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Abstract: The rational design of heterometallic compounds bearing s-block metal ions have been a
difficult task for chemists owing to their lack of preferential geometries. However, some strategies,
such as the design of coordinating pockets with different sizes and/or donor atoms, have offered
great results. In this work, this strategy has been tested using Ca(II) as an s-block metal ion and a com-
pound previously obtained by our group with the formula [Zn3(µ-ACA)6(4-phpy)2], which contains
tetrahedral N,O- and octahedral O-coordinating pockets as a model structure. From this work, the
corresponding heterometallic compound with the formula [Zn2Ca(µ-ACA)6(4-phpy)2]·EtOH (1) has
been successfully synthesized, and fully characterized, and its crystal structure has been elucidated.
Furthermore, we have compiled all the crystal structures containing [Zn2M] pinwheel secondary
building units (SBUs), where M stands for an s-block metal ion, and the observed tendencies, as well
as the promising applications as template SBUs for the preparation of 1D–3D coordination polymers,
have been discussed. Finally, solid-state UV-Vis and photoluminescence have been recorded and
compared with the homometallic [Zn3(µ-ACA)6(4-phpy)2] compound.

Keywords: heterometallic complexes; trinuclear complexes; Zn(II); Ca(II); secondary building unit;
X-ray crystal structure; α-acetamidocinnamic acid; solid-state photoluminescence

1. Introduction

Coordination compounds presenting diverse metal ions within the same molecule
denoted as heterometallic complexes have recently received special attention owing to
their superior structural versatility compared with their homometallic counterparts [1], as
well as their unique physical and chemical properties arising from the synergistic effect of
their different metallic ions [2,3]. As a result, this subclass of coordination complexes have
been used in the fields of photoluminescence [4], magnetism [5], or catalysis [6], among
others [7].

Researchers focused on heterometallic chemistry have been mostly devoted to the
rational design of d-d and d-f metal complexes [8,9], while those presenting s-block metal
ions have remained less explored caused by their challenging obtention [10]. This difficulty
mainly arises from the larger atomic radii of s-block compared with d-block metals, which
allows a broad range of coordination numbers and geometries for the s-block metals
lack any geometrical preference [11–13]. One of the strategies that have successfully
resulted in the obtention of d-s heterometallic compounds relies on the formation of
different coordinating pockets within the same complex providing variable coordination
environments and sizes where different metal ions can selectively bind [14,15]. Following
this strategy and benefiting from the oxophilic character of s-block metal ions [16,17], the
formation of four- and six-coordinating pockets based on O-donor or mixed N,O-donor
atoms is a feasible way to selectively bind different metal ions toward the formation of
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d-s heterometallic compounds [18–20]. Interestingly, the heterometallic arrays prepared
by the aforementioned strategy can be utilized as secondary building units (SBUs) toward
the formation of heterometallic 1D–3D coordination polymers (CPs) [21–23]. Accordingly,
previous examples of d-s heterometallic SBUs with pockets of different sizes based in N,O-
and O-donor atoms have been found in the literature [24–26].

In this context, we have been working on the synthesis of Zn(II) trinuclear pinwheel
SBUs with [Zn3(µ-COO)6] array based on the α-acetamidocinnamate (ACA) ligand. This
SBU presents two different types of metal ions, displaying two lateral tetrahedral Zn(II)
ions coordinated in N,O-based pockets, where the N-atom comes from non-sterically
hindered pyridines (4-phenylpyridine, 4-phpy; 4,4′-bipyridine, 4,4′-bipy), while the central
metal ions display an octahedral environment surrounded by oxygen atoms from six
ACA moieties [27,28]. In addition, it has been observed that pinwheel SBUs are good
candidates for the formation of heterometallic complexes owing to their inequivalent
metal ions showing different coordination environments [29,30]. Furthermore, we have
observed in previous contributions that pinwheel SBUs presenting ACA promote the
formation of a pattern of amide-amide intramolecular interactions, which stabilize the
pinwheel disposition as in other examples found in the literature, where the patterns can
be formed by either H-bonds [28,31,32], or planar interactions [33,34]. Bearing in mind all
the requirements stated above, we envisioned that the introduction of an s-block metal
ion, such as Ca(II), should be selectively coordinated into the octahedral O-based pocket,
forming a heterometallic SBU. Therefore, we have synthesized one [Zn2Ca] trinuclear
compound with the formula [Zn2Ca(µ-ACA)6(4-phpy)2]·EtOH (1), which has been fully
characterized. In addition, the crystal structure of [Zn2Ca(µ-ACA)6(4-phpy)2]·2EtOH (1C)
has been elucidated, revealing the pinwheel formation, as well as the introduction of the
Ca(II) ions in the octahedral and the Zn(II) ions in the tetrahedral pocket. Finally, we have
analyzed its solid-state UV-Vis and photoluminescence, and we have compared it with its
homometallic counterpart.

