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A B S T R A C T   

A plethora of different factors, such as heat treatment, pH, soluble calcium and phosphate concentrations, 
colloidal calcium phosphate, ionic strength, redox potential, etc., affect functionally of critical milk components 
such as casein micelles, fat globules and whey proteins. These physicochemical changes induce fat- or protein- 
protein interactions that would be associated to changes in particle size that might be revealed using light 
backscatter measurements. We hypothesized that inline, simple, low-cost light backscatter measurements might 
have the potential to provide functionally related information, representing an interesting opportunity for 
process control. Casein micelle particle size and near infrared light backscatter spectra were measured in milks 
heat treated at 80 and 90 ◦C and pH 6.3, 6.7 and 7.1 in order to obtain prediction models for estimating changes 
in casein micelle particle size during milk heat treatment. Light intensity was measured over a spectral range of 
200–1100 nm using a simple optical backscatter sensor and was implemented into models for particle size 
predictions as a function of heat treatment temperature and pH. Models which included an exponential factor 
containing a ratio of two specific wavebands were found to improve R2 when compared to single wavelength 
models. The best model exhibited an R2 of 0.993 and SEP of 2.36 nm. The developed prediction models show 
promise for in-line monitoring of whey protein denaturation and casein micelle particle size.   

1. Introduction 

In-, on– and at-line monitoring of liquid milk products has imple-
mentation potential in the dairy industry for process control and time 
and cost savings. To date, several applications have been developed to 
that end, but it is still plenty of room for innovative process analytical 
technologies that could provide useful, real-time information for process 
control optimization and improvement. In that sense, the monitoring of 
various milk product manufacturing steps such as determination of milk 
gelation mechanisms and changes during the cheese making process has 
been investigated using light scatter techniques (Castillo et al., 2005c; 
Castillo et al., 2006; Fagan et al., 2007). Near infrared (NIR) spectros-
copy has been widely used at- or even in-line in milk to determine ab-
sorption in the infrared region (780–2500 nm) of bonds and chemical 
groups to quantify various milk components (García, 2004). Robert et al. 
(1987) was able to establish specific wavelengths corresponding to 
changes in fat, protein and lactose content in milk, however noted that 
some interference was observed as a result of large water absorption and 
light scattering of fat particles. As well, it was observed by Diaz-Carrillo 

et al. (1993) that NIR spectroscopy could be used to successfully quan-
tify protein, fat and total casein in goatś milk. NIR spectroscopy has also 
been used to develop prediction equations for the determination of a 
number of milk attributes with in-line application potential. For 
example, for the differentiation of different heat treatments in milk 
(Downey et al., 1990), detection of adulteration by the addition of whey 
powder to milk powders (Giangiacomo et al., 1991) or addition of NaCl 
and skim milk powder to milk (Pedretti et al., 1993). Sørensen and 
Jepsen (1997) used NIR spectroscopy to detect cheese defects as a result 
of Clostridium tyrobutyricum. 

Development of prediction models has also been accomplished using 
NIR and light scatter techniques to predict cheese making characteristics 
at real time. Castillo, et al. (2000) used NIR light backscatter for 
developing simple prediction models using only optical parameters for 
the determination of cutting and clotting time. Further developments 
have allowed the in-line transformation of the NIR light backscatter 
response during milk coagulation into real time and continuous pre-
diction of the gel elastic modulus during cheese manufacturing (Arango 
and Castillo, 2018) and pH during yogurt fermentation (Arango et al., 
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2020). Light sidescatter and transmission were also used to estimate 
whey fat concentration, where sidescatter produced models with a 
higher R2 (greater than0.95) than corresponding transmission models 
(less than0.5) (Castillo et al., 2005b). An in-line syneresis sensor was 
developed by Castillo, et al. (2007), which was applied by Fagan, et al. 
(2008) to model cheese manufacturing indices such as whey fat, curd 
yield and curd moisture content using light backscatter sensor technol-
ogy achieving R2 values of 0.90 or more for the prediction models. In 
particular, their work was mainly aimed toward the determination of 
curd moisture content as a function of time in order to improve final 
moisture content during cheese making. Initial models were determined 
from a total of 40 parameters; however successful models utilized a 
combination of the parameters: temperature, percentage of protein, milk 
fat, and milk solids as well as milk fat protein ratio and light backscatter 
intensity ratios, which contain coagulation and syneresis information. 
Other studies have investigated the relation between light scatter and 
whey protein denaturation and the subsequent attachment of whey 
proteins (WPs) to the surface of the casein micelle (Lamb, Payne, Xiong, 
and Castillo, 2013), however the strong pH effect of this mechanism has 
not been thoroughly investigated for optical sensor development. 

