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ARTICLE INFO ABSTRACT

Keywords: Neurons of the peripheral nervous system retain the intrinsic capability of regenerate their axons after injury, by
Nerve regeneration triggering a complex activation response. This genetic switch is dependent of signals from the injured axon.
Secretome Schwann cells (SCs) in the distal stump of an injured nerve also play an active role in the local regulation of
Exosome . .

Schwann cell axonal programs, by using cell-to-cell contacts but also secreted signals, the so-called secretome. Secretome
Macrophage contains all the proteins (cytokines, growth factors and others) secreted by the cell and includes extracellular

vesicles. The released vesicles can transport signaling proteins and both coding and regulatory RNAs, thus
facilitating multilevel communication. It is nowadays clear that secretome of SCs is fundamental to both
orchestrate Wallerian degeneration and to sustain axonal regeneration.

Therefore, the use of secretome has emerged as an alternative to cell therapy in the field of tissue regeneration.
In fact, separate components of SC secretome have been extensively used in experimental models to enhance
peripheral nerve regeneration after injury. However, the most used secretome in neural therapies has been the
one derived from mesenchymal (MSC) or other derived stem cells. In fact, the effects of cell therapy with MSCs
have been mainly associated with the secretion of bioactive molecules and extracellular vesicles, which
constitute their secretome.

In this review, we first describe the role of SC and macrophage secretomes on Wallerian degeneration and
axonal regeneration after peripheral nerve injury. Then, we review the different works reported in the literature
that have used secretomes of SCs or MSCs in the treatment of peripheral nerve injuries in experimental models, to
highlight the use of secretomes as a promising cell-free therapeutic approach, that reduces some of the risks
associated with the use of cells, such as tumor formation or rejection.

Mesenchymal stromal cell

In contrast to most neurons in the central nervous system, mature
neurons of the peripheral nervous system are able to regenerate after
axotomy. Peripheral neurons retain intrinsic growth capability after
injury, triggering a complex activation response in both the soma and
the axon of the injured neuron. At the neuronal body, injury regulates a
gene expression program, that mainly consist in downregulating genes

related with neural activity and neurotransmission, whereas up-
regulating some transcriptional factors related with growth and cyto-
skeleton elements (He and Jin, 2016). Therefore, the neuron switches
from a transmission state to a pro-regenerative state. Different tran-
scription factors have been implicated in this switch, like c-Jun, Jun D,
ATF3, sox11 and STAT 3 (Allodi et al., 2012; Raivich and Makwana,

Abbreviations: ATF3, Activating Transcription Factor 3; ASC, Adipose-derived MSCs; bFGF, Basic fibroblast growth factor; BMSC, Bone marrow derived MSC;
BDNF, Brain derived neurotrophic factor; CNTF, Ciliary neurotrophic factor; CM, Conditioned media; DPSC, Dental pulp stem cells; DNA, Deoxyribonucleic acid;
DRG, Dorsal root ganglia; EGF, Epidermal growth factor; ECM, Extracellular matrix; EV, Extracellular vesicles; GDNF, Glia derived neurotrophic factor; GAP43,,
Growth associated protein 43; HGF, Hepatocite growht factor; SHED, Human exfoliated deciduous teeth; IGF-1, Insulin growth factor 1; IL-10, Interleukin-10; IL-1c,
Interleukin-1a; IL-1p, Interleukin-1p; IL-6, Interleukin-6; JAKs, Janus kinases; LIF, Leukemia inhibitory factor; mTOR, Mammalian target of Rapamycin; MSCs,
Mesenchymal stromal/stem cells; miRNAs, MicroRNAs; EV, Microvesicles; MCP-1, or chemokine C—C motif ligand 2, CCL2, Macrophage inflammatory protein
1aMIP-1a, Monocyte chemoattractant protein-1; NGF, Nerve growth factor; GTPase, Nucleotide guanosine triphosphate hydrolase; OECs, Olfactory ensheathing cells;
PAP-III, Pancreatitis-associated protein III; PTEN, Phosphatase and tensin homolog; PLA2, Phospholipase 2; PDGF, Platelet-derived growth factor; PDGFa, Platelet-
derived growth factor alpha; PTN, Pleiotrophin; qRT-PCR, Real-time quantitative reverse transcription- Polymerase chain reaction; RNAs, Ribonucleic acids; SCs,
Schwann cells; sSiglec-9, Secreted ectodomain of sialic acid-binding Ig-like lectin-9; STATs, Signal transducer and activator of transcription proteins; SLN, Superior
laryngeal nerve; TNF-a, Tumor necrosis factor o; TNFf, Tumor necrosis factor p; VEGF, Vascular endothelial growth factor; VEGFa, VEGF alpha.

* Corresponding author.
E-mail address: esther.udina@uab.cat (E. Udina).

https://doi.org/10.1016/j.expneurol.2022.114069

Received 1 September 2021; Received in revised form 5 February 2022; Accepted 3 April 2022

Available online 6 April 2022

0014-4886/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nec-nd/4.0/).


mailto:esther.udina@uab.cat
www.sciencedirect.com/science/journal/00144886
https://www.elsevier.com/locate/yexnr
https://doi.org/10.1016/j.expneurol.2022.114069
https://doi.org/10.1016/j.expneurol.2022.114069
https://doi.org/10.1016/j.expneurol.2022.114069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.expneurol.2022.114069&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Contreras et al.

2007). Activation of the JACK/STAT pathway through mammalian
target of Rapamycin (mTOR) is also a key element to promote the
intrinsic growth ability of neurons. In fact, central neurons do not
activate mTOR after injury, leading to failure of regeneration, whereas
forced activation of mTOR (Liu et al., 2010; Park et al., 2008) promotes
growth of corticospinal and retinal ganglion axons.

