
Citation: Sarhadi, V.K.; Armengol, G.

Molecular Biomarkers in Cancer.

Biomolecules 2022, 12, 1021. https://

doi.org/10.3390/biom12081021

Academic Editors: Alessandro

Alaimo and Valentina Vaira

Received: 3 June 2022

Accepted: 20 July 2022

Published: 23 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Molecular Biomarkers in Cancer
Virinder Kaur Sarhadi 1 and Gemma Armengol 2,*

1 Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki,
00290 Helsinki, Finland; virinder.sarhadi@helsinki.fi

2 Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences,
Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain

* Correspondence: gemma.armengol@uab.cat; Tel.: +34-935811503

Abstract: Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer,
occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants,
epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based
on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from
tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma),
saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over
the last decades, including techniques such as next-generation sequencing, nanotechnology, or
methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are
extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer,
accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance
and monitoring response. Therefore, they can help to optimize making decisions in clinical practice.
Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional
only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the
identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however,
needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity,
specificity, and positive predictive value.

Keywords: cancer biomarkers; biomolecules; risk assessment; diagnostic biomarkers; predictive
biomarkers

1. Introduction

A cancer biomarker is a characteristic that is measured as an indicator of risk of cancer,
occurrence of cancer, or patient outcome. These characteristics can be either molecular,
cellular, physiologic, or imaging-based. The present review focuses on molecular (and cellu-
lar) cancer biomarkers. These biomolecules, found in tissues or body fluids, are present or
produced by cancer cells or normal cells in response to cancer. On the one hand, biomarker
testing in cancer involves profiling tumor or body fluids to detect changes in DNA, RNA,
proteins, or other biomolecules that provide information for cancer diagnosis, prognosis,
precision medicine/guiding cancer treatment, predicting drug response, or cancer monitor-
ing. On the other hand, genetic testing, which is different from cancer biomarker testing, is
used for detecting germline genetic variations associated with cancer susceptibility, heredi-
tary cancer, or cancer-associated syndromes [1]. Germline genetic markers can, in addition
to providing cancer susceptibility information, also provide useful information regarding
treatment options [2]. They can also be included as cancer biomarkers in a broader sense.
In the following sections, we discuss the numerous molecular changes that are useful as
cancer biomarkers, explaining the different types of biomolecules, types of samples, and
the techniques used for detecting cancer biomarkers. We also discuss different applications
of cancer biomarkers in clinics and the steps involved in the process from cancer biomarker
discovery to their clinical implementation.
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2. Cancer-Associated Alterations
2.1. Germline Genetic Variants

There are certain inherited or germline variants that render individuals carrying them
a higher risk of developing cancer. Germline variants can be classified into three groups
according to their frequency and their effect size to cause disease: rare variants with
high penetrance, moderately frequent variants with moderate penetrance, and common
variants with low penetrance. The first ones correspond to cancer-predisposing syndromes
and hereditary cancers and are good candidates to be used as cancer risk assessment
biomarkers, because of their strong effect. For example, it is well-known that BRCA1
and BRCA2 high-penetrance variants are strongly linked to breast and ovarian cancer.
Germline variants can have different penetrance for different cancer types; for example,
Lynch syndrome associated variants in genes EPCAM, MLH1, MLH2, MSH6, and PMS2
have higher penetrance for colorectal cancer (CRC) than for pancreatic cancer [3]. Moreover,
the risk of cancer can be different for different genes [3]. Germline genetic markers are
not only useful for identifying cancer susceptibility but are also important prognostic and
predictive markers for targeted therapies. For example, poly (ADP-ribose) polymerase
inhibitors are effective for germline BRCA mutant breast and ovarian cancer [4].

A large cancer study on 10,389 cases and 33 cancer types reported pathogenic germline
variants frequency of 8% among cancer patients and discovered 853 pathogenic variants [5].
Next-generation sequencing (NGS) of the tumor sample can be used to detect germline
variants, besides somatic mutations. A recent study on more than 21,000 cancer patients
using a Food and Drug Administration (FDA)-approved NGS panel and pipeline, showed
that tumor-only sequencing identified 89.5% of pathogenic germline variants, while miss-
ing mainly germline copy number variations, intronic variants, and repetitive element
insertions [6]. Recent studies highlight the relevance of studying germline markers, along
with somatic tumor markers, as germline pathological variants have been found in patients
with no family history of cancer [3]. Moreover, it increases the germline variant detection
in familial cancer patients, which would otherwise not have been identified [7]. However,
it also increases the frequency of variants of unknown significance, which can make the
interpretation of results difficult.

2.2. Somatic Genetic Mutations

Genomic instability is an important feature of cancer cells, driving cancer evolution and
its adaptation to changing microenvironment. Most cancers result from the accumulation
of somatic mutations, some of which are specific to a cancer type, while others are shared
with other cancers. The alterations can involve a wide range of sizes, from a large part or
a whole chromosome to single base pair changes. Chromosomal abnormalities comprise
numerical abnormalities (aneuploidies and polyploidies) and structural abnormalities
(translocations; inversions; and copy number alterations (CNAs), including insertions and
deletions, as well as chromothripsis, which can result in massive rearrangements [8]). Those
chromosomal abnormalities that are specific and recurrent are relevant cancer biomarkers,
and they are used mostly in hematologic malignancies. For example, the Philadelphia
chromosome was the first chromosomal abnormality to be detected in cancer, involving
translocation of chromosomes 22 and 9, resulting in BCR–ABL fusion. It is commonly seen
in chronic myeloid leukemia, but can occur in acute myeloid leukemia, too, and is used for
their diagnosis. A comprehensive list of gene fusions obtained from an analysis of RNA
sequencing and DNA copy number data from The Cancer Genome Atlas is available at
https://tumorfusions.org/ (accessed on 22 February 2022).

However, the more common genetic alterations used as cancer biomarkers are muta-
tions involving a single nucleotide (single nucleotide variants or SNVs) or a few nucleotides
(small insertions and deletions or indels), e.g., driver mutations in EGFR, KRAS, BRAF,
TP53, KITK, and other genes. Results from the Pan-Cancer Gene Atlas sequencing project [9]
on 3281 tumors from 12 cancer types identified 127 recurrently mutated genes. The muta-
tion frequency was found to depend on tumor types ranging from 0.28 mutations/Mb in
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acute myeloid leukemia to 8.15 in lung squamous cell carcinoma. Despite the large number
of mutations seen in each tumor, only four or five mutations are thought to be drivers of
cancer development [10]. A more recent and detailed analysis of Pan-Cancer data from
33 different cancer types identified 299 driver genes and around 3400 driver mutations
based on in silico methods together with experimental validation [11]. Mutations in TP53
were found to be the most commonly shared among 27 different cancer types, followed
by PIK3CA, KRAS, PTEN, and ARID1A (in 15 or more). However, the majority of the
genes (142) were found mutated in only one cancer type. Interestingly, they reported that
57% of tumors had mutations that could be targeted by known cancer treatments [11]. A
detailed description of somatic mutations in tumor tissue in different cancers can be found
in a manually curated COSMIC (Catalogue of Somatic Mutations in Cancer) database
(https://cancer.sanger.ac.uk/cosmic, accessed on 22 February 2022), which also includes
separate datasets for gene mutations with causal implications in cancer, cancer-driving
gene mutations, and mutations actionable with precision oncology.

In addition to mutations seen in tumor tissue, cancer patients have cell-free DNA
originating from cancer cell lysis/death or active secretion, which is referred to as circu-
lating tumor DNA (ctDNA). It can be found in body fluids such as blood, urine, stool,
saliva, sputum, and exhaled breath, and reflects genomic alterations similar to those seen
in tumor DNA [12–14]. Moreover, healthy and cancer patients can show differences in
ctDNA concentration, fragment size, and the relative ratio of mitochondrial/nuclear DNA,
making ctDNA a good potential cancer biomarker. The main challenge associated with
the detection of ctDNA in plasma or other body fluids is its very low concentration, thus
requiring very sensitive methods for its detection.

Overall, it is important to consider the factors that can affect DNA mutation detection,
which include tumor DNA content in total DNA, sample type (e.g., fresh frozen or formalin-
fixed paraffin-embedded (FFPE) tumor tissue, or body fluids, which can harbor inhibitors
or factors affecting detection efficiency), as well as the detection technique used. Most of
the small DNA alterations are readily studied by DNA sequencing or polymerase chain
reaction (PCR)-based methods, while those involving larger DNA fragments are studied
by methods such as fluorescent in situ hybridization (FISH), array comparative genomic
hybridization, or similar methods. In the case of gene fusions, the RNA transcribed from
the gene fusion can be used for PCR- or NGS-based diagnosis. RNA fusion panels are
now available to test the most common fusions in tumors by using NGS, while single gene
fusions can be tested by reverse transcription PCR [15]. Finally, it is important to consider
that tumors can be highly heterogeneous; therefore, developing good cancer biomarkers
requires a multiple gene approach. Furthermore, cancer patients have their specific tumor
mutation profiles, and individualized approaches to treatment based on tumor profiling
are being increasingly carried out (see sections below).

2.3. Epigenetic Variants

Epigenetic variants cause changes in DNA methylation or histone protein modifica-
tions, without affecting the coding sequence of DNA. However, they affect the structure and
stability of DNA and play an important role in carcinogenesis. These epigenetic changes in
cancer cells are therefore useful as cancer biomarkers, especially since DNA methylation
changes occur in the early stages of tumorigenesis [16]. Loss of global DNA methylation
is common in many tumors and is associated with genomic instability, DNA damage,
and reactivation of transposons and retroviruses. Moreover, more localized changes in
DNA methylation at the CpG-rich promoter regions of the genes can inactivate tumor
suppressor genes. For example, the CpG island methylator phenotype, characterized by
hypermethylation of multiple sites, is a feature associated with genomic instability and
cancer [16]. Methylation of CACN3A1G, IGF2, NEUROG1, RUNX3, and SOCS1 promoters
is common in this phenotype and is associated with MLH1 methylation and microsatellite
instability. It is noteworthy that MLH1 methylation is a biomarker used for cancer-prone
Lynch syndrome testing in clinics [16]. In addition, DNA methylation biomarkers are
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also useful for predicting cancer treatment response; for example, tumor MGMT (gene
important in DNA repair) promotor hypermethylation is associated with good response to
alkylating drugs and used in clinical testing in glioblastomas [17].

Interestingly, these epigenetic variants can also be detected in minimally invasive
samples such as plasma, where the DNA-methylation-based screening biomarkers have
advantages compared to mutation detection [18]. These include their higher sensitivity
and specificity in detecting early stages of cancer and in detecting residual disease, as
these changes occur early on and are tissue specific. A recently developed plasma DNA
methylation panel “PanSeer” comprising 477 differentially methylated regions (10,613 CpG
sites) in overall cancer showed high sensitivity (88%) and specificity (96%) in detecting
five common cancer types, up to four years before conventional diagnosis, in a Taizhou
Longitudinal Study on 123,115 individuals who had donated plasma for long-term storage
and study [19]. FDA-approved methylation-based biomarkers include SEPT9 from plasma
(Epi ProColon) and a combination of NDRG4 and BMP3 from stool samples in CRC.

