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We solve the center-focus problem in a class of piecewise quadratic polynomial 
differential systems with an invariant straight line. The separation curve is also a 
straight line which is not invariant. We provide families having at the origin a weak-
foci of maximal order. In the continuous class, the cyclicity problem is also solved, 
being 3 such maximal number. Moreover, for the discontinuous class but without 
sliding segment, we prove the existence of 7 limit cycles of small amplitude.
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1. Introduction

In past years, a big interest in the study of the dynamics of piecewise systems has emerged, due to the 
fact that many real phenomena can be modeled with this class of systems. For example, the existence and 
uniqueness of periodic orbits or the existence of a continuum of periodic orbits. These problems appear in 
many areas of research. In particular in electrical and mechanical engineering, in control theory, and even 
in the analysis of genetic networks. See for example [1,10].

Usually, the simplest models are defined via planar piecewise polynomial vector fields Z = (Z+, Z−) in 
the following way. Taking 0 as a regular value of the function h : R2 → R, we denote the discontinuity curve 
by Σ = h−1(0) and the two regions it delimits by Σ± = {±h(x, y) > 0}. So, the piecewise vector field can 
be written as

Z± : (ẋ, ẏ) = (X±(x, y), Y ±(x, y)), for (x, y) ∈ Σ±, (1)
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Fig. 1. Definition of the vector field on Σ following Filippov’s convention in the sewing, escaping, and sliding regions.

where X± and Y ± are polynomials of degree n in Σ±. The above piecewise vector field is continuous when 
it satisfies Z+ = Z− on the separation curve Σ. Otherwise we will say that it is discontinuous. The local 
trajectories of Z on Σ was stated by Filippov in [11] (see Fig. 1). The points on Σ where both vectors 
fields simultaneously point outward or inward from Σ define the escaping (Σe) and sliding region (Σs), 
respectively. The interior of its complement on Σ defines the crossing region (Σc), and the boundary of 
these regions is constituted by tangential points of Z± with Σ. As this work is restricted to the study of 
limit cycles of crossing type, that we will refer to them only as limit cycles, we do not recall here the precise 
definition of the vector field on Σe and Σs. Let Z±h denote the derivative of the function h in the direction 
of the vector Z± that is, Z±h(p) = 〈∇h(p), Z±(p)〉. Notice that p ∈ Σc provided that Z+h(p) ·Z−h(p) > 0, 
p ∈ Σe ∪ Σs provided that Z+h(p) · Z−h(p) < 0, and p in Σ is a tangential point of Z± provided that 
Z+h(p)Z−h(p) = 0. We say that p ∈ Σ is a pseudo-equilibrium of Z, if p is either a tangential point or an 
equilibrium of Z+ or Z−. We call p ∈ Σ an invisible fold of Z+ (resp. Z−) if p is a tangential point of Z+

(resp. Z−) and (Z+)2h(p) < 0 (resp. (Z−)2h(p) > 0).
Let us consider that both differential systems in (1) (when we thought them separately) have an equilib-

rium point at the origin such that the eigenvalues of their Jacobian matrices at 0 have zero real part. For 
simplicity, we will consider only the cases when the linear part of each system is written in its normal form. 
Hence, after a time rescaling if necessary, (1) writes as

Z± =
{
ẋ = −y +

∑n
k=2 P

±
k (x, y),

ẏ = x +
∑n

k=2 Q
±
k (x, y),

if (x, y) ∈ Σ±, (2)

being Σ± = {(x, y) : ±h(x, y) > 0} and h a C1 function for which 0 is a regular value. Obviously, for the 
problem that we would like to study, the time orientation is taken in order that the origin has a monodromic 
character. In this paper, we will assume that the discontinuity curve Σ = h−1(0) is a straight line passing 
through the origin. In fact, we will take them being one of the coordinates axes. As usual P±

k , Q±
k denote 

homogeneous polynomials of degree k. As in the analytic scenario, the problem of distinguishing whether 
the origin of (2) is a center or a focus is also known as Poincaré center problem, center-focus problem, or just 
center problem. In the piecewise polynomial class, there are other center problems that are not considered 
in this work. This is the case, for example, when we consider a pseudo-equilibrium point of fold-fold type. 
In addition to the difficulty of increasing the number of parameters, when we have fixed the degree of a 
vector field, we have to consider other types of centers appearing in the nonsmooth scenario. We will deal 
with this point in Section 3. A very related problem is the analysis of the number of limit cycles bifurcating 
from the origin.

It is well-known that linear vector fields have no limit cycles. But this is not the case in a piecewise 
scenario. Freire, Ponce, Rodrigo, and Torres prove in [12] that only one limit cycle exists in continuous 
piecewise linear differential systems. For discontinuous piecewise linear differential systems Freire, Ponce, 
and Torres in [13] prove that only two limit cycles of small amplitude bifurcate from the origin. They also 
prove that a third (big) limit cycle exists. Also for this class of differential systems, the center problem from 
a monodromic equilibrium point but near the infinity is solved in [14], where the number of limit cycles 
bifurcating from the infinity is also considered. The authors prove that at least three limit cycles bifurcate 
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from infinity. Both problems are related to using a transformation that moves the infinity to the origin. All 
the limit cycles are in fact crossing limit cycles, because they cut the separation straight line Σ.

For quadratic vector fields, Bautin showed in [3] that the maximum number of limit cycles of small 
amplitude near an equilibrium point is three and, moreover, this upper bound is reached. For quadratic 
discontinuous differential systems, this problem is studied in [17,21]. The work of Bautin is very appreciated 
because increasing the degree, these problems remain open. Thus, it is quite natural to restrict the study 
to some special families. For example, the planar quadratic vector fields have an invariant straight line. 
Cherkas, Zhilevich, and Rychkov, see [6,7,26], proved that this family has only one limit cycle. For more 
details on this problem see [8] and [27]. They prove that the canonical form of such systems is

{
ẋ = −y + dx + l x2 + mxy + n y2,

ẏ = x + bx y,
(3)

being d ∈ [0, 2), m ≥ 0, and b 	= 0. We notice that, with these conditions, the origin is an equilibrium 
point of monodromic non-degenerate type. We will analyze this problem in the piecewise framework with 
2 zones separated by a straight line passing through the origin. Hence, the dimension of the space of 
parameters (d, l, m, n, b) ∈ R5 will be doubled, (d1, d2, l1, l2, m1, m2, n1, n2, b1, b2) ∈ R10. But, as we will see, 
the number of limit cycles will increase much more than doubled. A first natural extension is to consider 
that the invariant straight line is the same in both zones. Therefore we will assume b1 = b2 = b. As in [8], 
after the rescaling (x, y) → (−x/b, −y/b) if necessary, we can assume b = −1. This change of variables does 
not modify the crossing limit cycles and the dimension of the parameter space decreases to 8.

