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Abstract

In this paper we initiate the study of the Chebyshev property of Abelian
integrals generated by a non-generic turning point in planar slow-fast sys-
tems. Such Abelian integrals generalize the Abelian integrals produced
by a slow-fast Hopf point (or generic turning point), introduced in (Du-
mortier and Roussarie (2009), [5]), and play an important role in studying
the number of limit cycles born from the non-generic turning point.
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1 Introduction

In this work we are concerned with the study of the Abelian integrals

Ij(h) =

∫

γh

e−2nȳx̄2n+2j+1dȳ, n ∈ N, j = −n, 0, 1, 2 . . .

and with their derivatives

d

dh
Ij(h) = −2n+ 2j + 1

4n2
Īj(h) where Īj(h) =

∫

γh

x̄2j+1dȳ. (1)

A proof of (1) is given in Section 2. Here γh, with h ∈]0, 1[, denotes the oval
surrounding the origin described by the level of energy {H(x̄, ȳ) = h} where
H(x̄, ȳ) = 2ne−2nȳ(ȳ− x̄2n + 1

2n ). We assume that the ovals are oriented clock-
wise. The boundary of the period annulus formed by {γh}h∈]0,1[ consists of the

origin (x̄, ȳ) = (0, 0) and the curve ȳ = x̄2n− 1
2n (see Figure 1). They correspond

to the level sets h = 1 and h = 0, respectively.

When n = 1, the above Abelian integrals arise from a slow-fast Hopf point
at the origin (x, y) = (0, 0) in slow-fast family of Liénard systems

(
y − x2 +O(x3)

) ∂

∂x
+ ε2(εα− x)

∂

∂y
, (2)
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Figure 1: The blow-up locus and indication of the period annulus formed by
{γh}h∈]0,1[ and its boundary (see Section 3).

where ε ≥ 0 is a small singular perturbation parameter and α ∼ 0 is a regular
parameter. This has been observed in [5] where the cyclicity of (x, y) = (0, 0)
(i.e., the maximum number of limit cycles in an (ε, α)-uniform neighborhood of
(x, y) = (0, 0)) in the Liénard family (2) has been studied using so-called family
blow-up. If the Liénard family is analytic or C∞-smooth with finite codimen-
sion, then the cyclicity of the origin is finite (see [5, Theorem 7.3]). To find a
good upper bound for the cyclicity, the following conjecture formulated in [5]
has to be solved:

Conjecture Let n = 1. For each m ≥ 0, the functions Īj j = −1, 0, 1, . . . ,m−1,
defined in (1), form an extended complete Chebyshev system on [h0, 1] for any
h0 ∈]0, 1[.

Extended complete Chebyshev systems (shortly, ECT-systems) are defined
in Section 2. For m ≤ 2, the conjecture is proved in [7] or [13]. The conjecture
is also true near the center h = 1, i.e. for each m ≥ 0 there exists ε > 0
such that (Ī−1, Ī0, . . . , Īm−1) is an ECT-system on [1 − ε, 1] (see [7, Corollary
3.5]). Furthermore, in [14, Theorem A] it has been shown that for each m ≥ 0
there exists ε > 0 such that (Ī−1, Ī0, . . . , Īm−1) is an ECT-system on ]0, ε]. The
conjecture has been solved recently by Chengzhi Li and Changjian Liu in the
paper [12] currently under review.

The main purpose of this paper is to study the Chebyshev property of
(Ī−n, Ī0, Ī1, . . . , Īm−1), with m = 0, 1, . . . , on the interval ]0, 1[ for any fixed
integer n > 1. When m = 0, the set of functions is only formed by Ī−n. Our
motivation is the following generalization of system (2):

(
y − x2n +O(x2n+1)

) ∂

∂x
+ ε2n(ε2n−1α− x2n−1)

∂

∂y
, (3)

where n > 1, ε ≥ 0 is the singular perturbation parameter and α ∼ 0. We say
that slow-fast Liénard family (3) has a non-generic turning point at the origin
(x, y) = (0, 0). Like in the generic case (n = 1), to study the cyclicity of (x, y) =
(0, 0) inside (3), one typically uses a family blow-up at (x, y, ε) = (0, 0, 0). After
desingularization of (3) near the origin, one has to deal with the Chebyshev
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property of the integrals (Ī−n, Ī0, Ī1, . . . , Īm−1). For more details about the
connection between the non-generic turning point (3) and the Abelian integrals
(Ī−n, Ī0, Ī1, . . . , Īm−1), we refer the reader to Section 3.

Large canard limit cycles of (3), of size O(1) in the (x, y)-phase space, have
been treated in [2]. As far as we know, the cyclicity of (x, y) = (0, 0) in (3) has
not been studied. For the study of the cyclicity of some other slow-fast points,
different from the Liénard systems (2) and (3), see e.g. [3, 8, 9, 11].

We stress that the goal of this paper is not to prove finite cyclicity of non-
generic turning points, which is a result that needs further research to approach
and it is beyond the scope of this manuscript. We mostly focus on the ECT-
property of the ordered set (Ī−n, Ī0, Ī1, . . . , Īm−1).

We prove that a result similar to [7, Corollary 3.5] and [14, Theorem A] is
true for each fixed n > 1 (see Theorems 2.2 and 2.3 in Section 2). The main
difference between the statement of [7, Corollary 3.5] (n = 1) and Theorem 2.2
(n > 1) is that for n > 1 the boundary point h = 1 is not included in the interval
on which the ECT-property holds. The function Ī−n goes to infinity as h→ 1−

(see Lemma 4.1).