2. Experimental Section
2.1. Materials and General Methods

Zinc(II) acetate dihydrate (Zn(OAc)2·2H2O), calcium carbonate (CaCO3), nitric acid
69% (HNO3), α-acetamidocinnamic acid (HACA), 4-phenylpyridine (4-phpy) as reagents,
and ethanol (EtOH) as solvent were purchased from Sigma-Aldrich. Calcium nitrate
tetrahydrate Ca(NO3)2·4H2O was prepared using CaCO3 and HNO3 69% in a 1:2 molar
ratio in Milli-Q water as solvent. Deuterated dimethylsulfoxide (DMSO-d6) was used for
the NMR experiments and was purchased from Eurisotop. All of them were used without
further purification. All the reactions and manipulations were carried out in air at room
temperature (RT). The powder X-ray diffraction (PXRD) pattern was measured with a
Siemens D5000 apparatus with 40 kW and 45 mA using CuKα radiation with λ = 1.5406 Å.
The diffractogram was recorded from 2θ = 5◦ to 30◦ with a step scan of 0.02◦, counting
1 s at each step. Elemental analyses (C, H, N) were carried out on a Euro Vector 3100
instrument. HR-ESI-MS measurements were recorded after dissolving the corresponding
complex in MeOH in a MicroTOF-Q instrument equipped with an electrospray ionization
source (ESI) in positive mode. Na+ ions come from the MeOH solvent which contains
<50 ppb. Conditions were those used in routine experiments. The nebulizer pressure was
1.5 bar, the desolvation temperature was 180 ◦C, dry gas was 6 L·min−1, the capillary
counter-electrode voltage was 5 kV, and the quadrupole ion energy, was 5.0 eV. FTIR-ATR
spectra were recorded on a Tensor 27 (Bruker) spectrometer, equipped with an attenuated
total reflectance (ATR) accessory model MKII Golden Gate with a diamond window in
the range 4000–500 cm−1. 1H, 13C{1H} and DEPT-135 NMR spectra were recorded on a
Bruker Ascend 300 MHz spectrometer in DMSO-d6 solutions at RT. All chemical shifts (δ)
are given in ppm relative to Me4Si as the internal standard. Solid-state UV-Vis spectra
were carried out using a Cary 4000 spectrophotometer between 200–800 nm. Solid-state
photoluminescence measurements were recorded using a Varian Cary Eclipse Fluorescence
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spectrophotometer between 340 and 500 nm. CIE 1931 chromaticity diagram was generated
using Origin Pro 2019b software.

2.2. Synthesis of [Zn2Ca(µ-ACA)6(4-phpy)2]·EtOH (1)

An EtOH solution (5 mL) of Zn(OAc)2·2H2O (50.0 mg, 0.228 mmol) and Ca(NO3)2·4H2O
(26.9 mg, 0.114 mmol) was carefully added to an EtOH solution (5 mL) of HACA (140 mg,
0.682 mmol) and 4-phpy (70.7 mg, 0.456 mmol) at RT. The solution was gently stirred for
15 h until a white precipitate was obtained, and the resulting powder was kept on ice for 1 h.
Afterward, the reaction was filtered, washed with two portions of cold Et2O (2 × 10 mL),
and dried under vacuum, yielding 1, which was characterized. Single crystals suitable
for X-ray diffraction of [Zn2Ca(µ-ACA)6(4-phpy)2]·2EtOH (1C) were obtained after letting
evaporate the mother liquors at RT for 15 days.