An interesting phenomenon is that the number of limit cycles increases and it depends on the separation 
straight line. We will study two situations but fixing the canonical form (3): firstly when the separation 
straight line is the horizontal axis and secondly when it is the vertical axis. As we will see in the following 
results, the highest number of limit cycles is obtained for the second situation in the discontinuous case 
while in the continuous case is for the first one.

Consequently, the first piecewise quadratic differential system is

Zj =
{
ẋ = −y + djx + lj x

2 + mj x y + nj y
2,

ẏ = x(1 − y),
if (x, y) ∈ ΣH

j , (4)

where the discontinuity straight line is ΣH = {(x, y) : y = 0} and ΣH
j = {(−1)jy < 0}, for j = 1, 2. The 

second piecewise quadratic differential system is

Zj =
{
ẋ = −y + djx + lj x

2 + mj x y + nj y
2,

ẏ = x(1 − y),
if (x, y) ∈ ΣV

j , (5)

where the discontinuity straight line is ΣV = {(x, y) : x = 0}, with ΣV
j = {(−1)jx < 0}, for j = 1, 2. We 

notice that, in general, (4) and (5) are discontinuous piecewise differential systems. The first main result 
(Theorem 1.1) provides a lower bound for the number of limit cycles of small amplitude in both situations. 
It is remarkable that in the second one we are using all the parameters for having a complete unfolding. For 
the continuous cases, labeled as (4c) and (5c) respectively, the local cyclicity problem is completely solved. 
See Theorems 1.2 and 1.3.

Theorem 1.1. There are values of the parameters such that from the origin of systems (4) and (5) bifurcate 
4 and 7 crossing limit cycles of small amplitude, respectively, multiplicities taken into account.
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As we will see in the proof of the above result, the limit cycles are obtained by studying which are the 
maximal orders of weak-foci together with the respective unfoldings. Both numbers provide lower bounds 
for the local cyclicity of the origin. For the study of the corresponding upper bounds, the cyclicity of the 
centers should be also studied. Which needs a more accurate analysis. This problem is completely solved 
in the next two results, getting the least upper bounds for the maximum number of crossing limit cycles 
of small amplitude that can bifurcate from the origin, multiplicities taken into account, that is, providing 
its local cyclicity. We remark the large difference between the number of limit cycles taking into account 
that both families have the same number of parameters. We also observe that the considered families have 
no sliding segment near the origin. As we will explain in Section 2, the pseudo-Hopf bifurcation does not 
take place. If we were interested in this kind of bifurcation, we could add an extra parameter in the first 
components of system (5) obtaining an extra limit cycle. We notice that the study of this phenomenon in 
system (4) breaks the chosen canonical form and also the invariant straight lines.

Theorem 1.2. The piecewise differential equation (4) is continuous if and only if l1 = l2 =: l and d1 = d2 =:
d. Therefore, it becomes {

ẋ = −y + d x + l x2 + mj x y + nj y
2,

ẏ = x(1 − y),
if (x, y) ∈ ΣH

j , (4c)

being ΣH
j = {(−1)jy < 0}, for j = 1, 2. Moreover, the local cyclicity of the origin of the above family is 3, 

multiplicities taken into account.

Theorem 1.3. The piecewise differential equation (5) is continuous if and only if n1 = n2 =: n. Therefore, 
it writes as {

ẋ = −y + dj x + lj x
2 + mj x y + n y2,

ẏ = x(1 − y),
if (x, y) ∈ ΣV

j , (5c)

being ΣV
j = {(−1)jx < 0}, for j = 1, 2. Moreover, the local cyclicity of the origin of the above family is 2, 

multiplicities taken into account.

After a detailed analysis of the number of limit cycles of small amplitude bifurcating from the origin in 
families (4) and (5), we finish providing an answer to the respective center-focus problems, firstly for the 
discontinuous case and secondly for the continuous one.

Theorem 1.4. For family (4) with d1 = d2 = 0, the origin is a center if, and only if, one of the next conditions 
holds:

(H1) m1 = m2 = 0;
(H2) l1 − l2 = m1 −m2 = l1 + n2 = l1 + n1 = 0;
(H3) l1 + l2 + 1 = m1 −m2 = n1 + n2 − 1 = 0.

Theorem 1.5. For family (5) with d1 = d2 = 0, the origin is a center if, and only if, one of the next conditions 
holds:

(V1) l1 − l2 = m2 + m1 = n1 − n2 = 0;
(V2) l1 − l2 = n2 + l2 = n1 + l2 = 0;
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(V3) l1 − 2l2 = m2 = n2 = n1 + 2l2 = 0;
(V4) 2l1 − 2l2 + 1 = m2 = m1 = n2 = n1 − 1 = 0;
(V5) 2l1 − 2l2 − 1 = m2 = m1 = n1 = n2 − 1 = 0;
(V6) l1 − 2l2 − 1 = m2 = n2 − 1 = n1 + 2l2 + 1 = 0;
(V7) 2l1 − l2 = m1 = n1 = n2 + l2 = 0;
(V8) 2l1 − l2 + 1 = m1 = n2 + l2 = n1 − 1 = 0.

The next corollaries follow straightforwardly from the above results, considering the continuity conditions 
given in Theorem 1.2 when the corresponding family has an equilibrium point of weak-focus type at the 
origin.