The authors hypothesize that particle size may be used as an indirect 
measure of whey protein denaturation in heat treated milk. Particularly 
because the increase of particle size has been shown to be a good indi-
cator of the extent of binding of denatured whey proteins to the surface 
of the casein micelle (Anema and Li, 2003, Taterka and Castillo, 2015). 
However, this mechanism is affected to a large degree by milk pH. The 
maximum attachment level of denaturated whey protein to the casein 
micelle surface has been found to occur at pH ~ 6.3, whereas the for-
mation of soluble whey protein aggregates is the preferential mechanism 
at higher pH (maximum at pH 7.1) (Vasbinder and de Kruif, 2003; 
Donato and Guyomarc’h, 2009; Kethireddipalli et al., 2010; Taterka and 
Castillo, 2015). Moreover, milk pH also affects the light backsctter signal 
as it has been exhibited that bound/soluble aggregate formation is 
highly dependent on pH and corresponds significantly to the intensity of 
light backscatter signal (Taterka and Castillo, 2015). Another important 
factor is the temperature of heat treatment, which significantly increases 
the amount of denatured whey protein, resulting in bound and/or sol-
uble serum aggregates, depending on pH. It should be noted that, whey 
protein denaturation plays a quite significant role in milk and milk 
products from a functional point of view. For instance, it is well-known 
that intensive whey protein denaturation impairs milk coagulation 
during cheese manufacturing while, contrarily, it improves yogurt 
texture and whey retention. Additionally, intense thermal denaturation 
is required for thermal stabilization of milk prior to sterilization of 
unsweetened condensed milk. Since the previous models obtained by 
Lamb et al. (2013) did not take into account the pH dependence of the 
binding reaction, the objective of this study was to look further into 
modeling the light scatter signal with respect to the changes in particle 
size in heat treated milk, while taking into consideration the effect of 
milk pH. 

2. Materials and methods 

2.1. Experimental design 

The experiment consisted of a 3 × 2 factorial design with three pH 
values (6.3, 6.7 and 7.1) and two heat treatments (80 and 90 ◦C for 10 
min). Each treatment was replicated three times. 

2.2. Sample preparation 

Low-heat skim milk powder (low-heat, spray-dried skim milk pow-
der; pH = 6.5, solubility = 99 %, WPNI ≥ 7 mg g− 1, 800 cfu g− 1) was 
supplied by Chr. Hansen SL (Barcelona, Spain). Milk was reconstituted 
with Milli-Q water to a final solids content of 12 % (w/w). Reconstituted 
milk, initially at pH 6.55 (±0.015), was pH-adjusted to 6.3, 6.7 and 7.1 

at 21 ◦C using 0.5 M HCl or 0.5 M NaOH. re-adjusted milk samples were 
allowed to equilibrate for 2 h in a dark place, before final pH reading and 
minor re-adjustments. 

A stainless-steel plate (6 mm slot) containing 80 mL of milk was 
placed into a water bath (OvanTherm, Suministros Grupo Esper, S.L., 
Badalona, Spain) controlled using an OvanTherm TC00 unit (resolution 
0.1, stability ± 0.1 ◦C) (Suministros Grupo Esper, S.L.) at either 80 or 
90 ◦C for 10 min. Samples took less than 30 s to reach the target tem-
perature and heat treatment was stopped by removing the heat plate and 
rapidly placing it in a 0 ◦C ice-water bath for 3 min. Milk was then 
transferred to a test tube, refrigerated at 4 ◦C for no more than 2 days, 
and re-equilibrated to 21 ◦C before analysis. 

2.3. Casein micelle particle size 

Particle size z-average was measured at 20 ± 0.5 ◦C using dynamic 
light scattering set to 90◦ and refractive index set to 1.471 with a Mal-
vern Zetasizer 4 (Malvern Instruments ltd., Malvern, Worcs., UK). 
Samples were suspended in Ca/imidazole buffer (20 mM-imidazole, 5 
mM-CaCl2, 30 mM-NaCl, pH 7.0) at a concentration of 1:2 in order to 
suspend the casein micelles and allow stability during measurements 
(Anema, 1997; Anema & Li, 2003; Anema et al., 2004). Measurements 
were 3 min each and an average of 3 measurements was taken for each 
representative sampling. 

2.4. Light backscatter measurements 

Full detail on the optical system used is given in Taterka and Castillo 
(2015). Briefly, it consisted of a light scatter probe (Reflectronics Inc, 
Lexington, KY, USA) connected through two 600-µm UV-NIR optical 
fibers to a tungsten halogen light source (LS-1; Ocean Optics, Inc. 
Dunedin, FL, USA) and a high-resolution spectrometer (Model HR4000; 
Ocean Optics, Inc.). Temperature control was achieved by circulating 
water at 25 ◦C inside double jacketed walls below the sample well. 
Spectra Suite software (Ocean Optics, Inc.) was used to collect intensity 
spectra in the range 200–1100 nm. For single wavelength prediction 
models, light backscatter maximum intensity (570 nm) was recorded 
and used for further analysis. In addition, an alternative technique of 
waveband ratios for modeling proposed by Lamb, Payne, Xiong, and 
Castillo (2013) was employed (see section 3.2.1 for further detail). 

2.5. Statistical analysis 

Statistical analysis and interpretation of data was accomplished 
using “Statistical Analysis System” (SAS, version 9.2, SAS Institute Inc., 
Cary, NC, USA). Single wavelength models (models 1–5) were developed 
using the PROC REG function. The development of models 1–5 is more 
thoroughly described in Section 3.1. 

