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Abstract: Ambient RF energy harvesting (RF-EH) is a particular case of wireless power transfer
(WPT), which is characterized by ultra-low power operation. This work points out theoretical and
practical aspects that should be considered in the design of RF rectifiers for ambient RF energy
harvesting systems. The most common RF rectifier circuits are compared and discussed using
simulations and experimental data. The efficiency is analyzed in terms of the input power and load
resistance. It is demonstrated that the most efficient RF rectifier in ultra-low power conditions is the
simple diode capacitor structure. As an illustrative example, an RF rectifier has been fabricated by
designing an impedance-matching network to operate into the WIFI band. The fabricated prototype
shows a measured 12% efficiency working at 2.47 GHz with around −30 dBm ambient input power,
which is higher than the reported efficiencies in the literature. The fabricated energy harvesting
system delivers power between 25.6 nW and 129.6 nW to a resistive 10 kΩ load. The obtained results
are applicable to ambient RF up to 6 GHz.

Keywords: RF-DC conversion efficiency; RF ambient energy harvesting; RF energy scavenging;
ultra-low RF power rectifier

1. Introduction

Wireless Power Transfers (WPTs) have been a recurrent topic in the last decades
generating numerous practical and commercial applications [1,2]. WPT typically ranges
between 20 dBm and −30 dBm. Ambient RF-EH is situated in the ultra-low power extreme
of this range, operating around and even below −30 dBm [3–7]. The possibility of feeding
low-power devices by scavenging ambient RF energy is attractive for powering autonomous
sensors [8] and IoTs general applications [9], especially in urban environments. More
specifically, ambient RF harvesting has been recently evaluated for feeding Low Power
Wide Area Networks (LPWANs) [3,10], wireless underground sensor networks (UWC) [11],
or batteryless sensors [12]. As a consequence of the low power level, ambient RF-EH
systems tend to operate in broadband or multiband configurations to enhance the system’s
performance [12–15]. The impedance matching between the antenna and the rectifier
constitutes an important challenge in the case of multiband or broadband applications;
however, there are promising approaches based on metamaterials [15]. The efficiency of an
RF-EH system (ηRF) can be expressed as the product of the RF-EH constituent functional
block efficiencies, as shown in Equation (1):

ηRF = ηant·ηrec·ηEMS·ηsto (1)

where ηant denotes antenna efficiency, ηrec denotes rectifier efficiency, ηEMS denotes energy
management system efficiency, and ηsto denotes efficiency of the storage element. Hrec is de-
fined as the ratio between the effective input power delivered to the rectifier by the antenna
(Pin) and the power (PRL ) delivered to the load resistor (RL), as shown in Equation (2).

ηrec =
PRL

Pin
(2)
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If the antenna and the rectifier are not matched, a portion of the power delivered by
the antenna to the rectifier is reflected in such a way that the effective power delivered to
the rectifier (Pin) is a fraction of the nominal power delivered by the antenna at the rectifier
input port (Pnom). The relation between Pnom and Pin and the reflection S-parameter (S11) is
provided by Equation (3).

Pin = Pnom(1− |S11|2) (3)

In a perfect match condition, Pin = Pnom and the efficiency defined in Equation (2) is
an intrinsic rectifier property independent from the impedances. Many RF rectifier circuits
can be found in the literature operating in a wide range of frequencies, loads, and input
power conditions. In [16–18], authors utilize a simple diode with an output capacitor in
parallel with the load resistance. A four diode-bridge rectifier is used in [15,19–21]. In
other cases, N-stage scalable Dickson or Greinacher architectures are used. These circuits
combine rectification and output voltages that are proportional to the stage number (N).
Dickson and Greinacher architectures are identical for N = 1 and are used in [22–24].
Second or higher-order Dickson rectifiers can be found in [23–25] and Greinacher structures
in [26–28]. A first order Dickson–Greinacher full-wave variation can be found in [27,29–31].
Table 1 summarizes the efficiencies, input power, and load resistance in some of these
examples operating at 2.45 GHz. In all cases, the rectifier and antenna impedance have
been matched in such a way that the efficiencies of the different rectifiers are comparable.
Despite the efficiency variations shown in Table 1, in most cases, the choice of the rectifier
is barely justified.

Table 1. Examples of common RF-Rectifier Circuits operating @ 2.45 GHz.

Ref. Pin RL Eff.