Applying methods from [13] to the case where n > 1 it can be seen that,
for any fixed integer n > 1, (Ī−n, Ī0) is an ECT-system on [ε, 1− ε]. The proof
is analogous to the proof for n = 1 and we therefore omit it for the sake of
brevity. We did not succeed in using [13] to prove the same for the ordered set
(Ī−n, Ī0, Ī1) when n > 1. This is a topic of further study.

Further, we prove the monotonicity property of the quotient I0/I−n on the
interval ]0, 1[ for each n > 1 (see Theorem 2.4). Theorem 2.4 naturally general-
izes [4, Theorem 18] which covers the case of n = 1. Theorem 2.4 can be used to
prove existence and uniqueness of limit cycles of planar systems obtained after
desingularization of non-generic turning points. For more details see Theorem
3.2 in Section 3.

In Section 2 we recall the definition of ECT-systems and state the main
results of this paper. As already mentioned above, in Section 3 we motivate our
study of the Abelian integrals. We prove the main results in Section 4.

2 Definitions and statement of results

Definition 2.1. Let f0, f1, . . . , fn−1 be analytic functions on a real interval
with nonempty interior I. The ordered set of functions (f0, f1, . . . , fn−1) is an
extended complete Chebyshev system (in short, ECT-system) on I if, for all
k = 1, 2, . . . n, any nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I counted with multiplicity.
(Notice that in this abbreviation ”T” stands for Tchebycheff, which in some

sources is the transcription of the Russian name Chebyshev.)

One can prove (see [7, Lemma 3.7]) that (f0, f1, . . . , fn−1) is an ECT-system
on I if and only if the sequence F1, . . . ,Fn−1, with Fk = {fkk , fkk+1, . . . , f

k
n−1},

can be constructed such that:
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1. Defining f1
i := fi

f0
, i = 1, . . . , n − 1, the functions fk+1

i :=
(fki )′

(fkk )′
, for

k = 1, . . . , n− 2 and i = k + 1, . . . , n− 1, are analytic on I and

2. f0 and (fkk )′, k = 1, . . . , n− 1, are nowhere zero on I.

This equivalent definition of ECT-system has been used in [5] with I being a
closed interval [a, b]. If I = [a, b], then we have the following stability property
of ECT-system (see [5, Proposition 7.6]): If (f0, f1, . . . , fn−1) is an ECT-system
on [a, b] and if gi is an analytic function sufficiently close to fi in the Cn−1-
topology, for i = 0, . . . , n− 1, then (g0, g1, . . . , gn−1) is also an ECT-system on
[a, b]. We will use this stability property in Section 3.

The following results show that the number of zeros of any nontrivial linear
combination of the Abelian integrals are bounded locally near the endpoints of
the interval ]0, 1[. We note that in the following statements, when m = 0 the
set of functions is only formed by Ī−n.

Theorem 2.2. For each m ≥ 0 there exists ε > 0 such that (Ī−n, Ī0, Ī1, . . . , Īm−1)
is an ECT-system on [1− ε, 1[.

Theorem 2.2 will be proved in Section 4.1.

Theorem 2.3. For each m ≥ 0 there exists ε > 0 such that (Ī−n, Ī0, Ī1, . . . , Īm−1)
is an ECT-system on ]0, ε].

We prove Theorem 2.3 in Section 4.2.

Theorem 2.4. Let P (h) = I0(h)
I−n(h) . Then P (h) > 0 and P ′(h) < 0, for all

h ∈]0, 1[, and limh→1− P (h) = 0.

For n = 1, Theorem 2.4 has been proved by Chengzhi Li in [4] using the
method from [1]. We use the same technique to prove it in the case where n > 1
(see Section 4.3).

Lemma 2.5. The formula in (1) holds for every positive integer n and j =
−n, 0, 1, 2 . . . .
Proof. Notice that the oval γh = {H(x̄, ȳ) = h}, where H is defined in Section
1, has two components: x̄ = x̄−(ȳ, h) < 0 and x̄ = x̄+(ȳ, h) > 0. We have

x̄+ = −x̄−, due to the symmetry of γh, and ∂x̄±
∂h = − e2nȳ

4n2x̄2n−1
±

. Now, it easily

follows that

d

dh
Ij(h) =(2n+ 2j + 1)

∫

γh

e−2nȳx̄2n+2j

(
− e2nȳ

4n2x̄2n−1

)
dȳ

=− 2n+ 2j + 1

4n2

∫

γh

x̄2j+1dȳ

where we use the notation x̄ for x̄±. This gives (1).

3 Motivation

Consider slow-fast polynomial Liénard equations

Xε,α,a :

{
ẋ = y −

(
x2n +

∑m
k=1 akx

2n+k
)

ẏ = ε2n
(
ε2n−1α− x2n−1

)
,

(4)
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Figure 2: Dynamics of X0,α,a in a neighborhood of the contact point.

where m,n ≥ 1, a := (a1, . . . , am) is kept in a compact set K ⊂ Rm, ε ≥
0 is a small singular perturbation parameter and α ∼ 0 is a small regular
parameter. To study the number and configurations of limit cycles of (4), we can
use geometric singular perturbation theory. The theory is essentially composed
of two parts, one of which, called Fenichel theory [6], describes the dynamics of
Xε,α,a near normally hyperbolic manifolds. The other part is family blow-up
[4, 11]; it is used to desingularizeXε,α,a for example near the origin (x, y) = (0, 0)
where the normal hyperbolicity is lost.