Models 6–10 utilized a technique of waveband ratios using a 
grouping of two wavebands portions of the spectra, determined by SAS 
code from Lamb et al. (2013). Wavebands were defined as 35 nm por-
tions of the spectra, thus all grouping of waveband ratios yielded 27 
distinct combinations. Prior studies on the behavior of particle size, it 
has been considered that in a nonlinear regression model the response 
variable (particle size) is an exponential function as a function of pH 
(Taterka and Castillo, 2018). The NLIN function was used to form 
nonlinear regression models, assuming that the response variable fol-
lows an exponential model. From this, waveband ratios were developed 
with the objective of modeling the radius of the casein micelle versus pH 
and temperature. Models were assessed based on the determination 
coefficients (R2) and the standard errors of prediction (SEP) for the re-
gressions between the predicted and actual values. Supplementary in-
formation regarding the development of wavelength ratios can be found 
in Section 3.2.1. 
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3. Results and discussion 

3.1. Single wavelength prediction models 

A model for particle size as a function of light backscatter intensity at 
570 nm (single wavelength model) was developed. Fig. 1 shows the 
trends for both light backscatter at 570 nm and z-average particle size as 
a function of pH and temperature. Models were “separated” between 
heat treatment temperatures (80 and 90 ◦C), temperature “integrated” 
or temperature c̈ombined̈. Temperature “integrated” models were 
developed as a function of temperature, whereas temperature combined 
used all data points but did not include temperature in the prediction 
equation. Two types of models were obtained: linear models with the 
form (y = ax + b) and quadratic models in the form (y = ax2 + bx + c). As 
a first modeling approach, both light backscatter and particle size were 
modeled as a function of pH and/or T as follows: 

LB = β0 + β1pH (1)  

LB = β0 + β1pH + β2T (2)  

PS = β0 + β1pH + β2pH2 (3)  

PS = β0 + β1pH + β2pH2 + β3T (4) 

where LB is the light backscatter intensity (bits) measured at the 
maximum intensity wavelength encountered within the wavelength 
range between 200 and 1100 nm (i.e., 570 nm), PS is the particle size z- 
average (nm), T is the heat treatment temperature (◦C), and β0-3 are 
regression coefficients. 

Light backscatter and particle size experimental data was fit to both 
linear and quadratic mathematical models to estimate regression co-
efficients and summary statistics using the PROC REG function in Sta-
tistical Analysis System (SAS version 9.2, SAS Institute Inc., Cary, NC, 
USA). In all cases, higher R2 values were observed in quadratic models, 

however those models which did not show a large difference in R2 be-
tween quadratic and linear models were simplified into the linear model 
form. Also, in some “integrated” models, temperature (T) was used for 
the model as the R2 value increased markedly in some models when 
including the T variable. Models in which the addition of T did not in-
crease the R2 value to a large extent were simplified into temperature 
combined models in order to maintain degrees of freedom (DF) for the 
model. Table 1 shows the various models that were developed and their 
summary statistics. Temperature “separated” models and temperature 
“integrated” models were developed to predict light backscatter 
maximum intensity as a function of pH and temperature (model 1 and 2) 
(Fig. 2) and particle size z-average as a function of pH and temperature 
(model 3 and 4) (Table 1) (Fig. 3). Model 1 utilizes a simple linear model 
using only pH as a dependent variable, yet still results in high R2 values 
for both 80 and 90 ◦C models (R2 = 0.979 and 0.988, respectively) 
(Table 1) (Fig. 2A). In the case of the temperature “integrated” model 
(model 2) (Fig. 2B), all temperature data points were considered (DF =
15) and a high R2 value of 0.984 was obtained. For the particle size 
temperature “separated” models (model 3) (Fig. 3A) R2 values of 0.881 
and 0.992 were obtained for 80 and 90 ◦C models, respectively, whereas 
the temperature “integrated” model (model 4) (Fig. 3B) had a slightly 
lower R2 value of 0.791. In general, it can be seen that light backscatter 
showed a consistent linearly decreasing trend with pH (Fig. 1A), 
whereas changes in particle size tended to show a more quadratic 
response as a function of pH, where 90 ◦C samples showed greater 
changes with pH than 80 ◦C samples (Fig. 1B). 

Trends for changes in particle size and light backscatter maximum 
intensity were investigated and prediction models were developed with 
high R2 values as a function of milk pH (Models 1–4). As the technique to 
measure particle size can be time consuming and costly, the light 
backscatter method could be a good alternative to particle size 

Fig. 1. (A) Light backscatter maximum intensity (LB) as a function of pH at 80 
and 90 ◦C (N = 18); (B) Particle size z-average as a function of pH at 80 and 
90 ◦C (N = 18). 

Table 1 
Predictive models 1 to 4 for light-backscatter intensity (LB) and particle size z- 
average (PS).  

Model Prediction 
equation 

Temperature DF 
err 

Regression 
coef. 

R2 SEP 

1 LB = β0 +

β1pH 
80 ◦C 7 β0 = -5.11 •

104  
0.979 320     

β1 = 5.95 •
103     

90 ◦C 7 β0 = -5.07 •
104  

0.988 235     

β1 = 5.82 •
103   

2 LB = β0 +

β1pH + β2T 
Integrated 15 β0 = 4.68 •

104  
0.984 273   

(80 and 
90 ◦C)  

β1 = -5.88 •
103       

β2 = 47.7   
3 PS = β0 +

β1pH + β2pH2 
80 ◦C 6 β0 = 1.97 •

103  
0.881 3.8     

β1 = -526       
β2 = 37.4     

90 ◦C 6 β0 = 7.87 •
103  

0.992 3.2     

β1 = -2.23 •
103       

β2 = 161   
4 PS = β0 +

β1pH +

β2pH2 + β3T 

Integrated 14 β0 = 4.78 •
103  

0.791 11.7   

(80 and 
90 ◦C)  