Simple diode-capacitor
rectifier

[16] 1 µW cm−2 5.1 kΩ 45%
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three rectifiers with higher efficiencies in ultra-low power conditions. Section 4 shows
the fabrication and characterization of an ultra-low power RF rectifier operating in the
WIFI band, pointing out some issues to consider in the implementation process. This work
points out some practical and theoretical issues that should be considered when designing
an ultra-low power RF rectifier for ambient RF harvesting systems.

2. Theoretical Limitations of the Rectifier’s Efficiency

The rectification process is a nonlinear process with some characteristics that limit the
efficiency, especially when operating at high frequency. The input power wave signal of
the RF rectifier can be described using linear combinations of the wave complex variable
ain defined in Equation (4):

ain =
1
2
(

Vin√
Zrec

+
√

Zrec Iin) (4)

where Vin and Iin are the voltage and current complex variables at the rectifier input port,
and Zrec is the rectifier input impedance (in general a complex number). The rectifier
input-power complex variable can be obtained from the ain variable following Equation (5).

Pin =
1
2

aina∗in (5)

The input power (Pin) is obtained by averaging the corresponding temporal expression
of Pin over a period. It can be shown that only the DC, ωo, and the harmonics contribute to
the Pin averaged value. The power dispersion over the harmonic spectrum in the rectifica-
tion process is described by the Fourier series of the rectifier wave. Equations (6) and (7)
show the Fourier series of a half- ( fhrw) and full-rectified ( f f rw) waves of a sinusoidal signal
with amplitude A and angular frequency ωo.

fhrw =
A
π

+
A
2

sin(ωot)− 2A
π ∑∞

n=1
cos(2nωot)

4n2 − 1
(6)

f f rw =
2A
π
− 4A

π ∑∞
n=1

cos(2nωot)
4n2 − 1

(7)

The DC power component directly delivers a fraction of the input power to the load.
The rest of the input power is spitted in the harmonic signal spectrum. Impedance matching
networks are designed to guarantee that the input wave at the operating frequency is
not reflected. However, RF systems are not matched for all frequencies, and harmonic
components different from the matched wave will be mainly reflected when S11 ≤ −3 dB.
The numerical evaluation of the DC and the fundamental frequency points out a 67%
limit for the half-wave rectifier and a 64% for the full-wave rectifier in a matched system
operating at the fundamental frequency (see Table 2).

Therefore, in the case of a perfect impedance matching at the input signal frequency, a
similar performance is expected for the half-wave and full-wave rectifier (67% and 64%,
respectively). Depending on the return loses at the second harmonic, these efficiencies can
be increased up to 82% in the case of the half-wave rectifier and up to 94% in the case of the
full-wave rectifier.

This maximum efficiency values are degraded by the loses in the lumped elements
at low input power and by the diode breakdown voltage VBr at high input power [4], as
observed in Figures 2–4 in the following section. In the case of high input power, the
maximum DC power across the diode is limited by the reverse breakdown voltage in such
a manner that VDC diode max = VBr

2 . Consequently, the maximum DC power that a rectifier

can deliver to the load is given by PDCMAX =
V2

Br
4RL

. This limitation of the output power
produces a quick efficiency drop, as Pin grows beyond some specific value that may vary
depending on the rectifier’s architecture [32].
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Table 2. Harmonic coefficients of the full- and half-rectifier waves and the associate power.

Frequential
Component

Half-Wave Rectifier (fhrw) Full-Wave Rectifier (ffrw)

Fourier
Coefficient

Output Power
Coefficient

Input Power
Percentage

Fourier
Coefficient

Output Power
Coefficient

Input Power
Percentage

DC A
π

1
π

= 0.32
67%

2A
π

2
π

= 0.64
64%

fo
A
2

1√
2π

= 0.35 – –

2 fo
2A
3π

2
3
√

2π
= 0.15 15% 4A

3π

4
3
√

2π
= 0.30 30%

3 fo – – – – – –

4 fo
2A
15π

2
15
√

2π
= 0.03 3% 4A

15π

4
15
√

2π
= 0.0 6%

...
...

...
...

...
...

...