While most methods dedicated to identifying epigenetic variants rely on bisulfite conver-
sion of unmethylated cytosines into uracils, such as methylation-specific PCR, methylation-
sensitive high-resolution melting, pyrosequencing, methylation-specific droplet digital PCR,
microarray, and NGS, other non-bisulfite treatment methods are also in use, such as methy-
lated DNA immunoprecipitation or the use of methylation-sensitive restriction enzymes.

Even though genome-wide methylome studies have identified numerous differentially
methylated genes in cancer patients, it is worth mentioning that these studies have been
usually carried out on small sample sizes and that they may require a standardization of
methods and proper bioinformatics analysis, especially when sequencing techniques are
used [20]. Validation in larger sets of patients and the development of new assays can bring
many more assays to be used in clinical settings.

2.4. Transcriptional Alterations

The human transcriptome includes both coding or messenger RNA (mRNA) and
non-coding RNA (ncRNA). Among the ncRNA, long ncRNA (lncRNA), with transcript
size greater than 200 nucleotides, forms the largest group and includes long intergenic
RNA, antisense RNA, pseudogenes, and circular RNAs (circRNA), while small ncRNAs
include microRNA (miRNA), small interfering RNA, small nucleolar RNA, ribosomal RNA,
transfer RNA, and piwi-interacting RNA. Both coding and ncRNA have been found to be
differentially expressed in cancer and play a significant role in carcinogenesis. Moreover,
some of these cancer-related RNA molecules can be found cell-free, and then they are
called ctRNA.

2.4.1. mRNAs

Tumor mRNA profiling has shown differential expression of genes in tumors compared
to normal tissue and also between various histological subtypes, stages of cancer, and other
tumor features. Tumors can be classified into molecular subtypes based on the RNA
profile, and these molecular subtypes, irrespective of tumor type, can predict treatment
response. Tumor immune profile or expression of immune-related genes are also important
biomarkers for immunotherapy response. Moreover, expressions of tissue- or tumor-
specific genes, mutated genes, amplified genes, or gene fusions are all useful RNA-based
cancer biomarkers. In a recent transcriptome-wide analysis of plasma samples of cancer
and non-cancer patients, 23 tissue- and cancer-specific ctRNA biomarkers were identified
after filtering out transcripts expressed in non-cancer patients [21]. The study found that
RNA expression in plasma correlated with that in matched tissue and could predict the
origin of tumor tissue and cancer type.

2.4.2. miRNAs

MiRNAs are small ncRNAs, around 22 nucleotides long, which regulate post-transcrip-
tional gene expression. It is reported that each tissue expresses around 1000 miRNAs, 143 of
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which are found in all tissues [22]. There is enormous amount of data available related to
differentially expressed miRNAs in tumor tissues (reviewed in Reference [23]), as well as
in the body fluids of cancer patients, compared to normal tissue or healthy individuals,
indicating their usefulness in diagnosis/differential diagnosis, prognosis, or as predictive
cancer biomarkers. Moreover, miRNAs can be oncogenic, as, for example, miR-21 and
miR-155 are overexpressed in many cancers; or they can be tumor suppressive, e.g., let-7,
miR-128b, miR-15, and miR-16, which are under-expressed as a result of deletion, methyla-
tion, or other mechanisms (reviewed in Reference [23]). Moreover, miRNAs also play a role
in metastasis; for example, miR-10b and miR-655 can affect the tumor microenvironment by
modulating immune cells or angiogenesis [24].

However, miRNA analysis can be affected by factors such as sample collection/RNA
stabilization, RNA isolation method (miRNA or total RNA), analysis method (reverse
transcription PCR, microarray, and sequencing), and selection of reference gene [25], all of
which can affect their expression profile.

The main advantage of miRNAs as cancer biomarkers is their small size, which
makes them suitable for samples with low RNA quality, such as archival FFPE samples or
body fluids. Interestingly, miRNAs with differential expression in tumor tissue can also
be detected in ctRNA in body fluids. Moreover, miRNAs constitute the main cargo of
extracellular vesicles (EVs), where they are protected from RNases and are thus increasingly
being studied for their utility as cancer biomarkers in blood (Table 1). For example, miR-122
is found to be highly expressed in tumor tissue and serum EVs of CRC patients, especially
with liver metastasis [26]. The miRNA expression profile of serum/plasma-EVs can be
different from that of plasma/serum-ctRNA, and the EV-miRNA profile is found to be more
informative as a cancer biomarker [27]; however, some studies suggest studying both [28].
Overall, EV-associated miRNAs are promising liquid-biopsy-based cancer biomarkers [29].

Table 1. Circulating extracellular-vesicles-associated miRNAs as potential cancer biomarkers.

miRNA Sample Cancer Application Reference

Predictive markers of drug
response

miR-494-3p Plasma EVs NSCLC Resistance to
osimertinib Kaźmierczak et al., 2022 [30]

miR-323-3p, miR-1468-3p,
miR-5189-5p and miR-6513-5p Plasma EVs NSCLC Resistance to

osimertinib Janpipatkul et al., 2021 [31]

miR-184, miR-3913-5p Serum EVs NSCLC Resistance to
osimertinib Li et al., 2021 [32]

miR-21 Plasma ctRNA EGFR mutated
NSCLC

Response to
EGFR_TKIs Leonetti et al., 2021 [33]

miR-125b-5p Serum EVs NSCLC Predictive of
chemotherapy response Zhang et al., 2020 [34]

miR-620 Serum EVs NSCLC
Predictive of
chemotherapy
response/Diagnosis

Tang et al., 2020 [35]

miR-30b, miR-328, and miR-423 Plasma EVs Breast Cancer Predictive of
chemotherapy response Todorova et al., 2022 [36]

miR-30a Serum EVs Oral Cancer Diagnostic, prognostic,
cisplatin-resistance Kulkarni et al., 2020 [37]
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Table 1. Cont.

miRNA Sample Cancer Application Reference

Predictive markers of response
to immunotherapy

miR-625-5p Plasma EVs NSCLC
Overall survival after
immune checkpoint
inhibitor treatment

Pantano et al.2022 [38]

miR-4649-3p, miR-615-3p, and
miR-1234-3p Plasma EVs Melanoma

Response/prognosis
after immune
checkpoint inhibitor
treatment

Bustos et al., 2020 [39]

Predictive markers of response
to radiotherapy

miR-92a-3p Plasma EVs NSCLC
Resistance to
radiotherapy
(upregulation)

Zeng et al., 2022 [40]

miR-96 Plasma EVs NSCLC Radioresistant Zheng et al., 2021 [41]

Diagnostic/prognostic markers

* (Let-7b-5p and miR-22-3p and
miR-184)

Plasma EVs NSCLC Diagnostic Vadla et al., 2022 [42]

miR-125b-5p and miR-5684 Serum EVs NSCLC Diagnostic Zhang et al., 2020 [34]

miR-378 Serum EVs NSCLC Prognostic/monitoring Zhang et al., 2020 [43]

miR-382 Serum EVs NSCLC Prognostic Luo et al., 2021 [44]

miR-1260b Plasma EVs NSCLC Prognostic Kim et al., 2021 [45]

miR-486-5p and miR-146a-5p Serum EVs NSCLC Diagnostic Wu et al., 2020 [28]

miR-1246 Serum EVs NSCLC Diagnostic and
prognostic Huang et al., 2020 [46]

miR-1246 and miR-96 Plasma EVs NSCLC Diagnostic Zheng et al., 2021 [41]

* (miR-206, miR-24, miR-1246,
and miR-373) Plasma EVs Breast cancer

Diagnostic,
combination 98%
accuracy

Jang et al., 2021 [47]

miR-148a Serum EVs Breast cancer Prognosis Li et al., 2020 [48]

miR-138-5p Serum EVs Breast cancer Prognosis Xun et al. (2021) [49]

miR-363-5p Plasma EVs Breast cancer Prognostic Wang X et al., 2021 [50]

miR-1910-3p Serum EVs Breast cancer Diagnostic (with
CA153) Wang B et al. (2020) [51]

miR-17-5p Serum EVs Breast cancer Prognostic Sueta et al., 2017 [52]

miR-423, miR-424, let7-i, and
miR-660 Urine EVs Breast cancer Diagnostic Hirschfeld et al., 2020 [53]

miR-21-5p Plasma EVs Breast cancer Diagnostic Liu et al., 2021 [54]

miR-3662, miR-146a, and
miR-1290 Serum EVs Breast cancer Diagnostic Li et al., 2021 [55]

miR-423-3p Plasma EVs Prostate cancer Predictive of
castration-resistance Guo et al., 2021 [56]

miR-532-5p Urine EVs Prostate cancer Prognostic Kim et al., 2021 [57]
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Table 1. Cont.

miRNA Sample Cancer Application Reference

miR-425-5p Plasma EVs Prostate cancer
Diagnostic of
metastatic prostate
cancer

Rode et al., 2021 [58]

miR-16-5p, miR-451a,
miR-142-3p, miR-21-5p, and
miR-636

Urine EVs Prostate cancer Prognostic Shin et al., 2021 [59]

miR-125a-5p and miR-141-5p Plasma EVs Prostate cancer Diagnostic Li et al., 2020 [60]

miR-375 and miR-451a Urine EVs Prostate cancer Diagnostic Li et al., 2021 [61]

iR-24-3p Saliva EVs Oral cancer Diagnostic He et al., 2020 [62]

miR-130a Plasma EVs Oral cancer Diagnostic and
prognostic He et al., 2021 [63]

miR-126, miR-155, and miR-21 Serum EVs Oral cancer Diagnostic and
prognostic Chen et al., 2021 [64]

Let7, miR-16, and miR-23 Serum EVs CRC Diagnostic Dohmen et al., 2022 [27]

miR-139-3p Plasma EVs CRC Diagnosis Li et al., 2020 [65]

miR-126, miR-1290, miR-23a,
and miR-940 Serum EVs CRC Diagnostic Shi et al., 2021 [66]

miR-4323, miR-4284, miR-1290,
and miR-1246 Serum EVs CRC Diagnostic Handa et al., 2021 [67]

miR-106b-3p Serum EVs CRC Diagnostic and
prognostic Liu et al., 2020 [68]

miR-874 Serum EVs CRC Diagnostic and
prognostic Zhang et al. (2020) [69]

let-7g and miR-193a Plasma EVs CRC Diagnostic and
prognostic Cho et al. (2021) [70]

miR-122 Serum EVs CRC Diagnostic of
metastatic CRC (liver) Sun et al., 2020 [26]

miR-375 Plasma Esophageal ade-
nocarcinoma

Prognostic,
Overall survival van Zweeden et al.2021 [71]

miR-17-5p, miR-25-3p,
miR-27a, miR-27b, miR-191,
miR-199a-5p, miR-211,
miR-300, miR-542-3p, miR-586,
miR-663a

Plasma/serum Osteosarcoma
Diagnostic (Higher
expression of
individual miRNAs)