Corollary 1.6. For family (4c) with d = 0, the origin is a center if, and only if, one of the next conditions 
holds:

(Hc
1) m1 = m2 = 0;

(Hc
2) m1 −m2 = l + n2 = l + n1 = 0;

(Hc
3) 2l + 1 = m1 −m2 = n1 + n2 − 1 = 0.

Corollary 1.7. For family (5c) with d1 = d2 = 0, the origin is a center if, and only if, one of the next 
conditions holds:

(Vc
1) l1 − l2 = m2 + m1 = 0;

(Vc
2) l1 − l2 = n + l2 = n + l2 = 0;

(Vc
3) l1 = l2 = m2 = n = 0;

(Vc
6) l1 + 1 = l2 + 1 = m2 = n − 1 = 0;

(Vc
7) l1 = l2 = m1 = n = 0;

(Vc
8) l1 + 1 = l2 + 1 = m1 = n − 1 = 0.

The paper is structured as follows. In Section 2, we present the basic tools necessary to prove the results 
of this work. In Section 3, we provide sufficient conditions so that the presented families have a center at 
the origin. Next, in Section 4, we analyze the highest-order weak-foci equilibrium points together with the 
small amplitude limit cycle bifurcation and, as usual, the necessary conditions to have a center equilibrium 
point. The last section is devoted to showing which is the upper bound for the cyclicity when the families 
are continuous, finishing with the proofs of Theorems 1.2 and 1.3.

2. The degenerate Hopf bifurcation

The main results of this paper follow studying the return map near an equilibrium point of monodromic 
type located in the separation straight line. In fact, studying the composition of two half-return maps because 
the proofs are mainly based on considering two piecewise polynomial vector fields having a nondegenerate 
equilibrium point of center-focus type. Hence, the analysis of both maps can be realized by computing the 
Taylor series of the solution with respect to the initial condition, working in polar coordinates. But, instead 
of using the composition of both maps, we will compute the difference map that is equivalent. We recall first 
how these Taylor series can be computed and then how they are used to study lower and upper bounds for 
the cyclicity. That is, the number of limit cycles of small amplitude bifurcating from the equilibrium point.
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Fig. 2. The positive and negative half-return maps Π+ and
(
Π−)−1, respectively.

The piecewise system (2) can be written in polar coordinates, (x, y) = (r cos θ, r sin θ), as

dr±

dθ =
∑n

k=2 R
±
k (θ)rk

1 +
∑n

k=2 Θ±
k (θ)rk−1 =

∞∑
k=2

S±
k (θ)rk, (6)

where

R±
k (θ) = cos θ P±

k (cos θ, sin θ) + sin θ Q±
k (cos θ, sin θ),

Θ±
k (θ) = cos θ Q±

k (cos θ, sin θ) − sin θ P±
k (cos θ, sin θ),

being P±
k , Q±

k , and S±
k polynomials in sin θ and cos θ. We consider the solution of the initial value problems 

defined by (6) with r+(r0, 0) = r0 and r−(r0, π) = r0, written in Taylor series with respect to r0, defined 
when |r0| 
 1, as

r±(θ, r0) =
{
r0 +

∑∞
k=2 u

+
k (θ)rk0 , if θ ∈ (0, π),

r0 +
∑∞

k=2 u
−
k (θ)rk0 , if θ ∈ (π, 2π).

Hence, we can define the positive half-return map Π+(r0) = r+(r0, π) and the negative half-return map 
Π−(r0) = r−(r0, 2π). Instead of considering the composition of both maps we will define its equivalent 
displacement map, see for example [9],

Δ(r0) =
(
Π−)−1 (r0) − Π+(r0) =

∞∑
k=2

Wkr
k
0 , (7)

where, the function (Π−)−1 (r0) is the inverse of the negative half-return map (Π−) (r0), as it is illustrated in 
Fig. 2. As usual in this kind of analysis, the first nonvanishing Wk is called the kth-order Lyapunov quantity 
of the piecewise polynomial system (2). This approach was also used in [15,20,24]. It is well-known that, 
as the usual Lyapunov quantities for analytic vector fields, the coefficients Wk are polynomials depending 
on the coefficients of the polynomial perturbations P±

k , Q±
k . Finally, we will say that the origin of (2) is a 

weak-focus of order � when Wj = 0, 1 ≤ j ≤ � − 1 and W� 	= 0. Moreover, the stability of the equilibrium 
point is given by the sign of the first nonzero Lyapunov quantity W�.

This first non-vanishing coefficient provides also the stability of the equilibrium. As usual, choosing 
adequately the perturbation parameters in P±

k , Q±
k we obtain limit cycles of small amplitude bifurcating, 

in this case, from the origin. This perturbation analysis is known as the degenerated Hopf bifurcation.
The classical Hopf bifurcation in the study of analytic planar vector fields is characterized by the birth of a 

limit cycle from a weak-focus of first-order. More specifically, in the analytical context, the first nonvanishing 
coefficient has always an odd subscript and the limit cycle, which is of small amplitude, bifurcates from the 
origin changing adequately the sign of the trace of the Jacobian matrix of the corresponding system near 
the equilibrium point. See more details in [2,25].
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This bifurcation, in the piecewise context, is associated with the study of the return map in a fold-fold 
type point. In this case, the first non-vanishing coefficient has always an even subscript. The limit cycle of 
small amplitude bifurcates from the origin changing also the stability of the origin. In this case, the size of 
the sliding segment takes the role of the trace in the analytic context. See more details of this phenomenon 
of codimension 1 in [22] or also in [18] for the codimension 2 case. Recently, this bifurcation is also known 
as pseudo-Hopf bifurcation, see [4].

When, as in our case, we fix the existence of an equilibrium of monodromic type in both upper and lower 
systems of (2), all the coefficients in r0 appear in the Taylor development (7). All our families (4), (4c), 
(5), and (5c) have the origin as an equilibrium point. Hence, W0 = 0 and we have no sliding (nor escaping) 
segment.