3. Parametric Analysis of RF Rectifier Circuits Efficiency

As it has been commented, the choice of an architecture for the RF rectification is
barely justified in many examples that can be found in the literature. In the case of
the design of a rectifier for ambient RF that is destinated to operate in ultra-low power
conditions, the most important parameter is the efficiency. To determine the best rectifier
for this specific conditions, Table 1 rectifiers have been simulated using ADS-harmonic
balance analyses to evaluate and compare the efficiencies. Each rectifier circuit has a
particular input impedance that reflects a fraction of the injected power (Pnom). The intrinsic
efficiency defined in Equation (2) is referred to the effective power delivered to the load
(Pin). Therefore, it is a magnitude independent from the input impedance that can be
compared between different rectifiers. Figure 1 shows the harmonic-balance simulation
setup used to evaluate the intrinsic rectifier efficiency of different rectifiers.
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Figure 1. Simulation setup to evaluate the intrinsic efficiency ηrec of the different rectifiers included
in Table 1, using harmonic balance analysis with a 50 Ω single-tone source operating at 2.45 GHz.

The different rectifier circuits have been simulated using identical elements. The SMS-
7630 Schottky diode model has been chosen because of its low forward voltage (ranging
from 60 to 120 mV at 0.1 mA [33]). The rectifier output capacitors have been fixed to the
standard value of 4.7 µF in all cases for the simulations. The analysis of the efficiency as a
bidimensional function on Pin and RL points out the existence of different combinations
that optimize the efficiency. Figure 2 shows, as example, the simulated ηrec(Pin, RL) for
the N = 2 Dickson rectifier circuit. As it can be observed, there are multiple Pin and RL
combinations producing the maximum efficiency (close to 70%). It is also observed that for
the expected ambient RF power (Pin ≤ −30 dBm), the maximum DC conversion efficiencies
are lower than 30%, which are higher than 10% only in the range of 1 kΩ < RL < 300 kΩ.
The efficiency mapping in Figure 2 offers a good overview of the efficiency general behavior
but renders the comparison between rectifiers difficult.
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Figure 2. Representation of the simulated intrinsic efficiency function ηrec (Pin, RL) for N = 2 Dickson
RF rectifier operating at 2.45 GHz.

Figure 3a shows intrinsic efficiencies as a function of the nominal power (Pnom) for
RL = 10 kΩ, and a curve for each different rectifier can be observed. However, since the
input impedance of each rectifier is different, the curves in Figure 3a are not comparable.
Figure 3b shows the same data plotted as a function of Pin enabling the comparison. It
can be observed that, in Figure 3b, only four different traces are appreciated, because
N = 2 Dickson, N = 2 Greinacher, and the full wave variation rectifier efficiencies are
degenerated in this representation. It can be observed that the more complex circuits
(N = 2 and full wave variation) offer better efficiencies at higher input power (Pin > 0 dBm).
However, for low and ultra-low input power (Pin ≤ −30 dBm), the best efficiencies
correspond to the simple diode-capacitor rectifier, N = 1 Dickson-Greinacher rectifier, and
four-bridge rectifier.
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of the load resistance for the three best rectifiers identified in Figures 4 and 5. As observed, 
the maximum efficiency of 12.8% corresponds to the simple diode-capacitor rectifier 
loaded with 𝑅 = 4.5 kΩ. The second-best efficiency corresponds to the first-order Dick-
son–Greinacher rectifier, which is considerably lower, showing an efficiency of 7.8% when 

Figure 3. Simulated rectifier efficiency for the six circuits in Table 1 as a function of Pnom in (a) and as
a function of Pin in (b).

In ultra-low power operation conditions (Pin ≤ −30 dBm), it can be observed that the
best efficiency is around 12% and corresponds to the simple diode-capacitor rectifier. The
second-best performance is obtained with the first order N = 1 Dickson–Greinacher rectifier
(around 8%) and finally the four-diode rectifier with less than 4% efficiency.

Figure 4 shows the intrinsic efficiency ηrec(Pin, RL) for RL = 100 Ω (Figure 4a) and
for RL = 100 kΩ (Figure 4b). In both cases, the load is far from the optimum values
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(around 10 kΩ), and maximum efficiencies are lower than 50%. In the case of low load
impedances (RL ∼ 100 Ω), the best efficiencies correspond to the four-diode bridge rectifier
for Pin ≥ 0 dBm. However, under high load-resistance conditions (RL ∼ 100 kΩ), the best
performance corresponds to both the second-order Dickson and Greinacher rectifiers and
are achieved in the range of −20 dBm ≤ Pin ≤ 15 dBm. In both cases, the conversion
efficiency under ultra-low power (Pin ≤ −30 dBm) is lower than 2% for RL = 100 Ω
and 5% for RL = 100 kΩ. Even in the extreme loads described in Figure 4, the simple
diode-capacitor rectifier (Rect. Simple) efficiency is not below the other rectifiers.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 11 
 

  

Figure 3. Simulated rectifier efficiency for the six circuits in Table 1 as a function of 𝑃  in (a) and 
as a function of 𝑃  in (b). 