The genetic switch at the neuronal body is dependent of signals from
the injured axon. At the lesion site, plasma membrane of the affected
axons is disrupted, leading to a massive calcium entrance and disorga-
nization of the cytoskeleton. This calcium input triggers signaling cas-
cades that spread to the cell body. If the injured neuron has the intrinsic
ability to regenerate, the tip of the injured axon will be rearranged to
become a growth cone (He and Jin, 2016). Moreover, part of the
intrinsic ability of neurons to grow is localized at the same axon, since
local mRNA translation and protein synthesis at the axonal level is
fundamental for a successful regeneration (Gumy et al., 2010; Terenzio
et al., 2018; Verma, 2005). In fact, mTOR, a key protein to enhance
mRNA translation and protein synthesis (Saxton and Sabatini, 2017), is
activated in injured axons. Activated mTOR would regulate both its own
translation as well as local translation of other factors, such as importin
f1 and STAT3 (Terenzio et al., 2018). These molecules retrogradely
signal injury and thus, contribute to the activation of the intrinsic
growth program of neurons (Abe and Cavalli, 2008).

However, regeneration is not just a neuron-key event. At the distal
level, a permissive milieu for axonal regeneration has to be created.
Therefore, the distal nerve stump undergoes Wallerian degeneration, a
process that leads to the lysis and elimination of axon and myelin debris.
Schwann cells (SCs) are the glia of peripheral nerves and in the mature
state can be myelinating (the ones that ensheath and myelinate a single
axon) or Remak SCs (the ones that ensheath a group of unmyelinated
axons). During Wallerian degeneration, SCs switch to a repair pheno-
type. The activation of the transcription factor c-jun triggers this con-
version from a mature to a repair state (Arthur-Farraj et al., 2012),
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activating an injury-specific program that partially involves non-coding
ribonucleic acids (RNAs) and deoxyribonucleic acid (DNA) methylation
(Arthur-Farraj et al., 2017). Activation of c-jun allows SC to become a
cell specialized to support regeneration by increasing their proliferative
capability and the expression of neurotrophic and chemotactic factors
(Arthur-Farraj et al., 2012). These factors recruit hematogenous mac-
rophages that together with SCs (Catenaccio et al., 2017), contribute to
the phagocytose of myelin and axonal debris (Briick et al., 1996).
Moreover, repair SCs have the ability to elongate (Gomez-Sanchez et al.,
2017) and align inside the endoneurial tubes, forming the bands of
Biingner, that will create a regenerative pathway for the growing axons.

1. SC secretome

SCs in the distal stump of an injured nerve also play an active role in
the local regulation of axonal programs, including axonal extension and
local proteins synthesis (Court et al., 2008; Court and Alvarez, 2005).
The axon-glia interaction is mediated by cell-to-cell contacts but also by
secreted signals, the so called secretome. Secretome contains all the
proteins (cytokines, growth factors, and other proteins) secreted by the
cell and includes extracellular vesicles (EV) (Fig. 1). It is nowadays clear
that the secretome of SCs is fundamental to both orchestrate Wallerian
degeneration and to sustain axonal regeneration. In fact, the decreased
ability of SCs to maintain the secretion of trophic factors during long
periods of time can explain the failure of regeneration through chroni-
cally denervated nerves (Hoke et al., 2002; Sulaiman and Gordon,
2000).

1.1. Cytokines and chemokines

Denervated SCs overexpress several trophic factors and cytokines,
with a specific time course of expression for each factor (Boyd and
Gordon, 2003). These secreted factors have been implicated in neuronal
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Fig. 1. Effects of glial and macrophage secretomes in nerve regeneration. Schwann cells (SCs) and macrophages secrete growth factors, cytokines and extracellular
vesicles that enhance axonal regeneration either directly or indirectly. Regenerating axons receive several neurotrophic factors (such as GDNF, IGF-1, or PTN),
microvesicles and EV (containing several proteins, miRNA and mRNA) from SCs and macrophages. These signals, particularly those from the EV, induce an upre-
gulation of mTOR and a downregulation of regeneration inhibiting factors (PTEN, Strouty2, Rho GTPase), thus promoting axon regeneration and neuronal survival.
Some factors from SCs and macrophages also contribute to regeneration indirectly by recruiting more hematogenous monocytes and activating SCs, which create a

permissive environment to axonal regrowth.
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survival, axonal growth, cell differentiation and axon remyelination
(Chen et al., 2007) and also in the immune response of the distal nerve
stump, contributing to recruitment of immune cells (Chen et al., 2015).

Cytokines and chemokines secreted by SCs are fundamental for
macrophage chemoattraction and regulation that lead to myelin clear-
ance in Wallerian degeneration. The most important ones are inter-
leukin-1oe (IL-1a0), interleukin-1p (IL-1p), monocyte chemoattractant
protein-1 (MCP-1, or chemokine C—C motif ligand 2, CCL2), macro-
phage inflammatory protein 1o (MIP-la), pancreatitis-associated pro-
tein III (PAP-III), leukemia inhibitory factor (LIF) and interleukin-6 (IL-
6) (Perrin, 2005). The chemokines MCP-1 and MIP-la probably
contribute to higher extent to recruitment of macrophages compared to
IL-1B, since blocking antibodies against the two chemokines have
stronger impact on macrophage recruitment (Perrin, 2005). Denervated
SCs upregulate pro-inflammatory molecules such as tumor necrosis
factor o (TNF-a), Il-1a and p (Shamash et al., 2002) within hours. Besides
its role in macrophage recruitment, IlI-1 p contributes to SC proliferation
(Conti et al., 2002; Perrin, 2005). Some of these cytokines, such as IL-16,
TNFa and MCP-1 also modulate the phagocytic ability of the macro-
phages in injured nerves (Perrin, 2005; Shamash et al., 2002), probably
by stimulating phospholipase 2 (PLA2). Breakdown of compact myelin is
an early event in the degenerating nerve, and it is mediated by early
PLAZ2 secretion by SCs prior to the entry of hematogenous macrophages
to the nerve (Martini et al., 2008).