1. Isolated Yield: 80.3 mg (40.2% based on Zn). Elemental analysis calc(%) for
C90H84N8O19Zn2Ca (1752.53): C 61.68; H 4.83; N 6.39; found: C 61.55; H 4.54; N 6.36. HR-
MS (ESI+, MeOH): m/z (%) = 156.0822 (100%) (calc. for [4-phpy + H]+ = 156.0808); 228.0631
(100%) (calc. for [HACA + Na]+ = 228.0631); 716.0806 (100%) (calc. for [ZnCa(ACA)3]+

= 716.0894); 943.1456 (100%) (calc. for [ZnCa(ACA)4 + Na]+ = 943.1452). FTIR-ATR
(wave number, cm−1): 3375(w) [ν(O-H)], 3225(w) [ν(N-H)], 3161–3003(br) [ν(C-H)ar + ν(C-
H)alk], 2980–2650(br) [ν(C-H)al], 1667(m) [ν(C=O)], 1652(w), 1599(s) [νas(COO)], 1576(sh),
1523(m) [ν(C=C/C=N)], 1491(w), 1447(w), 1386(s) [νs(COO)], 1350(s) [δ(C=C/C=N)],
1279(m), 1225(w), 1210(w), 1183(w), 1161(w), 1120(w), 1076(w) [δip(C-H)], 1031(w) [δip(C-
H)], 1015(w) [δip(C-H)], 971(w), 964(w), 932(w), 837(w), 786(w), 760(m) [δoop(C-H)], 730(w),
688(s) [δoop(C-H)], 624(w), 609(w), 590(w), 574(m), 522(w). 1H NMR (300 MHz; DMSO-d6;
Me4Si; 298 K): δ = 9.14 [6H, s, NHACA], 8.65 [4H, dd, 3J = 4.6 Hz, 4J = 1.6 Hz, o-Hpy,4-phpy],
7.81 [4H, m, o-Hph,4-phpy], 7.73 [4H, dd, 3J = 4.6 Hz, 4J = 1.6 Hz, m-Hpy,4-phpy], 7.51 [18H,
m, o-HACA + m-Hph,4-phpy + p-Hph,4-phpy], 7.33 [12H, t, 3J = 7.4 Hz, m-HACA], 7.27 [6H, d,
3J = 7.4 Hz, p-HACA], 7.24 [6H, s, NH-C-CHACA], 4.35 [1H, t, 3J = 5.0 Hz, OHEtOH], 3.44
[2H, qd, 3J = 6.9 Hz, 4.9 Hz, CH2,EtOH], 1.96 [18H, s, CO-CH3,ACA], 1.05 [3H, t, 3J = 7.0 Hz,
CH3,EtOH]. 13C{1H} NMR (75 MHz; DMSO-d6; Me4Si; 298 K): δ = 170.3 [NH-COACA], 168.4
[CO2,ACA], 150.2 [o-Cpy,4-phpy], 147.7 [Ph-Cpy,4-phpy], 137.0 [Py-Cph,4-phpy], 135.3 [O2C-
CACA], 129.9 [HN-C-CH-CACA], 129.6 [o-CACA], 129.4 [m-Cph,4-phpy], 129.3 [p-Cph,4-phpy],
128.6 [p-CACA], 128.4 [m-CACA], 128.1 [NH-C-CHACA], 127.0 [o-Cph,4-phpy], 121.6 [m-
Cpy,4-phpy], 56.2 [CH2,EtOH], 23.2 [CO-CH3,ACA], 18.6 [CH3,EtOH]. DEPT-135 NMR (75 MHz;
DMSO-d6; Me4Si; 298 K): δ = 150.2 [o-Cpy,4-phpy], 129.5 [o-CACA], 129.3 [m-Cph,4-phpy], 129.3
[p-Cph,4-phpy], 128.5 [p-CACA], 128.3 [m-CACA], 128.1 [NH-C-CHACA], 127.0 [o-Cph,4-phpy],
121.5 [m-Cpy,4-phpy], 56.1 [CH2,EtOH], 23.2 [CO-CH3,ACA], 18.6 [CH3,EtOH].