More precisely, the fast subsystem X0,α,a has the curve of singularities S =
{(x, y) ∈ R2|y = x2n +

∑m
k=1 akx

2n+k} and horizontal fast movements. The
critical curve S contains near the origin (x, y) = (0, 0) a normally repelling part
x < 0, a normally attracting part x > 0 and a nilpotent contact point x = 0
which separates them (see Figure 2). The contact point is generic (resp. non-
generic) when n = 1 (resp. n > 1). For ε > 0 and ε ∼ 0, the dynamics of Xε,α,a,
uniformly away from S, can be described using regular horizontal orbits of the
fast subsystem X0,α,a. Near the normally hyperbolic parts of S, the dynamics
of Xε,α,a is given by the slow flow (often called slow dynamics)

x′ = − x2n−1

∂F
∂x (x, a)

where F (x, a) := x2n +
∑m
k=1 akx

2n+k. When x ∼ 0 and x 6= 0, the slow
dynamics points from the attracting part of S to the repelling part of S (note
that x′ = − 1

2n + O(x) < 0). Thus, we call the contact point (x, y) = (0, 0) a
turning point.

To see how the Abelian integrals defined in Section 1 come into play, we blow
up the origin (x, y, ε) = (0, 0, 0) in Xε,α,a + 0 ∂

∂ε using the following “singular”
coordinate change (see [2, 10])

(x, y, ε) = (rx̄, r2nȳ, rε̄), r ≥ 0, ε̄ ≥ 0, (x̄, ȳ, ε̄) ∈ S2. (5)

We work with different charts in (5).
Family directional chart {ε̄ = 1}. In this chart we have (x, y) = (εx̄, ε2nȳ),
with ε = r, where we keep (x̄, ȳ) in a large compact set in R2. In these new
coordinates the system Xε,α,a, defined in (4), becomes (after division by ε2n−1 >
0)

XF
ε,α,a :

{
˙̄x = ȳ −

(
x̄2n +

∑m
k=1 akε

kx̄2n+k
)

˙̄y = α− x̄2n−1.
(6)
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When ε = α = 0, system (6) is given by
{

˙̄x = ȳ − x̄2n

˙̄y = −x̄2n−1.
(7)

System (7) has a center at the origin (x̄, ȳ) = (0, 0), with

H(x̄, ȳ) = 2ne−2nȳ

(
ȳ − x̄2n +

1

2n

)

as a first integral, and the invariant curve {ȳ = x̄2n − 1
2n} is the boundary of

the period annulus (Figure 1).
The phase directional charts {x̄ = ±1, ȳ = ±1}. The most interesting phase
directional chart is the chart {ȳ = +1}. In this chart we find two semi-hyperbolic
singularities p± located on the equator of the blow up locus (they are the end
points of the invariant curve {ȳ = x̄2n − 1

2n}). For a detailed study of Xε,α,a

in the {ȳ = +1}-direction see e.g. [10]. The other phase directional charts
({x̄ = ±1, ȳ = −1}) are not relevant when we study limit cycles of Xε,α,a near
the origin in the (x, y)-space.

To find the cyclicity of (x, y) = (0, 0) in Xε,α,a, we have to study three
different types of limit periodic sets, for ε = α = 0, which may produce limit
cycles after perturbations: the center γ1 represented by {H(x̄, ȳ) = 1}, closed
orbits of (7) surrounding the origin, denoted by γh = {H(x̄, ȳ) = h} where
h ∈]0, 1[, and the polycycle γ0 consisting of the singularities p± and heteroclinic
orbits between them. Let ρ > 0 be arbitrarily small and fixed. Limit cycles
bifurcating from ∪h∈[ρ,1]γh can be studied inside XF

ε,α,a using the family chart
{ε̄ = 1}. In order to treat γ0, the charts {ε̄ = 1} and {ȳ = +1} have to be
combined. In this paper we don’t study limit cycles produced by γ0 (see Remark
3.4).

Define a section Σ = {x̄ = 0, ȳ ≥ 0} parametrized by h ∈]0, 1] by means of
the relation H(0, ȳ) = h and a section Σ0 ⊂ {x̄ = 0, ȳ > 0} parametrized by
h ∈ [ρ, 1− ρ]. For ε ≥ 0 small enough we define the Poincaré map P(h, ε, α, a)
of XF

ε,α,a from Σ0 ⊂ Σ to Σ. Notice that we focus on the return map P with
(ε, α) ∼ (0, 0), ε ≥ 0 and a ∈ K, defined uniformly away from γ0 and γ1. We
have

Proposition 3.1. The Poincaré map P(h, ε, α, a) of XF
ε,α,a can be written as

P(h, ε, α, a) = h+ 4n2α

(
−
∫

γh

e−2nȳdx̄+ U−n(h, ε, α, a)

)

+ 4n2
l∑

j=0

a2j+1ε
2j+1

(
−
∫

γh

e−2nȳx̄2(n+j)+1dȳ + Uj(h, ε, α, a)

)

(8)

where l is the largest integer with the property 2l + 1 ≤ m and U−n, Uj are
analytic functions identically zero when (ε, α) = (0, 0): U−n(h, 0, 0, a) = 0 and
Uj(h, 0, 0, a) = 0 for j = 0, . . . , l.