The cytokines LIF and IL-6 are also secreted by SCs and upregulated
within hours after nerve injury (Banner and Patterson, 1994; Kurek
et al., 1996), suggesting that they are early factors of injury (Ito et al.,
1998). LIF acts on macrophages but is also retrogradely transported by
axons to promote the neuronal regenerative response (Curtis et al.,
1994). In contrast, IL-6 secreted at the injury is not retrogradely trans-
ported (Kurek et al., 1996) and has a role in the local inflammatory
response. Interestingly, mRNA of anti-inflammatory cytokines
interleukin-10 (IL-10) and tumor necrosis factor § (TNFp) are parallelly
upregulated to those of pro-inflammatory cytokines, and probably
contribute to modulation of pro-inflammatory changes in the injured
nerve to guarantee a safe immune response (Perrin, 2005).

1.2. Neurotrophic factors

Besides these cytokines and chemokines, denervated SCs secrete a
plethora of neurotrophic factors, that are key to promote axonal growth
(Boyd and Gordon, 2003). This ability is dependent on the creation of a
dynamic gradient. SCs secrete these factors while denervated, but when
they regain contact with the regenerating axons, the expression of
neurotrophic factors and their receptors is suppressed, and thus, trophic
factor secretion is limited to SCs located distally to the regenerative front
in the distal nerve. Expression of these factors follows a specific time
course but for a limited period of time (Hoke et al., 2002). Failure of
chronically denervated SCs to maintain sufficient levels of trophic fac-
tors accounts for poor axonal regeneration from 2 months after dener-
vation (Sulaiman and Gordon, 2000). Interestingly, chronically
denervated SCs can be reactivated by administering the cytokine TGFp
(Sulaiman and Gordon, 2002), secreted by proliferating SCs and mac-
rophages during Wallerian degeneration.

The mRNA of the neurotrophin nerve growth factor (NGF) shows a
biphasic upregulation in the injured nerve, with peaks first at 6 h and
later at 3 days, that last for 14 days (Heumann et al., 1987). The second
peak correlates with macrophage invasion in the degenerating nerve and
is dependent on IL-1p secreted by macrophages (Lindholm et al., 1987).
Upregulation of mRNA of brain derived neurotrophic factor (BDNF) and
glia derived neurotrophic factor (GDNF) follow a slower course. There is
a continuous slow increase of BDNF mRNA starting 3 days after injury
that reaches a plateau at 21-28 days (Meyer et al., 1992). GDNF mRNA
also shows a slow increase that peaks at 7 days and last for at least one
more week (Naveilhan et al., 1997). A distinctive profile of secreted
neurotropic factors by SCs has been proposed dependent on the type of
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injured nerve analyzed. Thus, GDNF is markedly increased in nerve
roots whereas insulin growth factor 1 (IGF-1) and vascular endothelial
growth factor (VEGF) expression is limited to peripheral nerves.
Denervated nerves containing motor axons expressed higher levels of
pleiotrophin (PTN) than the ones containing sensory axons, whereas
hepatocyte growth factor (HGF), BDNF and NGF were markedly upre-
gulated in cutaneous nerves and dorsal roots (Brushart et al., 2013; Hoke
et al., 2006). Although it is clear that SC derived trophic factors are key
molecules to promote axonal regeneration after nerve injury (see re-
views by (Allodi et al., 2012; Boyd and Gordon, 2003; Raivich and
Makwana, 2007; Terenghi, 1999), there are not consistent evidences in
the literature that related the different neurotrophic profiles of motor
and sensory SCs with specificity of motor and sensory axon regeneration
respectively (Bolivar et al., 2020). As an example, BDNF has been
extensively used to promote regeneration of motor axons (Boyd and
Gordon, 2001; Vogelin et al., 2006). On the other hand, although initial
studies pointed that PTN could enhance motor axons regeneration (Chu
etal., 2009) a recent study showed that this factor attracts sensory axons
when confronted to a combination of GDNF and BDNF, a mixture that
promotes motor regeneration in a Y tube repair model (Anand et al.,
2017).

1.2.1. Other proteins

SCs also secrete several molecules of the extracellular matrix (ECM),
such as laminin, a major component of the basal lamina and an abundant
component of the ECM of peripheral nerves (Gonzalez-Perez et al.,
2013). Laminin is considered one of most important ECM molecules to
sustain axonal regeneration and its expression increases after nerve
injury (Wallquist et al., 2002). Laminin gives the regenerative promot-
ing capability to basal lamina scaffolds after nerve injury, and the use of
anti-laminin antibodies dramatically reduces the ability of axons to
grow through basal lamina scaffolds (Wang et al., 1992).

1.3. Extracellular vesicles

EV are vesicles secreted by cells that contain cytosol sealed by a lipid
bilayer membrane and allow cells to exert paracrine effects by inter-
changing information through their selected cargos (proteins, lipids,
RNAs and DNAs). Some authors divide these EV, that are quite hetero-
geneous, into exosomes or microvesicles (MV) (Bruno et al., 2019).
However, these terms have not a deep consensus in the literature, and
some authors classify exosomes and MV on the basis of differential
centrifugation (EV that sediment when centrifugation at 7000-10,000
xg are exosomes, whereas when sedimenting at 10,000 g are micro-
vesicles). Others prefer a biogenetic definition, being MV larger and the
ones originate from the plasma membrane itself, whereas exosomes are
smaller and originating from multi-vesicular bodies, that can fuse to
lysosomes to be degraded. When fused with the plasma membrane,
exosomes can be extracellularly released. Finally, some authors use MV
or exosomes indistinctly, to refer to EV (Gould and Raposo, 2013). In
fact, the exosome term is quite extended in the literature as a synonym of
EV. Therefore, in this work, we will use the most general term EV,
following the International Society for Extracellular Vesicles reco-
mendations (Witwer and Théry, 2019), independently of the term used
by the authors of the cited studies.

