 4B2D2A

2
1∆1∆2 + 8B2

2C1D1∆1∆2 − 24B1B2C2D1∆1∆2

+ 16B2D
2
1D2∆1∆2 + 24B1B2C1D2∆1∆2 − 8B2

1C2D2∆1∆2 + 8B1D
2
2A1∆1∆2 − 4B2

2C1A1∆1∆2

+ 12B1B2C2A1∆1∆2 − 16B2D1D2A1∆1∆2

)
,

C1 =
1

16

(
−A2

2B1C2∆
2
1 +A2

2B2C1∆
2
1 − 4A2B

3
1C2∆2 + 4A2B

2
1B2C1∆2 + 4A2B

2
1B2C2∆1

− 4A2B1B
2
2C1∆1 + 2A1A2B1C2∆1∆2 − 4A2B1C2D1∆1∆2 + 4A2B1C2∆

2
1D2 − 2A1A2B2C1∆1∆2

+ 4A2B2C1D1∆1∆2 − 4A2B2C1∆
2
1D2 + 2A2C

2
1∆1∆

2
2 − 4A2C1C2∆

2
1∆2 + 2A2C

2
2∆

3
1 + 8B3

1C2∆2D2

− 8B2
1B2C1∆2D2 + 4A1B

2
1B2C2∆2 − 8B2

1B2C2D1∆2 − 8B2
1B2C2∆1D2 − 4B2

1C1C2∆
2
2 + 4B2

1C
2
2∆1∆2

− 4A1B1B
2
2C1∆2 + 8B1B

2
2C1D1∆2 + 8B1B

2
2C1∆1D2 − 4A1B1B

2
2C2∆1 + 8B1B

2
2C2D1∆1

+ 4B1B2C
2
1∆

2
2 − 4B1B2C

2
2∆

2
1 −A2

1B1C2∆
2
2 − 4B1C2D

2
1∆

2
2 + 4A1B1C2D1∆

2
2 + 8B1C2D1∆1∆2D2

− 4B1C2∆
2
1D

2
2 − 4A1B1C2∆1∆2D2 + 4A1B

3
2C1∆1 − 8B3

2C1D1∆1 − 4B2
2C

2
1∆1∆2 + 4B2

2C1C2∆
2
1

+A2
1B2C1∆

2
2 + 4B2C1D

2
1∆

2
2 − 4A1B2C1D1∆

2
2 − 8B2C1D1∆1∆2D2 + 4B2C1∆

2
1D

2
2 + 4A1B2C1∆1∆2D2

− 2A1C
2
1∆

3
2 + 4C2

1D1∆
3
2 − 4C2

1∆1∆
2
2D2 + 4A1C1C2∆1∆

2
2 − 8C1C2D1∆1∆

2
2 + 8C1C2∆

2
1∆2D2

− 2A1C
2
2∆

2
1∆2 + 4C2

2D1∆
2
1∆2 − 4C2

2∆
3
1D2

)
,

C0 =
1

32

(
− C1∆

2
1A

3
2 − 2C2D1∆

2
1A

2
2 + 6C1D2∆

2
1A

2
2 + C2A1∆

2
1A

2
2 + 4B1B2C1∆1A

2
2 − 4B2

1C1∆2A
2
2

− 4C1D1∆1∆2A
2
2 + 2C1A1∆1∆2A

2
2 − 4B1C

2
2∆

2
1A2 − 12C1D

2
2∆

2
1A2 + 12B2C1C2∆

2
1A2 + 8C2D1D2∆

2
1A2

− 4C2D2A1∆
2
1A2 + 8B1C

2
1∆

2
2A2 − 4C1D

2
1∆

2
2A2 − C1A

2
1∆

2
2A2 + 4C1D1A1∆

2
2A2 + 8B2

2C1D1∆1A2

+ 8B1B2C2D1∆1A2 − 16B1B2C1D2∆1A2 − 4B2
2C1A1∆1A2 − 4B1B2C2A1∆1A2 − 8B1B2C1D1∆2A2

− 8B2
1C2D1∆2A2 + 16B2

1C1D2∆2A2 + 4B1B2C1A1∆2A2 + 4B2
1C2A1∆2A2 − 12B2C

2
1∆1∆2A2

− 8C2D
2
1∆1∆2A2 − 2C2A

2
1∆1∆2A2 − 4B1C1C2∆1∆2A2 + 16C1D1D2∆1∆2A2 + 8C2D1A1∆1∆2A2

− 8C1D2A1∆1∆2A2 + 4C3
2∆

3
1 − 4C3

1∆
3
2 + 8C1D

3
2∆

2
1 − 8C2D1D

2
2∆

2
1 + 16B2C

2
2D1∆

2
1 + 8B1C

2
2D2∆

2
1
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− 24B2C1C2D2∆
2
1 − 8B2C

2
2A1∆

2
1 + 4C2D

2
2A1∆

2
1 − 8C2D