2.3. X-ray Crystallographic Data

For compound 1C, a colorless prism-like specimen was used for the X-ray crystallo-
graphic analysis. The X-ray intensity data were measured on a D8 Venture system equipped
with a multilayer monochromator and a Mo microfocus (λ = 0.71073 Å). The frames of the
compound were integrated with the Bruker SAINT Software package using a narrow-frame
algorithm. All hydrogen atoms were refined using a riding model (AFIX) with an isotropic
temperature factor equal to 1.2, the equivalent temperature factor of the atom to which are
linked, and thus, the bond lengths of X-H were fixed.

The structure was solved and refined using the SHELXTL Software Package (version
2018/3) [35]. The final cell constants and volume were based upon refinement of the XYZ-
centroids of reflections above 20 σ(I). Data were corrected for absorption effects using the
Multi-Scan method (SADABS). Crystal data and relevant details of structure refinement for
1C are reported in Table 1. Complete information about the crystal structure and molecular
geometry is available in CIF format via CCDC 2190605 (1C). Molecular graphics were
generated with Mercury 4.3.1 software [36], using the POV-Ray image package [37]. The
color codes for all of the molecular graphics are as follows: dark blue (Zn), light green
(Ca), red (O), light blue (N), gray (C), and white (H). The accessible void volumes have
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been calculated with Mercury 4.3.1 software [36], using a probe radius of 1.2 Å [38]. The
evaluation of the geometry distortion of Zn(II) and Ca(II) cores of 1C have been done using
version 2.1 of SHAPE software from the corresponding cif files [39]. Hirshfeld surface
analyses have been performed using CrystalExplorer 17.5 [40].

Table 1. Crystal data and structure refinement for 1C.

1C

CCDC 2190605
Empirical formula C92H90CaN8O20Zn2

Formula weight 1798.53
T (K) 100(2)

Wavelength (Å) 0.71073
System, space group Triclinic, P1
Unit cell dimensions

a (Å) 11.6745(12)
b (Å) 13.2064(13)
c (Å) 15.5353(16)
α (◦) 67.641(3)
β (◦) 85.612(4)
γ (◦) 73.680(4)

V (Å3) 2124.6(4)
Z 1

Dcalc (mg/m3) 1.406
µ (mm−1) 0.703

F (000) 938
Crystal size (mm3) 0.243 × 0.115 × 0.048

hkl ranges
−16 <= h <= 16
−17 <= k <= 18

0 <= l <= 22
θ range (◦) 2.221 to 30.593

Reflections collected/unique/[Rint] 13,031/13,031/[Rint = 0.0885]
Completeness to θ (%) 99.9
Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7461 and 0.6570
Refinement method Full-matrix least-squares on |F|2

Data/Restrains/Parameters 13,031/0/563
Goodness-on-fit on |F|2 1.046

Final R indices [I > 2σ(I)] R1 = 0.0429, wR2 = 0.1153
R indices (all data) R1 = 0.0900, wR2 = 0.1406

Extinction coefficient n/a
Largest diff-peak and hole (e. Å−3) 1.516 and −0.421

3. Results and Discussion
3.1. Synthesis and Characterization of 1

Compound [Zn2Ca(µ-ACA)6(4-phpy)2]·EtOH (1) was prepared by combining
Zn(OAc)2·2H2O, Ca(NO3)2·4H2O, HACA, and 4-phpy in a 2:1:6:4 molar ratio using EtOH
at room temperature (RT) (Scheme 1). The corresponding single crystals suitable for X-ray
crystallographic analysis were obtained after allowing the mother liquors of the reaction to
evaporate, yielding [Zn2Ca(µ-ACA)6(4-phpy)2]·2EtOH (1C). Additional details of the syn-
thesis and procedure for obtaining the single crystals are given in the Experimental Section.
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[Zn2Ca(μ-ACA)6(4-phpy)2]·EtOH (1)

Scheme 1. Outline of the synthesis of 1.