Meta-analysis by Gao et al.,
2020 [72]

miR-34a, miR-101, miR-124,
miR-125b, miR-139-5p,
miR-144, miR-148a, miR-152,
miR-194, miR-195, miR-222,
miR-223, miR-326, miR-375,
miR-491-5p

Plasma/serum Osteosarcoma
Diagnostic (Lower
expression of
individual miRNAs)

Meta-analysis by Gao et al.,
2020 [72]

* (miR-21, miR-199a-3p,
miR-143) Plasma/serum Osteosarcoma

Diagnostic (Higher
expression,
miRNA group)

Meta-analysis by Gao et al.,
2020 [72]

* (miR-199b-5p/miR-124);
(miR-195-5p, miR-199a-3p,
miR-320a, miR-374a-5p);
(miR-586, miR-223)

Plasma/serum Osteosarcoma
Diagnostic (Lower
expression,
miRNA group)

Meta-analysis by Gao et al.,
2020 [72]
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Table 1. Cont.

miRNA Sample Cancer Application Reference

miR-21 Plasma
Diffuse large
B-cell
lymphoma

Diagnostic
(upregulation)

Meta-analysis
Lopez-Santillan et al.,
2018 [73]

miR-92a and miR-638 Plasma
Acute
lymphoblastic
leukemia

Diagnostic Fayed et al., 2021 [74]

miR-23b-3p Plasma Hepatocellular
carcinoma

Diagnostic
(downregulation) Manganelli et al., 2021 [75]

Top differentially expressed
miRNAs in plasma EVs of
cancer patients

Compiled from the
EVmiRNA database
(http://bioinfo.life.hust.edu.
cn/EVmiRNA, accessed on
20 June 2022) (Liu et al.,
2019) [76]

miR-17-5p, miR-3960, miR-4488 Plasma Exo Breast adenocar-
cinoma Diagnostic

miR-3168, miR-3178,
miR-425-3p Plasma EVs Breast adenocar-

cinoma Diagnostic

miR-10a-3p, miR-10a-5p,
miR-1290, miR-141-3p,
miR-183-5p, miR-191-5p,
miR-192-5p, miR-194-5p,
miR-182-5p, miR-19b-3p,
miR-200a-5p, miR-200b-3p,
miR-215-5p, miR-19a-3p,
miR-429

Plasma Exo CRC Diagnostic

miR-1224-5p, miR-451a Plasma EVs CRC Diagnostic

let-7f-5p, let-7g-5p,
miR-106b-3p, miR-1246,
miR-1260b, miR-1290,
miR-146a-5p, miR-155-5p,
miR-16-2-3p, miR-17-5p,
miR-181a-2-3p, miR-20a-5p,
miR-30e-3p, miR-339-5p,
miR-4488.

Plasma Exo
Chronic
lymphocytic
leukemia

Diagnostic

miR-126-5p, miR-182-5p,
miR-183-5p Plasma EVs

Chronic
lymphocytic
leukemia

Diagnostic

miR-103a-3p, miR-106b-3p,
miR-10b-5p, miR-1307-5p,
miR-130b-3p, miR-142-5p,
miR-181a-3p, miR-186-5p,
miR-191-5p, miR-25-3p,
miR-423-3p, miR-4767,
miR-877-5p, miR-92a-3p,
miR-92b-3p

Plasma Exo Lymphoma Diagnostic

miR-151a-5p, miR-3195,
miR-3960, miR-4792, miR-7641,
miR-7704.

Plasma Exo Oral cancer Diagnostic

miR-1224-5p, miR-9-5p Plasma Exo Prostate cancer Diagnostic

miR-1224-5p, miR-9-5p Plasma EVs Prostate cancer Diagnostic

Exo, exosomes; EVs, extracellular vesicles, including exosomes; NSCLC, non-small cell lung cancer; CRC,
colorectal cancer; * combination of miRNAs.

http://bioinfo.life.hust.edu.cn/EVmiRNA
http://bioinfo.life.hust.edu.cn/EVmiRNA
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2.4.3. CircRNAs

CircRNAs are endogenous lncRNAs acting as miRNA sponges and regulating tran-
scription and splicing. They are single-stranded RNAs lacking cap and poly-A tail, with
ends joined covalently to form a circular structure. Their high stability, tissue-specific
expression, and association with tumor progression make them suitable candidates for
cancer biomarkers. Recent studies have shown their possibility as diagnostic biomarkers,
especially from EVs in body fluids (reviewed in Reference [77]).

2.4.4. Other lncRNAs

Tissue specificity and association of certain lncRNAs’ expression with stage, metastasis,
and survival make them candidate cancer biomarkers. Some of the lncRNA with good
potential in cancer diagnosis or prognosis include PCA3, MALAT1, HOTAIR, H19, and
CCAT1 (reviewed in Reference [78]). For example, high expression of HOTAIR, MALAT1,
and CCAT2 is related to poor prognosis in various cancer types. PCA3 is a clinically
approved biomarker with high sensitivity and specificity for the detection of early prostate
cancer from urine samples, while the MALAT1 assay is more useful in patients with
borderline prostate-specific antigen (PSA) levels. Plasma levels of H19 in breast cancer,
and H19, HOTAIR, and MALAT1 in gastric cancer have shown high diagnostic potential,
while single nucleotide polymorphisms in the H19 gene have applications in cancer risk
prediction. Some current clinical trials are looking for their future potential application in
cancer diagnosis.

2.4.5. Summary of Transcriptional Alterations

According to a manually curated database “CRMarker”, created for cancer RNA
biomarker discovery [79], the top RNA diagnostic/prognostic candidate biomarkers iden-
tified from different cancer studies include the following mRNAs: TP53, EGFR, ERBB2,
WT1, CDKN2A, MK167, TERT, PCA3, PTEN, CD44, BCL2, ERCC1, CCND1, MET, and
BIRC5. Among the ncRNA, the following miRNAs are included: miR-21, miR-155, miR-221,
miR-210, miR-145, miR-375, miR-205, miR-126, miR-223, miR-200c, miR-141, and miR-31.
The lncRNAs are MALAT1, HOTAIR, UCA1, PVT1, H19, NEAT1, GASS, lnc-FOXB2, lnc-
BMP6-106, lnc-FGF1-9, CYTOR, TUG1, and CDKN2B-AS1; and the circRNAs are circ_002059,
circ-PVT1, ciRS-7, circ_0001649, circ_0005075, and circ_100338. In addition, levels of BIRC5
mRNA are also increased in the serum of CRC patients, and very high levels of this mRNA
are correlated with poor prognosis [80].

2.5. Proteomic Changes

Cancer-associated alterations at DNA and RNA levels are also observed at the protein
level (Figure 1), although gene expression does not necessarily correlate with protein
expression. Proteins are more difficult to study than nucleic acids, as they are complex and
sensitive to physiological changes, and their function is dependent on post-translational
modifications. Protein biomarkers in cancer include overexpressed proteins (e.g., HER2),
mutated proteins (including neoantigens and products of gene fusions), or proteins with
tumor-specific post-translational modifications (e.g., glycoproteins), all of which can be
detected in tumor tissue. On the other hand, protein biomarkers detectable in blood
or other body fluids, in addition to those detected in tumors, also include tissue/cell-
specific proteins that have increased levels in body fluids compared to normal, e.g., PSA
in the plasma of prostate cancer patients. However, the challenge for protein biomarkers
from plasma/blood is the dominant expression of certain normal proteins that mask the
very low expression of cancer-related proteins or protein modifications, making their
characterization difficult.
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Figure 1. Different biomolecules for detecting cancer biomarkers. ALK fusions in lung tumor
tissue detected as (a) DNA by fluorescence in situ hybridization, (b) RNA by reverse-transcription
polymerase chain reaction, and (c) protein by immunohistochemistry. Figure modified from Tuonen
et al. [15], (open access) under Creative Commons Attribution License.

Protein biomarkers were among the first to be used in cancer diagnostics. Most
of them are based on cancer antigens, enzymes, and hormones, but also on changes
in protein glycosylation profile, which is a characteristic feature of cancer. Glycans are
polymers of monosaccharides that can conjugate with proteins to form glycoproteins.
These differentially expressed glycans or glycoproteins are useful cancer biomarkers in
tumor tissue, as well as in blood. The alterations in protein glycosylation can be due to
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the altered expression of glycoproteins or changes in the glycans or glycotransferases.
Some of the glycans/glycoproteins used as cancer biomarkers include AFP, β-hCG, cancer
antigen (CA)15-3, CA19-9, CA27.29, CA125, CA549, Carcinoembryonic Antigen (CEA),
CEACAMS HER2, onfFN, PLAP, PSA, sTn antigen, TAG-72, TG, and Tn antigen (reviewed
in Reference [81]).

Two initiatives have been launched to gain insight into proteome characterization in
cancer. First, Clinical Proteomic Tumor Analysis Consortium (https://proteomics.cancer.
gov, accessed on 22 February 2022) was set up to increase the understanding of cancer pro-
teomics in relation to cancer genomics, as well as to standardize proteomic assays for clinical
use. Second, the Human Protein Atlas (https://www.proteinatlas.org/humanproteome/
tissue/cancer, accessed on 28 February 2022) documents all human proteins expressed
in different healthy cells and tissues, as well as in tumor tissue (pathological conditions).
However, although numerous proteomic studies have been carried out on tumor tissue and
body fluids from different cancer types and many candidate proteins have been identified
as potential cancer biomarkers, relatively few have finally received FDA approval. More re-
cently, tumor immune cell infiltration or immune profiling using RNA/protein biomarkers
have proved to be useful as prognostic biomarkers or as predictive biomarkers for selecting
patients that could benefit from immunotherapy (see Section 5.5). Anti-programmed cell
death-1/programmed cell death-ligand 1 (PD1/PD-L1) antibody is approved for the first
or second line of treatment for various cancers. For example, in gastroesophageal cancers, a
combined positive score for microsatellite instability or mismatch repair, tumor mutational
burden, and PD-L1 expression is used for immunotherapy selection [82].

Proteins from tumor tissues are mainly studied by immunohistochemistry (IHC),
while enzyme-linked immunosorbent assay (ELISA) is commonly used for body fluid
protein biomarkers. Proteomic technologies applied for liquid biopsies in cancer diagnosis
are reviewed in Ding et al. [83]. Moreover, glycomic profiling can be performed by mass
spectrometry, but lectin microarrays are increasingly being used [84].

2.6. Cellular Phenotype

Changes in gene and protein expression can result in changes in morphology and
function of cells, which is known as cellular phenotype. These phenotypic features are
reflecting the variety of pathways involved in the expression of that particular phenotype.
Therefore, cellular responses, such as DNA damage response (including DNA repair),
levels of oxidative stress, or cell death (apoptosis), among others, can be used as cellu-
lar biomarkers for cancer. Notably, if the phenotypic assay used to analyze the cellular
biomarker is high throughput, it may be easier to implement in a clinical setting than gene
or protein assays.

Since many cancers are due to genomic instability, which can be related to alterations
in DNA damage response pathways, this can be a sign of tumor growth and progression.
Moreover, genomic instability and DNA damage response alterations are potential biomark-
ers of success for new immunotherapy drugs [85] (see Section 5.5). Finally, as many cancer
treatments are targeting DNA damage response pathways, alterations of these pathways
can be a biomarker of response to cancer treatment.