In fact, both MV and exosomes mediate cell-to-cell communication
(Raposo and Stoorvogel, 2013; Simons and Raposo, 2009). The released
vesicles can transport signaling proteins and both coding (mRNAs, that
can translate proteins) and regulatory (microRNAs -miRNAs- that can
suppress protein production) RNAs, thus facilitating multilevel
communication (Rajendran et al., 2014) and modulating the phenotype
of the target cells.

In the nerves, transfer of molecular cargos between glial cells and
neurons through EV has been described (Lopez-Verrilli et al., 2013;
Lopez-Verrilli and Court, 2012). In fact, some works have pointed that
EV from different sources can mediate regeneration by targeting the
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mTOR pathway (Tang, 2018). As pointed above, the ability of this
pathway to locally enhance messenger RNA (mRNA) translation and
protein synthesis is a key event for axonal regeneration (Terenzio et al.,
2018). EV of SCs can be internalized by axons, and transfer poly-
ribosomes and genetic material to the axon after axonal damage and
during regeneration (Court et al., 2008). These EV can act at a local
level, by enhancing neurite growth in vitro and increasing axon growth
in vivo. The effects seem mediated by the ability of glial EV to suppress
the inhibitory activity of Rho GTPase on the growth cone (Lopez-Leal
and Court, 2016; Lopez-Verrilli and Court, 2013).

MicroRNAs are non-coding RNAs that impact on protein expression
at a post-transcriptional level and can regulate about 60% of mamma-
lian genes (Friedman et al., 2008). An important amount of these miR-
NAs has been detected in axons. Although miRNA can be transported
from the neuronal soma (Kosik, 2006), recent findings of the ability of
EV to transfer non-coding RNA to other cells (Valadi et al., 2007) sup-
port a direct role of SCs on local transfer of miRNA. In this sense, SC
modify their EV cargo when switching to a pro-regenerative phenotype
after nerve injury, allowing these EV to promote neurite growth. This
growth ability is dependent on the increased expression of miRNA-21
(Lopez-Leal et al., 2020). Together with miRNA-21, miRNA-222 has
also been found in SC EV (Ching et al., 2018; Lopez-Leal et al., 2020)
and, by downregulating different growth inhibitors in axons, as PTEN
(Lopez-Leal et al., 2020; Zhou et al., 2012) and Sprouty2 expression
(Strickland et al., 2011), both miRNAs enhance neurite growth of dorsal
root ganglia (DRG) neurons (Strickland et al., 2011; Zhou et al., 2012).
Therefore, the interchange of miRNA through EV at the injury site can
mediate multidirectional transfer of information from the main cells
implicated in the regenerative response after nerve injury.

Interestingly, miRNAs are more abundant in the axons compared to
the neuronal soma (Natera-Naranjo et al., 2010). By locally regulating
gene expression in the axon, miRNAs can affect axonal protein synthesis,
local energy metabolism, and the modulation of axonal outgrowth and
branching (Kaplan et al., 2013). These miRNAs may have a compart-
mentalized and differentiated action at the soma, axons and growth
cones (Iyer et al., 2014). It has been reported that nerve injury induces a
set of 22 miRNAs that coordinate SC differentiation and dedifferentia-
tion through combinatorial modulation of positive and negative gene
regulators in the acute phase injury (Adilakshmi et al., 2012).

EV from SCs have also mRNA of proteins related with regeneration
(Ching et al., 2018), such as Growth associated protein 43 (GAP43), a
neural growth-associated protein related with growth cone guidance,
and Tau protein, that stabilizes microtubules. EV also contain two
members of the Rho GTPase family, Racl and RhoA (Ching et al., 2018).
Racl is a regulator of cytoskeletal dynamics and plays a critical role in
axon growth and guidance (Hua et al., 2015), whereas RhoA is an in-
hibitor of regeneration, and local translation of this molecule mediates
growth cone collapse (Wu et al., 2005).

2. Secretome of macrophages

During Wallerian degeneration, activation of SCs is accompanied by
recruitment of immune cells into the lesion site, including neutrophils,
macrophages and lymphocytes. Macrophages play a crucial role
removing myelin debris and promoting SC activation, and also
contribute to the creation of a permissive environment for axonal
regeneration in the distal stump, by releasing different pro-regenerative
factors, including cytokines and chemokines, growth factors and ECM
molecules (Chen et al., 2015; Gaudet et al., 2011). Recent work also
strengthens the important role of macrophage derived endosomes on
Wallerian degeneration and axonal regeneration (Hervera et al., 2018).

Peripheral nerves have resident macrophages, that can induce in-
flammatory response in the acute phase by secreting different pro-
inflammatory cytokines, like IL-13 and IL-1f (De Francesco-Lisowitz
et al., 2015). Resident macrophages proliferate and contribute to
phagocytosis of myelin debris already at 2 days post-injury (Mueller
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et al., 2001). At 4 days, an important infiltration of circulating mono-
cytes can be observed in the injured nerve (Mueller et al., 2003). These
monocytes, which will be differentiated into macrophages in the tissue,
are recruited from the blood by cytokines and chemokines secreted by
SCs (Perrin, 2005; Tofaris et al., 2002); see above). Some of these fac-
tors, such as CCL2, TNF-a, IL-1a and IL-1pB, can also be produced by
macrophages (Kiguchi et al., 2013; Shamash et al., 2002), thus rein-
forcing the recruitment of more monocytes. Hematogenous macro-
phages are the main cells contributing to remove myelin and axonal
debris during Wallerian degeneration. The phagocytic ability of mac-
rophages is regulated by MCP-1 and IL-1p; neutralization of these mol-
ecules leads to an important reduction of the number of phagocytic
macrophages in the injured nerve (Perrin, 2005). Macrophages can also
secrete the anti-inflammatory cytokine IL-10 during Wallerian degen-
eration (George et al., 2004) and thus it is proposed that they could
regulate themselves to switch off their pro-inflammatory responses
(Martini et al., 2008).