The compound was characterized by powder X-ray diffraction (PXRD), elemental
analysis (EA), HR-ESI-MS, FTIR-ATR, 1H, 13C{1H}, and DEPT-135 NMR spectroscopies,
and single crystal X-ray diffraction. The phase purity of the bulk sample of 1 was verified
by PXRD (SI: Figure S1). In addition, the EA of compound 1 agrees with the proposed
formula. The positive ionization mass spectrum (ESI+-MS) of the compound was recorded
in MeOH as solvent. In these conditions, the complex displayed heterometallic fragments
corresponding to [ZnCa(ACA)3]+ and [ZnCa(ACA)4 + Na]+ at m/z 716.0886 (100%) and
943.1456 (100%), respectively (SI: Figure S2). In the FTIR-ATR spectrum, the absence of a
broad band between 2704 and 2405 cm−1 (ν(O-H)HACA) and a strong peak at 1637 cm−1

(ν(COOH)HACA) suggests that the HACA was not protonated. In addition, the spectrum
presented the characteristic carboxylate bands at 1599 cm−1 for νas(COO) and 1386 cm−1

for νs(COO) (SI: Figure S3). The difference between these bands was 213 cm−1 due to
a highly asymmetric bridged coordination mode [41,42], with a ∆ value larger than its
corresponding homometallic compound [27], in agreement with the data obtained from
the crystal structure [41,43].

The 1H NMR spectrum was recorded to ascertain the ratio between the ACA and
4-phpy ligands, resulting in a 6:2 (ACA:4-phpy) molar ratio which agrees with the X-
ray crystallographic data. It displayed a signal at 9.14 ppm corresponding to the NH
proton atom of ACA, while the signals attributable to the aromatic protons of 4-phpy
were observed between 8.65 and 7.51 ppm, some of them being overlapped with the o-H
atoms from ACA in the signal of 7.51 ppm. In addition, the remaining aromatic protons
from ACA were observed at 7.33 and 7.24 ppm, followed by the hydrogen atom from the
alkene group, which appeared at 7.24 ppm. Finally, the signals observed in the upfield
region corresponded to the EtOH hydrogen atoms at 4.35, 3.44, and 1.05 ppm, respectively,
together with the methyl proton atoms at 1.96 ppm (SI: Figure S4) [44].

The 13C{1H} NMR displayed the characteristic bands of the carbonyl and carboxylate
groups from ACA at 170.3 and 168.4 ppm, respectively (SI: Figure S5a). In addition, the
signals corresponding to the carbon atoms from the 4-phpy appeared between 150.2 and
129.3 ppm. In this zone, the carbon atoms from the alkene group of ACA were also shown
at 135.3 and 128.1 ppm, in line with the absence of the first band in the DEPT-135 spectrum
(SI: Figure S5b). Furthermore, the aromatic carbon atoms from ACA appeared between
129.9 and 128.4 ppm, while the methyl carbon atom was found at 23.2 ppm. Finally, the
upfield region of the spectra also contained two signals attributed to the EtOH carbon
atoms (56.2 and 18.6 ppm) (SI: Figure S5a).