A recent meta-analysis of 55 case-control studies evaluated the association between
DNA repair phenotype and risk for 12 different cancers [86]. According to this study,
individuals with lower DNA repair capacity have a higher risk of developing cancer.
Moreover, these results were obtained for all studied cancer types, suggesting that the DNA
repair phenotype is a good candidate to be used as a cancer biomarker.

Another example of a phenotype assay would be the analysis of levels of cellular
oxidative stress in body fluids as a biomarker of response to cancer treatment. One of
the best methods to assess oxidative stress is to study levels of 8-hydroxydeoxyguanosine
(8-oxo-dG). Interestingly, several studies have observed that levels of 8-oxo-dG in urine or
blood may be a useful biomarker of therapy response in cancer patients [87–89].

https://proteomics.cancer.gov
https://proteomics.cancer.gov
https://www.proteinatlas.org/humanproteome/tissue/cancer
https://www.proteinatlas.org/humanproteome/tissue/cancer
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In addition, phenotypic cellular apoptosis measured in blood after in vitro irradiation
has been used as a predictor of radiation-induced cancer [90] and as a biomarker of late
radiotherapy toxicity in breast cancer patients (see Section 5.5).

3. Sources of Molecular Cancer Biomarkers

Cancer biomarkers can be studied from a variety of sample types, with the tumor
tissue being the most widely analyzed so far. An alternative to tumor biopsies is liquid
biopsies, which are predominantly non-invasive. The most common non-tumor sample
types used for cancer biomarker analysis are blood, urine, stool, and, less commonly,
exhaled breath, saliva/buccal swabs, cerebrospinal fluid, sputum, and other body fluids
(Table 2).

Table 2. Commonly studied cancer biomarkers from different sample types. (source: National Cancer
Institute [91], and references [16,17].

Biomarker Cancer Application
Tumor
Tissue/Bone
Marrow

Blood Urine Stool Cerebrospinal
Fluid

Saliva/Buccal
Swab

ALK gene
rearrangements and
overexpression

NSCLC, anaplastic
large cell lymphoma,
and histiocytosis

To help determine
treatment and
prognosis

X

Alpha-fetoprotein
(AFP)

Liver cancer and
germ cell tumors

To help diagnose
liver cancer and
follow response to
treatment; to assess
stage, prognosis,
and response to
treatment of germ
cell tumors

X

B-cell
immunoglobulin
gene rearrangement

B-cell lymphoma

To help in
diagnosis, to
evaluate
effectiveness of
treatment, and to
check for
recurrence

X X

BCL2 gene
rearrangement

Lymphomas and
leukemias

For diagnosis and
planning therapy X X

BCR–ABL fusion
gene

Chronic myeloid
leukemia, acute
lymphoblastic
leukemia, and acute
myelogenous
leukemia

To confirm
diagnosis, predict
response to
targeted therapy,
help determine
treatment, and
monitor disease
status

X X

Beta-2-microglobulin
(B2M)

Multiple myeloma,
chronic lymphocytic
leukemia, and some
lymphomas

To determine
prognosis and
follow response to
treatment

X X X

Beta-human
chorionic
gonadotropin
(Beta-hCG)

Choriocarcinoma and
germ cell tumors

To assess stage,
prognosis, and
response to
treatment

X X

Bladder Tumor
Antigen (BTA)

Bladder cancer and
cancer of the kidney
or ureter

As surveillance
with cytology and
cystoscopy of
patients already
known to have
bladder cancer

X
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Table 2. Cont.

Biomarker Cancer Application
Tumor
Tissue/Bone
Marrow

Blood Urine Stool Cerebrospinal
Fluid

Saliva/Buccal
Swab

BRAF gene V600
mutations

Cutaneous
melanoma,
Erdheim–Chester
disease, Langerhans
cell histiocytosis,
CRC, and NSCLC

To help determine
treatment X

BRCA1 and BRCA2
gene mutations

Ovarian and breast
cancers

To help determine
treatment X X

CA15-3/CA27.29 Breast cancer

To assess whether
treatment is
working or if
cancer has recurred

X

CA19-9
Pancreatic,
gallbladder, bile duct,
and gastric cancers

To assess whether
treatment is
working

X

CA-125 Ovarian cancer

To help in
diagnosis,
assessment of
response to
treatment, and
evaluation of
recurrence

X

CA27.29 Breast cancer
To detect
metastasis or
recurrence

X

Calcitonin Medullary thyroid
cancer

To help in
diagnosis, check
whether treatment
is working, and
assess recurrence

X

Carcinoembryonic
antigen (CEA)

CRC and some other
cancers

To monitor the
effectiveness of
treatment and to
detect recurrence
or spread

X

CD19 B-cell lymphomas
and leukemias

To help in
diagnosis and to
help determine
treatment

X X

CD20 Non-Hodgkin
lymphoma

To help determine
treatment X

CD22 B-cell lymphomas
and leukemias

To help in
diagnosis and to
help determine
treatment

X X

CD25 Non-Hodgkin (T-cell)
lymphoma

To help determine
treatment X

CD30

Classic Hodgkin
lymphoma, and
B-cell and T-cell
lymphomas

To help determine
treatment X

CD33 Acute myeloid
leukemia

To help determine
treatment X



Biomolecules 2022, 12, 1021 14 of 39

Table 2. Cont.

Biomarker Cancer Application
Tumor
Tissue/Bone
Marrow

Blood Urine Stool Cerebrospinal
Fluid

Saliva/Buccal
Swab

Chromogranin A
(CgA)

Neuroendocrine
tumors

To help in
diagnosis,
assessment of
treatment response,
and evaluation of
recurrence

X

Chromosome 17p
deletion

Chronic lymphocytic
leukemia

To help determine
treatment X

Chromosomes 3, 7,
17, and 9p21 Bladder cancer

To help in
monitoring for
tumor recurrence

X

Circulating tumor
cells of epithelial
origin
(CELLSEARCH)

Metastatic breast,
prostate, and CRC

To inform clinical
decision-making,
and to assess
prognosis

X

C-kit/CD117

Gastrointestinal
stromal tumor,
mucosal melanoma,
acute myeloid
leukemia, and mast
cell disease

To help in
diagnosis and to
help determine
treatment

X X

Cyclin D1 (CCND1)
gene rearrangement
or expression

Lymphoma and
myeloma

To help in
diagnosis X

Cytokeratin fragment
21-1 Lung cancer

To help in
monitoring for
recurrence

X

Des-gamma-carboxy
prothrombin (DCP)

Hepatocellular
carcinoma

To monitor the
effectiveness of
treatment and to
detect recurrence

X

DPD gene mutation
Breast, CRC, gastric,
and pancreatic
cancers

To predict the risk
of a toxic reaction
to 5-fluorouracil
therapy

X

EGFR gene mutation NSCLC
To help determine
treatment and
prognosis

X

Estrogen receptor
(ER)/progesterone
receptor (PR)

Breast cancer To help determine
treatment X

FGFR2 and FGFR3
gene mutations Bladder cancer To help determine

treatment X

Fibrin/fibrinogen Bladder cancer

To monitor
progression and
response to
treatment

X

FLT3 gene mutations Acute myeloid
leukemia

To help determine
treatment X

FoundationOne CDx
(F1CDx) genomic test Any solid tumor

As a companion
diagnostic test to
determine
treatment

X X
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Table 2. Cont.

Biomarker Cancer Application
Tumor
Tissue/Bone
Marrow

Blood Urine Stool Cerebrospinal
Fluid

Saliva/Buccal
Swab

Gastrin Gastrin-producing
tumor (gastrinoma)

To help in
diagnosis, monitor
the effectiveness of
treatment, and
detect recurrence

X

Guardant360 CDx
genomic test Any solid tumor

As a companion
diagnostic test to
determine
treatment and for
general tumor
mutation profiling

X

HE4 Ovarian cancer

To plan cancer
treatment, assess
disease
progression, and
monitor for
recurrence

X

HER2/neu gene
amplification or
protein
overexpression

Breast, ovarian,
bladder, pancreatic,
and stomach cancers

To help determine
treatment X

5-HIAA Carcinoid tumors
To help in
diagnosis and to
monitor disease

X

IDH1 and IDH2 gene
mutations

Acute myeloid
leukemia

To help determine
treatment X X

Immunoglobulins
Multiple myeloma
and Waldenström
macroglobulinemia

To help diagnose
disease, assess
response to
treatment, and look
for recurrence

X X

IRF4 gene
rearrangement Lymphoma To help in

diagnosis X

JAK2 gene mutation Certain types of
leukemia

To help in
diagnosis X X

KRAS gene mutation CRC and NSCLC To help determine
treatment X

Lactate
dehydrogenase

Germ cell tumors,
lymphoma, leukemia,
melanoma, and
neuroblastoma

To assess stage,
prognosis, and
response to
treatment

X

Mammaprint test
(70-gene signature) Breast cancer To evaluate risk of

recurrence X

Microsatellite
instability (MSI)
and/or deficient
mismatch repair
(dMMR)

CRC and other solid
tumors

To guide treatment
and to identify
those at high risk
of certain cancer-
predisposing
syndromes

X

MYC gene expression Lymphomas and
leukemias

To help in
diagnosis and to
help determine
treatment

X

MYD88 gene
mutation

Lymphoma and
Waldenström
macroglobulinemia

To help in
diagnosis and to
help determine
treatment

X
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Table 2. Cont.

Biomarker Cancer Application
Tumor
Tissue/Bone
Marrow

Blood Urine Stool Cerebrospinal
Fluid

Saliva/Buccal
Swab

Myeloperoxidase
(MPO) Leukemia To help in

diagnosis X

Neuron-specific
enolase (NSE)

Small cell lung cancer
and neuroblastoma

To help in
diagnosis and to
assess response to
treatment

X

NTRK gene fusion Any solid tumor To help determine
treatment X

Nuclear matrix
protein 22 Bladder cancer

To monitor
response to
treatment

X

Oncotype DX Breast
Recurrence Score test
(21-gene signature)

Breast cancer

To evaluate risk of
distant recurrence
and to help plan
treatment

X

Oncotype DX
Genomic Prostate
Score test (17-gene
signature)

Prostate cancer

To predict the
aggressiveness of
prostate cancer and
to help manage
treatment

X

OVA1 test (5-protein
signature) Ovarian cancer

To pre-operatively
assess pelvic mass
for suspected
ovarian cancer

X

PCA3 mRNA Prostate cancer

To determine need
for repeating
biopsy after a
negative biopsy

X

PML/RARα
fusion gene

Acute promyelocytic
leukemia

To diagnose, to
predict response to
all-trans-retinoic
acid or arsenic
trioxide therapy, to
assess effectiveness
of therapy, monitor
minimal residual
disease, and
predict early
relapse

X X

Programmed death
ligand 1 (PD-L1)

NSCLC, liver cancer,
stomach cancer,
gastroesophageal
junction cancer,
classical Hodgkin
lymphoma, and other
aggressive
lymphoma subtypes

To help determine
treatment X

Prolaris test (46-gene
signature) Prostate cancer

To predict the
aggressiveness of
prostate cancer and
to help manage
treatment

X

Prostate-specific
antigen (PSA) Prostate cancer

To help in
diagnosis, to assess
response to
treatment, and to
look for recurrence

X
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Table 2. Cont.