Proof. We first study the Poincaré map P̃(h, α,A) of
{

˙̄x = ȳ −
(
x̄2n +

∑m
k=1Akx̄

2n+k
)

˙̄y = α− x̄2n−1 (9)
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where α ∼ 0 and A = (A1, . . . , Am) ∼ (0, . . . , 0). (If Ak = akε
k, then system

(9) becomes XF
ε,α,a and P(h, ε, α, a1, . . . , am) = P̃(h, α, a1ε, . . . , amε

m).) For
(α,A) = (0, 0), the function H is the Hamiltonian of the (Hamiltonian) vector
field (9), multiplied by 4n2e−2nȳ. If we denote by Ω the dual 1−form of (9),
then we have

4n2e−2nȳΩ = dH + 4n2αe−2nȳdx̄+ 4n2
m∑

k=1

Ake
−2nȳx̄2n+kdȳ.

Since
∫
γh,α,A

4n2e−2nȳΩ = 0 and
∫
γh,α,A

dH = P̃(h, α,A)− h, where γh,α,A is a

part of the orbit of (9) (multiplied by 4n2e−2nȳ) between h ∈ Σ0 and the next

intersection P̃(h, α,A) ∈ Σ in forward time, we obtain

P̃(h, α,A) = h+ 4n2α

(
−
∫

γh

e−2nȳdx̄+ V−n(h, α,A)

)

+ 4n2
m∑

k=1

Ak

(
−
∫

γh

e−2nȳx̄2n+kdȳ + Vk(h, α,A)

)
, (10)

where V−n, Vk are analytic functions, V−n(h, 0, 0) = 0 and Vk(h, 0, 0) = 0 for
k = 1, . . . ,m. Here we used the fact that γh,α,A converges uniformly to the oval
γh when (α,A)→ (0, 0), where the section Σ0 is parametrized by h ∈ [ρ, 1− ρ].

On the other hand, P̃(h, α,A) = h for α = A2j+1 = 0, j = 0, . . . , l, due to the
symmetry (x, t) → (−x,−t). This, together with (10) and a Taylor expansion,
implies

P̃(h, α,A) = h+ 4n2α

(
−
∫

γh

e−2nȳdx̄+ V−n(h, α,A)

)

+ 4n2
l∑

j=0

A2j+1

(
−
∫

γh

e−2nȳx̄2n+2j+1dȳ + Vj(h, α,A)

)

for some new analytic functions V−n, Vj with V−n(h, 0, 0) = 0 and Vj(h, 0, 0) = 0
for j = 0, . . . , l. This implies (8).

Theorem 3.2. Let U be any compact set in the interior of the period annulus
of (7) and let κ > 0 be arbitrary and fixed. Then there exist sufficiently small
ε0 > 0 and α0 > 0 such that system XF

ε,α,a–given in (6)–has at most one periodic
orbit in U , for all (ε, α, a) ∈ [0, ε0]× [−α0, α0]×K, (ε, α) 6= (0, 0) and |a1| ≥ κ.

Proof. Let ρ > 0 be small enough such that U ⊂ ∪h∈[ρ,1−ρ]γh and let κ > 0 be
small and fixed. If |a1| ≥ κ, then the Poincaré map given in (8) can be written
as

P(h, ε, α, a) =h+ 4n2α

(
−
∫

γh

e−2nȳdx̄+ U−n(h, ε, α, a)

)

+ 4n2a1ε

(
−
∫

γh

e−2nȳx̄2n+1dȳ + U0(h, ε, α, a)

)
(11)

where h ∈ [ρ, 1−ρ] and U−n, U0 are analytic functions and are equal to zero when
(ε, α) = (0, 0). Following Theorem 2.4, (I−n, I0), with I−n(h) = 1

2n

∫
γh
e−2nȳdx̄
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since
∫
γh
d
(
e−2nȳx̄

)
= 0 and I0(h) =

∫
γh
e−2nȳx̄2n+1dȳ, is an ECT-system on

[ρ, 1 − ρ]. This implies that (−2nI−n,−I0) is an ECT-system on [ρ, 1 − ρ].
Now, using the stability property (Section 2) of (−2nI−n,−I0) on the segment
[ρ, 1−ρ], we have that (−2nI−n+U−n,−I0 +U0) is an ECT-system on [ρ, 1−ρ],
for each (ε, α) ∼ (0, 0), a ∈ K and |a1| ≥ κ (note that U−n, U0 are equal to zero
when (ε, α) = (0, 0)). Now, using (11), the equation {P(h, ε, α, a)−h = 0} has at
most one solution in [ρ, 1− ρ] counted with multiplicity, for each (ε, α) ∼ (0, 0),
(ε, α) 6= (0, 0), a ∈ K and |a1| ≥ κ. This solution corresponds to a periodic
orbit of XF

ε,α,a.

Remark 3.3. Theorem 3.2 gives the uniqueness of limit cycles of XF
ε,α,a in the

compact set U , for |a1| ≥ κ. Using (11) and The Implicit Function Theorem we
see that XF

ε,α,a has a limit cycle near γh, with h ∈ [ρ, 1− ρ], for

α = −a1ε

2n

(
I0
I−n

(h) + o(1)

)

where o(1)→ 0 as ε→ 0.

Remark 3.4. To find an optimal upper bound for the number of limit cycles of
(4) in a fixed neighborhood of (x, y) = (0, 0), independent of ε → 0, it is more
suitable to study the Chebyshev property of (Ī−n, Ī0, Ī1, . . . , Īl). These integrals
appear in the expression for the derivative of P given in (8). The reason for this
comes from [5] where the same has been done for n = 1. In fact, the Chebyshev
property of the derivatives is relevant in a gluing process with the polycycle γ0

(see for example [5, Proposition 7.17] or [8]). As already observed in [14] for
n = 1, we recall that the Chebyshev property of (Ī−n, Ī0, Ī1, . . . , Īl) in the limit
h → 0, obtained in Theorem 2.3, does not say anything about the number of
limit cycles produced by γ0 for n > 1. One has to use different techniques to
study the cyclicity of γ0 (see [5]). This topic is therefore not a subject of the
present paper.