3.2. Structural Description and Hirshfeld Surface Analysis of 1C

Compound 1C belongs to the triclinic P1 space group. It consisted of a heterometallic
pinwheel array presenting two lateral Zn(II) and one central Ca(II) metal ions, as well
as six ACA ligands with µ2-η1:η1 coordination modes that formed the trinuclear array,
while two 4-phpy ligands occupied the apical positions (Figure 1a). The two Zn(II) lateral
ions displayed [ZnO3N] cores with tetrahedral geometries (S = 0.959, τ4 = 2.53) [45,46],
while the central Ca(II) ion formed a [CaO6] core with an octahedral geometry (S = 0.100,
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ata = 60◦) (Table 2; SI: Table S1) [45,47,48]. Furthermore, the supramolecular structure of 1C
displayed voids with an accessible volume of 32.03 Å3 (1.5% of the unit cell volume) [38],
where two EtOH molecules were situated. The bond lengths involving the Zn(II) metal
center ranged between 1.9622(16) and 2.0504(19) Å, while those with Ca(II) as metal core
presented bond lengths oscillating between 2.2055(17) and 2.2117(18) Å, giving rise to
highly asymmetric bridged coordination modes, as the FTIR-ATR spectrum suggest. In
addition, the bond angles ranged between 89.50(7) and 180◦. All of these values are similar
to other heterometallic pinwheel arrays containing lateral Zn(II) and central Ca(II) metallic
centers [49,50].
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Table 2. Selected bond lengths (Å), bond angles (◦), intramolecular and intermolecular interactions
(Å) for compound 1C.

Bond Lengths (Å)

Zn(1)-O(1) 1.9622(16) Ca-O(2) 2.2115(17)
Zn(1)-O(4) 1.9626(17) Ca-O(5) 2.2117(18)
Zn(1)-O(7) 1.9375(16) Ca-O(8) 2.2055(17)
Zn(1)-N(4) 2.0504(19)

Bond Angles (◦)
O(1)-Zn(1)-O(4) 110.43(7) O(2)-Ca-O(5)#1 93.98(7)
O(1)-Zn(1)-N(4) 102.87(7) O(5)-Ca-O(5)#1 180.0
O(4)-Zn(1)-N(4) 100.42(7) O(8)-Ca-O(2) 88.09(6)
O(7)-Zn(1)-O(1) 123.72(7) O(8)-Ca-O(2)#1 91.91(6)
O(7)-Zn(1)-O(4) 117.39(8) O(8)-Ca-O(5) 89.50(7)
O(7)-Zn(1)-N(4) 96.16(7) O(8)-Ca-O(5)#1 90.50(7)
O(2)#1-Ca-O(2) 180.0 O(8)-Ca-O(8)#1 180.0

O(2)-Ca-O(5) 86.02(7)
Twist Angles (◦)

O(2)#1-Cg(1)-Cg(2)-O(5)#1 58.08 O(5)-Cg(1)-Cg(2)-O(8)#1 61.97
O(8)-Cg(1)-Cg(2)-O(2) 59.95

Intramolecular Interactions (Å)
D-H···A D-H (Å) H···A (Å) D···A (Å) >D-H···A (◦)

N(1)-H(1N)···O(6) 0.88 1.99 2.826(3) 158
N(2)-H(2N)···O(9) 0.88 2.13 2.840(2) 137
N(3)-H(3)···O(3) 0.88 2.17 2.892(3) 140

Intermolecular Interactions (Å)
D-H···A D-H (Å) H···A (Å) D···A (Å) >D-H···A (◦)

O(1W)-H(1WO)···O(4) 0.84 2.07 2.903(5) 173
O(2W)-H(2WO)···O(3) 0.84 2.24 3.053(5) 162
C(14)-H(14)···O(1W) 0.95 2.52 3.439(5) 162
C(30)-H(30)···O(1W) 0.95 2.48 3.390(6) 161
C(40)-H(40)···O(2W) 0.95 2.42 3.293(5) 152
C(18)-H(18)···Cg(3) 0.95 3.05 3.791(5) 136
C(44)-H(44)···Cg(4) 0.95 3.13 3.920(5) 142

#1: -x+1, -y+1, -z+1. Cg(1) = O(2)#1 O(5) O(8); Cg(2) = O(2) O(5)#1 O(8)#1; Cg(3) = C(4) C(5) C(6)
C(7) C(8) C(9); Cg(4) = C(15) C(16) C(17) C(18) C(19) C(20)