3
1∆

2
2 + C2A

3
1∆

2
2 − 6C2D1A

2
1∆

2
2 + 2C1D2A

2
1∆

2
2

− 8B2C
2
1D1∆

2
2 + 24B1C1C2D1∆

2
2 − 16B1C

2
1D2∆

2
2 + 8C1D

2
1D2∆

2
2 + 4B2C

2
1A1∆

2
2 + 12C2D

2
1A1∆

2
2

− 12B1C1C2A1∆
2
2 − 8C1D1D2A1∆

2
2 + 12C2

1C2∆1∆
2
2 + 16B3

2C
2
1∆1 + 16B2

1B2C
2
2∆1 + 16B2

2C2D
2
1∆1

+ 16B1B2C1D
2
2∆1 + 4B2

2C2A
2
1∆1 − 32B1B

2
2C1C2∆1 − 16B2

2C1D1D2∆1 − 16B1B2C2D1D2∆1

− 16B2
2C2D1A1∆1 + 8B2

2C1D2A1∆1 + 8B1B2C2D2A1∆1 − 16B1B
2
2C

2
1∆2 − 16B3

1C
2
2∆2

− 16B1B2C2D
2
1∆2 − 16B2

1C1D
2
2∆2 − 4B1B2C2A

2
1∆2 − 12C1C

2
2∆

2
1∆2 + 32B2

1B2C1C2∆2

+ 16B1B2C1D1D2∆2 + 16B2
1C2D1D2∆2 + 16B1B2C2D1A1∆2 − 8B1B2C1D2A1∆2 − 8B2

1C2D2A1∆2

− 16C1D1D
2
2∆1∆2 + 4C2D2A

2
1∆1∆2 − 24B1C

2
2D1∆1∆2 − 8B2C1C2D1∆1∆2 + 24B2C

2
1D2∆1∆2

+ 16C2D
2
1D2∆1∆2 + 8B1C1C2D2∆1∆2 + 12B1C

2
2A1∆1∆2 + 8C1D

2
2A1∆1∆2 + 4B2C1C2A1∆1∆2

− 16C2D1D2A1∆1∆2

)
.

Note that if x1 ̸= x2 is a solution of the polynomial system e1 = e2 = 0
then x1 is a root of the resultants above, but both resultants have the same
roots, because these two polynomials are the same so we can pass from
one to another interchanging the variables x1 and x2. So the values of x1
and x2 are the same. Consequently we only have at most 6 points (x1, x

2
1)

and (x2, x
2
2) which are points where the crossing limit cycle intersects the

parabola y = x2, but due to the symmetry explained above there can not
be more than 3 limit cycles. This completes the proof of Theorem 2(a) for
the parabola. □

Proof of statement (b) of Theorem 2 for the parabola. We give an example
with three crossing limit cycles. More precisely, in the region R1 we consider
the linear Hamiltonian saddle

ẋ = 2x− 2464

663
y, ẏ = −81322

663
x− 2y (10)

with the first integral

H(x, y) = −40661

663
x2 − 2xy +

1232

663
y2.

and in the region R2 we consider the linear center

ẋ =
21145

522
+

4

3
x− 20

9
y, ẏ =

508

87
+ 8x− 4

3
y, (11)

with the first integral

F (x, y) =
1

522
(3048x+ 2088x2 − 21145y − 696xy + 580y2).