4 Proofs of Theorem 2.2–Theorem 2.4

4.1 Proof of Theorem 2.2

Lemma 4.1. For each j ∈ {−n, 0, 1, 2, . . . }, Īj(h) = (1− h)
2j+1+n

2n (aj + gj(h))
where aj 6= 0 and gj is an analytic function at h = 1 with gj(1) = 0.

Proof. When n = 1, this has been proved in [7, Lemma 3.4]. When n > 1,
Lemma 4.1 can be proved in similar fashion. However, for the sake of complete-
ness, we will give a sketch of the proof of this lemma. We know that γh can
be described by {C(ȳ) + D(ȳ)x̄2n = 1 − h}, with C(ȳ) = 1 − 2ne−2nȳ(ȳ + 1

2n )
and D(ȳ) = 2ne−2nȳ. The oval γh, with h ∈]0, 1[, intersects the ȳ-axis at
− 1

2n < ȳ−(h) < 0 < ȳ+(h) < +∞. Clearly, C(ȳ±(h)) = 1 − h. Since

C(ȳ) = 2n2ȳ2(1 + O(ȳ)) near ȳ = 0, it follows that g(ȳ) = sgn(ȳ)
√
C(ȳ) is

an analytic diffeomorphism on ] − 1
2n ,+∞[. We have ȳ±(h) = g−1(±

√
1− h)
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and

Īj(h) =

∫

γh

x̄2j+1dȳ = −2

∫ g−1(
√

1−h)

g−1(−
√

1−h)

(
1− h− C(ȳ)

D(ȳ)

) 2j+1
2n

dȳ

= −2(1− h)
2j+1+n

2n

∫ 1

−1

(g−1)′(
√

1− hs)
(D

2j+1
2n )(g−1(

√
1− hs))

(1− s2)
2j+1
2n ds,

with j = −n, 0, 1, . . . . In the last step we use the change of coordinates g(ȳ) =√
1− hs and C(ȳ) = g(ȳ)2. Note that the function

z 7→ (g−1)′(z)

(D
2j+1
2n )(g−1(z))

is analytic at z = 0, and thus can be written as
∑
k≥0 bkz

k. We obtain now

Īj(h) = −2(1− h)
2j+1+n

2n

∫ 1

−1

(∑

k≥0

bk(
√

1− hs)k
)

(1− s2)
2j+1
2n ds

= −2(1− h)
2j+1+n

2n

∑

k≥0

b2k(1− h)k
∫ 1

−1

s2k(1− s2)
2j+1
2n ds.

This implies the analyticity of Īj(h)/(1 − h)
2j+1+n

2n at h = 1, for each j =
−n, 0, 1, . . . . As (g−1)′(0) = 1√

2n
and D(0) = 2n, we have

lim
h→1−

Īj(h)

(1− h)
2j+1+n

2n

= −2b0

∫ 1

−1

(1− s2)
2j+1
2n ds =

−2
√

2πΓ( 2j+1+2n
2n )

(2n)
2j+1+2n

2n Γ( 2j+1+3n
2n )

=: aj

where Γ is the Gamma function.

Proof of Theorem 2.2. For each α ∈ Q we say that a function f belongs to the
set Rα if there exists ε > 0 such that f(h) = (1− h)αF (h) for all h ∈ [1− ε, 1[,
where F is an analytic function at h = 1 satisfying F (1) 6= 0. We notice that if
f ∈ Rα and g ∈ Rβ with α > β then ( fg )′ ∈ Rα−β−1.

Let us fix 0 ≤ k ≤ m − 1 and consider any function in the linear span of
Ī−n, Ī0, . . . , Īk, that is

`(h) = η−nĪ−n(h) + η0Ī0(h) + · · ·+ ηk Īk(h)

where η−n, η0, . . . , ηk ∈ R. We can consider ηk 6= 0 since otherwise `(h) belongs
to the linear span with lesser index k. For the sake of compactness we rewrite
the previous equality as

`0 = η−nĪ
0
−n + η0Ī

0
0 + · · ·+ ηk Ī

0
k .

From Lemma 4.1 we know that Ī0
−n ∈ R 1−n

2n
. In particular, there exists ε0 > 0

such that Ī0
−n(h) 6= 0 for all h ∈ [1 − ε0, 1[. This allows the first step of the

division-derivation algorithm, producing the function

`1 :=

(
`0

Ī0
−n

)′
= η0

(
Ī0
0

Ī0
−n

)′
+ η1

(
Ī0
1

Ī0
−n

)′
+ · · ·+ ηk

(
Ī0
k

Ī0
−n

)′
.

9



For an analytic function f , let us denote by Z(f, ε) the number of zeros of f on
the interval [1 − ε, 1[ counted with multiplicity. By Rolle’s Theorem, we have

that Z(`0, ε0) ≤ Z(`1, ε0) + 1. Let us denote Ī1
i := (

Ī0
i

Ī0
−n

)′ for all i = 0, 1, . . . , k.

We point out that, from Lemma 4.1 and the remark at the beginning of the
proof, Ī1

i ∈ R i
n

. Therefore Ī1
0 ∈ R0 and so there exists 0 < ε1 < ε0 such that

Ī1
0 (h) 6= 0 for all h ∈ [1 − ε1, 1[. We can then perform the second step of the

division-derivation algorithm, obtaining

`2 :=

(
`1

Ī1
0

)′
= η1

(
Ī1
1

Ī1
0

)′
+ η2

(
Ī1
2

Ī1
0

)′
+ · · ·+ ηk

(
Ī1
k

Ī1
0

)′
.