It is easy to check that by adding the trace parameter in upper and lower systems (2) generically the 
first non-vanishing coefficient in (7) is W1. As in the analytic scenario when we have an equilibrium point 
of focus type. In fact, W1 = 0 if and only if the sum of the traces (of the upper and lower systems) is zero. 
Clearly, when W1 = 0 and W2 	= 0, the stability of the equilibrium point is given by the sign of W2. More 
concretely, the origin of the system is stable (resp. unstable) when W2 < 0 (resp. W2 > 0). Consequently, 
in the system, when W1 is a small enough positive (resp. negative) real number, a small (resp. unstable) 
limit cycle bifurcates from the origin. In this case, it is important to remark that the equilibrium point (or 
equilibrium points) remains located at the origin. So, this bifurcation is also similar to the one previously 
denoted as Hopf bifurcation.

From the above analysis, in the bifurcation of an analytic planar piecewise vector field, when we have a 
weak-focus of order k we get (generically) k limit cycles. See more details in [17]. This bifurcation problem 
with varying parameters and taking into account multiplicities is studied in [19]. As we will see, as our 
families are polynomial, the study of the complete unfolding is more intricate. We notice again that, as all 
our families (4), (4c), (5), and (5c) have no sliding, we will only get up to k−1 limit cycles of small amplitude. 
Although for families (5c) and (5) this pseudo-Hopf bifurcation makes sense. Because the invariant straight 
line 1 − y = 0 remains unchanged when a constant term is added in the first components.

3. The sufficient conditions for the center problem

This section is devoted to proving that the families in Theorems 1.4 and 1.5 are centers. This is done 
in Propositions 3.3 and 3.4, respectively. We consider centers such that the period annulus is formed only 
by crossing periodic orbits. The key point is based, except by a special change of variables introduced in 
Definition 3.1, on the existence of three centers type. They are rigorously defined in Theorem 3.2. The 
first ones are of Darboux type because they have a piecewise first integral; the second ones have the usual 
time-reversibility, and the third ones are also symmetric but have the identity as the half-return map.

To simplify the reading, in the next definition and the main result we take ΣH = {y = 0} as the separation 
curve. The result and the definition can be easily generalized considering other separation curves.

Definition 3.1. Let Ψ± : R2 → R2 be bijective transformations and ΣH = {y = 0}. We say that

Ψ(x, y) =
{

Ψ+(x, y), if y > 0,
Ψ−(x, y), if y < 0,

is a twin ΣH-transformation when Ψ+(x, 0) = Ψ−(x, 0).

Theorem 3.2. Let Z be a piecewise differential system of the form (2) with ΣH = {y = 0}. Then, applying 
a twin ΣH-transformation if necessary, we have a center at the origin in the following cases:
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Fig. 3. The three different center types detailed in Theorem 3.2.

(a) There exist first integrals H± of Z± satisfying H+(x, 0) = H−(x, 0).
(b) Z is invariant with respect to the change

(x, y, t) → (x,−y,−t). (8)

(c) Z± are invariant with respect to the change

(x, y, t) → (−x, y,−t). (9)

See all the different cases drawn in Fig. 3.

We notice that for the third class of systems in the above result also the complete vector field Z has the 
detailed symmetry.

Proof of Theorem 3.2. We notice that from the piecewise differential system (2), it is easy to see that the 
origin is a monodromic point and this property will be used along the proof.

(a) From the canonical form, as it is written the piecewise differential system (2), it is easy to check that 
the Taylor series of the first integrals should start as H±(x, y) = x2 + y2 + · · · . Let x2 < 0 < x1 small 
enough real numbers such that (xj, 0) ∈ ΣH, j = 1, 2, and are connected by monodromic solutions of 
(2) in upper and lower half-planes. Consider the function

Ĥ(x1, x2) = H±(x2, 0) −H±(x1, 0)
x2 − x1

=
n∑

i=1
Ĥi(x1, x2),

being Ĥi homogeneous polynomials of degree i in (x1, x2). We notice that we have only one function 
Ĥ because, by hypothesis, H±(x, 0) = H±(x, 0). Moreover, Ĥ1(x1, x2) = x1 + x2 and, when (x1, 0)
and (x2, 0) are on the same level curve of H+, or H−, we have Ĥ(x1, x2) = 0. As, near the origin 
∂Ĥ/∂x2 	= 0, we can apply the Implicit Function Theorem to show the existence of a unique half-return 
map g : I → I, where I is an interval containing the origin. Moreover, g satisfies Ĥ(x, g(x)) = 0 and 
g(x) = −x + · · · . The proof follows from the uniqueness of the half-return map, because it is the same 
in both, upper and lower, regions. See Fig. 3.(a).

(b) The monodromy property together with the time-symmetry (8), allows us to use the classical result of 
analytic reversibility systems to prove this item. See more details in [23]. A drawing of this situation 
can be seen in Fig. 3.(b).

(c) The proof follows by the reversibility property (9) that satisfy the upper and lower solutions. Both are 
symmetric with respect to the y-axis, so the respective half-return maps are equal. More concretely, each 
point (x, 0) in ΣH is sent to the corresponding symmetric one (−x, 0). See this property in Fig. 3.(c). �

The following results are direct consequences of the last theorem.
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Proposition 3.3. For each family Hi, i = 1, 2, 3, listed in Theorem 1.4, the corresponding piecewise system 
(4) has a center at the origin.

Proof. The first family H1 is a center using directly Theorem 3.2.(c). The second family H2 satisfies that 
Z1 = Z2. Hence it is, in fact, a quadratic vector field of Lotka–Volterra type following the classification in 
[28]. So there exists a first integral that coincides in both regions ΣH

1 and ΣH
2 . The proof finishes applying 

Theorem 3.2.(a). The proof that the last family H3 has a center follows from Theorem 3.2.(b), proving 
that, after writing the systems in the usual polar coordinates (x, y) = (r cos θ, r sin θ), the change r =
4R/(4 + Aj(θ)R), with j = 1, 2 where

A1(θ) =(3 − l1 − 3n2) sin θ + m2 cos θ − (1 + l1 − n2) sin 3θ −m2 cos 3θ,

A2(θ) =(1 + l1 + 3n2) sin θ + m2 cos θ + (1 + l1 − n2) sin 3θ −m2 cos 3θ,

is a twin ΣH-transformation. �
We notice that both rational changes of coordinates of the above proof are known because they allow us 

to change a system with a homogeneous nonlinearity to an Abel differential equation, see for example [5].

