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ABSTRACT. The extension of the 16th Hilbert problem to discontinu-
ous piecewise linear differential systems asks for an upper bound for the
maximum number of crossing limit cycles that such systems can exhibit.
The study of this problem is being very active, specially for discontin-
uous piecewise linear differential systems defined in two zones and sep-
arated by one straight line. In the case that the differential systems in
these zones are formed either by linear centers or linear Hamiltonian
saddles it is known that there are no crossing limit cycles. However it
is also known that the number of crossing limit cycles can change if we
change the shape of the discontinuity curve. In this paper we study the
maximum number of crossing limit cycles of discontinuous piecewise dif-
ferential systems formed by either linear Hamiltonian saddles or linear
centers and separated by a conic which intersect the conic in two points.
For this class of discontinuous piecewise differential systems we solve the
extended 16th Hilbert problem.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Poincaré [22, 23] was the first in introducing the notion of limit cycle of
a differential system, i.e. a periodic orbit isolated in the set of all periodic
orbits of the differential system. After the limit cycles became of great
importance because they model many real world phenomena. This caused
that the study of their existence, their number and their properties became
very active, see for instance [3, 5, 12, 19, 20, 21, 26, 27].

In general the problem of finding the limit cycles of a given class of differ-
ential systems is very difficult, in especial to provide an upper bound on the
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maximal number of limit cycles that a given class differential systems can
exhibit. One of these classes is the class of discontinuous piecewise linear
differential systems. Such systems were studied by first time by Andronov,
Vitt and Khaikin in [1], and after their appearance it became clear that
they have many applications in different areas, modeling real phenomena
in a quite accurate way (see for instance [5, 25]). So now there is a great
activity in studying these systems.

A discontinuous piecewise differential system on R? is a pair of C" (with
r > 1) differential systems in R? separated by a smooth codimension one
manifold Y. The line of discontinuity ¥ of the discontinuous piecewise dif-
ferential system is defined by ¥ = h~'(0), where h : R? — R is a dif-
ferentiable function having 0 as a regular value. Note that ¥ is the sep-
arating boundary of the regions X% = {(z,y) € R?|h(z,y) > 0} and
¥~ = {(z,y) € R?|h(z,y) < 0}. So the piecewise C" vector field asso-
ciated to a piecewise differential system with line of discontinuity X is

X(z,y), if h(z,y) >0,
2@ y) = { Y(x,y), if h(z,y) <O0. (1)

As usual the vector field associated to system (1) is denoted by Z = (X, Y, ¥)
or simply by Z = (X,Y), when the separation line ¥ is well understood. In
order to establish a definition for the trajectories of Z and investigate its
behavior, we need a criterion for the transition of the orbits between ¥ and
¥~ across X. The contact between the vector field X (or Y) and the line
of discontinuity ¥ is characterized by the derivative of h in the direction of
the vector field X, i.e.

Xh(p) = (Vh(p), X(p)),

where (.,.) is the usual inner product in R?. The basic results of the discon-
tinuous piecewise differential systems in this context were stated by Filippov
[7]. We can divide the line of discontinuity ¥ in the following sets:

(a) Crossing set: ¥¢: {p € ¥ : Xh(x)-Yh(x) > 0}.
(b) Escaping set: ¢ : {p € ¥ : Xh(x) > 0 and Y h(x) < 0}.
(c) Sliding set: £° : {p € ¥ : Xh(x) < 0 and Yh(x) > 0}.

The escaping 3¢ or sliding X° regions are respectively defined on points
of ¥ where both vector fields X and Y simultaneously point outwards or
inwards from Y while the interior of its complement in 3 defines the crossing
region ¥¢ (see Figure 1). The complementary of the union of these regions
is the set formed by the tangency points between X or Y with X.

Our goal is to study the so-called crossing limit cycles of the discontinuous
piecewise differential systems formed with linear centers or linear Hamilton-
ian saddles which are separated by conics. A crossing limit cycles is a limit
cycle that have isolated crossing points of intersection with the discontinuity
curve.



Figure 1. Crossing, sliding and escaping regions, respectively.

The case of finding an upper bound for the number of crossing limit cycles
for discontinuous piecewise linear differential systems separated by a straight
line has been studied by many authors (see for instance [2, 6, 8, 9, 24] and
there is a conjecture claiming that discontinuous piecewise linear systems
in the plane separated by one straight line have at most three limit cycles,
but although there are examples with three limit cycles (the first ones were
[10, 13]) the conjecture is still open.