β1 = -1.38 •
103       

β2 = 99.1       
β3 = 1.60   

N = 18; DF err, degrees of freedom for error; coef.: coefficients; β0-3, prediction 
coefficients; LB, light backscatter intensity (bits); PS, particle size z-average 
(nm); R2, determination coefficient; SEP, standard error of prediction for the 
model (bits for LB and nm for PS). 
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measurements in milk as it is inexpensive and nondestructive, and can 
easily be implemented for in-line application. Initial work by Anema and 
Li (2003) presented a strong correlation of denatured whey proteins 
attached to the casein micelle and changes in particle size. As well, 
previous work has shown good correlation between both the light 
backscatter maximum intensity (r = 0.77) (Taterka and Castillo, 2015) 
and bound whey protein (r = 0.70) (Taterka and Castillo, 2018) to 
changes in casein micelle particle size. A model of particle size as a 
function of light backscatter intensity would enable in-line monitoriza-
tion of the extent of changes in denaturation in heat treated milk. Since 
in-line process control shows promise toward optimization of the 
manufacturing process of milk and milk products such as cheese and 
yogurt, a simple, non-invasive, quick and inexpensive technique 
providing real time information about the binding of denatured whey 
proteins to the casein micelle and/or soluble aggregate formation would 
be highly advantageous to the dairy industry. Note that different pro-
cessing factors inducing particle interactions in milk are relevant for 
milk functionality and would be associated to changes in particle size 
that might be real-time revealed using light backscatter measurements. 
And a relatively simple equation for the prediction of particle size as a 
function of the light backscatter maximum, was developed: 

PS = β0 + β1LB+ β2LB2 (5) 

Model 5 (Table 2) used a quadratic form and yielded high R2 values 
in the case of 80 and 90 ◦C models (R2 = 0.847 and 0.992, respectively) 
(Fig. 4A) and temperature “combined” models (R2 = 0.825) (Fig. 4B). As 
it can be observed in Table 1 and 2, temperature separate models had 
higher R2 and lower standard error of prediction (SEP) in nearly all 
models (except in the case of the temperature “integrated” Model 2, 

which has a higher R2 and lower SEP value than Model 1 temperature 
separated at 80 ◦C). However, all temperature “integrated” models 
maintained an R2 value higher than or equal to 0.791 and all 80 and 
90 ◦C models with R2 greater than 0.847 (Tables 1 and 2). 

Other authors have looked at various characteristics of milk using 
NIR (780–2500 nm) or mid-infrared (MIR) (2500–15000 nm) 

Fig. 2. (A) Model 1: Light backscatter maximum intensity modeled as a func-
tion of pH at 80 and 90 ◦C (N = 18); (B) Model 2: Light backscatter maximum 
intensity modeled as a function of pH and temperature (N = 18). 

Fig. 3. (A) Model 3: Particle size z-average modeled as a function of pH at 80 
and 90 ◦C (N = 18); (B) Model 4: Particle size z-average modeled as a function 
of pH and temperature (N = 18). 

Table 2 
Predictive model 5 for particle size z-average (PS).  

Model Prediction 
equation 

Temperature DF 
err 

Regression 
coef. 

R2 SEP 

5 PS = β0 +

β1LB + β2LB2 
80 ◦C 6 β0 = 219  0.847  4.4     

β1 = -0.0221       
β2 = 1.18 •
10-6     

90 ◦C 6 β0 = 572  0.992  3.1     
β1 = -0.0899       
β2 = 4.41 •
10-6     

Combined 15 β0 = 479  0.825  10.3   
(80 and 
90 ◦C)  

β1 = -0.0725       

β2 = 3.59 •
10-6   

N = 18; DF err, degrees of freedom for error; coef.: coefficients; β0-3, prediction 
coefficients; LB, light backscatter intensity (bits); PS, particle size z-average 
(nm); R2, determination coefficient; SEP, standard error of prediction for the 
model (bits for LB and nm for PS). 
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spectroscopy techniques (Iñón et al., 2004; Wu et al., 2011) by incor-
porating a combination of chemometric techniques for analyzing the 
range of spectral data in order to form useful prediction models. The NIR 
region is widely used in milk analysis and therefore the spectral regions 
which correspond to moisture content, milk fat, protein, lactose and 
other milk components are well-characterized (Kamishikiryo-Yamashita 
et al., 1994; Laporte and Paquin, 1999; Robert et al., 1987; Tsenkova 
et al., 1999). However, it should be noted that although the light 
backscatter spectral range (200–1100 nm) has been studied with respect 
to milk particulate components, such as the fat globule and casein 
micelle (Castillo et al., 2005a,b; Fagan et al., 2008; Lamb et al., 2013), 
regions that correspond to specific characteristic and or physicochem-
ical changes in milk have yet to be fully characterized. 

3.2. Waveband ratio predictive models 

3.2.1. Waveband ratio selection 
In the present study, a good modelization for particle size as a 

function of light backscatter maximum intensity (model 5) has been 
observed. However Lamb et al. (2013) found improved predictions 
when using an alternative technique of waveband ratios for modeling 
whey protein denaturation as a function of light backscatter intensity. 
Lamb et al. (2013) defined waveband ratios as the average intensity at 
each 25 nm portion of the light backscatter spectra, and created wave-
band ratio combinations, which were used to form predictive models. 
Implementing a technique of ratios, or a combination of parameters, has 
been used successfully in prediction models found in the literature 
(Castillo et al., 2000; M. Castillo et al., 2005a,b; Fagan et al., 2008), 
which in certain cases was found to improve the accuracy of modeling. 