Proposition 3.4. For each family Vi, i = 1, . . . , 8, listed in Theorem 1.5, the corresponding piecewise system 
(5) has a center at the origin.

Proof. As the separation line is ΣV = {x = 0}, we can apply Theorem 3.2 after changing the variables (x, y)
by (y, x).

The first family V1 is time-reversible with respect to the change (x, y, t) → (−x, y, −t) and, from the 
comment above, we have a center applying Theorem 3.2.(b). The proof for the remaining families follows 
using Theorem 3.2.(a) and all the first integrals H±, here denoted by H1, H2, will be of Darboux type and 
they will write as

Hj(x, y) = (fj,1(x, y))λj,1(fj,2(x, y))λj,2(fj,3(x, y))λj,3 .

Where λj,3 can be zero when only two invariant algebraic curves are necessary in the center characterization. 
It is necessary to check that all of them are well defined in a neighborhood of the origin. We only provide the 
polynomials fj,1, fj,2, fj,3 and the exponents λj,1, λj,2, λj,3. Using the first remark of the proof, in addition 
of finding the first integrals we will check the condition H1(0, y) = H2(0, y), for all y, being H1 and H2 the 
first integrals defined in x > 0 and x < 0, respectively.

• For the case V2 we have Hj(0, y) = (1 − y)l2(l2y + 1), for j = 1, 2. Being

fj,1 = 1 − y,

fj,2 = (−mj + (4l22 + m2
j + 4l2)1/2)x/2 + l2y + 1,

fj,3 = (−mj − (4l22 + m2
j + 4l2)1/2)x/2 + l2y + 1,

λj,1 = l2,

λj,2 = (1 + mj(4l22 + m2
j + 4l2)−1/2)/2,

λ = (1 −m (4l2 + m2 + 4l )−1/2)/2.
j,3 j 2 j 2
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• For family V3 we can take

f1,1 = f2,1 = 1 − y,

f1,2 = (−m1 + (16l22 + m2
1 + 8l2)1/2)x/2 + 2l2y + 1,

f1,3 = (−m1 − (16l22 + m2
1 + 8l2)1/2)x/2 + 2l2y + 1,

λ1,1 = λ2,1 = 2l2,

λ1,2 = (1 + 2m1(16l22 + m2
1 + 8l2)−1/2)/2,

λ1,3 = (1 − 2m1(16l22 + m2
1 + 8l2)−1/2)/2,

f2,2 = −(2l2 + 1)l2x2 + 2l2y + 1,

λ2,2 = 1.

Here Hj(0, y) = (1 − y)2l2(2l2y + 1), for j = 1, 2.
• For family V4, we have Hj(0, y) = (1 − y)2l2(2l2y + 1), for j = 1, 2, where

f1,1 = −f2,1 = y − 1,

f1,2 = (2l2 + 1)l2x2 + (2l2y + 1)(y − 1),

λ1,1 = λ2,1 − 1 = 2l2 − 1,

λ1,2 = λ2,2 = 1,

f2,2 = −(2l2 + 1)l2x2 + 2l2y + 1.

• For case V5 we have

f1,1 = f2,1 = y − 1,

f1,2 = (2l22 + 3l2 + 1)x2 − (2l2 + 1)y − 1,

λ1,1 = λ2,1 + 1 = 2l2 + 1,

λ1,2 = λ2,2 = 1,

f2,2 = (2l22 + 3l2 + 1)x2 + ((2l2 + 1)y + 1)(y − 1),

with Hj(0, y) = ((2l2 + 1)y + 1) (y − 1)2l2+1, for j = 1, 2.
• In family V6 we have Hj(0, y) = ((2l2 + 1)y + 1) (y − 1)2l2+1, with j = 1, 2, and

f1,1 = f2,1 = y − 1,

f1,2 =
(
−m1 + (16l22 + m2

1 + 24l2 + 8)1/2
)
x/2 + (2l2 + 1)y + 1,

f1,3 =
(
−m1 − (16l22 + m2

1 + 24l2 + 8)1/2
)
x/2 + (2l2 + 1)y + 1,

λ1,1 = λ2,1 + 1 = 2l2 + 1,

λ1,2 = [1 + m1(16l22 + m2
1 + 24l2 + 8)−1/2]/2,

λ1,3 = [1 −m1(16l22 + m2
1 + 24l2 + 8)−1/2]/2,

f2,2 = (2l22 + 3l2 + 1)x2 + ((2l2 + 1)y + 1)(y − 1),

λ2,2 = 1.

• Family V7 is equivalent to V3, just by interchanging the left and right differential systems.
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• For the last family V8 we can take

f1,1 = f2,1 = 1 − y,

f1,2 = −(l2 + 1)l2x2/2 + (l2y + 1)(1 − y),

λ1,1 = λ2,1 − 1 = l2 − 1,

λ1,2 = 1,

f2,2 =
(
−m2 + (4l22 + m2

2 + 4l2)1/2
)
x/2 + l2y + 1,

f2,3 =
(
−m2 − (4l22 + m2

2 + 4l2)1/2
)
x/2 + l2y + 1,

λ2,2 = (1 + (4l22 + m2
2 + 4l2)−1/2m2)/2,

λ2,2 = (1 − (4l22 + m2
2 + 4l2)−1/2m2)/2,

being Hj(0, y) = (1 − y)l2(l2y + 1), for j = 1, 2. �
4. The maximal order of a weak-focus and the bifurcation of crossing limit cycles

In this section, we will provide the conditions of the parameters such that systems (4c), (4), (5c) have 
the maximal order of a weak-focus located at the origin and also the unfolding of crossing limit cycles of 
small amplitude in each family. This is done in Propositions 4.1, 4.2 and 4.3. The complete study of system 
(5) is more intricate. Proposition 4.4 provides the maximal order of each weak-focus and some values of the 
parameters such that this maximality is attained. Finally, in Proposition 4.5 we get the complete unfolding 
of some of them. Consequently, the proof of Theorem 1.1 is finished. Although the proofs of Theorems 1.2
and 1.3 will be done in the next section, the explicit unfoldings follow from the following results. This section 
is structured in two subsections. The first contains all the results referred to the case with the x-axis as the 
separation straight line. The second is devoted to the result being the y-axis as the separation straight line.