The intramolecular interactions of 1C were based on a hexagonal pattern of amide···amide
homosynthons [51], presenting three different pairs of N-H···O interactions as their differ-
ent contributions of H···O and O···H contacts indicated in their respective 2D fingerprint
plots (SI: Figure S6). This pattern has been previously observed by our group, stabilizing
the structure of similar complexes presenting pinwheel arrays (Figure 1b) [27,28]. On the
other side, their intermolecular interactions propagated the structure along the (002) plane
through their occluded EtOH molecules, which join together contiguous pinwheel arrays
by H-bonds, involving the hydroxyl groups of the EtOH molecules and the carbonyl and
carboxylate oxygen atoms from ACA, as well as three complementary C-H···O interactions
formed by the oxygen atoms of the EtOH molecules and nearby hydrogen atoms of either
ACA or 4-phpy ligands. All these interactions were clearly highlighted in the Hirshfeld
surface of 1C as red spots, representing either the O···H or H···O contacts, with a 4.7%
of the contact surface, where the O···H contacts show closer interactions compared with
the H····O contacts (SI: Figure S7a,b). In addition, this propagation was also supported by
C-H···π interactions between two ACA ligands of nearby trinuclear units, which were also
observed in the curvedness representation of the Hirshfeld surface of 1C, representing a
17.1% contact surface in the 2D fingerprint plots, and displaying the characteristic wings
shape (Figure 1c,d; SI: Figure S7c,d) [52]. Finally, the structure was also expanded through
the [001] direction by reciprocal C-H···π interactions between o-H atoms from 4-phpy and
vicinal ACA ligands, giving rise to a 3D net (Figure 1e).
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3.3. CSD Study of Heterometallic [Zn2M] Pinwheel SBUs (M = S-Block Metal)

A search in the Cambridge Structural Database (CSD version 5.43 March 2022) of
[Zn2M] pinwheel SBUs, where M stands for an s-block metal ion, revealed a total of 35 hits.
The synthetic methodologies followed mainly used nitrate salts as metal sources, while
MCl2, M(OH)2, and Zn(OAc)2·2H2O were used to a lesser extent. It also has been noticed
that polar solvents, such as H2O, EtOH, or DMF, have been used in all the syntheses. In
addition, for the preparation of 27 complexes, high temperatures (over 80 ◦C) and long
reaction times (over 48 h) were required. Conversely, our compound was obtained in
mild conditions, using EtOH as the solvent at RT. Of note, some examples were found
where the preparation of these SBUs was performed starting from a pre-synthesized com-
plex containing pivalate [53,54] or crotonate [55,56] ligands. Interestingly, compound
{[Zn2Ca(fda)4]·2Me2NH2}n (fda = 2,5-furandicarboxylate) was synthesized from a pre-
formed 0D pinwheel SBU using pivalate and pyridine, which preserved its trinuclear
array when their pivalate ligands were exchanged with 2,5-furandicarboxylates toward the
formation of a 3D CP [54]. (SI: Table S2).

The results of the CSD search are summarized in Figure 2 and the SI (Table S3). It
was observed that 19 structures showed a central Ca(II) ion, followed by Mg(II) displaying
5 hits, Na(I) with 4 hits, Sr(II) and Ba(II) both presenting 3 hits, and K(I) containing 1 hit.
Furthermore, complexes displaying 0D (11 hits) and 3D (14 hits) structures were more
abundant than 1D or 2D CPs (both presenting 5 hits). Of note, the central s-block metal
ions were located in octahedral O-based pockets in almost every structure, except for three
examples containing Sr(II) or Ba(II), whose bigger ionic radii allowed the expansion of the
coordination sphere reaching [SrO8]/[BaO8] cores [15,57,58]. Otherwise, the coordination
sphere of the lateral Zn(II) ions showed diverse coordination pockets, displaying [ZnO4]
(15 hits), [ZnO5] (1 hit), [ZnO3N] (13 hits), [ZnO4N] (4 hits), and [ZnO3N2] (2 hits) cores.
However, the five-coordinated environments were relatively scarce, being mainly orig-
inated from µ2-η2: η1 carboxylate coordination modes [22,56,59,60], the coordination of
water molecules [61,62], or by µ2-η2 ditopic oxygen atoms from carboxylate moieties [63]
(SI: Figure S8). Regarding the tetrahedral pockets, the two cores found differed in their
lateral position, which could be either a N- or an O-atom. In 12 structures presenting
[ZnO3N] cores, the N-atoms arose from pyridine or bipyridine ligands displaying 0D or 1D
complexes, such as in 1C. At the same time, there was a unique case where 2D sheets were
formed by the expansion of a dicarboxylate ligand [64]. Conversely, all the structures with
[ZnO4] cores displayed 2D or 3D arrays, showing mostly solvent molecules coordinated to
their apical positions, while only in three examples the molecular expansion was done by
both the carboxylates forming the SBU and those located in their apical positions [15,54,65].
Therefore, this overview showed that while the investigation regarding heterometallic com-
plexes with [Zn2M] (M = s-block metal ion) pinwheel SBUs has been scarce, it offers a great
structural variability toward the formation of heterometallic arrays which are completely
modulable, as it is possible to extend their structures through their apical positions or their
central ligands either by bipyridines, carboxylates, or both. However, this compilation
shows that further investigation about this SBU needs to be carried out to control the
obtained structures.