Biomarker Cancer Application
Tumor
Tissue/Bone
Marrow

Blood Urine Stool Cerebrospinal
Fluid

Saliva/Buccal
Swab

Prostatic Acid
Phosphatase (PAP)

Metastatic prostate
cancer

To help in
diagnosing poorly
differentiated
carcinomas

X

ROS1 gene
rearrangement NSCLC To help determine

treatment X

Soluble
mesothelin-related
peptides (SMRP)

Mesothelioma
To monitor
progression or
recurrence

X

Somatostatin
receptor

Neuroendocrine
tumors affecting the
pancreas or
gastrointestinal tract

To help determine
treatment X

T-cell receptor gene
rearrangement T-cell lymphoma

To help in
diagnosis;
sometimes to
detect and evaluate
residual disease

X X

Terminal transferase
(TdT)

Leukemia and
lymphoma

To help in
diagnosis X X

Thiopurine
S-methyltransferase
(TPMT) enzyme
activity or TPMT
genetic test

Acute lymphoblastic
leukemia

To predict the risk
of severe bone
marrow toxicity
(myelosuppres-
sion) with
thiopurine
treatment

X X

Thyroglobulin Thyroid cancer

To evaluate
response to
treatment and to
look for recurrence

x

UGT1A1*28 variant
homozygosity CRC

To predict toxicity
from irinotecan
therapy

X X

Urine
catecholamines:
VMA and HVA

Neuroblastoma To help in
diagnosis X

Urokinase
plasminogen
activator (uPA) and
plasminogen
activator inhibitor
(PAI-1)

Breast cancer

To determine the
aggressiveness of
cancer and guide
treatment

X

DNA methylation
markers based on
References [16,17]

Methylation of
MGMT promoter Glioblastoma Drug response to

chemotherapy X

Methylation of MLH1 Lynch syndrome Treatment decision X

Methylation of
NDRG4 and BMP3 Colorectal Cancer Diagnostic X

Methylation of
SEPT9 promoter Colorectal Cancer Diagnostic X

NSCLC, non-small cell lung cancer; CRC, colorectal cancer; UGT1A1*28, variant with seven (TA) repeats; X,
detected in sample.
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3.1. Blood

Different parts of the blood, such as white blood cells (WBCs), circulating tumor cells
(CTCs), plasma, serum, or EV can be used for biomarker testing.

3.1.1. WBCs

DNA from WBCs is used for germline genetic variant detection; for example, BRAC-
Analysis CDx (Myriad Genetics, Inc., Salt Lake City, UT, USA) is used to screen for changes
in coding regions of BRCA1 and BRCA2 genes. The germline genetic variant detection is
performed by using PCR and Sanger sequencing/NGS for SNV and indel detection and by
using multiplex PCR for large deletions and duplications in precision medicine for breast,
ovarian, pancreatic, and prostate cancer.

In addition, for hematological cancers, such as leukemias, lymphomas, or myelo-
mas, WBCs are the primary specimen for diagnosis, from basic morphology studies to
immunophenotyping, using panels of fluorochrome-labeled antibodies to analyze anti-
gen expression by flow cytometry. Moreover, in these types of cancer, WBCs are used in
conventional cytogenetics/molecular cytogenetics/FISH to detect mostly aneuploidy or
translocations; in addition, WBC DNA is used in molecular genetic tests to detect sequence
mutations. These WBC-based biomarkers are useful in diagnosis, prognosis, detection of
residual disease, and prediction of response to treatment or relapse.

3.1.2. CTCs

Some cancer cells are shed in circulation by solid tumors and have a promising future
in liquid-biopsy-based cancer diagnostics and monitoring [92]. The biggest hurdle in their
detection is their extremely low number, of approximately 1 CTC/mL in blood. Despite the
low number, technical improvements have made it possible to capture, identify, and count
them. The detection methods include those based on their physical characteristics, such as
large cell size, electrical properties (e.g., CTCs can have a more negative charge compared to
leukocytes [93]), or immunological properties, which can help to identify surface proteins
on CTCs. Currently, nanomaterials are being tested to increase the efficiency of immuno-
capture and detection [94]. As their number is increased in metastatic disease, they have
use in monitoring metastatic breast cancer, CRC, and prostate cancer.

3.1.3. Plasma/Serum

Tumor-associated ctDNA, ctRNA, and protein changes can also be observed in plasma
or serum, and nowadays plasma-based cancer diagnosis is at the forefront of cancer
biomarker development. Protein biomarkers have been widely used for decades for cancer
diagnosis and monitoring from plasma samples, and some examples are mentioned in
Sections 5.2 and 5.4.

Moreover, a few NGS panels for detecting cancer-associated genetic alterations in
plasma/serum are now available and approved for use in the clinic. For example, Founda-
tionOne Liquid CDx (Foundation Medicine, Inc., Beverly, MA, USA) uses targeted high-
throughput hybridization-based capture technology and detects mutations in 311 genes,
including four gene rearrangements and CNAs in three genes, in ctDNA from plasma
samples for use as companion diagnostics for targeted therapies. Another similar NGS-
based plasma ctDNA test approved is Guardant360 CDx (Guardant Health, Inc., Palo Alto,
CA, USA), which detects mutations in fifty-five genes, fusions in four genes, and CNAs in
two genes, and is used as a companion diagnostics for lung cancer. Other plasma-based
tests approved for clinics are mentioned next. The Therascreen PIK3CA RGQ PCR Kit
(Qiagen Gmbh, Hilden, Germany), which is based on real-time qualitative PCR, is used
for the detection of 11 mutations in the PIK3CA gene in FFPE tumor DNA or ctDNA
of patients with breast cancer to identify patients for targeted treatment with PIQRAY®

(Alpelisib). Epi proColon (Epigenomics AG, Berlin, Germany) is used for screening CRC in
individuals older than 50 years and that cannot be screened by standard methods. It detects
methylation in the promoter region of the Septin 9 gene from plasma DNA, using real-time
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methylation-specific PCR. Finally, COBAS EGFR mutation test V2 (Roche Molecular Sys-
tems, Indianapolis, IN, USA) detects somatic mutations in the EGFR gene from FFPE tumor
DNA or plasma ctDNA and is used as a companion diagnostics method for the selection of
targeted therapies in lung cancer patients [95]. It is noteworthy that the main limitation of
plasma-based tests is the low concentration of tumor-associated biomolecules present in
this fluid, and most NGS-based tests are, therefore, approved as single-site assays carried
out at specific laboratories.

3.2. Urine

Urine is mainly used for biomarker testing in bladder or prostate cancer. An in vitro
RNA-based assay (Progensa PCA3 assay, from Hologic, Inc., Marlborough, MA, USA),
which calculates the ratio of PCA3/PSA RNA molecules (PCA3 score), is approved for
urine samples collected after digital rectal exam to aid in the decision for prostate biopsy
(score of <25 is associated with a low probability of positive prostate biopsy). Another
urine-based diagnostic test for suspected bladder cancer is the Urovision Bladder Cancer
kit, which detects aneuploidies for chromosomes 3, 7, and 17 and loss of 9p21 locus by
FISH. The test is used for initial diagnosis and tumor recurrence monitoring. Finally, a
simple protein-based diagnostic and monitoring test for bladder cancer, the Alere Nmp22
Bladderchek test, is an enzyme immunoassay-based quantitative testing of nuclear matrix
protein (NMP22) in urine samples for bladder cancer diagnosis.

3.3. Stool

Stool samples are mainly used for CRC screening; these tests are simple to perform,
and some of them can even be performed at home. The basic test for CRC screening is
fecal immunochemical testing, which detects blood released in small amounts by tumors
and polyps into the stool. However, the test is non-specific, as other conditions such as
hemorrhoids can also give positive results. On the other hand, CRC-related gene mutations
can also be detected in the stool DNA of patients. We detected gene mutations in stool
DNA of CRC patients, using a targeted amplicon gene panel by NGS; these mutations
correlated to those seen in matched FFPE tumor tissues [14]. Interestingly, a CRC screening
test, Cologuard (Exact Sciences, Inc., Marlborough, MA, USA), which is based on detecting
CRC-associated DNA mutations in stool samples, is approved by FDA. It has a sensitivity
of 92% for CRC detection and 42% for large polyps, compared to 74% and 24%, respectively,
when using fecal immunochemical testing.

Stool samples are also useful for microbiota profiling, which has also gained relevance
as a biomarker, not only for CRC but also for other gastrointestinal cancers, including
pancreatic cancer [96,97]. Moreover, the bacterial profile can also predict response to
cancer therapy.

3.4. Exhaled Breath

Cancer gene mutations can also be detected from the exhaled breath of lung cancer
patients (extensively reviewed in Reference [12]).

3.5. Saliva/Buccal Swabs

The main advantage of saliva/buccal swabs as a source of cancer biomarkers is their
ease of collection. DNA isolated from saliva/buccal swabs is mostly used for genotyping
germline genetic variants, e.g., TMPT variant detection for risk evaluation before treatment
with thiopurines in leukemias. Moreover, and similarly to plasma samples, saliva is also
a source of tumor-associated nucleic acids, proteins, metabolites, and EVS to be used as
cancer biomarkers, for example, in oral cancer or head and neck cancers [98]. In this regard,
two meta-analyses have shown hypermethylation biomarkers with high specificity [99]
and IL1β, IL6, and IL8 as early interleukin biomarkers [100] in saliva samples for diagnosis
and early detection of oral cancer. In addition, changes in the oral microbiome can also be
useful biomarkers not only in head and neck cancer [98] but also in pancreatic cancer [96].
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Finally, human papillomavirus DNA in saliva can be a useful biomarker for treatment
response and recurrence in human papillomavirus-associated head and neck cancers [101].

3.6. EVs

EVs are small lipid-bound vesicles released by all cells that contain different types
of biomolecules, such as proteins and nucleic acids, and that play an important role in
intercellular communication. Depending upon their origin, they can be grouped into
exosomes (endocytic origin), microvesicles (formed from plasma membrane budding), or
apoptotic bodies. The content or the type of cargo they carry depend on their cell of origin,
and, thus, their analysis in body fluids can contribute to identifying new cancer biomarkers.
Differential expression of membrane-bound and intra-vesicular proteins and miRNAs of
EVs has been reported in plasma, urine, or other body fluids of cancer patients compared
to healthy individuals (reviewed in Reference [102]). Moreover, in addition to protein and
miRNAs, DNA alterations, such as cancer gene mutations can also be detected in EVs of
cancer patients [103].