Therefore we can ensure that Z(`0, ε1) ≤ Z(`2, ε1)+2. Now, denoting Ī2
i := (

Ī1
i

Ī1
0

)′

we have that Ī2
i ∈ R i−n

n
for i = 1, 2, . . . , k. In particular, Ī2

1 ∈ R 1−n
n

and we

can perform the next step in the division-derivation algorithm. Following this
procedure, the (j + 1)-step in the algorithm is

`j+1 :=

(
`j

Ījj−1

)′
= ηj

(
Ījj

Ījj−1

)′
+ · · ·+ ηk

(
Ījk
Ījj−1

)′

with Īj+1
i := (

Īji
Ījj−1

)′ for i = j, j + 1, . . . , k and Īj+1
j ∈ R 1−n

n
. Thus we can

perform it since the (k + 1)-step, obtaining

`k+1 :=

(
`k

Īkk−1

)′
= ηk

(
Īkk
Īkk−1

)′
,

with Īk+1
k := (

Īkk
Īkk−1

)′ ∈ R 1−n
n

and ηk 6= 0. In particular Īk+1
k does not vanish on

[1 − εk+1, 1[ for some 0 < εk+1 < εk < · · · < ε0 and Z(`0, εk) ≤ Z(`k+1, εk) +
k + 1. Since the sequence of ε0, ε1, . . . , εk+1 does not depend on ` but only on
the Abelian integrals Ī−n, Ī0, . . . , Īk, this shows that, by taking ε = εk+1, any
function in the linear span of Ī−n, Ī0, . . . , Īk has at most k + 1 zeros, counted
with multiplicity, on the interval [1− ε, 1[.

4.2 Proof of Theorem 2.3

The oval γh intersects the ȳ-axis in two points (0, ȳ±(h)) for each h ∈]0, 1[,
where ȳ−(h) < 0 < ȳ+(h) are the two solutions of

f(ȳ) := H(0, ȳ) = 2ne−2nȳ

(
ȳ +

1

2n

)
= h.

From the definition of γh, we have that any (x, y) ∈ γh satisfies the equality
x̄2n = ȳ + 1

2n − h
2ne

2nȳ. Therefore we can write the Abelian integrals (1) as

Īj(h) = 2

∫ 0

ȳ−(h)

[ȳ + 1
2n − h

2ne
2nȳ]

2j+1
2n dȳ + 2

∫ ȳ+(h)

0

[ȳ + 1
2n − h

2ne
2nȳ]

2j+1
2n dȳ

for j = −n, 0, 1, 2, . . . Let us denote by Ī−j (h) (resp. Ī+
j (h)) the left-hand side

integral (resp. right-hand side integral) of the splitting of Īj(h). We point out

10



that the functions ȳ±(h) are analytic on ]0, 1[. Moreover, since f ′(− 1
2n ) 6= 0,

the function ȳ−(h) can also be extended analytically to h = 0 by ȳ−(0) := − 1
2n .

In consequence, the functions Ī−j (h) are analytic at h = 0 since 2j+1
2n > −1

for j ∈ {−n, 0, 1, 2, . . . }. Following the steps in [14] we perform the change of
variable

h = f( 1
2ns ) = e−1/s( 1

s + 1)

and we define Îj(s) = Īj(f( 1
2ns )). We also define Î±j (s) accordingly.

Lemma 4.2. For each j ∈ {−n, 0, 1, 2, . . . }, Î+
j (s) = (2ns)−

2n+2j+1
2n ψ 2j+1

2n
(s)

for all s > 0, where ψα(s) :=
∫ 1

0
[(1 + s)(1− e−t/s)− t]αdt, for α > −1.

Proof. From the fact that ȳ+(h) is the positive solution of f(ȳ) = h we have
that ȳ+(f(u)) = u. Then, performing the change of variable ȳ = 1−t

2ns we get

Î+
j (s) = Ī+

j (f( 1
2ns )) =

∫ 1
2ns

0

[ȳ + 1
2n − 1

2nf
(

1
2ns

)
e2nȳ]

2j+1
2n dȳ

= (2ns)−
2n+2j+1

2n

∫ 1

0

[(1 + s)(1− e−t/s)− t] 2j+1
2n dt

with 2j+1
2n > −1 for all j = −n, 0, 1, 2, . . . This proves the result.

Let us define the function

Jα(s) :=

∫ 1−e1− 1
s

0

[x+ s ln(1− x)]αdx, for s > 0.

Next two results are proved in [14, Lemma 2.3] and [14, Lemma 2.4] respectively.

Lemma 4.3. ψα(s) = − 1
α+1 [(1 + s)(1− e−1/s)− 1]α+1 + (1 + s)α+1Jα( s

1+s ).

Lemma 4.4. For every α > −1, lims→0+ Jα(s) = 1
1+α . Moreover, for every

` ∈ N, lims→0+ s`∂`sJα(s) = 0.

Proof of Theorem 2.3. For each α ∈ Q we say that a function f belongs to the
set Sα if there exists ε > 0 such that f(s) = sαF (s) for all s ∈]0, ε[, with

lim
s→0+

s`∂`sF (s) =

{
a if ` = 0,

0 if ` > 0,

for some a 6= 0. We claim at this point that if f ∈ Sα and g ∈ Sβ with α 6= β
then (f/g)′ ∈ Sα−β−1. Indeed, deriving the quotient we obtain

(
f(s)

g(s)

)′
= sα−β−1

[
(α− β)

F (s)

G(s)
+ s

(
F (s)

G(s)

)′]
.