3.4. Photophysical Properties

The solid-state UV-Vis and photoluminescence of 1 and [Zn3(ACA)6(4-phpy)2] was
recorded (Figure 3). The absorption spectra of both compounds showed similar profiles,
presenting a broad unstructured signal with a maximum between 240 and 323 nm (1), and
240 and 330 nm ([Zn3(ACA)6(4-phpy)2]). When irradiated at an excitation wavelength of
320 nm, both compounds showed one unstructured signal with its maxima centered at
360 nm and a Stokes shift of 3472 cm−1, suggesting local electronic transitions which have
been tentatively attributed to intra-ligand charge transfers (ILCT) of either the ACA or the
4-phpy ligands [66,67]. The comparison between the two compounds showed that they
only present minimal differences between their emission profiles. In addition, the resultant
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emission color for both compounds was blue for 1 and electric violet for the homometallic
compound, according to the CIE 1931 chromaticity diagram (SI: Figure S9) [68]. Therefore,
it was observed that the exchange of a Zn(II) for a Ca(II) in the central position of the
pinwheel SBU did not confer significant differences to the photoluminescence properties of
these complexes.
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4. Conclusions

In this contribution, we successfully synthesized and characterized one d-s het-
erometallic compound with a pinwheel array and formula [Zn2Ca(µ-ACA)6(4-phpy)2]·EtOH
(1). This compound was obtained through the self-assembly of octahedral O- and tetrahe-
dral N,O-based coordinating pockets that enable the selective coordination of Ca(II) and
Zn(II) ions to the different coordination environments. The elucidation of the crystal struc-
ture 1C confirmed the selective coordination between Zn(II)/Ca(II) through the formation
of the aforementioned pockets. Furthermore, we compiled all the structures related to 1C
presenting s-block metal ions in the central pocket of the pinwheel, observing the most com-
mon synthetic conditions and the great versatility of this SBU. In addition, the solid-state
UV-Vis and photoluminescence of 1 were recorded and compared with the corresponding
homometallic compound and we observed that the substitution of a Zn(II) by a Ca(II) ion
in the central octahedral pocket of the pinwheel SBU slightly altered both curve profiles.
To conclude, the use of ACA presents a good option for the formation of heterometallic
pinwheel SBUs using mild conditions compared with previously reported syntheses and
presenting potential applications as a template for the preparation of extended networks
using the pinwheel motif as a predetermined SBU.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10080118/s1, Figure S1: PXRD patterns; Figure S2:
ESI-MS fragments; Figure S3: FTIR-ATR spectrum; Figure S4: 1H NMR spectrum; Figure S5: 13C{1H}
and DEPT-135 NMR spectra; Table S1: Geometric evaluation of the metal cores; Figures S6 and S7:
Hirshfeld surface analysis; Table S2: Overview of the synthetic conditions utilized for synthesiz-
ing the complexes found in the CSD search; Table S3: Overview of the main SBU features of the
complexes found on the CSD search; Figure S8: Outline of the five-coordinated Zn(II) cores found
on the CSD search; Figure S9: CIE 1931 chromaticity diagram. References [69–75] are cited in the
Supplementary Materials.
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