However, the limitation of these EV-associated biomarkers is that EVs are heteroge-
neous vesicles with a range of different sizes and types, and, therefore, the results can vary
depending upon the isolation method or kits used. The methods generally applied are
based on density-gradient ultracentrifugation, filtration/size exclusion chromatography,
EV-precipitation, affinity interactions (by antibodies, lipid-binding proteins, and lectins), or
microfluidic separation (based on immunoaffinity, microporous filtration, acoustic nanofil-
tration, and porous micropillars) [104]. Notably, miRNAs are found to be more concentrated
in serum EVs than as free circulating serum molecules, and their EV concentration is found
to increase with increasing malignancy in cervical cancer and better discriminate cancer
from controls [27]. A manually curated database named EVAtlas, created by Liu et al. [105],
provides a comprehensive compilation of ncRNA expression in EVs from 2030 small se-
quencing datasets. Using the dataset, the authors identified miR-451a as a potential lung
cancer biomarker in plasma EVs [105]; however, they observed that miRNA EV expression
does not necessarily correlate with tumor expression. MiR-451a was found to be highly
expressed in plasma EVs of lung cancer patients compared to controls, while its expression
was lower in lung tumor tissue compared to normal lung tissue. The authors postulated
that miR-451, which acts as a tumor suppressor and is expressed in normal lung tissue,
might be packed in EVs and removed from tumor cells.

4. Techniques Used to Detect Molecular Cancer Biomarkers
4.1. FISH

It employs a fluorescently labeled probe that hybridizes with DNA to detect gene
copy number changes (e.g., HER2 amplification) or gene fusions in tumor sections or
cells (Figure 1a). Some variants of FISH include multiplex FISH, spectral karyotyping,
and comparative genomic hybridization. Spectral karyotyping is a 24-color chromosome
painting assay, which detects chromosomal abnormalities with high sensitivity. It can be
used to detect chromosomal biomarkers of cancer diagnosis and prognosis, especially in
hematological malignancies, sarcomas, carcinomas, and brain tumors [106].

4.2. PCR/Real-Time PCR/Digital PCR

PCR-based targeted genetic profiling is the most common technology used in cancer
diagnostics for both DNA- and RNA-based applications. It is used for the detection of
small DNA mutations (e.g., EGFR mutations), gene fusions (e.g., RNA-based testing for
ALK), or DNA methylation analysis using methylation-specific PCR (e.g., MGMT promoter
methylation in glioblastoma or Septin9 gene methylation in CRC). Many modifications of
this basic method are continuously being developed to increase the sensitivity of detecting
biomarkers from trace sources.
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4.3. NGS

NGS is finding application in genetic screening of both germline variants and somatic
mutations, including SNVs, indels, and CNAs. It is also being used for RNA-based
biomarkers, such as gene fusions and RNA sequencing. The approaches include both
amplicon-based screening using primer panels to amplify regions of interest harboring
driver gene mutations, or targeted capture and hybridization for selecting fragments of
interest for sequencing using capture probes. Different kinds of NGS gene panels have been
developed: cancer-specific panels (e.g., for lung cancer, CRC, and breast cancer), general
pan-cancer panels for solid tumors or hematological cancers, or panels designed to detect
genomic changes for targeted therapies. Noteworthy, NGS-based tests are sensitive to
the platform and methods used, and they are therefore mainly approved for testing at
a specific site. Other challenges in NGS-based methods relate to differentiating cancer
driver mutations from passenger mutations and setting a minimum threshold mutant allele
frequency for variant calling.

Nowadays, new machine learning and computation methods are being developed
to relate NGS mutations to clinical significance or therapy response. One such approach,
named TARGETS (TreAtment Response Generalized Elastic-neT Signatures), is shown to
predict the response to specific drugs, based on NGS DNA/RNA profiles [107].

4.4. Flow Cytometry

It is often applied in leukemia and lymphoma diagnostics to identify and count cells
by using a panel of fluorescently labeled antibodies. It is also deployed to quantitate DNA
in cancer cells by treating them with DNA-binding, light-sensitive dyes. Changes in DNA
quantity indicate cancer recurrence in breast, prostate, or bladder cancer. What is more, it
has application in CTC-based biomarkers, as well.

4.5. Gene Expression Microarrays

They are used to study differentially expressed genes in tumor samples and to classify
tumors into molecular subtypes, both of which can be predictive of prognosis or treatment
response. For example, MammaPrint, a microarray-based prognostic test, uses a 70-gene
expression profile from FFPE tissue to predict early-stage breast cancer patients with a
high/low risk of recurrence. The implementation of such microarray-based molecular clas-
sifications of breast cancer by MammaPrint, TargetPrint, or BluePrint has shown that these
tests are useful for better management of this cancer [108]. Other gene-expression-based
tests, such as Oncotype DX, have applications as predictive biomarkers of chemotherapy
response and cancer prognosis (see Section 5.5).

4.6. IHC

IHC is a routinely used method in cancer diagnostics/pathology for detecting pro-
teins expressed by cancer cells in tumor tissues. Developments in this technology include
(i) multiplex IHC, with cycles of antibody staining, imaging, and quenching, which can be
repeated by using different antibodies on the same tissue section; and (ii) other technolo-
gies, such as tyramide signal amplification, MultiOmyxTM, and fluorescent quantum dot
nanocrystals, with more sensitivity for detecting low-abundance proteins and with a high
signal-to-noise ratio.

4.7. ELISA

It is the most commonly used protein-analysis method in clinical practice, especially
in body fluids. New developments, such as electrochemical ELISA assays, increase the sen-
sitivity of ELISA for protein biomarkers at low concentrations in body fluids by amplifying
the signal. They are more cost-effective and easier to use [109].
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4.8. Lectin Microarrays

Lectin microarrays are used for high-throughput profiling of glycans, especially for
studying differences in glycomic profiles between cancer and normal tissue or for identify-
ing new biomarkers in plasma or EVs [110].

4.9. Other Proteomic Tools

Mass spectrometry (MS) and reverse-phase protein arrays (RPPA) are two other
proteomic tools that can be used to detect a large number of proteins in cancer samples.
MS can be used either as a global profiling tool for cancer biomarker discovery or as a
targeted approach (reviewed in Reference [111]), whereas RPPA is a targeted antibody-
based proteomics platform. Sometimes, RPPA is utilized to validate candidate protein
biomarkers detected by MS profiling. Both can detect and quantify proteins and their
post-translational modifications in tumor tissues or biological fluids. RPPA has a higher
throughput and lower cost than MS; moreover, it has a lower limit of detection and higher
sensitivity. A recently optimized RPPA platform analyzed 240 validated antibodies and
detected important proteins in cancer [112].

4.10. Biosensors/Nanotechnology

The biggest hurdle in the cancer biomarker field is the very low concentration of
analytes in non-tumor tissue samples, such as blood or other body fluids. The use of
biosensors and nanotechnology is being tested to increase the sensitivity and specificity
of detection. Biosensors are devices that detect a biomarker by a chemical process which
is converted into an electric signal by a transducer, and the signal is then processed and
amplified [113]. Moreover, gold nanoparticles, quantum dots, nanotubes, and nanoribbons
provide a high surface-to-volume ratio, allowing different molecules (antibodies, linkers,
small molecules, etc.) to be densely attached to their surface, thereby increasing the
sensitivity of detection by biosensors. They can be applied to capture and detect some
cancer biomarkers, such as ctDNA/RNA/miRNAs (e.g., miR-141 in serum of prostate
cancer patients [114], or DNA methylation in ctDNA for cancer detection [115]), proteins,
CTCs, and EVs in body fluids [116]. Some of the proteins expressed by CTCs and used
for detecting these cells by nanotechnology include EpCAM, PTK7, HER2, and Cd2/Cd3.
Moreover, although not yet in clinical use, some nanoribbon sensor chips can detect
circRNA in gliomas [117] or miR-17-3p in CRC [118], employing oligonucleotide molecular
probes complementary to the target sequence.

4.11. Microfluidics

Microfluidic chips are being developed in combination with other biomarker detection
techniques for use in clinical applications (reviewed in Reference [119]). For example,
microfluidic chips have been optimized to detect cancer-associated proteins in oral can-
cer [120] or to capture CTCs by using new methods combining cell size and immunoaffinity
in prostate cancer [93]. Moreover, Chu et al. [116] developed a nanomaterial-based mi-
crofluidic chip for ultra-sensitive detection of miRNAs at attomole levels for use in cancer
diagnosis. Similarly, microfluidic chips combined with digital PCR have also been devel-
oped to analyze ncRNA or DNA methylation from liquid biopsy [121].

4.12. CRISPR-Based ctDNA/RNA Detection

Another promising technique that could simplify the detection of ctDNA/RNA and
increase its sensitivity and specificity has been recently developed based on clustered
regularly interspaced short palindromic repeats (CRISPR) technology. It is known that
different CRISPR-associated (Cas) enzymes can be used to detect different nucleic acids.
Therefore, by combining an RNA-guided RNase Cas13a, a target-specific CRISPR RNA,
and a labeled reporter RNA, RNA signals can be detected without the need for nucleic acid
amplification steps. Interestingly, the CRISPR/Cas13a system integrated into microfluidic
chips with biosensors has been successful in detecting miRNA biomarkers in serum samples
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of brain cancer patients with remarkable sensitivity of detection (10 pM in a volume
of less than 0.6 µL and in less than 4 h of processing time) [122]. Similarly, an assay
using the CRISPR-Cas14a system and strand displacement amplification for detecting
miR-21 expression in blood was shown to discriminate cholangiocarcinoma patients from
controls [123].

4.13. Synthetic Biomarker Technology

To overcome some of the challenges associated with cancer biomarkers, such as low
sensitivity or specificity and technical limitations, a new class of synthetic biomarkers is
being developed (reviewed in Reference [124]). The theory behind activity-based synthetic
biomarkers is to administer an exogenous agent that includes a bioengineered sensor
component. This agent is targeted to specific activity/physiology characteristics of cancer
cells and leads the tumor to shed synthetic biomarkers, resulting in the production of a
signal that can be detected. Examples include proteases-activated synthetic biomarkers
and small-molecule probes.

A summary of technologies, their applications, and their advantages and disadvan-
tages is presented in Table 3.

Table 3. List of technologies used for biomarker discovery and detection, and their applications,
advantages, and disadvantages.

Technology Applications Advantages Disadvantages

FISH Detection of chromosomal
abnormalities

Cell-based genetic results,
specificity, simplicity, and
reliability

Unable to detect sequence
mutations

PCR/real-time PCR/digital PCR
Detection of targeted sequence
mutations, gene fusions, or DNA
methylation

High sensitivity and specificity,
simplicity, good reproducibility,
suitable in a clinical setting, and
low cost

Restricted to targeted mutations
and limited throughput

NGS
Detection of somatic and germline
alterations in a large number of
genes

High-throughput tool; can be
targeted or genome-wide, and can
detect different types of genetic
alterations at the same time

Results depend on the platform.
Difficult to interpret the
significance of low-frequency
variants. Genome-wide
approaches require bioinformatic
analysis. Site-specific testing for
clinical applications

Flow cytometry Cell count and identification,
DNA quantification

High sensitivity and rapid
analysis Restricted to specific parameters

Gene expression microarrays

Differences in gene expression
between tumor subtypes or
between tumor and normal tissue
or in tumor tissue before and after
treatment, etc.