As we have explained in the introduction, in the following results we will always have one crossing limit 
cycle of small amplitude less than the order of each weak-focus. Because our canonical forms have no sliding 
segment.

4.1. The horizontal case

Proposition 4.1. The maximal weak-focus order of the origin of the piecewise differential system (4c) is 4. 
This maximal property is obtained when the parameters are on

T c = {d = 2l + n1 + n2 = m1 −m2 = 0;m2(n1 − n2)(n1 + n2 − 1) 	= 0}.

Additionally, the weak-foci on T c unfold 3 limit cycles of small amplitude bifurcating from the origin, 
multiplicities taken into account and perturbing inside family (4c).

Proof. The first necessary condition to have a nondegenerate equilibrium point of center-focus type at the 
origin of (4c) is d = 0. Because the trace and the determinant of the Jacobian matrix are zero and one, 
respectively. With the mechanism described in Section 2, straightforward computations provide the first 
Lyapunov quantities Wn. In particular, W1 = 0 because d = 0 and

W2 =2(m1 −m2)/3,

W3 =πm2(2l + n1 + n2)/8,

W =4m (n − n )(6l + 4n + 4n − 1)/45.

(10)
4 2 1 2 1 2
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The proof of the maximality follows checking that W2(T c) = W3(T c) = 0 and W4(T c) = 4m2(n1−n2)(n1 +
n2 − 1)/45 	= 0 and that the solutions of the polynomial system {W2 = W3 = W4 = 0} provide the centers 
detailed in Corollary 1.6, which are centers using Proposition 3.3 and the continuity condition.

As the determinant of the Jacobian matrix of W2, W3 with respect to (m1, n2) on T c,

detJ = det(Jac [(W2,W3), (m1, n2)] |T c) =

∣∣∣∣∣ 2/3 0
0 πm2/8

∣∣∣∣∣ = πm2/12,

is different from zero, we have two hyperbolic limit cycles bifurcating from the origin under the condition 
d = 0. The third limit cycle emerges from the origin in a similar way as the classical Hopf bifurcation being 
d small enough and different from zero. As we have explained previously. The unfolding taking into account 
the multiplicities can be proved using the results in [19]. �
Proposition 4.2. The maximal weak-focus order of the origin of the piecewise differential system (4) is 5. 
This maximality is obtained when the parameters are on

T = {d1 = d2 = 2l2 + 3n1 − n2 = 2l1 − n1 + 3n2 = m1 −m2 = 0;m2(n1 + n2 − 1)(n2 − n1) 	= 0}.

Additionally, the weak-foci on T unfold 4 limit cycles of small amplitude bifurcating from the origin, mul-
tiplicities taken into account, and perturbing inside family (4).

Proof. As the proof follows similarly to the proof of Proposition 4.1, we only detail the differences. For 
system (4), the origin is a nondegenerate weak-focus when d1 = d2 = 0. The first Lyapunov quantities are

W2 =2(m1 −m2)/3,

W3 =πm2(l1 + l2 + n2 + n1)/8,

W4 = − 2m2(l1 + l2 + 1)(3l1 + l2 + 4n2)/45,

W5 = − πm2(l1 + l2 + 1)(l1 − l2)2/1536,

W6 = − 2m2(l2 + 2)(l2 − 1)(l1 + l2 + 1)(l1 − l2)/4725.

(11)

Straightforward computations show that over T we have W2 = W3 = W4 = 0 and W5 = πm2(n1 + n2 −
1)(n1 − n2)2/384 	= 0. The maximality follows from the fact that W 2

6 ⊂ 〈W1, W2, . . . , W5〉 and that under 
the conditions W2 = W3 = W4 = W5 = 0 we have the centers detailed in Theorem 1.4, which are centers 
because of Proposition 3.3.

The unfolding of limit cycles bifurcating from the origin follows also similarly to the previous proof. 
When d1 = d2 = 0 the determinant of the Jacobian matrix of W2, W3, W4 with respect to (l2, m1, n2) 	= 0
over T is det(J) = π(m2)2(n1 + n2 − 1)/90, where

J =

⎛⎜⎜⎜⎜⎜⎜⎝
0 2

3 0

π

8m2
π

8m2
π

8m2

2
45m2(21n1 − 19n2 − 1) 0 4

45m2(9n1 − 11n2 + 1)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence, we have three limit cycles of small amplitude and the fourth bifurcates taking d2 = 0 and d1 	= 0
small enough but with an adequate sign. The unfolding taking into account the multiplicities is proved using 
[19]. �
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Proof of Theorem 1.4. The necessary conditions for having a center at the origin are d1 = d2 = 0 and the 
equation (11) obtained in the proof of Proposition 4.2. The sufficiency is provided by Proposition 3.3. �
4.2. The vertical case

Proposition 4.3. The maximal weak-focus order of the origin of the piecewise differential system (5c) is 3. 
This maximality is obtained when the parameters are on

Fc = {d1 = d2 = l1 − l2 = 0; (m1 + m2)(l2 + n) 	= 0}.

Additionally, the weak-foci on Fc unfold 2 limit cycles of small amplitude bifurcating from the origin, 
multiplicities taken into account and perturbing inside family (5c).