On the other hand, macrophages produce a wide range of factors,
such as proteases and growth-promoting factors/cytokines, and stimu-
late ECM remodeling to promote peripheral nerve regeneration (Gaudet
etal., 2011). In fact, macrophage-conditioned medium improves neurite
outgrowth in vitro (Luk et al., 2003). One of the proposed candidates for
the pro-regenerative effects of macrophage secretome is oncomodulin
(Zigmond and Echevarria, 2019). In addition, macrophages also secrete
factors that affect SCs, as for example IL-1 (Gaudet et al., 2011). The
hypoxic environment induced in the bridge of a cut injured nerve at-
tracts macrophages, that secrete VEGF-A, polarize endothelial cells and
mediate the migration of SCs through the bridge that unites the two
nerve stumps, facilitating axonal regeneration (Cattin et al., 2015).

Finally, macrophages can also contribute to axonal regeneration
through release of EV (Qing et al., 2018). miR-223 contained in
macrophage derived EVs promotes SC migration and proliferation both
in vitro and in vivo, and their secretion of NGF and laminin in vitro
(Zhan et al., 2015). A recent study has described that macrophage
derived EV contain enzymes that produce reactive oxygen species. When
endocytosed by axons, these enzymes are retrogradely transported to
the soma, where they induce the inactivation of PTEN and the conse-
quent enhancement of the intrinsic neuronal growth (Hervera et al.,
2018).

3. Secretome: an emerging alternative to cell therapy to
promote axonal regeneration

Cell-free treatment is an emerging alternative to cell therapy in the
field of tissue regeneration, and therefore, the use of the secretome
instead of the cell itself has been postulated as a promising therapeutical
tool. Moreover, pre-conditioning the cells of interest can alter the
composition of the secretome (Ferreira et al., 2018), thus becoming an
interesting strategy to increase their pro-regenerative potential. Finally,
EV can also be used as a therapeutic delivery vehicle (Ha et al., 2016),
with the advantage of its lack of immunogenicity. Studies using secre-
tomes to promote nerve regeneration are sumarized in Table 1 (in vivo)
and Table 2 (in vitro).

3.1. Use of SC secretome in peripheral nerve injury

Separate components of the SC secretome have been widely used in
experimental models to enhance peripheral nerve regeneration after
injury. In fact, addition of trophic factors, normally secreted by repair
SCs, to the injured nerve promotes neuronal growth. Pioneer work from
Lindsay demonstrated that NGF and BDNF applied on DRG cultures
promoted neurite growth, but were not needed for neuronal survival
(Lindsay, 1988). Plenty of works have posteriorly evaluated the effects
of trophic factors secreted by repair Schwann cells on neuronal growth
in vitro and in vivo (see reviews by (Allodi et al., 2012; Boyd and Gor-
don, 2003; Raivich and Makwana, 2007; Terenghi, 1999). Initial works
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Table 1

In vivo experimental studies evaluating therapeutical role of MSC and SC

secretomes in nerve injury models.

Reference Nerve model Therapeutical Outcome
approach
Rich et al., Sciatic nerve Silicone chamber Increased number
1989 section fiiled with NGF of regenerating
myelinated axons
Hollowell Sciatic nerve Silicone chamber No increased
etal, 1990  transection (8 mm filled with NGF number of

Derby et al.,
1993

Vogelin et al.
2006

Boyd and
Gordon,
2001

Fine et al.,
2002

Boyd and
Gordon,
2003

Leong et al.
1999

Emel et al.,
2011
Lopez-
Verrilli
and Court,
2013
Marconi
et al. 2012

Sun et al.,
2019

Zhang et al.,
2020

Sugimura-
Wakayama
et al., 2015

gap)

Sciatic nerve
transection (10-15
mm gap)

Sciatic nerve
transection (20 mm
gap)

Sciatic nerve
section and delayed
repair (chronically
denervated)

Sciatic nerve
transection (15 mm
gap)

Sciatic nerve
section and delayed
repair (chronically
denervated)
Section and repair
of gastrocnemius
nerve

Sciatic nerve crush
injury

Sciatic nerve crush
in rats

Sciatic nerve crush
in mice

Sciatic nerve
transection (10 mm
gap) in rat, repaired
with an engineered
conduit

Sciatic nerve
transection (10
mm) in rat, repaired
with a chitosan tube

Sciatic nerve
transection (10
mm) in rat, repaired
with a silicone tube

Silastic or
semipermeable
chambers filled
with NGF

Fascia tubes with
capsules to
continuously
release BDNF
Continuous
administration of
BDNF

Artificial guide
delivering GDNF

Continuous
administration of
GDNF

Slow release of LIF

IGF-1 on the crush
site

Intraneural
injection of SC
derived MV

Intravenous MSC
(ASC)

Enclosed MSC in
the conduit to favor
release of their
secretome

OEC plus

suspension of MV
from MSC

SHED-CM

regenerating motor
and sensory axons
through the
chamber

Enhanced presence
of axons and non-
neuronal cells in the
chamber at early
periods

Increased
regenerated
unmyelinated and
myelinated axons in
the chamber at
early time points
Faster growth of
axons into the tube
Decreased
neuropathic pain
Increased number
of motor neurons
regenerating into
the distal stump
No effect in acute
repair (fresh distal
nerve)

Increased
myelinated axons
into the conduit
Increased number
of motor and
sensory neurons
regenerating
Increased number
of motor neurons
regenerating into
the distal stump
Improved muscle
mass and function

Improved
functional recovery
Increased axonal
regeneration
Improved
functional recovery
Increased axon
sprouting

Reduced
inflammatory
response in the
nerve

Improved
functional recovery
Increased
myelination of
regenerating axons
Marginal
synergistic effect,
with improved
motor and sensory
recovery

Improved
reinnervation of
target organs
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Table 1 (continued)

Reference Nerve model Therapeutical Outcome
approach
Kano et al., Facial nerve section Graft soaked with Increased number
2017 repaired with a SHED-CM of regenerating
collagen graft axons
Improved
functional recovery
Tsuruta Supra-laringeal Intravenous SHED- Improved recovery
etal., 2018  nerve injury CM of swallow function