High-throughput tool Bioinformatic analysis is required.
Not all targets are identified

IHC Detection of protein expression Localization of protein expression
in the tumor tissue

Restricted to proteins with
available antibodies. Subjective
interpretation

ELISA Detection of protein expression,
primarily in body fluids Easy procedure and quantitative

Restricted to proteins with
available antibodies. Limited
detection sensitivity in body
fluids

Lectin microarrays Glycomic profiling

Can be useful in tumor tissues
and body fluids, high-throughput
tool, high sensitivity, and rapid
analysis

Inconsistencies due to variation
between batches and between
purification procedures

MS Protein profiling of tumor tissues
or body fluids

Can be used for targeted assays or
biomarker discovery, and highly
multiplex

Procedure complexity, low
sensitivity, and throughput
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Table 3. Cont.

Technology Applications Advantages Disadvantages

RPPA Targeted detection of protein
levels

High reproducibility, high
throughput, and lower cost than
MS

Need for special devices,
restricted to proteins with
validated antibodies

Biosensors/nanotechnology
Detection of low concentration
biomarkers primarily in body
fluids

High sensitivity and specificity,
and ease of use

Low stability, poor reproducibility,
problems in miniaturizing
devices, and low performance in
human whole blood samples

Microfluidics
Detection of low concentration
biomarkers primarily in body
fluids

High sensitivity, high throughput,
cost-effective tool, and can be
combined with biosensors

Needs improvement in accuracy
and efficiency

CRISPR-based ctDNA/RNA
detection

Detection of low concentration
biomarkers primarily in body
fluids

High sensitivity and specificity;
can be combined with biosensors

Complicated multi-step
procedure; lack of
high-throughput design

Synthetic biomarker technology
Sensing of dysregulated activity
of tumor cells or tumor
microenvironment

Molecular amplification of tumor
biomarker

Significant noise from off-target
activity; need for better
knowledge on early stage cancer
pathogenesis

FISH, fluorescence in situ hybridization; PCR, polymerase chain reaction; NGS, next-generation sequencing;
IHC, immunohistochemistry; ELISA, Enzyme-Linked ImmunoSorbent Assay; MS, mass spectrometry; RPPA,
reverse-phase protein arrays; CRISPR, clustered regularly interspaced short palindromic repeats; ctDNA/RNA,
circulating tumor DNA/RNA.

5. Clinical Applications of Cancer Biomarkers: Examples

The clinical applications of cancer biomarkers are extensive, and their ultimate goal is
to achieve precision medicine to optimize prevention, screening, and treatment strategies of
cancer. These applications include risk assessment; screening and early detection; accurate
diagnosis; patient prognosis; prediction of response to therapy; and cancer surveillance
and monitoring response.

Updated lists of biomarkers currently being used in cancer patients can be found
in the National Comprehensive Cancer Network Compendium [125] and the Table of
Pharmacogenomics Biomarkers in Drug Labelling from the FDA (therapeutic area = oncol-
ogy) [126], as well as in the Tumor Marker List from National Cancer Institute [91] (Table 2).
Moreover, a knowledge base, OncoMX, has recently been developed for exploring cancer
biomarkers in the context of related evidence [127].

5.1. Cancer Risk Assessment Biomarkers

A cancer risk or susceptibility biomarker is used to identify individuals with a higher
probability to develop cancer compared to the standard risk in the general population.
Cancer risk biomarker tests include DNA repair phenotype assays, as well as genotyping
assays for germline variants. DNA repair has shown clear interindividual variability related
to cancer susceptibility [128]. Several technologies have been reported to quantify DNA
repair capacity (and also DNA damage and DNA damage response): comet assay,
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H2AX
foci formation, host cell reactivation assay, DNA repair beacons, and others (reviewed in
Reference [128]). However, in the last decades, genotyping assays have gained importance
thanks to the development of high-throughput NGS tools (see Section 2.1). In a recent
study performed with a large multicenter cohort, the personal risk for hereditary cancer
syndromes, among other disorders, was evaluated in healthy individuals [129]. Disease-
predisposing variants related to cancer syndromes were present in 7.7% of individuals
analyzed. Clinically significant variants were commonly detected in MUTYH, CHEK2,
APC, ATM, BRCA1, BRCA2, MITF, HOXB13, PMS2, PALB2, NBN, BRIP1, MSH6, SDHA,
and BARD1. These findings would prove the utility of using genetic screening as part of
regular medical care [129], although there are doubts about the interpretation of variants of
uncertain effect [130].
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Once a biomarker of cancer risk is identified and validated, it should be incorporated
into a comprehensive risk assessment model, which should include also other risk factors,
such as environment and lifestyle. Individuals identified to be at high risk of develop-
ing cancer could engage in changes in their lifestyle and could benefit from enhanced
surveillance, prophylactic surgery, and/or some sort of chemoprevention.

5.2. Screening and Early Cancer Detection Biomarkers

The purpose of these biomarkers is to detect cancer in otherwise healthy patients, and
without having shown any signs of disease. Actually, they are suggesting the presence of
cancer, which has to be diagnosed with other medical approaches. The main justification for
their use is the fact that if cancer is detected in an early and asymptomatic stage, the survival
rate increases, and the probabilities of complications or morbidities decrease. However, in
some cases, the use of these biomarkers leads to overdiagnosis, that is, detection of a cancer
that would never cause any symptoms.

A good screening biomarker assay must be highly specific, i.e., with a very low false-
positive rate, and, ideally, it should be also noninvasive and inexpensive. Some of the
problems caused by overdiagnosis and false-positive rate are further invasive medical
procedures, patient psychological distress, and high costs for the healthcare system, which
are otherwise unnecessary.

Several blood-based screening biomarkers have been used or are currently used in
clinical practice, e.g., alpha-fetoprotein for liver cancer, PSA for prostate cancer, CA19-9
for pancreatic cancer, and CA125 for ovarian cancer, among others [131]. However, some
of these biomarkers do not meet the requirements of high specificity and sensitivity; for
example, this is the case for blood PSA screening for prostate cancer. Furthermore, this
biomarker does not allow us to distinguish individuals with benign prostatic hyperplasia
from those with malignant prostate cancer. Therefore, the current prostate cancer screening
program using PSA would not be desirable in a clinical setting, and it would only be
recommended for men who express a specific interest in screening [132]. New tests are
under evaluation, such as a recently developed biomarker panel combining filamin-A gene,
age, and prostate volume which has a better performance than PSA alone, especially in
men with benign hyperplasia [133].

Interestingly, promising multi-cancer early detection tests on liquid biopsies are now
being designed to complement single-cancer screening tests, and they seem to perform
better [134–136]. However, concerns have risen about their clinical utility, as well as about
overdiagnosis, overtreatment, and the accuracy of identification of tissue of origin [137].

5.3. Accurate Cancer Diagnosis Biomarkers

Diagnostic biomarkers are used to confirm the presence of cancer or to identify a
subtype of cancer. The usefulness of these biomarkers is that proper diagnosis can lead
to proper treatment and, therefore, best chances of survival. Some screening biomarkers
are also used as diagnostic biomarkers; however, the latter is only applied to symptomatic
patients, whereas screening biomarkers are applied to asymptomatic individuals. Despite
diagnostic biomarkers can help to detect cancer or to classify patients into subtypes, they
are not sufficient for a final diagnosis and need to be combined with other diagnostic
procedures, such as imaging or biopsies.

5.4. Patient Prognosis Biomarker

Once a tumor has been diagnosed, a prognostic biomarker provides information about
the probable course of the disease, including its recurrence, progression, and patient’s
overall survival, regardless of the treatment. Sometimes, these biomarkers can reflect
tumor burden, and then they can help in determining the stage of cancer (e.g., the tumor–
node–metastasis classification). Some examples of prognostic biomarkers widely used
are protein biomarkers, such as CEA for CRC, CA19-9 for pancreatic cancer, and CA125
for ovarian cancer; and some tests based on gene expression signatures for breast cancer,
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such as MammaPrint and Prosigna [125,134,138,139]. Other examples would be the genetic
alterations that facilitate an accurate risk-stratification of patients with acute leukemia that
are associated with patient outcomes [140,141].

The information obtained with these biomarkers can be useful for clinicians to make
decisions for aggressive or prolonged treatments. However, some of the currently available
prognostic biomarkers have also been designed to be predictive of chemotherapy benefits
(see below), as this is preferable in a clinical setting.

5.5. Biomarkers Predicting Response to Cancer Therapy

It is well-known that treatment decisions are critical in cancer patient management,
and often there is uncertainty in the levels of response, as well as lack of precision, side
effects, unnecessary overtreatment, etc. However, considerable progress is being made
and predictive biomarkers are increasingly playing a key role in the optimization of cancer
treatment, based on the idea that specific tumor alterations or specific germline genetic
variants (pharmacogenetics) yield a certain pattern of sensitivity to cancer therapy agents.

Predictive biomarkers aim to estimate the effect of a specific therapy on a cancer
patient before treatment has started. According to the results of the biomarker assay,
cancer patients can be classified as probable responders or non-responders to a specific
therapy, either chemotherapy, endocrine therapy, radiotherapy, or the emerging targeted
strategies and immunotherapy. Some of these biomarkers can also identify those patients
that will likely show severe toxicity after therapy. Predictive biomarkers can be very useful
for adjusting treatment doses or guiding alternative therapies in patients classified as
non-responders or with a high risk of toxicity.

Biomarkers to predict tumor response to classical chemotherapy or endocrine therapy
are few, despite being the most extensively used to treat cancer patients [142,143]. Tradi-
tional examples of cancer predictive biomarkers are pharmacogenetic-based ones, such
as germline variants on TPMT or TYMS genes that estimate the effectiveness/toxicity of
treatment with mercaptopurine for leukemia or with fluorouracil for colon, bladder, and
gastric carcinoma, respectively (reviewed by Reference [144]). Moreover, somatic cancer
mutations can also help to predict tumor drug response. In this regard, data related to the
sensitivity of 1000 human cancer cell lines to different drugs is compiled in the database
Genomics of Drug sensitivity in Cancer (www.cancerrxgene.org, accessed on 1 March 2022).
More information about currently used and potential future biomarkers of this kind can
be found at the Pharmacogenomics Knowledgebase [145]. Recently, multi-gene predictive
biomarkers have been developed, such as the Oncotype DX Breast Recurrence Score test,
which measures the expression of 21 genes on breast cancer samples. This test allows
clinicians to select the therapy that will be optimal for women with hormone receptor+ and
HER2− early stage invasive breast cancer according to their score (prognostic biomarker):
either chemotherapy plus endocrine therapy or endocrine therapy alone [146,147]. Addi-
tionally, the test gives information about distant recurrence (predictive biomarker), and it
has been incorporated by the American Joint Committee on Cancer into the breast cancer
staging system [148].