Proof. The proof follows basically using the same steps as the proof of Proposition 4.1. Here for computing 
the Lyapunov quantities first we need to consider a rotation of angle −π/2 in order that the separation 
straight line be the x-axis. Once again we have that W1 = 0, when d1 = d2 = 0. The first Lyapunov 
quantities are

W2 =4(l1 − l2)/3,

W3 =π(m1 + m2)(l2 + n)/8.
(12)

When W2 = W3 = 0 we have one center at the origin as the ones listed in Corollary 1.7, but they are centers 
because of Proposition 3.4, assuming the continuity condition. Consequently, the property of maximality 
and the existence of the condition Fc follow. Like in the previous two proofs, the complete unfolding also 
follows. Here the linearity condition of W2 with respect to l1 or l2 provides the first limit cycle of small 
amplitude. The second, as above, taking d2 = 0 and d1 	= 0 small enough. �
Proposition 4.4. The maximal weak-focus order of the origin of the piecewise differential system (5) is 8. In 
particular, there are at least four families exhibiting this maximality:

F1 ={d1 = d2 = m1 = m2 = 0, l1 = −13/4, l2 = −3/2, n2 = −1/2},
F2 ={d1 = d2 = m1 = m2 = 0, l1 = 9/4, l2 = 1/2, n2 = 3/2},
F±

3 ={d1 = d2 = m1 = m2 = 0,

l1 = (±1 + 6l2 + f(l2))/4, n2 = 1/2 ± f(l2)/5, l2 /∈ L},

(13)

where L = {−3/4, −1/4, −3/2} and f(l2) =
√

20l22 + 20l2 + 10.

Proof. The proof follows basically using the same steps as the previous proofs, but the computations are 
more intricate. As above, we will start assuming d1 = d2 = 0 to get W1 = 0. Next, in order to apply the 
algorithm described in Section 2, as in the proof of Proposition 4.3, we need to do a rotation of angle −π/2
to compute the Lyapunov quantities in this case. As usual, the property of maximality will follow solving 
the algebraic system of equations

S7 = {W2 = W3 = W4 = W5 = W6 = W7 = 0}, (14)

checking that there exists at least one real solution such that W8 	= 0 and proving that all the solutions of

S8 = {W2 = W3 = W4 = W5 = W6 = W7 = W8 = 0}, (15)
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imply Wk = 0 = 0 for k ≥ 9. This last step is a consequence of Proposition 3.4. Finally, we will prove the 
unfolding of 7 limit cycles described in the last statement, using, in this last step, the parameters d1, d2.

Straightforward computations allow us to get the first Lyapunov quantities which are polynomials in 
the parameters space (l1, l2, m1, m2, n1, n2). Because of the size, we only detail the first one which, using 
W2 = 0, provides the condition

n1 = −2l1 + 2l2 + n2. (16)

The direct application of the algorithm of Section 2 provides the coefficients of the displacement function 
(7) that write, some of them, as polynomials in π, before using that the previous should vanish. So we have

W3 =πW̃3, W4 = W̃4, W5 = πW̃5, W6 = W̃6, W7 = W̃
[0]
7 + πW̃

[1]
7 ,

W8 =W̃
[0]
8 + πW̃

[1]
8 , W9 = W̃

[0]
9 + πW̃

[1]
9 + π2W̃

[2]
9 ,

W10 =W̃
[0]
10 + πW̃

[1]
10 + π2W̃

[2]
10 , W11 = W̃

[0]
11 + πW̃

[1]
11 + π2W̃

[2]
11 + π3W̃

[3]
11 ,

(17)

being W̃ j
i polynomials with rational coefficients in (l1, l2, m1, m2, n2). Using a computer algebra system 

we can see that W̃ [0]
7 ∈ 〈W̃3 . . . , ̃W6〉, W̃ [1]

8 ∈ 〈W̃3, . . . , ̃W6, ̃W
[1]
7 〉, and W̃ [i]

9 , 
(
W̃

[0]
10

)2
, ̃W [1]

10 , W̃ [2]
10 , ̃W

[i]
11 ∈

〈W̃3 . . . , ̃W6, ̃W
[1]
7 , ̃W [0]

8 〉.
Moreover, we can write

W̃3 =(l2m2 − l1m1 + m2n2 + m1n2 + 2l2m1)/8,

W̃4 =(96l32 − 240l22l1 + 144l22n2 + 192l2l21 − 240l2l1n2 − 8l2m2
2

− 8l2m2m1 + 60l2n2
2 − 48l31 + 96l21n2 − 60l1n2

2 − 8m2
2n2

− 8m2m1n2 − 48l22 + 72l2l1 − 36l2n2 − 24l21 + 36l1n2)/45,

W̃5 =(l1 − l2)(22l22m2 + 52l22m1 + 67l2l1m2 − 52l2l1m1 + 45l2m2n2

− 52l21m2 + 13l21m1 + 15l1m2n2 + 10m2n
2
2 + 33l2m2 + 26l2m1

− 26l1m2 − 13l1m1 + 20m2n2)/384,

W̃6 =8(l2 − l1)(15664l42 − 41576l32l1 + 41128l32n2 + 40440l22l21
− 79808l22l1n2 + 41730l22n2

2 − 17272l2l31 + 50992l2l21n2 − 51084l2l1n2
2

+ 20038l2n3
2 + 2744l41 − 10776l31n2 + 15582l21n2

2 − 11322l1n3
2

+ 3920n4
2 − 10024l32 + 17980l22l1 − 19942l22n2 − 10964l2l21

+ 22268l2l1n2 − 13869l2n2
2 + 2240l31 − 6250l21n2 + 7023l1n2

2 − 3482n3
2

+ 1096l22 − 1416l2l1 + 1219l2n2 + 434l21 − 557l1n2 + 444n2
2)/20475,

W̃
[1]
7 =m1(l2 − l1)

[
n2l2(2l2 + 1)(l2 + 1)W̃7,20(l2) + (2l2 − l1)W̃7,23(l2)

]
,

W̃
[0]
8 =(l2 − l1)

[
n2W̃8,14(l2) + (2l2 − l1)(2l2 − 2l1 − 1)W̃8,24(l2)

]
,

W̃
[0]
10 = 1024

21049875

9∏
i=1

R̃i,

where
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R̃1 =l2, R̃2 = l2 − 2l1 − 1, R̃3 = 2l2 − l1 + 1, R̃4 = l2 − l1, R̃5 = l2 + 1,

R̃6 =2l2 − l1, R̃7 = 2l2 − 2l1 + 1, R̃8 = 2l2 − 2l1 − 1, R̃9 = l2 − 2l1,

and W̃7,k and W̃8,k are polynomials with rational coefficients of degree k. From the above computations, 
systems (14) and (15), using the condition (16), are now written as

S̃7 = {W̃3 = W̃4 = W̃5 = W̃6 = W̃
[1]
7 = 0},

S̃8 = {W̃3 = W̃4 = W̃5 = W̃6 = W̃
[1]
7 = W̃

[0]
8 = 0}.