Increased density of
regenerating axons

focused on the role of NGF on nerve regeneration. Addition of NGF in a
silicone chamber used to repair a sciatic nerve section improved number
of regenerating axons (Rich et al., 1989). The same approach used to
repair a nerve gap was (Derby et al., 1993) or was not (Hollowell et al.,
1990) effective in enhancing axon growth into the tubes. On the other
hand, application of NGF after axotomy delays the onset of regeneration
(Gold, 1996), probably by attenuating the response of neurons to injury
(Mohiuddin et al., 1999). Local infusion of BDNF improved nerve
regeneration in neural conduits (Vogelin et al., 2006), but not when
applied acutely after cut and suture of the sciatic nerve (Boyd and
Gordon, 2001)). In contrast, the same authors described pro-
regenerative effects of BDNF when applied in a chronically denervated
nerve, that usually has a poorer ability to sustain regeneration (Boyd and
Gordon, 2003).

Neural guides that delivery GDFN used to repair a nerve gap
enhanced regeneration (Fine et al., 2002). Similar to BDNF, GDNF
applied to the proximal stump of chronically denervated nerves
increased regeneration of motor neurons (Boyd and Gordon, 2003). On
the other hand, application of IGF-1 into a crush site improved func-
tional recovery (Emel et al., 2011), whereas slow release of LIF after a
nerve section increased muscle mass and function (Tham et al., 1997).
Trophic factors secreted by SC, either alone or combined, have also been
used in experimental studies to selectively potentiate regeneration of
motor and sensory axons in vitro (Allodi et al., 2011) and in vivo (Anand
et al., 2017; Lotfi et al., 2011).

Besides the amount of evidence of the potential role of trophic factors
to enhance axonal regeneration, it is nowadays accepted that any
effective strategy to significantly improve functional recovery after
nerve injury has to contemplate multiple neurotrophic and neurotropic
factors acting synergistically and in a defined sequence. Moreover, the
administration of these factors has to be limited in time and create a
correct gradient to promote long distance regeneration. In fact, long
lasting expression of GDNF by transfecting SCs with viral vectors trap-
ped regenerating axons in the site of application in a nerve transection
model (Tannemaat et al., 2008), thus limiting the extent of regeneration.

In recent years, the discovery that SCs also secrete EV has pointed to
new therapies to mimic the positive effects of SCs on axonal regenera-
tion avoiding the limitations of cell therapy. In this line, it was shown
that SC EV enhanced neurite growth in vitro. The effect was specific,
since fibroblast EV did not have any effect on that study (Lopez-Verrilli
et al., 2013). In an in vivo model, daily injections of EV into the nerve
distal to a crush injury produced two times longer regenerating axons
and a positive response to the pinch test at a longer distance from the
crush site, indicating that EV greatly enhance the rate of regeneration
after nerve injury (Lopez-Verrilli et al., 2013). This work demonstrated
the valuable cargo of SC EV for axonal regeneration and also pointed to
its potential therapeutical role.

Nevertheless, cell therapy with SCs has some limitations in humans,
mainly related with the sacrifice of a healthy nerve to obtain autologous
cells. Therefore, use of mesenchymal stromal cells (MSCs) has been an
alternative widely explored in the field to improve axonal regeneration
and functional recovery (see below). Probably this is the reason that the
use of MSC derived secretome has also received more attention (Fig. 2).
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Table 2
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In vitro studies evaluating the pro-regenerative effects of MSC and SC secretome on neurons.

References In vitro model Therapeutical approach Outcome Proposed mechanisme
Lindsay, 1988 DRG primary NGF and BDNF Enhanced neurite Factors not needed for neuronal survival
cultures growth
Lopez-Verrilli et al., 2013~ DRG primary SC MV Enhanced neurite Intact proteins on the MV surface, as well as
explants growth MVcontent
Ching et al., 2018 NG108-15 neuron CM or concentrated of EV from ASC Enhanced neurite Proregenerative mRNA and miRNA from MV
culture differenciated towards SC-like growth
Sugimura-Wakayama DRG primary SHED-CM Neuritogenesis NGF, BDNF, NT3, CNTF, GDNF, VEGF, HGF
et al.,, 2015 cultures contained in the CM
o
- Bone Wharton’s Dental
8 marrow Q jelly pulp
- N
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Fig. 2. Therapies based on mesenchymal stem cells (MSCs) to improve nerve regeneration. MSCs are relatively easy to isolate from bone marrow, adipose tissue,
Wharton's jelly or dental pulp. These cells have been widely used as regenerative therapy for the damaged nervous system. A promising option to enhance axonal
regeneration after severe nerve lesions that need surgical repair consists of using artificial nerve grafts filled with different factors to bridge the nerve stumps. The use
of MSCs in the nerve conduits as well as the secretome of these cells (conditioned medium) has been proved to have beneficial effects in axonal regeneration after

nerve injuries.

In fact, a recent paper used conditioned medium from primary cultures
of SCs, that contained EV, to promote neurite growth in vitro, and found
similar effect when using a conditioned medium from cultures of adi-
pose stem cells that had been differentiated into a SC-like phenotype
(Ching et al., 2018).