Here we will work with two classes of Hamiltonian linear differential sys-
tems the linear centers and the linear Hamiltonian saddles. In the case in
which the linear systems are either centers or Hamiltonian saddles and are
separated by a straight line it was proved in [16, 17] that they do not have
crossing limit cycles, however it is known that the number of crossing limit
cycles can change if we change the shape of the discontinuity curve. In
[11, 15, 18] it was studied the number of limit cycles of discontinuous piece-
wise differential systems formed by linear centers, separated by a conic.

In the present paper we will study the number of limit cycles of discon-
tinuous piecewise differential systems formed by linear Hamiltonian saddles
or linear centers and separated by a conic X.

Using an affine change of coordinates, i.e. (z,y) = (az+by+c, ax+pLy+7)
with af — ba # 0, it is well known that any conic that separates the plane
in connected regions can be written in one of following six canonical forms:
(DL): 22 = 0 one double real straight line;

(PL): 2 — 1 =0 two real parallel straight lines;

(LV): 2y = 0 two real straight lines intersecting at a real point;
(E): 22+ 42 —1=0 ellipse;

(H): 22 —y? — 1 =0, hyperbola;

(P): y — 2% =0 parabola.

For more details see [4].

Of course any conic that does not separate the plane in connected regions
can be either two complex straight lines intersecting at areal point, two
complex parallel straight lines, and the complex ellipse, but these conics
will not be considered.

We observe that we have two options for crossing limit cycles of discontin-
uous piecewise linear differential Hamiltonian saddles separated by a conic
Y.. First we have the crossing limit cycles that intersect the discontinuity
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curve in exactly two points and second we have the crossing limit cycles that
intersect the discontinuity curve ¥ in four points. In this paper we study the
crossing limit cycles such that intersect the discontinuity curve in exactly
two points and we denote by F the class of piecewise differential systems
separated by a conic such that in any region of the conic we can have either
a linear Hamiltonian saddle or a linear center.

The maximum number of crossing limit cycles of piecewise linear differ-
ential systems in class F separated by a conic ¥ such that intersect X in
exactly two points is given in the following theorems.

Theorem 1. Consider a planar discontinuous piecewise differential system
in class F where ¥ is a conic. If ¥ is of the type (LV), (PL) or (DL), then
there are no crossing limit cycles.

Analyzing the case of discontinuous piecewise linear differential systems in
class F with discontinuity curve a conic of the type (LV), (PL) or (DL) the
maximum number of crossing limit cycles is equal to the maximum number
of crossing limit cycles in discontinuous piecewise linear differential of class
F in the plane separated by a single straight line which was studied in [16].
In this paper it was proved that such class of piecewise differential systems
have no crossing limit cycles. This proves Theorem 1.

(a) (c)
Figure 2. The three limit cycles of the discontinuous piecewise
differential systems: (a) (10)-(11) the discontinuous line is the
parabola y = 22, (b) (14)-(15) the discontinous line is the cir-
cle 2% + 4% = 1, (c) (14)-(15) the discontinuous line is a branch of
the hyperbola y — 2 + xy/5000 = 0. The three limit cycles are
travelled in counterclockwise sense.

Now we consider the other conics.

Theorem 2. Consider a planar discontinuous piecewise differential system
in class F, where X is either a parabola (P), or an ellipse (E), or a hyperbola
(H). Then the following statements hold.

(a) For this family of systems the mazimum number of crossing limit
cycles that intersect 3 in two points is three.
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(b) There are systems having exactly three crossing limit cycles that in-
tersect ¥ in two points, see (a), (b) and (c) of Figure 2 for the cases
of (P), (E) and (H), respectively.

The proofs of Theorem 2 for the parabola, ellipse and hyperbola are given
in sections 2, 3 and 4, respectively.

2. PROOF OF THEOREM 2 FOR THE PARABOLA

For the proof of Theorem 2 we will use the following two results which
provide a normal form for a linear differential Hamiltonian saddle (for a
proof see [16, 17]) and for a linear center (for a proof see [14]).