Let us denote Q0(s) = F (s)
G(s) and Q(s) = (α − β)Q0(s) + sQ′0(s). A simple

computation shows that

Q(k)(s) = (k + α− β)Q
(k)
0 (s) + sQ

(k+1)
0 (s),
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and so
skQ(k)(s) = (k + α− β)skQ

(k)
0 (s) + sk+1Q

(k+1)
0 (s).

Let us show that lims→0+ skQ
(k)
0 (s) = 0 for all k > 0 by induction. For k = 1

we have

s

(
F (s)

G(s)

)′
=
sF ′(s)G(s)− sF (s)G′(s)

G(s)2
.

Since lims→0+ sF ′(s) = lims→0+ sG′(s) = 0 and lims→0+ G(s) is a non-zero
constant, lims→0+ sQ′0(s) = 0. Assuming the property to be true up to k−1 we
use the following recursive expression for the derivative of the quotient of two
functions proposed in [15],

(
F (s)

G(s)

)(k)

=
1

G(s)


F (k)(s)− k!

k∑

j=1

G(k+1−j)(s)
(k + 1− j)!

(F (s)
G(s)

)(j−1)

(j − 1)!


 .

Then multiplying by the term sk the property follows by lims→0+ skF (k) = 0,

lims→0+ sk+1−jG(k+1−j)(s) = 0 and lims→0+ sj−1Q
(j−1)
0 (s) = 0 for j = 1, . . . , k.

This shows lims→0+ skQ
(k)
0 (s) = 0 for all k > 0 and so lims→0+ skQ(k)(s) = 0

for all k > 0. Moreover,

lim
s→0+

Q(s) = lim
s→0+

(α− β)
F (s)

G(s)
= a

for some a 6= 0. This proves the claim.
The fact that the map s 7→ f( 1

2ns ) is an analytic diffeomorphism from
]0,+∞[ to ]0, 1[ and lims→0+ f( 1

2ns ) = 0 imply the equivalence between proving

Theorem 2.3 and showing that the set (Î−n, Î0, Î1, . . . , Îm−1) is an ECT-system
on ]0, ε]. According to the notation introduced at the beginning of the section,

Îj(s) = 2Î−j (s) + 2Î+
j (s), where Î±j = Ī±j (f(1/2ns)).

Since Ī−j (h) can be extended analytically at h = 0 and the map s 7→ f( 1
2ns ) is

flat at s = 0 the function Î−j (s) can be written as Î−j (s) = aj + gj(s), where aj
is a constant and gj is a flat function at s = 0. In consequence, by Lemma 4.2,

Îj(s) = 2(2ns)−
2n+2j+1

2n

(
(2ns)

2n+2j+1
2n (aj + gj(s)) + ψ 2j+1

2n
(s)
)
,

and by Lemma 4.3,

Îj(s) = 2(2ns)−
2n+2j+1

2n

(
s

2n+2j+1
2n (ãj + g̃j(s)) + (1 + s)

2n+2j+1
2n J 2j+1

2n
( s

1+s )
)
,

where ãj is a constant and g̃j is a flat function at s = 0. The last equality

together with Lemma 4.4 allows to write Îj(s) = 2(2ns)−
2n+2j+1

2n Lj(s) with

lim
s→0+

s`∂`sLj(s) =

{
2n

2n+2j+1 if ` = 0,

0 if ` > 0,

for each j ∈ {−n, 0, 1, 2, . . . }. Let us fix 0 ≤ k ≤ m − 1 and consider any
function in the linear span of Î−n, Î0, Î1, . . . , Îk,

`(s) = η−nÎ−n(s) + η0Î0(s) + · · ·+ ηk Îk(s),
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where η−n, η0, . . . , ηk ∈ R. We can consider ηk 6= 0 since otherwise `(s) belongs
to the linear span with lesser index k. For the sake of compactness we rewrite

`0 = η−nÎ
0
−n + η0Î

0
0 + · · ·+ ηk Î

0
k .

From the previous discussion, we have Î0
−n ∈ S−1/2n. In particular, there exists

ε0 > 0 such that Î0
−n(s) 6= 0 for all s ∈]0, ε0] and the first step of the division-

derivation algorithm can be performed, producing

`1 =

(
`0

Î0
−n

)′
= η0

(
Î0
0

Î0
−n

)′
+ · · ·+ ηk

(
Î0
k

Î0
−n

)′
.

Let us denote Î1
j :=

( Î0
j

Î0
−n

)′
for all j ∈ {0, 1, 2, . . . }. From the claim before

Î1
j ∈ S− 2n+j

n
. In particular, Î1

0 ∈ S−2 and there exists 0 < ε1 < ε0 such that

Î1
0 (s) 6= 0 for all s ∈]0, ε1] and a second step of the division-derivation algorithm

can be performed. Following this procedure, the (j+ 1)-step in the algorithm is

`j+1 :=

(
`j

Îjj−1

)′
= ηj

(
Îjj

Îjj−1

)′
+ · · ·+ ηk

(
Îjk
Îjj−1

)′

with Îj+1
i := (

Îji
Îjj−1

)′ with Îj+1
j ∈ R− 1+n

n
. Thus we can perform it since the

(k + 1)-step to obtain

`k+1 :=

(
`k

Îkk−1

)′
= ηk

(
Îkk
Îkk−1

)′
,

with Îk+1
k := (

Îkk
Îkk−1

)′ ∈ R− 1+n
n

and ηk 6= 0. In particular Îk+1
k does not vanish

on ]0, εk+1] for some 0 < εk+1 < εk < · · · < ε0 and, if we denote by Z(f, ε)
the number of zeros of an analytic function f on the interval ]0, ε] counted with
multiplicity, Z(`0, εk) ≤ Z(`k+1, εk)+k+1. Since the sequence of ε0, ε1, . . . , εk+1

does not depend on ` but only on the Abelian integrals Î−n, Î0, . . . , Îk, this shows
that, by taking ε = εk+1, any function in the linear span of Î−n, Î0, . . . , Îk has
at most k+ 1 zeros, counted with multiplicity, on the interval ]0, ε]. This proves
that (Î−n, Î0, Î1, . . . , Îm−1) is an ECT-system on ]0, ε] and thus the result.