In addition, a technique of ratios has been used to decrease the number 
of variables used in the model by combining certain parameters, such as 
in the case of Fagan et al. (2008), which incorporated a non-optical milk- 
fat protein ratio into the model for curd moisture content. Therefore, in 
order to pursue a higher level of accuracy for predictive models, a 
method of waveband ratios was also tested. Note that Fagan et al. (2008) 
tested Partial Least Squares (PLS) regression analysis for use in optical 
sensor development and found little improvement in models when 
compared to individual wavelength and waveband ratio models. In 
addition, complex model development techniques are inherently more 
complicated and expensive as they require sensors that use multiple 
wavelength analysis and, as a result, it was opted out of using any more 
than two wavelength combinations for the development of models in the 
present study. 

Initially, wavebands of 15, 25 and 35 nm portions of the light 
backscatter spectra (from 200 to 1100 nm) were investigated in pre-
liminary models, however no major differences were observed. As a 
result, wavebands were defined as an average of the intensity for each 
35 nm portion of the spectra. Thus, a total of 27 waveband regions were 
obtained. The wavebands were then combined, using each waveband 
combination in both the numerator and denominator, to come up with 
all possible ratios. Predictive models were determined using the pre- 
selected waveband ratios that were found to best correspond to 
changes in particle size as a function of pH (i.e., assuming an exponential 
function). Table 3 summarizes the top 10 ratios, which exhibited the 
highest R2 values used for the model development and based on the total 
R2 value from a sum of the four models which used waveband ratios 
(Models 6 (80 ◦C), 6 (90 ◦C), 7 and 10). Fig. 5 illustrates the typical light 
backscatter profile obtained from 200 to 1100 nm scans. Highlighted are 
the two sections of wavebands which were used to obtain the best 
models. Wavebands 6 and 7 (range of 388–458 nm) were selected as 
numerator values that corresponded with models showing the highest R2 

values. The number of denominators that corresponded to the highest R2 

values for the models was larger, wavebands 15–20 (range of 703–878 
nm). All ratios in the top 10 models fell within the previously described 
numerator and denominator ranges. Numerator values that produced 
the 10 highest R2 represent a region with relatively little change among 
the different samples at various experimental conditions (pH and tem-
perature of heat treatment), whereas denominator values tended to lie in 
a region with more notable changes (Fig. 5). The technique of using 
numerator and denominator values presented as a ratio and/or as in-
dividual values was further detailed in Section 2. 

3.2.2. Models 
Using the ratio (R6,18) which yielded the highest R2 for particle size, 

prediction models were developed for particle size (z-average) and light 
backscatter waveband ratio (R6,18) as a function of pH in temperature 
“separated” and temperature “integrated” models (Table 4). In 

Fig. 4. (A) Model 5 temperature separated: Particle size z-average modeled as a 
function of light backscatter maximum intensity (N = 18); (B) Model 5 (tem-
perature combined): Particle size z-average modeled as a function of light 
backscatter maximum intensity (N = 18). 

Table 3 
R2 top 10 ratios for modeling particle size.  

ratio numerator denominator R2 

PS f(LB 
ratio) 

R2
avg 

PS f(LB 
ratio) 

R2 

LB ratio 
f(pH,T) 

R2
avg 

LB ratio 
f(pH,T) 

6_18 388 808  0.979  0.952  0.991  0.993 
6_17 388 773  0.979  0.951  0.992  0.993 
6_16 388 843  0.978  0.949  0.993  0.993 
7_16 388 738  0.977  0.949  0.992  0.993 
7_15 458 773  0.977  0.948  0.992  0.993 
6_19 458 738  0.980  0.954  0.987  0.989 
7_17 458 703  0.978  0.951  0.989  0.991 
6_15 458 808  0.976  0.948  0.991  0.992 
6_20 388 878  0.981  0.955  0.982  0.985 
7_18 388 703  0.976  0.951  0.986  0.989 

R2, determination coefficient; R2
avg, average determination coefficient of 80 and 

90 ◦C; LB, light backscatter intensity (bits); T, temperature of heat treatment 
(◦C); PS, particle size z-average (nm); numerator and denominator (nm). 
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comparison to models that were developed to determine R6,18 (models 
6–7; 6, 7) (Fig. 6), models for z-average (models 8–9; 8, 9) (Fig. 7) 
incorporated an exponential factor into equations. As mentioned pre-
viously and visualized in Fig. 1B, particle size z-average tends to follow a 
more exponential curve with respect to pH when compared to light 
backscatter maximum intensity, which follows a linear trend with pH 
(Fig. 1A). Equations for predictions are as follows: 

In

Id
= β0 + β1pH (6)  

In

Id
= β0 + β1pH + β2T (7)  

PS = β0 + e(α0+α1pH) (8)  

PS = β0 + e(α0+α1pH+α2T) (9) 

where In is the light backscatter intensity at the pre-selected 

numerator, Id is the light backscatter intensity at the pre-selected de-
nominator, PS is the particle size z-average, T is the heat treatment 
temperature, β0-2 and α0-2 are prediction coefficients. 