Proposition 3. Any linear differential system having a Hamiltonian saddle
can be written as

T=—-bx—0y+d, vy=axr+by+ec, (2)
with o € {0,1}, b,6,¢c,d € R. Moreover, if a = 1 then § = b* —w with w > 0
and if o = 0 then b =1. A first integral of this system is

5
H(z,y) = —%mQ — by — §y2 —cx + dy. (3)

Proposition 4. Any linear differential system having a center can be writ-
ten as

t=—br—0y+d, y=x+by+ec, (4)
where 3 =0 + @ withw > 0. A first integral of system (4) is
1, - 0 5 _ =
F(m,y):—§x —bmy—iy —cx + dy. (5)

Note that any of the Hamiltonians (3) and (5) can be written as

A A
G(z,y) = 75302 — Bzy — EyQ — Cz + Dy,

where A = 1 and A = B2 + w with w > 0 if we have a linear center and in
case we have a linear Hamiltonian saddle then A € {0, 1}, so that if A =1
then A = B2 — w with w > 0 and if A =0 then B=1 and A € R.

2.1. Proof of Theorem 2 for the parabola. For the systems of the class
Fo we have following regions in the plane:

Ry = {('Ivy) € Rz cy < LE2}7
which is the bounded region, and the region
R2 = {(l',y) € RQ Yy > $2},

which is the unbounded region.



Without loss of generality we can assume that in Ry we have either a
linear center or a linear Hamiltonian saddle with first integral

A A
Gi(z,y) = —711’2 — By — 7192 - Cix + Dyy (6)

and in the region Ry we have either a linear center or a linear Hamiltonian
saddle with first integral

A A
Ga(z,y) = —72962 — Boxy — 722/2 — Chz + Doy (7)

To have a crossing limit cycle, which intersects the parabola y = x? in

two different points p = (z1,y1) and ¢ = (z2,y2), these points must satisfy
the closing equations

Gi(z1,11) = Gi(z2,92),

G2($2,y2) = G2(x17y1)7 (8)
Y1 — .’L‘% = 07
yo — a3 = 0.

that can be written as
€] = Gl(x1,$%) — Gl(x2,$%) = 0, €9 = Gg(x1,$%) — GQ(Z[;Q,ZL’%) =0.

(9)

Proof of statement (a) of Theorem 2 for the parabola. To study the number
of limit cycles it is necessary to compute the common zeros of e; and e in
(9). For doing so we will compute Res (e, e2,21) and Res (e1, ea, x2), that
is, the resultant of e; and ey with respect to x; and x3, respectively. By
the symmetry of e; and ez we know that both resultants have the same
expression and so we only need to compute one of them. We compute
R = Res (eq, ez, 2). Doing so we get
R = Cy + Ciz1 + Cox? + C323 + Cyx] + Csa} + Cea§,

where

1
Cs = g(B2A1 — B1As)?,
1
Cs = §(32A1 — B1Ag)*(—A1Ag + AgAy + 2D Ay — 2A Ds),

Cy= —11—6(31A2 — BoA1)(ATAS + AJAT — 241 A9 A1 Ag + 245 BT Ay — 245 B1 Bo Ay + 443 D1 A1 A
—4A3A3Dy — 4B} A9 Dy — 241 B1 BoAg + 4By BoD1 Ay + 4By Bo A1 Dy + 2B1C1 A3 — 2B1CoA 1 Ay
+2A1B3A| —4B3D1 Ay — 2BoC1 A1 Ay + 2BoCy A3 +4D3A3 — 4A, D1 A3 — 8D1 A1 Ay Dy + 4A3D3
+ 44101 A0D5),