4.3 Proof of Theorem 2.4

Let P (h) := I0(h)
I−n(h) for h ∈]0, 1[. It is clear that I−n(h) < 0 and I0(h) < 0 (and

hence P (h) > 0) for all h ∈]0, 1[ due to the chosen orientation of the oval γh.
Near h = 1, the function P can be written as

P (h) = (1− h) (c+ o(1)), (12)

where c is a positive constant and o(1) is an analytic function at h = 1 and
equal to zero for h = 1. From (12) follows that P ′(h) < 0, for h ∼ 1 and h < 1,
and that limh→1− P (h) = 0.

In the rest of the proof we show that P ′(h) < 0 for all h ∈]0, 1[. Suppose
that this is not true on ]0, 1[. Then there exists the largest h0 < 1 such that
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Ω1 Ω3

Ω4

γh0

γh

Figure 3: The ovals γh0 and γh, with h > h0 and h ∼ h0, and the region
Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 with the orientation on the boundary.

P ′(h0) = 0. We prove that P (h) > P (h0) for h > h0 and h ∼ h0 (this will
produce a contradiction with the largest h0 such that P ′(h0) = 0).

If we define q(h) := I−n(h0)I0(h) − I−n(h)I0(h0), then we have q(h0) = 0
and, for h > h0,

P (h)− P (h0) =
I0(h)

I−n(h)
− I0(h0)

I−n(h0)

=
q(h)

I−n(h)I−n(h0)
=

q(h)− q(h0)

I−n(h)I−n(h0)

=
h− h0

I−n(h)
· q′(h̃)

I−n(h0)

=
h− h0

I−n(h)
·
(
I ′0(h̃)− P (h0)I ′−n(h̃)

)
(13)

where h̃ ∈]h0, h[. In the last step we differentiate q and use the definition of
P . If we write Q(h) := I ′0(h)− P (h0)I ′−n(h), then, using (13) and the fact that
I−n < 0, it suffices to prove that Q(h) < 0 for h > h0 and h ∼ h0.

We have Q(h0) = 0 because P ′(h0) = 0. Since I ′−n(h) = − 1
4n2 Ī−n(h) and

I ′0(h) = − 2n+1
4n2 Ī0(h), with Ī−n and Ī0 defined in (1), we get

Q(h) =− 2n+ 1

4n2

∫

γh

x̄dȳ − P (h0)

(
− 1

4n2

)∫

γh

x̄1−2ndȳ

=− 1

4n2

∫

γh

(2n+ 1)x̄2n − P (h0)

x̄2n−1
dȳ. (14)

Consider two vertical lines x̄ = ± 2n

√
P (h0)
2n+1 . These two vertical lines intersect

the oval γh0
through the interior (Figure 3) since Q(h0) = 0. See also (14).

Let’s denote by Ω the region between γh and γh0 , with h > h0 and h ∼ h0. We
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can write Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 (see Figure 3). Then we have

Q(h) =Q(h)−Q(h0)

=− 1

4n2

(∫

γh

(2n+ 1)x̄2n − P (h0)

x̄2n−1
dȳ −

∫

γh0

(2n+ 1)x̄2n − P (h0)

x̄2n−1
dȳ

)

=− 1

4n2

∫

∂Ω

(2n+ 1)x̄2n − P (h0)

x̄2n−1
dȳ

=− 1

4n2

(∫

∂Ω1∪∂Ω3

+

∫

∂Ω2∪∂Ω4

)
(2n+ 1)x̄2n − P (h0)

x̄2n−1
dȳ

=− 1

4n2

∫

Ω1∪Ω3

(2n+ 1)x̄2n + P (h0)(2n− 1)

x̄2n
dx̄dȳ

− 1

4n2

∫

Ω2∪Ω4

P (h0)− (2n+ 1)x̄2n

(x̄2n − ȳ)2
dx̄dȳ. (15)

In the last step we used Green’s Theorem and
∫

∂Ω2∪∂Ω4

(2n+ 1)x̄2n − P (h0)

x̄2n−1
dȳ =

∫

∂Ω2∪∂Ω4

(2n+ 1)x̄2n − P (h0)

x̄2n − ȳ dx̄,

using dH(x̄, ȳ) = 0 and the fact that the numerator in the above integrals

vanishes along the vertical lines x̄ = ± 2n

√
P (h0)
2n+1 . It is clear that the first integral

in (15) is positive. Since the curve {x̄2n − ȳ = 0} does not intersect Ω2 and Ω4

(more precisely, the curve {x̄2n − ȳ = 0} intersects γh0
in its right-most point

and its left-most point), we have that the second integral in (15) is also positive.
We conclude that Q(h) < 0 for h > h0 and h ∼ h0. This completes the proof of
Theorem 2.4.
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