A previous work has shown that changes in light backscatter signal 
and particle size have been found to be highly correlated to pH (Taterka 
and Castillo, 2015). Thus in model development, it is reasonable that pH 
has been found to be a critical factor. Castillo et al. (2006) developed 
models for cutting time prediction in cottage cheese manufacture also 
using pH as a variable for predictions, whereas reasonably accurate 
prediction models using pH as a variable have been developed by Tof-
fanin, De Marchi, Lopez-Villalobos, and Cassandro (2015) in order to 
determine characteristics of milk quality and coagulation properties 
using MIR analysis. As pH is a useful tool in the present study for the 
determination of particle size and light backscatter intensity, it may be 
complementary to utilize a simple technique of milk pH measurement 
for the determination of changes in the milk matrix with heat treatment. 
Unfortunately, simple laboratory pH meters generally contain glass 
components and other reagents that are not approved for in-line use in 

Fig. 5. Light backscatter spectra showing selected numerator and denominator regions used for modeling.  

Table 4 

Models using top 1 ratio R6,18 for prediction of 
In
Id

and an exponential factor for prediction of particle size z-average (PS).  

Model Prediction equation Temperature DF err Regression coef. R2 SEP 

6 In
Id

= βo + β1pH 80 ◦C 7 β0 = 0.454  0.991 3.69 • 10-3     

β1 = -0.103     
90 ◦C 7 β0 = 0.488  0.996 2.57 • 10-3     

β1 = -0.106   
7 In

Id
= βo + β1 pH + β2 T Integrated 15 β0 = 0.383  0.993 0.0377   

(80 and 90 ◦C)  β1 = -0.104       
β2 = -1.03 • 10-3   

8 PS = βo + e(α0+α1pH) 80 ◦C 24 β0 = 115  0.871 3.49     
α0 = -25.2       
α1 = 3.52     

90 ◦C 21 β0 = 117  0.988 3.09     
β1 = -41.2       
β2 = 5.87   

9 PS = βo + e(α0+α1pH+α2T) Integrated 47 β0 = 117  0.976 3.32   
(80 and 90 ◦C)  α0 = -29.7       

α1 = 5.78       
α2 = 0.121   

N = 18 for In/Id models, N = 51 for PS models; DF err, degrees of freedom for error; coef.: coefficients; β0-2 and α0-2, prediction coefficients; R2, determination co-

efficient; SEP, standard error of prediction for the model (dimensionless for 
In
Id 

and nm for PS).  
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the food industry (Wesstrom, 1992). A preliminary work by Arango et al. 
(2020) has exhibited that optical sensors are useful for the replacement 
of pH meters during acid-coagulation of milk in which pH predictions as 
a function of light scatter techniques were developed successfully with 
great accuracy (R2 greater than 0.99). Thus, the incorporation of an 
optical technology for the determination of pH-specific denaturation 
mechanisms may be of interest for investigation in the present study. As 
a result, models for particle size using the light backscatter spectrum 
have been developed with good correlations. Utilizing the ratio values 
showed to greatly improve R2 when comparing model 5, which did not 
use ratio values, (Table 2) (Fig. 4) to model 10, which did (Table 5) 
(Fig. 8). Model 10 is presented below, utilizing R6,18 in an exponential 
type equation to model particle size changes. 

PS = β0 + e(α0+α2
In
Id
) (10) 

An interesting finding in prediction models for particle size z-average 
(Model 8–10) is that the coefficient β0 lies within the range of the initial 
casein micelle particle radius (~112–120 nm, Tables 4, 5) (Figs. 7, 8). 
The remainder of the prediction equation includes an exponential factor 
of other predictors (8–10), which for Model 10 corresponds to a wave-
band ratio. 

Since binding has been found to be the main contributor in the in-
crease in particle size (Taterka and Castillo, 2015), it may be suggested 
that the binding reaction follows an exponential growth curve. Thus, 
using the average initial casein micelle particle size plus some expo-
nential increase as a result of attachment and/or aggregation, it may be 
possible to predict casein micelle particle size growth and, in turn, 
denaturation as a function of particle size increase. In the present study, 
the average radius was 119.7 nm using reconstituted milk from the same 
lot, comparable to average diameters reported in Martin, Williams, and 
Dunstan (2007) which saw an average of 231.0 ± 1.6 nm in recon-
stituted milk stirred for 35 min. However, it should be noted that casein 
micelle average size varies significantly depending on batch and thus 
this hypothesis should be tested using different milk batches. 

3.3. Comparison of single wavelength and ratio models 

3.3.1. Comparison of models 
Two sets of models have been developed and discussed: models 

developed using the maximum light backscatter intensity (LB) (Tables 1, 
2) and models using ratio R6,18 and an exponential factor in z-average 
models (Table 4, 5). Models from Table 1 are complimentary to models 
from Table 4 as such: Model 1 and 6, 2 and 7, 3 and 8, 4 and 9; and 5 and 
10 in Table 2 and Table 5, respectively. In most cases, using a ratio value 
and/or adding an exponential factor to particle size prediction models 
acted to increase the R2 value of the model, except model 3 compared to 

Fig. 6. (A) Model 6: Light backscatter ratio R6,18 (dimensionless) modeled as a 
function of pH (N = 18); (B) Model 7: Light backscatter ratio R6,18 (dimen-
sionless) modeled as a function of pH and temperature (N = 18). 

Fig. 7. (A) Model 8: Particle size z-average modeled as a function of pH at 80 
and 90 ◦C (N = 51); (B) Model 9: Particle size z-average modeled as a function 
of pH and temperature (N = 51). 

Table 5 
Predictive Model 10 for particle size z-average (PS).  

Model Prediction 
equation 

Temperature DF 
err 

Regression 
coef. 