1
Cs = Z(BgAl = B1s)( = AsC1A1 Ay + AsCoA + 2B7C2 Ay — 2B1 ByC1 Ay — 2B1 By Ca Ay + 2B3C1 A4

+ AlClAg — QClDlAg + QClAlAQDQ — AlCZAlAQ + QCZDlAlAQ — QCQA%CQ),

1
Cy = 33( — B1AT A3 4 2C,AT A3 — 2By D1 AT A3 4 6B1 Dy AT A3 + BoA1ATAS + ABY By A1 A3 — 4B A3 A3
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—2C1ATAGAS — 4B D1 AT A AS + 2B1 A1 A1 A A5 — 8Co Dy AT Ay — 12B1 D3AT Ay + 8B5C1 AT A,
— 4B ByCaAT Ay + 8By D1 DyAT Ay — 4By Dy A1 AT Ay — AB1DIA3Ay — BiAZA3 Ay + 4BIC1AZA,
+4B1 D1 A1 A2 Ay — 8C1 D1 A AR Ay +4C A1 AL ASAy +16BB3D A1 Ay — 16Bi By Dy A Ay
—8B1B2A1 A1 Ay 4+ 8Co D1 AT Ay Ay + 8C1 Do AT A Ay — 40, Ay AT Ay Ay — 16 B By D1 Ag Ay
+16B DaAy Ay + 8B? By A1 Ao Ay — 8BoD? A1 Ag Ay — 2Bo A2 A1 Ay Ay — 1281 BoC1 A1 Ap Ay
+4B{CoA1 A As + 16B1D1C Dy A1 AgAs + 8Bo D1 Aj A1 Ag Ay — 8B1 Dy Ay A1 As Ay + 4B C3 A}
+8CyDIA% —4B1C2AS — 8C1D? A3 — 201 A3AS + 8C1 D1 A1 A3 + 8B D3A? — 8B, D D3A?
+8B3CoD AT — 16 B350, Dy A? + 8B BoCoDa A} 4+ 4By D3 A1 AT — 4B3Co A1 A — 8By DY A2
+ BoA3AZ — 6By D1 AZAS + 2B1 Do AZAS — 8B BoCy D1 A3 + 16 B7Cy Dy A3 + 8B, DI Dy A3
— 8B}C1DyA3 4+ 12By D? A; A2 + 4B, BoC1 Ay A% — 8BICo Aj AL — 8B1 D1 Dy A1 A2 + 4By CEA A3
+8CyDIAIAS 4 20, A2A A2 + 8B1C1Co A1 A2 +16C1 D1 Dy AL AL — 8C, Dy Ay A A2
—8C1 Dy Ay AL AL + 16 BSDIA; + 16Bf By Dy Ay + 4BSATA, — 32B,B3D1 Dy Ay — 16B3D1 A1 Ay
+16B1B3 Dy A1 Ay — 16B, B3 D} Ay — 16Bi D3 Ay — 4B B3 AT Ay — 4B, C3ATA, — 8C1 DIATA,
— 8ByC1C2A2 Ay — 16C2 D1 Dy AT Ay + 8Cy Dy Ay ATA, + 32B? Bo Dy DaAg + 168, B3D1 A1 Ay
— 16B?ByDy A1 Ay — 16B1 D1 D3A 1Ay + 4By Dy AZA 1 Ay + 8B3C1 D1 A1 Ay — 24B1 BoCoD1 A Ay
+16BoD? Dy A1 Ay + 2481 BoCy Do A1 Ay — 8BICo Dy A1 Ay + 8B1DEAI A1 Ay — 4B2C1 A1 A1 A
+12B1 ByCo A1 A1 Ag — 16B D1 Dy Ay A Ay),
= %( — A2B1CoA? + AZBoC1A? — 4A5B3Co Ay + 4A3 B BoCi Ay + 445 B2 BoCy Ay
—4A5B1B3C1 Ay +2A1 A3 B1Co A1 Ay — 4A5B1Co D1 A1 Ay + 4A5B1CoA2 Dy — 241 Ay BoCO1 A Ay
+4A9ByC1 D1 A1 Ay — 443 BoC1ATDy + 24507 A1 A3 — 44501 CoAT Ay + 2A45C3 A3 + 8B CoAy Dy
— 8BIByC 1Ay Dy + 4A, B ByCoAy — 8B? BoCy D1 Ay — 8B BoCy Ay Dy — 4B3C1 Co A2 + 4BICIA A
—4A,B1B2C1 Ay + 8B B3C1 D1 Ay + 8B, B2C1 A1 Dy — 4A, By B2Cy Ay 4 8B, B2Co D1 Ay
+4B1ByC?A35 — 4B BoC2A? — A2B1CyA2 — 4B1CoD? A% + 4A, BiCy D1 A2 + 8B,C2 D1 A1 As Dy
— 4BCoAID3 — 4A1B1Cy A Ay Dy + 4A BSC1 Ay — 8B3C1 D1 Ay — 4B3CEA1 A + 4B3C,1Co A2
+ A2ByC A2 + 4ByC1D? A3 — 4A1 ByC1 D1 A2 — 8ByCy1 D1 A1 Ay Dy + 4ByC1A2D2 4 4A1 BoC1 A Ay Dy
—2A,C}A3 + 402D A3 — ACEALALDy + 4A,C1Co AL A2 — 8C1Cy Dy A1 A3 + 8C1Co AT A, Dy
—241C3ATA, +4C5D1ATAS — 4C5ALD,),