3.2. Use of MSC secretome in peripheral nerve injury

MSCs are adult multipotent progenitor cells found in many organs
and tissue types. Due to their relative ease of isolation and expansion in
culture, MSCs have been used as a multi-purpose cell-based therapy, in
which transplanted MSCs would reach damaged tissues and help to
reduce neuroinflammation and even differentiate in specific cell types
(Wu et al., 2020). Over the last decades, substantial work has assessed
the impact of MSCs as regenerative therapy on nervous system damage
(Volkman and Offen, 2017). Thus, the intraspinal injection of a sus-
pension of MSCs promoted axonal regeneration and neuronal survival

after spinal root injury (Torres-Espin et al., 2013) and spinal cord injury
(Ruzicka et al., 2017; Sykova et al., 2021; Torres-Espin et al., 2014).
However, transplanted MSCs did not sustain these positive effects for
long periods of time due to their poor survival when grafted within the
neural tissue (Torres-Espin et al., 2014). Although in these studies cell
transplants moderately improved neuronal survival and axonal regen-
eration, they presented disadvantages, such as the high number of cells
needed for clinical application and the need of autologous source or
alternatively immunosuppressive therapy (Torres-Espin et al., 2015).
Considering the reduced time that the cells survive within the host
tissue after transplantation, it is mostly considered that the therapeutic
effects of MSCs, as well as other derived stem cells, are mainly associated
with the secretion of bioactive molecules and extracellular vesicles,
which constitute their secretome (Wu et al., 2020). Thus, cells secretome
might be used as a cell-free therapeutic approach, avoiding risks, such as
tumor formation or rejection, associated with the use of cells. The pro-
teomic analysis of MSC secretomes derived from different sources has
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revealed the existence of several trophic factors, such as VEGF, IGF-1,
platelet-derived growth factor (PDGF) and HGF, as well as anti-
inflammatory cytokines (Shin et al., 2021). However, the secretome
composition is not definitively characterized and varies significantly
between cultures dependent on subject donor, original tissue source and
culture conditions used (Lv et al., 2020; Rizk et al., 2016). Moreover,
studies revealed the existence of MSC subpopulations that co-express
neurotrophins and other neuro-regulatory molecules, which may
differentially contribute to MSC effects on neuronal survival and axonal
regeneration (Crigler et al., 2006). Nevertheless, it has to be noted that
the composition of stem cells secretome is dependent on the microen-
vironment in which the cells are placed, making it possible to precon-
dition them to improve specific profiles most adequate to the injured
tissue (Ferreira et al., 2018).

Marconi et al. (2012) found that an intravenous administration of
adipose-derived MSCs (ASC) 1 week after sciatic nerve crush injury in
mice, produced presence of a restricted number of undifferentiated ASC
together with an increase of axonal sprouting and reduction of inflam-
matory infiltrates in the injured nerves up to 3 weeks. They also showed
that ASCs produced in culture neuroprotective factors such IGF-1, BDNF
or basic fibroblast growth factor (bFGF), that may contribute to pe-
ripheral nerve regeneration. Moreover, ASCs escape immune system
surveillance, because they possess cell surface antigens that are poorly
recognized by T cells; therefore, MSC can be transplanted as an auto-
graft, allograft, and even xenograft (Bai et al., 2009; Marconi et al.,
2012).

Interestingly, application of conditioned media (CM) or concentrated
extracellular vesicles derived from adipose-derived stem cells differen-
tiated towards a SC-like phenotype significantly enhanced in vitro
neurite growth of NG108-15 neurons, similarly to media from primary
SCs. qRT-PCR demonstrated that the obtained EV contained mRNAs and
miRNAs known to play a role in nerve regeneration and these molecules
were upregulated by the SC differentiation protocol (Ching et al., 2018).
However, when exploring the cargo of these EV, the authors found dif-
ferences depending on their origin. Thus, EV from differentiated adipose
cells expressed higher amount of GAP43 and Tau mRNA than SC EV, but
lower amounts of Rac and RhoA mRNA. Moreover, EV of adipose stem
cells and SCs contained similar levels of miR-21 and miR-222mi,
whereas R-18a and miR-182 expression was higher in differentiated
adipose derived EV. Several studies have demonstrated that EVI miRNAs
(including miR-199b, miR-218, miR-148a, miR-135b and miR-221)
isolated from MSC cultures can influence neuronal differentiation and
axonal outgrowth (Qing et al., 2018).

Addition of CM obtained from cultured MSCs as well as from Neural
Crest precursor cells increased viability of primary sensory neurons of
the DRG after oxygen-glucose deprivation, and enhanced neurite growth
(Shi et al., 2019). MSC-CM also promoted survival and proliferation of
cultured SCs, and increased the expression of NGF, BDNF and bFGF by
the cultured SCs (Yang et al., 2009). These effects were related to the
contents of trophic factors in the CM, including epidermal growth factor
(EGF), platelet-derived growth factor alpha (PDGFa), ciliary neuro-
trophic factor (CNTF) and VEGF alpha (VEGFa). In addition, MSCs play
an immunomodulatory role regulating immune cells through direct
cellular contact and the release of cytokines (Brini et al., 2017). Indeed,
MSCs obtained from adipose tissue and from bone marrow were found to
express a similar profile of neurotrophic factors secretion (Hsiao et al.,
2012), and most of the trophic factors detected in those cells secretome
are known to promote axonal regeneration from in vitro and in vivo
studies (Allodi et al., 2011). A comparative study of MSCs derived from
human adult bone marrow, adipose tissue and Wharton's jelly, focusing
on gene expression and secretome content and neurotrophic properties,
revealed that, despite the differences in growth factor secretion, the MSC
secretome derived from all cell sources had significant potential to
stimulate neurite outgrowth of DRG neurons and to reduce oxidative cell
death (Petrenko et al., 2020).

The development of artificial nerve grafts, composed of a
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biocompatible nerve conduit filled with a neurotropic matrix and seeded
with competent pro-regenerative cells has been pursued for decades, as a
promising option to enhance nerve regeneration and become an alter-
native to the classical autologous nerve graft for repairing long gap in-
juries. Mostly SCs but also MSCs have been used embedded in a hydrogel
filling a variety of conduits with significant success in enhancing nerve
regeneration and allowing regeneration over critical long gaps (for re-
views see (Deumens et al., 2010; Sarker et al., 2018). However, the need
of an autologous cell source (Dezawa et al., 2004; Rodriguez et al., 2000)
or the administration of immunosuppression (Udina et al., 2004) have
been reported as needed for optimizing the effect of the cell graft to
reach the functional outcome of autologous graft repair.