In ultra-low power operation conditions (𝑃 ≤ −30 dBm), it can be observed that the 
best efficiency is around 12% and corresponds to the simple diode-capacitor rectifier. The 
second-best performance is obtained with the first order N = 1 Dickson–Greinacher recti-
fier (around 8%) and finally the four-diode rectifier with less than 4% efficiency.  

Figure 4 shows the intrinsic efficiency 𝜂 (𝑃 , 𝑅 ) for 𝑅 = 100 Ω (Figure 4a) and 
for 𝑅 = 100 kΩ  (Figure 4b). In both cases, the load is far from the optimum values 
(around 10 kΩ), and maximum efficiencies are lower than 50%. In the case of low load 
impedances (𝑅 ∼ 100 Ω), the best efficiencies correspond to the four-diode bridge recti-
fier for 𝑃 ≥ 0 dBm. However, under high load-resistance conditions (𝑅 ∼ 100 kΩ), the 
best performance corresponds to both the second-order Dickson and Greinacher rectifiers 
and are achieved in the range of −20 dBm ≤ 𝑃 ≤ 15 dBm. In both cases, the conversion 
efficiency under ultra-low power (𝑃 ≤ −30 dBm) is lower than 2% for 𝑅 = 100 Ω and 
5% for 𝑅 = 100 kΩ. Even in the extreme loads described in Figure 4, the simple diode-
capacitor rectifier (Rect. Simple) efficiency is not below the other rectifiers. 

  
(a) (b) 

Figure 4. Simulated 𝜂 (𝑃 , 𝑅 ) for 𝑅 = 100 Ω (a) and 𝑅 = 100 kΩ (b). 

Results in Figures 3 and 4 discard the utilization of Dickson and Greinacher high-
order rectifiers at ultra-low power. Figure 5 shows the simulated efficiency as a function 
of the load resistance for the three best rectifiers identified in Figures 4 and 5. As observed, 
the maximum efficiency of 12.8% corresponds to the simple diode-capacitor rectifier 
loaded with 𝑅 = 4.5 kΩ. The second-best efficiency corresponds to the first-order Dick-
son–Greinacher rectifier, which is considerably lower, showing an efficiency of 7.8% when 

Figure 4. Simulated ηrec(Pin, RL) for RL = 100 Ω (a) and RL = 100 kΩ (b).

Results in Figures 3 and 4 discard the utilization of Dickson and Greinacher high-order
rectifiers at ultra-low power. Figure 5 shows the simulated efficiency as a function of the
load resistance for the three best rectifiers identified in Figures 4 and 5. As observed, the
maximum efficiency of 12.8% corresponds to the simple diode-capacitor rectifier loaded
with RL = 4.5 kΩ. The second-best efficiency corresponds to the first-order Dickson–
Greinacher rectifier, which is considerably lower, showing an efficiency of 7.8% when
loaded with RL = 8.9 kΩ. The four-diode bridge rectifier is the less efficient rectifier
showing a maximum of 4.3% for RL = 5 kΩ. The better performance of the diode-capacitor
rectifier at ultra-low input power is attributable to its simpler structure that minimizes
losses due to parasitic impedances in the constituent elements.
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values for each rectifier are labelled.
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Simulated results in Figure 5 have been corroborated with experimental measure-
ments using an experimental setup that reproduces the simulation setup Figure 1. A
vector analyzer with zero span has been used as a 50 Ω input source at 2.45 GHz, with
Pnom =−30 dBm. The same vector analyzer measures the S11 parameter needed to evaluate
the power delivered to the rectifier (Pin) according to Equation (3). The rectifiers under
test have been fabricated by minimizing connection paths using a FR4 PCB prototype
board. The output DC voltage has been measured with a N6781A SMU in a four-wire
voltage measurement configuration by averaging the output voltage. RL values have been
generated with a standard resistor decade box.

Experimental measurements show a good agreement with the simulated results. The
above analysis shows that the diode capacitor circuit is the most efficient rectifier operating
at −30 dBm, achieving efficiencies higher than 10% for loads between 1 kΩ and 10 kΩ.