1
— 33(
—4C D1 A A AS +2C1 A1 AL Ag A — AB O3 AT Ay — 12C1 D3AT Ay + 12B,C1 02 A2 Ay + 8Cy Dy Dy AT A,y

—4Co Dy A1 A2 Ay + 8B1CEAZAy — 4C1D3AZA; — CLATAZAy + 40 D1 A1 AS Ay +8B2CD1A Ay
+8B1ByCyD A1 Ay — 16B1 BoCyi Dy Ay Ay — 4B2C A1 A Ay — 4By BoCy A1 Ay Ay — 8B BoCy D1 Ag Ay
— 8B?CyD1AsAs + 16B3C1 Dy AgAg + 4B1 BoC1 A1 Ao Ay + 4B3Co A1 Ay Ay — 12B5C2 A Ay Ay

— 80y D3N Ay Ay — 205 ATA1 Ag Ay — 4B1C1Co A1 Ag Ay + 16C, Dy Do A1 Ag Ay + 8Co D1 A1 A1 Ag Ay
—8C1 Dy A1 A1 Ay Ay + ACSAY — ACTAS + 8C1 DiAT — 8Co D1 D3A? +16B,C53 DAY + 8B, C2 Do A2

— C1AT A5 — 205D ATAS + 6C1 Do AT AS + CoAjATAS + 4By BoC1 A A5 — 4B3C 1 Ag A3



— 24B5C1 0y Dy A2 — 8ByC2 A1 A? + 4Co D3 A A? — 8CoD3A2 + Oy A3AZ — 6Cy D1 AZAS 4 201Dy A3 A2
—8ByCED A% 4 24B,C1Cy D1 A3 — 16 B,CE Dy A% 4 8C1 DI Dy A3 + 4By CEALAS 4 12C, DI A A2
—12B,C1C2 A1 A3 — 8C1 D1 Dy Ay A + 1207 Cy A1 A3 + 16BSCT A, + 16 B BoC3 Ay + 16B3Co DA,
+16B1BsC1 D2A; + AB2Co A2\, — 328, B2C1C A — 16B2C1 D1 DsAy — 1681 BoCs D1 DaAy
— 16B2CyD1 A1 Ay + 8B3C1 Dy A1 Ay + 8B1ByCoDy Ay Ay — 16B1 B2CE Ay — 16 B3 C3 A,
—16B1ByCoD? Ay — 16 B2C1D3As — 4B1 BoCy A2 A5 — 12C,C2A3 A, + 32B2ByC1Co Ay
+ 16313201D1D2A2 + 163%CQD1D2A2 + 16B13202D1A1A2 — 8BlBgch2A1A2 — SB%CQDQAlAQ
—16C1 D1 D3A Ay + 4Co Dy ATA1 Ay — 24B1C3D1 A1 Ay — 8BoC1Cy D1 A1 Ay + 24ByCEDy A1 Ay
+ 1602D%D2A1A2 + 8B1C1CoDy A1 Ay + 1231022A1A1A2 + SchgAlAlAg +4ByC1Co A1 A1 Ay
—16C5D1 Dy A1 A Ay).
Note that if x1 # 9 is a solution of the polynomial system e; = e3 = 0

then x1 is a root of the resultants above, but both resultants have the same

roots, because these two polynomials are the same so we can pass from

one to another interchanging the variables x1 and z5. So the values of x

and x9 are the same. Consequently we only have at most 6 points (z1, x%)

and (w9, 23) which are points where the crossing limit cycle intersects the

parabola y = 22, but due to the symmetry explained above there can not

be more than 3 limit cycles. This completes the proof of Theorem 2(a) for
the parabola. O

Proof of statement (b) of Theorem 2 for the parabola. We give an example
with three crossing limit cycles. More precisely, in the region R; we consider
the linear Hamiltonian saddle

L. 2464 . 81322
&=20 =y, = e

2y (10)

with the first integral
40661 1232
ket R 2

H = - —y-.
@)=~ © 663 7
and in the region Ry we consider the linear center
21145 4 20 508 4
P o e 2, =2 g 11
522 30 oY YT Rr RT3V (11)

with the first integral

1
F(z,y) = @(30481' + 208822 — 21145y — 696xy + 5802).
This discontinuous piecewise differential system formed by the linear dif-
ferential Hamiltonian saddle (10) and the linear center (11) has three cross-

ing limit cycles, because the unique real solutions (p,q) of system (8) are
(6,36,2,4), (—5,25,-3/2,9/4) and (y1,v?,y2,y3) where