This discontinuous piecewise differential system formed by the linear dif-
ferential Hamiltonian saddle (10) and the linear center (11) has three cross-
ing limit cycles, because the unique real solutions (p, q) of system (8) are
(6, 36, 2, 4), (−5, 25,−3/2, 9/4) and (y1, y

2
1, y2, y

2
2) where

y1 =
1

116
(51−

√
577921) and y2 =

1

116
(51 +

√
577921).
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Therefore the intersection points of the three crossing limit cycles with
the parabola are the pairs (6, 36), (2, 4); (−5, 25), (−3/2, 9/4) and (y1, y

2
1),

(y2, y
2
2). See these three crossing limit cycles in Figure 2(a). These crossing

limit cycles are travelled in couterclockwise sense. □

3. Proof of Theorem 2 for the ellipse

For these systems

R1 = {(x, y) ∈ R2 : x2 + y2 < 1},
which is the bounded region, and the region

R2 = {(x, y) ∈ R2 : x2 + y2 > 1},
which is the unbounded region. Without loss of generality we can assume
that in the region R1 we have either a linear center or a linear Hamiltonian
saddle with first integral (6) and in the region R2 we have either a linear
center or a linear Hamiltonian saddle with first integral (7).

To have a crossing limit cycle, which intersects the ellipse x2 + y2 = 1 in
two different points p = (x1, y1) and q = (x2, y2), these points must satisfy
the closing equations

G1(x1, y1) = G1(x2, y2),
G2(x2, y2) = G2(x1, y1),

x21 + y21 = 1,
x22 + y22 = 1

(12)

that can be written as

e1 := G1(x1, y1)−G1(x2, y2) = 0,
e1 := G2(x1, y1)−G2(x2, y2) = 0,

e3 := x21 + y21 − 1 = 0,
e4 := x22 + y22 − 1 = 0.

(13)

Proof of statement (a) of Theorem 2 for the ellipse. To study the number
of limit cycles it is necessary to compute the common zeros of e1 and e2
in (13) together satisfying e3 and e4. In order to be able to compute it
we use the rational parameterization of the circle, or in other words, we
introduce the change of variables

x1 =
2t1

1 + t21
, y1 =

1− t21
1 + t21

, x2 =
2t2

1 + t22
, y2 =

1− t22
1 + t22

.

In these new variables equations the numerator of e1 and the numerator of
e2 become, respectively

E1 = −2(t1 − t2)(−B1 − C1 −A1t1 −D1t1 +B1t
2
1 − C1t

2
1 −D1t

3
1 −A1t2 −D1t2 + 3B1t1t2

+ C1t1t2 −D1t
2
1t2 +B1t

3
1t2 + C1t

3
1t2 +B1t

2
2 − C1t

2
2 −D1t1t

2
2 + 3B1t

2
1t

2
2 − C1t

2
1t

2
2 +A1t

3
1t

2
2

−D1t
3
1t

2
2 −D1t

3
2 +B1t1t

3
2 + C1t1t

3
2 +A1t

2
1t

3
2 −D1t

2
1t

3
2 −B1t

3
1t

3
2 + C1t

3
1t

3
2 + t1∆1 + t2∆1
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− t31t
2
2∆1 − t21t

3
2∆1)

and

E2 = −2(t1 − t2)(−B2 − C2 −A2t1 −D2t1 +B2t
2
1 − C2t

2
1 −D2t

3
1 −A2t2 −D2t2 + 3B2t1t2

+ C2t1t2 −D2t
2
1t2 +B2t

3
1t2 + C2t

3
1t2 +B2t

2
2 − C2t

2
2 −D2t1t

2
2 + 3B2t

2
1t

2
2 − C2t

2
1t

2
2 +A2t

3
1t

2
2

−D2t
3
1t

2
2 −D2t

3
2 +B2t1t

3
2 + C2t1t

3
2 +A2t

2
1t

3
2 −D2t

2
1t

3
2 −B2t

3
1t

3
2 + C2t

3
1t

3
2 + t1∆2 + t2∆2

− t31t
2
2∆2 − t21t

3
2∆2),

respectively. We also consider the new variables

E3 =
E1

2(t1 − t2)
and E4 =

E2

2(t1 − t2)
.