As 
(
W̃

[0]
10

)2 ∈ 〈W̃3 . . . , ̃W6, ̃W
[1]
7 , ̃W [0]

8 〉 it is clear that 
(
W̃

[0]
10

)2 = 0 on S̃8 and so also W̃ [0]
10 = 0. But although 

it is not necessary to use W̃ [0]
10 to solve the center problem, it is useful to use it. Hence, after considering the 

equivalent system

S̃10 = {W̃3 = W̃4 = W̃5 = W̃6 = W̃
[1]
7 = W̃

[0]
8 = W̃

[0]
10 = 0},

we obtain the families of the statement of Theorem 1.5. So, with Proposition 3.4 we have that all are center 
families and, consequently, the maximal weak-focus order is 8 and the first statement follows.

The second part of the statement follows solving partially system S̃7. More concretely, solving

S̃ [1]
7 = {W̃3 = W̃4 = W̃5 = W̃6 = m1 = 0}

and obtaining weak-foci of order 8. In fact, we have that on each of them Wi = 0, for i = 3, . . . , 7, and 
W8 	= 0. More concretely,

W8(F1) = 2/3,

W8(F2) = −2/3,

W8(F±
3 ) = − (4l2 + 3)2(4l2 + 1)2

189000
[
232l32 + 348l22 + 222l2 + 53 ± (52l22 + 52l2 + 17)f(l2)

]
. �

Proposition 4.5. The weak-foci F1 and F2 defined in (13) unfold 7 limit cycles of small amplitude bifurcating 
from the origin, multiplicities taken into account, when we perturb inside family (5).

Proof. We will follow the same unfolding procedure as in the previous results assuming d2 = 0. We will focus 
our attention only to the point F1, the other follows similarly. Using the linearity dependence on d1 and n1
of W1 and W2 defined in (16), we can restrict our analysis to the study of the transversality condition of the 
Taylor series of the next Lyapunov quantities near F1, with respect to the parameters (m1, m2, l1, l2, n2). 
Taking the perturbation

F1,e = [m1 = e1,m2 = e2, l1 = −13/4 + e3, l2 = −3/2 + e4, n2 = −1/2 + e5]

and with the linear change of variables in the parameter space,

e1 = 5
4u7 + 5

8u6 + 3215
672 u4, e2 = 25

8 u7 + 25
16u6 + 14635

1344 u4,

e3 = 14
3 u1 + 64

35u3, e4 = −208
3 u3 −

512
35 u5, e5 = u7,

we have that the Taylor series of the Lyapunov quantities write as
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Wj(u) =uj + O(u2), for j = 3, . . . , 6,

W7(u) =5470997
2496 πu1 −

184
9 u2 + 781571

1690 πu3 − 12u4 + O(u2),

W8(u) =2/3 + O(u).

We notice that if ui = 0 we have a weak-focus of order 8. Moreover, with the Implicit Function Theorem 
we have new coordinates v3, . . . , v7, in the parameter space, such that Wj(u) = vj , for j = 3, . . . , 6 and 
u7 = v7. Hence the transversality condition is satisfied up to W6. The last step is the computation of the 
Taylor series of W7 when v3 = v4 = v5 = v6 = 0. Straightforward computations provide

W7(v7) = −80339
31104v

3
7 + O(v4

7).

The unfolding is complete because the above first coefficient has an odd power in the remaining parameter 
v7. More details on the used technique can be seen in [16]. �

We remark that the complete unfolding study for the other families of weak-foci in Proposition 4.4 is more 
difficult because of the dependence on the parameter l2. But it can be seen that only linear developments 
are not enough.

Proof of Theorem 1.5. This proof is a direct consequence of the proofs of Propositions 4.4 and 3.4, since 
every candidate to be a center is given nullifying the first eight Lyapunov quantities Wi, for i = 1, . . . , 8
obtained in (17). �
5. The cyclicity problem in the continuous classes

We finish the work by studying the maximum number of limit cycles of small amplitude that bifur-
cate from the origin in the continuity classes (4c) and (5c). That is obtaining its cyclicity and proving 
Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Using Proposition 4.1 we know that from the origin of system (4c) bifurcates at 
least 3 limit cycles of small amplitude. The multiplicity property follows like the previous results using [19]. 
The upper bound follows from Theorem 9, of Chapter 2, given in [25] because the ideal, I = 〈W2, W3, W4〉, 
generated by the Lyapunov quantities, given in (10), is radical. The radicality proves that under the condition 
d = 0 we have at most two limit cycles. The third limit cycle appears, using d, as in a classical Hopf 
bifurcation. See more details in [2] or again [25]. �
Proof of Theorem 1.3. The proof follows analogously as the above proof using that the ideal generated by 
the Lyapunov quantities W2, W3 defined in (12) is also radical. �

The above approach can not be used for studying the cyclicity of (4) and (5) because the ideal generated 
by the corresponding Lyapunov quantities is not radical.

Acknowledgments

This work has been realized thanks to the Brazilian CAPES Agency (Coordenação de Aperfeiçoamento 
de Pessoal de Nível Superior - Finance Code 001), the Catalan AGAUR Agency (grant 2017 SGR 1617), 
the Spanish Ministerio de Ciencia, Innovación y Universidades via the Agencia Nacional de Investigación 
(grants PID2019-104658GB-I00 and CEX2020-001084-M), and the European Union’s Horizon 2020 research 
and innovation programme (grant Dynamics-H2020-MSCA-RISE-2017-777911).



L.P.C. da Cruz, J. Torregrosa / J. Math. Anal. Appl. 514 (2022) 126256 17
References

[1] V. Acary, O. Bonnefon, B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, vol. 69, Springer, 
Dordrecht, 2011.
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