4. Ambient RF Energy Harvesting Prototype Performance in Real Conditions

Numerical and experimental data discussed in the previous sections show that the
most efficient RF rectifier for Pin = −30 dBm is the simple diode-capacitor circuit when
1 kΩ ≤ RL ≤ 10 kΩ. The implementation of an ambient RF energy harvester is conditioned
by practical issues related with the impedance-matching network that should be considered.
Theoretically, a lumped C-L impedance network can be used to match the diode-capacitor
rectifier with the standard 50 Ω antenna. However, tolerances and parasitic capacitances
and inductances of the lumped elements complicate the fabrication of the prototype. All
these effects can be compensated by tuning the constituent elements of the impedance
matching network.

Figure 6 shows the picture of the implemented prototype of an RF rectifier. The
matching network has been initially designed by using the ADS Smith chart, taking into
account the measured input impedance of the fabricated diode-capacitor rectifier. The final
values of the impedance matching network have been tuned to optimize the adaptation.
Figure 7 shows the measurements of a fabricated RF diode-capacitor rectifier prototype
finally matched at 2.47 GHz for −30 dBm input power. The impedance-matching network
is a C-L network with C = 0.1 pF and L = 6 nH, as shown Figure 7a’s inset. Figure 7b shows
the measured input impedance of the matched rectifier (Zrec) at the operating frequency.
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channels of the WIFI band. The efficiencies shown in Figure 5 indicate that only 10% of 
−30 dBm (1 μW) input power would be delivered to a 10 kΩ load, producing a maximum 

Figure 6. Implemented prototype of an ambient RF energy harvesting system composed by the
input antenna port, the C-L impedance network, a thru connector, the diode-capacitor rectifier, and a
connector to the load resistor. Fabrications have been performed using the following: SMS-7630 [33]
diode, capacitors from the HiQ-CBR Series, Case Size 0402 Radio Frequency and Microwave Ceramic
Capacitor Kit from Kemet, and the inductors from the High Frequency Inductor Designer Kit EIA
0402 from Johanson Technology.
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Figure 7. Measured and simulated S11 parameter (a) and impedance in the Smith Chart (b) of a
fabricated RF-rectifier prototype matched at 2.45 GHz for -30 dBm input power. Fabrication has
been done using: SMS-7630 [33], CLoad = CRF + Csto being CRF = 2.2 pF, Csto = 6.8 mF; RL = 10 kΩ
and Cm = 0.1 pF using a CBR04C108B1GAC RF-capacitor and Lm = 6 nH L-07C12NJV6S RF-
autoinduction for the matching circuit. Simulated S11 only have sense below the series resonant
frequency of the RF inductor used (3.5 GHz).

Figure 8 overlaps the measured S11 parameter of the fabricated and matched RF
rectifier prototype with the power max-hold measurement of the ambient RF spectrum
in our laboratory. As observed, the matching frequency coincides with one of the active
channels of the WIFI band. The efficiencies shown in Figure 5 indicate that only 10% of
−30 dBm (1 µW) input power would be delivered to a 10 kΩ load, producing a maximum
of 32 mV voltage and supplying 33.2 µA to the load. However, it must be considered that
the ambient RF signals are constantly oscillating depending on the wireless traffic. As a
result of these fluctuations, the real effective output power delivered to the load will be
lower than that indicated by Figure 5 efficiencies.
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As observed in Figure 9, the output voltage oscillates between 16 mV and 36 mV
corresponding to 25.6 nW and 129.6 nW. In the low voltage region, the harvesting system
can supply 2.5 µA, which should be enough to power ultra-low commercial power sensors.
However, for a proper power function, several systems should be combined to achieve the
minimum voltage requirements.
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Figure 9. Measured output voltage in the 10 kΩ output resistance produced by the ambient RF
energy harvesting. The red line indicates the voltage and power level corresponding to a −30 dBm
input power. The blue lines indicate the maximum and minimum voltage and power supplied by the
RF harvesting system.

5. Conclusions

The efficiency of the most common RF rectifier circuits has been compared side-by-side
using simulations and experimental data. It has been shown that the simple diode-capacitor
RF rectifier is the most efficient choice when operating in ultra-low input-power conditions.
The fabricated prototype has shown to be suitable for powering ultra-low power sensors in
the standby stage using the ambient RF energy. There are two clear methods for improving
the RF energy harvested by the described prototype: first, designing a broadband matching
network that takes advantage of the energy in all the communication band, and the second
possibility is to combine several rectifiers in a power network to increase the output voltage
and the final stored charge.
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