R2 SEP 

10 PS = β0 +

e
(α0+α2

In
Id
)

80 ◦C 24 β0 = 115  0.911  2.89     

α0 = -9.22       
α1 = 15.6     

90 ◦C 21 β0 = 117  0.993  2.36     
α0 = -12.5       
α1 = 23.2     

Combined 48 β0 = 119  0.979  3.04   
(80 and 
90 ◦C)  

α0 = -17.5       

α1 = 37.0   

N = 51; DF err, degrees of freedom for error; coef.: coefficients; β0-2 and α0-2, 
prediction coefficients; PS, particle size z-average (nm); R2, determination co-
efficient; SEP, standard error of prediction for the model (nm). 
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model 8 where adding an exponential factor gave a slightly lower R2 for 
both 80 (model 3: 0.881, model 8: 0.871) and 90 ◦C models (model 3: 
0.992, model 8: 0.988). This may be due to the fact that there is a large 
increase from 80 ◦C to 90 ◦C in particle size at pH 6.3. This difference 
makes it necessary for temperature “integrated” models to include an 
exponential factor (R2 = 0.791 -Table 1- versus 0.976 -Table 4- with 
exponential factor), whereas temperature “separated” models using a 
simpler equation still maintain a high R2 value for the models (R2 =

0.881 and 0.992 -Table 1- versus 0.871 and 0.988 -Table 4-). 
For the modelization of particle size z-average as a function of light 

backscatter intensity, model 5 and model 10 use light backscatter in-
tensity values (model 5: LB, model 10: R6,18). Both models show high R2 

values, however it can be seen that the addition of an exponential factor, 
as well as using R6,18 in model 10, acts to increase R2 in both tempera-
ture “separate” and “combined” models (R2 for 80 ◦C; 90 ◦C and 
“combined” models were 0.847, 0.992, 0.825 for model 5: and 0.911, 
0.993, 0.979 for model 10, respectively). This effect is also observed in 
the case of the temperature “integrated” models (Models 4 and 9) in 
which the exponential addition greatly increases the R2 (0.791 and 
0.976, respectively). On the other hand, when comparing Model 3 with 
Model 8, the simple quadratic form yields a prediction with a higher R2 

(80 ◦C: 0.881, 90 ◦C: 0.992) than when the exponential form is added to 
the equation (80 ◦C: 0.871, 90 ◦C: 0.988). In this case, models that are 
produced at each respective temperature separately, using a linear 
model, supports each prediction sufficiently and to a better extent than 
the exponential model. Nonetheless, there is a good correlation between 
actual and predicted values in all models, thus the light backscatter 
technique shows promise toward the prediction of particle size changes 
as a function of milk pH and temperature treatment. Since changes in 
particle size have been mainly found to be a result of the binding reac-
tion of denatured whey proteins attaching to the surface of the casein 

micelle, this gives some insight into aspects of whey protein denatur-
ation in milk. 

3.3.2. Analysis based on various portions of R6,18 
Since two techniques were implemented for modeling, one using a 

single intensity at the maximum value (LB; in this section represented by 
Im), and the other using a ratio of intensities (R6,18), which acted to 
improve the models in most cases, it was of interest to test whether using 
only the numerator or denominator of the ratio R6,18 (In or Id, respec-
tively) may also yield good predictions individually. Note that a single 
wavelength prediction is always more convenient for industrial imple-
mentation of a sensor technology. Thus, in order to confirm the need for 
ratios in the development of prediction models, model 5 was tested using 
the maximum intensity (Im), the intensity used in the numerator (In) of 
R6,18, and the intensity of the denominator (Id) used in R6,18. As sum-
marized in Table 6, it can be seen that both Im (R2 = 0.847 and 0.992) 
and Id (R2 = 0.779 and 0.986) showed good R2 for both 80 and 90 ◦C 
models, respectively. On the other hand, In yielded less reliable R2 values 
(R2 = 0.465 and 0.773). In temperature “combined” models Id was the 
model with the highest R2 (0.890) and lowest SEP (8.20 nm), compared 
to Im and In models (R2 = 0.825; 0.491, SEP = 10.3; 17.6 nm, respec-
tively). As In, in general, shows poor correlation of predicted and actual 
values in models, it leads us to believe that it may not be necessary for 

Fig. 8. (A) Model 10: Particle size z-average modeled as a function of light 
backscatter ratio R6,18 at 80 and 90 ◦C (N = 51); (B) Model 10 (temperature 
combined): Particle size z-average modeled as a function of light backscatter 
ratio R6,18 (N = 51). 

Table 6 
Models using individual wavelength values to model particle size as a function of 
the maximum intensity value (Im = 570 nm), the intensity used in the numerator 
(In) and the intensity of the denominator (Id).  

Model Prediction 
equation 

Temperature DF 
err 

Regression 
coef. 