1 1
1= 75 (01 = Vo77921) and g = = (51 + V5T7921).
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Therefore the intersection points of the three crossing limit cycles with
the parabola are the pairs (6,36), (2,4); (=5,25), (—=3/2,9/4) and (y1,v?),
(y2,%5). See these three crossing limit cycles in Figure 2(a). These crossing
limit cycles are travelled in couterclockwise sense. O

3. PROOF OF THEOREM 2 FOR THE ELLIPSE

For these systems
Ry = {(z,y) e R? : 2% + ¢4 < 1},
which is the bounded region, and the region
Ry = {(z,y) € R? : 2% + 9 > 1},

which is the unbounded region. Without loss of generality we can assume
that in the region R; we have either a linear center or a linear Hamiltonian
saddle with first integral (6) and in the region Ry we have either a linear
center or a linear Hamiltonian saddle with first integral (7).

To have a crossing limit cycle, which intersects the ellipse z2 + %> = 1 in
two different points p = (r1,y1) and ¢ = (z2,y2), these points must satisfy
the closing equations

Gi(z1,y1) = Gi(w2,12),
Ga(x2,y2) = Ga(z1,y1),
P +yl= 1, (12)
wi+yi= 1
that can be written as
e1:= G1(w1,y1) — G1(22,2) = 0,
e1 = Ga(w1,51) — Ga(w2,92) = 0, (13)

ez =a2+ys —1=0,
es:=25+y3—1=0.

Proof of statement (a) of Theorem 2 for the ellipse. To study the number

of limit cycles it is necessary to compute the common zeros of e; and es

in (13) together satisfying es and e4. In order to be able to compute it

we use the rational parameterization of the circle, or in other words, we

introduce the change of variables

_ 2 ylzl—tf 2y — 2ts y2:1—t§
142 142 143 1+13

In these new variables equations the numerator of e; and the numerator of

e2 become, respectively

FE = —2(t1 — tz)(—Bl —C1 — A1ty — Ditg + Blt% — Clt% — 1)11*,:13 — Ajty — D1ty + 3B1t1ts
+ Citito — Dit3ty + Bitsty + Cit3ty 4+ Bit2 — Cit3 — Dityt3 4 3Bt — C1t3t2 + A t3t2

— Ditft3 — Dit3 + Bitits + Citats + Artits — Ditits — Bitjts + Citjts + t1 A1 + 124,

z1



10
— BN — B33A))
and

Eo = —2(t; — to)(—=Bg — Cy — Agty — Doty + Bot? — Cot? — Dot — Aoty — Doty + 3Botyts
+ Cytyty — Dottty + Botity + Cotity 4+ Bots — Cots — Daotyt5 4 3Batits — Cotits + Aotits
— Datt5 — Dot3 + Bat1ts + Cat1ts + Agtits — Datit3 — Batits + Cotfts + t1 Ag + ta g
~ BB - ),

respectively. We also consider the new variables

E E
—1 _ and Ej=-—"12 .
2(t1 — tg) 2(t1 — tQ)

As in the proof of Theorem 2 we compute the resultant between E3 and Ej
in the variable ¢ (since the resultant in the variable ¢; is the same). Doing
so, we obtain a polynomial of degree six in the variable ¢;. This polynomial
is very large and so we do not write it here. Using again the symmetry of
the solutions as in the proof of Theorem 2 we conclude that there are at
most three crossing limit cycles intersecting 2% 4+y? = 1. This completes the
proof of Theorem 2(a) for the ellipse. O

b5 =

Proof of statement (b) of Theorem 2 for the ellipse. We give an example with
three crossing limit cycles. More precisely, in the region R; we consider the
linear Hamiltonian saddle

T=2—x, ¢y=-—-4x+y, (14)
with the first integral
H(z,y) =2y + 22° — zy,
and in the region Ry we consider the linear center
T=7-40y, 9= -3+ 20z, (15)
with the first integral
F(z,y) = =3z — Ty + 102° + 204>
This discontinuous piecewise differential system formed by the linear dif-
ferential Hamiltonian saddle (14) and the linear center (15) has three cross-
ing limit cycles, because the unique real solutions (p, q) of system (12) are
(3/5,—4/5,—-4/5,-3/5), (1,0,4/5,3/5) and (—1,0,0,1). Therefore the in-
tersection points of the three crossing limit cycles with the ellipse are the
pairs (3/55 _4/5)7 (_4/55 _3/5), (1) 0)7 (4/57 3/5) and (_17 0)7 (O) 1) See

these three crossing limit cycles in Figure 2(b). These crossing limit cycles
are travelled in couterclockwise sense. O
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4. PROOF OF THEOREM 2 FOR THE HYPERBOLA