As in the proof of Theorem 2 we compute the resultant between E3 and E4

in the variable t2 (since the resultant in the variable t1 is the same). Doing
so, we obtain a polynomial of degree six in the variable t1. This polynomial
is very large and so we do not write it here. Using again the symmetry of
the solutions as in the proof of Theorem 2 we conclude that there are at
most three crossing limit cycles intersecting x2+y2 = 1. This completes the
proof of Theorem 2(a) for the ellipse. □

Proof of statement (b) of Theorem 2 for the ellipse. We give an example with
three crossing limit cycles. More precisely, in the region R1 we consider the
linear Hamiltonian saddle

ẋ = 2− x, ẏ = −4x+ y, (14)

with the first integral

H(x, y) = 2y + 2x2 − xy,

and in the region R2 we consider the linear center

ẋ = 7− 40y, ẏ = −3 + 20x, (15)

with the first integral

F (x, y) = −3x− 7y + 10x2 + 20y2.

This discontinuous piecewise differential system formed by the linear dif-
ferential Hamiltonian saddle (14) and the linear center (15) has three cross-
ing limit cycles, because the unique real solutions (p, q) of system (12) are
(3/5,−4/5,−4/5,−3/5), (1, 0, 4/5, 3/5) and (−1, 0, 0, 1). Therefore the in-
tersection points of the three crossing limit cycles with the ellipse are the
pairs (3/5,−4/5), (−4/5,−3/5); (1, 0), (4/5, 3/5) and (−1, 0), (0, 1). See
these three crossing limit cycles in Figure 2(b). These crossing limit cycles
are travelled in couterclockwise sense. □
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4. Proof of Theorem 2 for the hyperbola

For these systems we have following regions in the plane:

R1 = {(x, y) ∈ R2 : x2 − y2 > 1},
which is a region that consist of two connected components, and the region

R2 = {(x, y) ∈ R2 : x2 − y2 < 1}.
Without loss of generality we can assume that in the region R1 we have
either a linear center or a linear Hamiltonian saddle with first integral (6)
and in the region R2 we have either a linear center or a linear Hamiltonian
saddle with first integral (7).

To have a crossing limit cycle, which intersects the hyperbola x2− y2 = 1
in two different points p = (x1, y1) and q = (x2, y2), these points must satisfy
the closing equations

H1(x1, y1) = H1(x2, y2),
H2(x2, y2) = H2(x1, y1),

x21 − y21 = 1,
x22 − y22 = 1,

(16)

or equivalently
e1 := G1(x1, y1)−G1(x2, y2) = 0,
e1 := G2(x1, y1)−G2(x2, y2) = 0,

e3 := x21 − y21 − 1 = 0,
e4 := x22 − y22 − 1 = 0.

(17)

Proof of statement (a) of Theorem 2 for the hyperbola. To study the num-
ber of limit cycles it is necessary to compute the common zeros of e1 and e2
in (17) together satisfying e3 and e4. In order to be able to compute it we
use the rational parameterization of the hyperbola, or in other words, we
introduce the change of variables

x1 =
1 + t21
1− t21

, y1 =
2t1

1− t21
, x2 =

1 + t22
1− t22

, y2 =
2t2

1− t22
.

In these new variables equations the numerator of e1 and the numerator of
e2 become, respectively,

E1 = −2(t1 − t2)(−B1 +D1 −A1t1 − C1t1 −B1t
2
1 −D1t

2
1 + C1t

3
1 −A1t2 − C1t2 − 3B1t1t2

+D1t1t2 + C1t
2
1t2 +B1t

3
1t2 −D1t

3
1t2 −B1t

2
2 −D1t

2
2 + C1t1t

2
2 + 3B1t

2
1t

2
2 +D1t

2
1t

2
2 +A1t

3
1t

2
2

− C1t
3
1t

2
2 + C1t

3
2 +B1t1t

3
2 −D1t1t

3
2 +A1t

2
1t

3
2 − C1t

2
1t

3
2 +B1t

3
1t

3
2 +D1t

3
1t

3
2 − t1∆1 − t2∆1

+ t31t
2
2∆1 + t21t

3
2∆1)