R2 SEP 

5 PS = β0 +

β1Im + β2Im2 
80 ◦C 6 β0 = 1.18•

10-6  
0.847  4.36     

β1 = 0.0221       
β2 = 219     

90 ◦C 6 β0 = 4.41•
10-6  

0.992  3.12     

β1 = 0.0899       
β2 = 572     

Combined 15 β0 = 479  0.825  10.3   
(80 and 
90 ◦C)  

β1 =

-0.0725       
β2 =

3.59•10-6   

11 PS = β0 +

β1In + β2In2 
80 ◦C 6 β0 = -2.44•

10-5  
0.465  8.14     

β1 = -0.110       
β2 = 49.9     

90 ◦C 6 β0 = -1.36•
10-3  

0.773  16.6     

β1 = -1.99       
β2 = 847     

Combined 15 β0 = 436  0.491  17.6   
(80 and 
90 ◦C)  

β1 = -0.920       

β2 = 6.60•
10-4   

12 PS = β0 +

β1Id + β2Id2 
80 ◦C 6 β0 = 4.18•

10-6  
0.889  3.72     

β1 = 0.0231       
β2 = 148     

90 ◦C 6 β0 = 1.36•
10-5  

0.994  2.60     

β1 = 0.0879       
β2 = 258     

Combined 15 β0 = 216  0.890  8.20   
(80 and 
90 ◦C)  

β1 = 4.46•
10-5       

β2 = -0.134   

N = 18, DF err, degrees of freedom for error; β0-2, prediction coefficients; R2, 
determination coefficient; SEP, standard error of prediction for the model (nm); 
Im: single intensity at the maximum value; In: intensity used in the numerator; Id: 
intensity of the denominator. 
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model development. A possible reason for this will be introduced below. 
In fact, Id yields even higher R2 values than Im; possibly showing more 
potential in the corresponding portion of the spectrum (808 nm) for the 
determination of various changes in milk with heat treatment and 
varying milk pH as compared with the peak of maximum intensity (570 
nm). Previous work in the literature (Lamb et al., 2013) found it useful 
to form ratios for predictive models however in the present study the 
regions of Im and Id used individually appear to be much more important 
than In, at least in the case of quadratic models for particle size as a 
function of light backscatter intensity. Models used for comparison 
(Table 6) do not include an exponential factor, as it was not possible to 
model individual intensity values without modifying the exponential 
equation. Since little change in intensity occurs between sample treat-
ments in the regions where numerators with the highest R2 for models 
occur (Table 3), it is suggested that the portion of the spectrum corre-
sponding to the denominators (703–878 nm) is in fact representing the 
particle size information while numerator values act as a normalization 
factor for models. Additionally, exponential models tend to yield high R2 

values and include the coefficient β0, which may be representative of the 
initial particle size ratio values. Considering these two observations, it is 
proposed that development of an in-line sensor using only one wave-
length plus some predetermined normalization factor (for example, 
replacing the numerator with a constant) implemented into an expo-
nential equation should yield a considerably accurate model, and in 
addition, would be less costly and complicated than a dual wavelength 
optical sensor. 

4. Conclusion 

Two prediction models were developed to estimate particle size z- 
average only as a function of the intensities of a single wavelength/ 
waveband combinations on the light backscatter spectra (Model 5 -sin-
gle wavelength- and 10 -wavelength ratio-), both showing good corre-
lation between actual and predicted values. However, improvements 
were found with the incorporation of R6,18 and the addition of an 
exponential factor (Model 10) compared to the quadratic model using LB 
(i.e., Im) (Model 5). As changes in particle size diameter have been found 
to be primarily a result of the attachment of denatured whey proteins to 
the surface of the casein micelle, this model provides useful information 
regarding the potential modelization of WP denaturation. Taking into 
account the investigated models, the suggested model for particle size as 
a function of light backscatter intensity would include both an expo-
nential component, an initial intercept which corresponds to an 
approximate value of initial particle size and a light backscatter 
normalized value or a waveband ratio. Further work may give more 
insight into a more improved model. Nonetheless, this experiment yields 
useful preliminary information toward the development a comprehen-
sive model for the determination of whey protein denaturation with the 
potential for implementation of an in-line optical sensor for in plant 
processed milk. 
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Diaz-Carrillo, E., Muñoz-Serrano, A., Alonso-Moraga, A., & Serradilla-Manrique, J. M. 
(1993). Near infrared calibrations for goat’s milk components: Protein, total casein, 
αs-, β-and k-caseins, fat and lactose. Journal of Near Infrared Spectroscopy, 1, 
141–146. 

Donato, L., Guyomarc’h, F., 2009. Formation and properties of the whey protein/ 
κ-casein complexes in heated skim milk – A review. Dairy Sci. Technol. 89, 3–29. 

Downey, G., Robert, P., Bertrand, D., & Kelly, P. M. (1990). Classification of Commercial 
Skim Milk Powders According to Heat Treatment Using Factorial Discriminant 
Analysis of Near-Infrared Reflectance Spectra. Applied Spectroscopy, 44, 150–155. 

Fagan, C. C., Castillo, M., O’Donnell, C. P., O’Callaghan, D. J., & Payne, F. A. (2008). On- 
line prediction of cheese making indices using backscatter of near infrared light. 
International Dairy Journal, 18, 120–128. 

Fagan, C. C., Leedy, M., Castillo, M., Payne, F. A., O’Donnell, C. P., & O’Callaghan, D. J. 
(2007). Development of a light scatter sensor technology for on-line monitoring of 
milk coagulation and whey separation. Journal of Food Engineering, 83, 61–67. 

García, J., 2004. Aplicaciones de la tecnología NIRS en la industria agroalimentaria. 
Nuevas Tecnologías para el Control proceso y Prodroducto en la Industria 
Alimentaria. Ed. Secretariado de Publicaciones en Intercambio Editorial de la 
Universidad de Valladolid. Valladolid. 

Giangiacomo, R., Braga, F., & Galliena, C. (1991). Use of near-infrared spectroscopy to 
detect whey powder mixed with milk powder. Near Infrared Spectroscopy, Making 
Light Work., 399–407. 
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