For these systems we have following regions in the plane:
Ry ={(z,y) eR*: 2% —y® > 1},
which is a region that consist of two connected components, and the region
Ry = {(z,y) e R? : 2% — ¢ < 1}.

Without loss of generality we can assume that in the region R; we have
either a linear center or a linear Hamiltonian saddle with first integral (6)
and in the region Ry we have either a linear center or a linear Hamiltonian
saddle with first integral (7).

To have a crossing limit cycle, which intersects the hyperbola 2> — 3% = 1
in two different points p = (z1,y1) and ¢ = (x2, y2), these points must satisfy
the closing equations

Hi(z1,y1) = Hi(z2,y2),
Hy(z2,y2) = Ha(z1,y1),

Boui= 1, 1o
x% — y% = 1,
or equivalently
e1:= Gi(z1,41) — Gi(z2,y2) =0,
e1 1= Ga(z1,41) — Ga(22,y2) = 0, (17)
ez =a2 —ys —1=0,
eq:=25—y3—1=0.

Proof of statement (a) of Theorem 2 for the hyperbola. To study the num-
ber of limit cycles it is necessary to compute the common zeros of e; and es
in (17) together satisfying e3 and e4. In order to be able to compute it we
use the rational parameterization of the hyperbola, or in other words, we

introduce the change of variables
1+ 2t 1+13 2t9
1 = —— = —F, IT9= ——=5 = —s.
1 1—1’,‘%’ 1 1—75% 2 1—1’:%’ Y2 1-75%

In these new variables equations the numerator of e; and the numerator of
e2 become, respectively,

Ey = —2(t; — to)(=By + Dy — Aty — City — Byt — Dyt + C1t5 — Aty — City — 3Bityto
+ Dityto + Citity + Bitity — Ditity — Bits — Dit3 + Cityt3 4 3Bit3t3 + Dit3t3 + A tit3
— Citit5 + C1t3 + Bytat — Dytats + Aytity — Citits + Butits + Dit}ts — 1A — taAy
+ A + BH3AT)

Ey = —2(t1 — tQ)(—BQ + Dy — Aoty — Cotq — Bgt% — Dgt% + Cgt% — Aoty — Cotg — 3Botqta
+ Dotyto + Cotity + Botdty — Dotity — Bots — Dot3 + Cotqt3 4 3Bott3 + Dot3t2 + Aotits
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— Cotits + Cat3 + Batathy — Dat1t3 + Agtity — Cotits + Botit + Dat}ty — t1 Ay — ta/Ay
+ 1330 + 133 A),
respectively. We also consider the new variables
E E
— _ and By = 2.
2(t1 — tg) 2(t1 — tg)
As in the proof of Theorem 2 we compute the resultant between F3 and Fy
in the variable ty (since the resultant in the variable ¢; is the same). Doing
so, we obtain a polynomial of degree six in the variable ¢;. This polynomial
is very large and so we do not write it here. Using again the symmetry of
the solutions as in the proof of Theorem 2 we conclude that there are at
most three crossing limit cycles intersecting 2 — 32 = 1. This completes the
proof of Theorem 2(a) for the hyperbola. O

Fs =

Proof of statement (b) of Theorem 2 for the hyperbola. We give an example
with three crossing limit cycles for the discontinuous piecewise differential
system (14)-(15) but with the discontinuous line the hyperbola y — x2 +
2y /5000 = 0.

The unique real solutions (p, q) of system (16) are (z1,y1,x2,y2) given by

(—6.32869587046.., 40.1031515507.., 7.19045317418.., 51.6283705739..),
(2.749783799607.., 7.55715483619.., 5.71306538283.., 32.6018647515..),
(—4.8335367422.., 23.3856845520.., —1.944028944857.., 3.780718503683..).

We have the exact expressions of these three solutions but they are very
big, and we only give here their approximations. See these three cross-
ing limit cycles in Figure 2(c). These crossing limit cycles are travelled in
couterclockwise sense. O
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