E2 = −2(t1 − t2)(−B2 +D2 −A2t1 − C2t1 −B2t
2
1 −D2t

2
1 + C2t

3
1 −A2t2 − C2t2 − 3B2t1t2

+D2t1t2 + C2t
2
1t2 +B2t

3
1t2 −D2t

3
1t2 −B2t

2
2 −D2t

2
2 + C2t1t

2
2 + 3B2t

2
1t

2
2 +D2t

2
1t

2
2 +A2t

3
1t

2
2



12

− C2t
3
1t

2
2 + C2t

3
2 +B2t1t

3
2 −D2t1t

3
2 +A2t

2
1t

3
2 − C2t

2
1t

3
2 +B2t

3
1t

3
2 +D2t

3
1t

3
2 − t1∆2 − t2∆2

+ t31t
2
2∆2 + t21t

3
2∆2),

respectively. We also consider the new variables

E3 =
E1

2(t1 − t2)
and E4 =

E2

2(t1 − t2)
.

As in the proof of Theorem 2 we compute the resultant between E3 and E4

in the variable t2 (since the resultant in the variable t1 is the same). Doing
so, we obtain a polynomial of degree six in the variable t1. This polynomial
is very large and so we do not write it here. Using again the symmetry of
the solutions as in the proof of Theorem 2 we conclude that there are at
most three crossing limit cycles intersecting x2−y2 = 1. This completes the
proof of Theorem 2(a) for the hyperbola. □

Proof of statement (b) of Theorem 2 for the hyperbola. We give an example
with three crossing limit cycles for the discontinuous piecewise differential
system (14)-(15) but with the discontinuous line the hyperbola y − x2 +
xy/5000 = 0.

The unique real solutions (p, q) of system (16) are (x1, y1, x2, y2) given by

(−6.32869587046.., 40.1031515507.., 7.19045317418.., 51.6283705739..),
(2.749783799607.., 7.55715483619.., 5.71306538283.., 32.6018647515..),
(−4.8335367422.., 23.3856845520.., −1.944028944857.., 3.780718503683..).

We have the exact expressions of these three solutions but they are very
big, and we only give here their approximations. See these three cross-
ing limit cycles in Figure 2(c). These crossing limit cycles are travelled in
couterclockwise sense. □
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(1928), 901–912.

[13] J. Llibre, E. Ponce; Three nested limit cycles in discontinuous piecewise linear differ-
ential systems with two zones, Dyn. Contin. Discr. Impul. Syst., Ser. B, 19 (2012),
325–335.

[14] J. Llibre, M. A. Teixeira; Piecewise linear differential systems with only centers can
create limit cycles? Nonlinear Dyn., 91 (2018), 249–255.

[15] J. Llibre, M. A. Teixeira; Limit cycles in Filippov systems having a circle as switching
manifold, preprint, (2020).

[16] J. Llibre and C. Valls; Piecewise differential systems with only linear Hamiltonian
saddles can create limit cycles?, preprint, (2021).

[17] J. Llibre and C. Valls; Limit cycles of piecewise differential systems with linear Hamil-
tonian saddles and linear centers, preprint, (2021).

[18] J. Llibre, X. Zhang; Limit cycles for discontinuous planar piecewise linear differential
systems separated by an algebraic curve, Int. J. Bifurcation and Chaos, 29 (2019),
1950017–pp 17.

[19] L. Peng, Z. Feng; Bifurcation of limit cycles from quartic isochronous systems, Elec-
tron. J. Differential Equations, 2014 (2014), No. 95, 14 pp.

[20] L. Peng, Z. Feng; Limit cycles from a cubic reversible system via the third-order
averaging method, Electron. J. Differential Equations, 2015 (2015), No. 111, 27 pp.

[21] L. Peng, Z. Feng; Bifurcation of limit cycles for a quintic center via second order av-
eraging method, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), No. 3, 1550047,
18 pp.
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