Using the conduit-supported approach Sun et al. (2019) enclosed
MSCs in the wall of conduits made of co-spun polycaprolactone and
gelatin methacrylate. This increased cell local preservation, for up to 4
weeks, while when injected within a matrix into the conduit lumen the
cell abundance started to decline after just 1 week. By spatially
restricting cell enclosure, the released secretome allowed a directional
chemokine gradient of endogenous SCs in nerve conduits. This resulted
in significantly enhanced functional recovery and axonal myelination
compared with non-cell or lumen-cell conditions after repair of a 10 mm
gap in the rat sciatic nerve. This study offers proof that controlled cell
seeding to produce neurotrophic gradients within an engineered nerve
conduit is a potential strategy for secretome application in peripheral
nerve regeneration.

Zhang et al. (2020) added human umbilical cord MSCs-derived EV to
olfactory ensheathing cells (OECs) in culture and observed that EV
promoted survival and migration of OECs in hypoxic conditions, and
effectively increased BDNF secretion. Using a 10 mm sciatic nerve defect
rat model repaired with a chitosan-collagen conduit, they reported that
prefilling the conduit with an OECs plus EV suspension synergistically
promoted motor and sensory recovery of the injured sciatic nerve,
although differences between groups were marginal.

Sugimura-Wakayama et al. (2015) investigated the effects of CM
derived from stem cells obtained from human exfoliated deciduous teeth
(SHED). In vitro, SHED-CM stimulated neuritogenesis of DRG. In vivo
they evaluated a 10-mm gap in the rat sciatic nerve repaired with sili-
cone conduits containing SHED-CM or control medium. The group with
SHED-CM showed improved reinnervation of target muscles and func-
tional recovery, and higher number of regenerate axons after 12 weeks
of nerve transection. The SHEDs medium contained NGF, BDNF, NT-3,
CNTF, GDNF, VEGF and HGF that enhance peripheral nerve regenera-
tion. On the other hand, the authors showed that factors secreted from
SHED may also influence SCs proliferation and production of extracel-
lular matrix components. However, it should be considered that the
effect of a fluid medium inside the conduit had likely a short time
persistence. In order to maintain a longer release, (Kano et al., 2017)
implanted a collagen graft soaked with SHED-CM within the nerve gap
created by transection of the facial nerve in rats. The combination of
anti-inflammatory M2 macrophage inducers, MCP-1 and secreted ecto-
domain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) was found
essential for SHED-CM mediated functional recovery after facial nerve
injury. Notably, MCP-1/sSiglec-9 induced the polarization of M2 mac-
rophages, which antagonized the pro-inflammatory M1 conditions
associated with nerve injury, promoted proliferation and migration of
endogenous SCs, and enhanced extension of the peripheral nerve. On the
other hand, (Tsuruta et al., 2018) established a novel model for superior
laryngeal nerve (SLN) injury following trauma, that causes delay in the
onset of the swallowing reflex and gain of laryngeal residue in the
pharynx. Systemic intravenous administration of 1 ml SHED-CM in rats
after a SLN injury improved swallowing function and increased the
density of regenerated myelinated fibers, associated to M2 macrophage
polarization and neovascularization, suggesting that SHED-CM may
provide therapeutic benefits for patients with such injury. The potential
of stem cells from dental sources was pointed out by the comparative
study of the secretome composition of MSCs from dental apical papilla
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(SCAPs) and from bone marrow; it was found that SCAPs secreted
significantly larger amounts of chemokines and neurotrophins than
bone marrow derived MSCs (BMSCs; (Yu et al., 2016).

3.3. Use of MSC secretome in neuropathic pain

The therapeutic potential of MSC-derived CM has been also investi-
gated in models of neuropathic pain induced by sciatic nerve ligation.

Injured mice were treated by endovenous route with bone marrow-
derived MSCs or their CM. As early as 12 h after injection, neuro-
pathic mice treated with MSCs and with CM showed a clear anti-
nociceptive effect that was maintained throughout the evaluation period
of 60 days. In contrast, gabapentin used as control treatment induced
only short-lasting antinociception. The effects could be related with
changes in cytokine levels; IL-1p, TNF-«, and IL-6 were reduced, and IL-
10 was increased in nerve and spinal cord by treatment with CM and
MSCs (Gama et al.,, 2018). Interestingly, it has been reported that
conditioned medium (CM) collected from painful human schwanno-
matosis tumor cells, but not that from nonpainful ones, was able to
sensitize DRG neurons in culture, causing increased sensitivity to de-
polarization and also upregulated the expression of pain-associated
genes. Multiple cytokines were also detected at higher levels in CM
from painful tumors, underlying the pain-promotion action (Ostrow
et al., 2019).

4. Conclusions

New insights into the mechanisms that allow cell-to-cell communi-
cation have highlighted the important role of the secretome, specially
EV, in the local control of axon growth and degeneration by SCs and
macrophages, and have also pointed to the potential therapeutical role
of secretomes as an alternative to cell therapy to improve axonal
regeneration. Both trophic factors and EV from SC promotes axonal
regeneration when locally applied at the injury site. However, these
strategies have a limited impact on functional recovery after nerve
injury. Secretomes can also be used as a part of a repair strategy to
improve the outcome of artificial neural guides, similar to laminin and
SC derived trophic factors that have been frequently used in the design
of these guides, although currently there are no competitive alternatives
to the gold standard autograft. Secretome of MSCs has also been
extensively studied since transplantation of these cells in the nervous
system has potent effects even when their survival is limited in time and
conditioned by the immune response. Similar to SC secretomes, MSC
secretomes improve axonal regeneration after nerve injury, but with a
limited impact on functional recovery. Innovative strategies using spe-
cific secretomes to create gradients that favor directed axonal regener-
ation and new ways of administration with clinical translational
perspective would increase the impact of secretomes as therapeutical
tool in the field of nerve regeneration.
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