Radiotherapy effects on cancer patients vary greatly, even in patients with similar
tumor types and treated with similar radiation schemes, both in terms of tumoral response
and of early or late adverse reactions in non-tumoral tissues [149]. Several biomarkers to
assess tumor radiosensitivity have been studied, including tumor molecular signatures,
expression of specific mRNA molecules or proteins, mutations at specific genes involved in
DNA repair, or the less studied EVs and CTCs [150–152]. Concerning biomarkers aimed to
predict the risk of radiation-induced toxicity in normal tissues, the research has focused
on the assessment of DNA damage response (comet assay,
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present in blood from breast cancer patients have been related to cardiotoxicity after
radiotherapy [151,155].

In the case of targeted cancer treatments, first, the alteration that is driving tumor
growth in that particular cancer is identified. Then a treatment strategy is developed to
specifically target that alteration. Therefore, targeted therapies only work in a subset of
cancers, those that have the specific alteration for which the therapy was designed. It is im-
portant, if not essential, to perform a biomarker assay to identify those individuals who will
benefit from therapy in order to increase efficacy and diminish costs [142]. These kinds of
assays are often called companion diagnostics and are usually approved by the regulatory
agencies in conjunction with the drug they are paired with. The information provided by
the companion diagnostic tool is essential for the safe and effective use of the therapeutic
product [156]. An example is an immunohistochemistry test for increased expression of
HER2 receptor to select patients that would benefit from therapy with trastuzumab, an
anti-HER2-targeted agent used to treat breast, gastric, and gastroesophageal cancers [157].
Another example is EGFR therapies, mainly used in metastatic NSCLC, and which target
cancerous cells with EGFR mutations at exon 19 or 21. More recently, NGS-based com-
panion diagnostics have been developed to detect cancer-associated genetic alterations in
plasma/serum ctDNA (see Section 3.1.3).

Moreover, some cancer biomarkers help in the assessment of the risks and benefits
of a particular drug, even though the information provided by these biomarkers is not
required for the use of that drug. This kind of assay is referred to as complementary
diagnostics since it provides additional information to the physicians [156]. For example,
the FoundationFocus CDx BRCA loss of heterozygosity (LOH) assay is an FDA-approved
complementary diagnostic test for rucaparib, a poly (ADP-ribose) polymerase inhibitor
used to treat recurrent ovarian carcinoma. While rucaparib improves the progression-free
survival rate in patients with high genomic LOH, those with lower genomic LOH may also
benefit [158].

In the last decade, immunotherapy, especially immune checkpoint inhibitors, have
demonstrated high efficacy against some cancers by enhancing anti-tumoral immunity,
while many others do not respond or even show serious side effects. The discovery of
biomarkers to predict sensitive or refractory tumors to this kind of therapy is urgently
needed. Moreover, there is a need for optimization of the currently FDA-approved biomark-
ers of response to immunotherapy, including expression of PD-L1, microsatellite instability,
and tumor mutational burden [159,160]. Of these, PD-L1 is the most commonly used in
clinical practice, especially in NSCLC. Cancer cells that express PD-L1 can attenuate or
inhibit the activity of tumor-infiltrating lymphocytes, which express the receptor of PD-L1.
This is a mechanism used by tumor cells to escape immune surveillance. The blockade of
this interaction by using antibodies, either against PD-L1 or its receptor, makes lympho-
cytes reactivate and enhance their antitumoral effect. Therefore, tumors overexpressing
PD-L1 are more likely to respond to these antibodies, even though those with lower PD-L1
expression may also benefit. However, the accuracy and clinical utility of this biomarker
need to be improved [159,160].

A good summary of key cancer predictive biomarkers clinically adopted, as well as
those showing potential for clinical translation, can be found in Reference [142].

5.6. Biomarkers for Cancer Surveillance and Monitoring Response

A monitoring biomarker is assessed serially over time, e.g., during treatment with
curative intent or after it has finished. This can allow for comparisons to observe, for
example, real-time overall disease burden, to detect worsening of the disease, or to follow
disease response to treatment.

Liquid-biopsy-based biomarkers are the best option for minimal residual disease
monitoring and cancer surveillance. In this sense, several studies have reported ctDNA as
a promising good monitoring biomarker, since it is believed that ctDNA levels correlate
with tumor burden over time. Therefore, monitoring ctDNA in cancer patients could help
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to detect early recurrences or residual cancer that would otherwise remain undetected by
other methods, such as imaging [161]. Other monitoring biomarkers are blood proteins
(e.g., CEA, CA19-9 . . . ), although they have some disadvantages compared to ctDNA,
such as lower tumor-specificity and longer half-life. As a recent example, driver mutations
in ctDNA (EGFR, KRAS, or BRAF) and serum concentrations of Cyfra21-1, and possibly
CA125, have been described as relevant useful biomarkers for therapy response moni-
toring and early detection of progression during therapy in lung cancer [162]. However,
clinical implementation of monitoring biomarkers is challenging, as there are still some
methodological and biological limitations [163].

6. Steps in the Search for New Biomarkers

Even though considerable progress has been made, there is an urgent need for the
discovery and development of new effective biomarkers in the field of oncology. The steps
involved in the pipeline of development of cancer biomarkers are as follows: discovery,
assay development/analytical validation, clinical validation, clinical utility, and finally
clinical implementation [164–166] (Figure 2).
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Figure 2. Schematic steps on the search for new biomarkers.

6.1. Discovery

It is the initial step based on the identification, selection, and prioritization of potential
individual or a group of biomarkers (biomarker signature) through exploratory preclinical
studies. Ideally, before starting, researchers should clearly define the purpose of the
biomarker and the specific clinical context [164,167].

The advent of new techniques, such as NGS, gene expression arrays, protein MS, and
other high-throughput technologies, has provided researchers with an enormous amount
of data in a short time and at a low cost, which has sometimes led to the generation of data-
driven hypotheses [168]. However, a correct study design and proper data analysis must
be employed to be able to select relevant data from which reliable candidate biomarkers
can be identified.

A correct study design includes, among other things, a good selection of the target
population, enough statistical power, consideration of possible confounding factors, and
randomization and blinding to avoid bias [167]. Later, appropriate data analysis is equally
important, as it can influence the reproducibility and robustness of results. For example,
careful handling of missing data should be implemented, as well as statistical correction of
multiple comparisons. The latter is especially useful when analyzing a group of biomarkers,
which usually perform better than individual ones [167,169].

6.2. Assay Development and Analytical Validation

After a potential cancer biomarker (or a biomarker signature) has been identified, an assay
is developed to detect or quantify the biomarker in a patient specimen. A technical protocol
must be specified, including sample collection, processing, and storage procedures [170].

The next step is to establish whether the selected biomarker assay can detect or measure
what it is intended to detect or measure, which is called analytical validation. It is defined as a
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process to establish that the performance characteristics of the assay are acceptable in terms of
its analytical sensitivity, specificity, accuracy, and precision, which includes repeatability and
reproducibility [170]. Definitions of these terms are shown in Table 4.

Table 4. Definitions of terms assessed in analytical validation, according to References [171,172].

Term Definition

Analytical Sensitivity The smallest concentration of a substance in a biological specimen that can be reliably
measured by an analytical procedure

Analytical Specificity The ability of an assay to measure the specific substance (intended target), rather than
others, in a biological specimen

Analytical Accuracy
The closeness of agreement between the value which is accepted either as a conventional
true value or an accepted reference value and the value found. Usually, there is a
comparison with another measurement technique

Analytical Repeatability
A measure of the extent to which a test conducted multiple times on the same subject, in the
same laboratory, using the same equipment, by the same operator, over a short period of
time, gives the same result

Analytical Reproducibility
A measure of the extent to which a test conducted multiple times in different laboratories,
using different equipment, by different operators, or over different periods of time, gives
comparable results

6.3. Clinical Validation

Clinical validation is defined as a process to establish that the biomarker (through its
assay) can acceptably identify, measure, or predict the relevant clinical concept [170]; that is,
the assay reliably divides the population of interest into two or more groups of individuals
that have significant differences [173]. There is not necessarily evidence that the biomarker
improves clinical care [174].

The performance of the biomarker is estimated in terms of diagnostic sensitivity,
diagnostic specificity, positive predictive value (PPV) and negative predictive value (NPV),
receiver operating characteristics (ROC) curve, and area under the ROC curve (AUCROC)
(Table 5). Diagnostic sensitivity and specificity terms are distinct from the previously
mentioned analytical terms, e.g., high analytical sensitivity does not necessarily correlate
with acceptable diagnostic sensitivity [172]. It is generally accepted that a good biomarker
should have values of diagnostic sensitivity and specificity of at least 90% and AUC
values higher than 75% (values of AUC above 90% would correspond to an excellent
biomarker) [175,176]. However, for clinicians, PPV and NPV represent more interesting
probabilities than diagnostic sensitivity and specificity. PPV is the proportion of individuals
that are positive among all the test-positive individuals, and NPV is the proportion of
individuals that are negative among all the test-negative individuals.

Clinical validation of a cancer biomarker usually needs external validation with an
independent set of samples, entirely different from the one used in the discovery step. This
can be performed either in a retrospective or prospective study [164,167].
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Table 5. Definitions of terms assessed in clinical validation, according to References [167,171,172,175].

Term Definition

Diagnostic Sensitivity

The measure of how often a binary biomarker test correctly indicates the
presence of a particular characteristic in individuals that truly have the
characteristic. Biomarker sensitivity is the number of true positive results
divided by the number of true-positive plus false-negative results.

Diagnostic Specificity

The measure of how often a binary biomarker test correctly indicates the absence
of a particular characteristic in individuals who truly do not have the
characteristic. Biomarker specificity is the number of true-negative results
divided by the number of true-negative plus false-positive results.

Positive predictive value

The measure of how often a binary biomarker test correctly indicates the
presence of a particular characteristic in individuals that have a positive test
result. Biomarker positive predictive value is the number of true positive results
divided by the number of true-positive plus false-positive results.

Negative predictive value

The measure of how often a binary biomarker test correctly indicates the absence
of a particular characteristic in individuals that have a negative test result.
Biomarker negative predictive value is the number of true negative results
divided by the number of true-negative plus false-negative results.

Receiver operating characteristics (ROC) curve
Plot showing the relationship between sensitivity (true positive) and 1-specificity
(true negative). It is a graphical way of describing likelihood ratios at various
values of the biomarker test.

Area under the ROC curve (AUCROC)
The ability of a binary biomarker to distinguish two or more groups of
individuals. It is a measure of discrimination. Values range from 0 to 1, and
1 corresponds to perfect discriminative power.

6.4. Clinical Utility

A cancer biomarker must have high levels of evidence of clinical utility, besides analyt-
ical and clinical validity, if it is meant to be applied to routine practice to guide healthcare.
The clinical utility of a cancer biomarker is the demonstration that the use of the biomarker
in an individual will lead to a net improvement in his/her health outcome (or to a decrease
in treatment toxicity or healthcare costs) compared with that of an individual whose care
is managed without the use of that biomarker [171,173]. Therefore, the outcome benefit
of using the biomarker must be clinically and/or financially meaningful. Factors to be
considered to determine the clinical utility of a cancer biomarker are extensively addressed
in the [173] review. It is important to assess both the effectiveness of the biomarker and the
benefit-to-risk ratio.

The assessment of clinical utility usually requires a prospective clinical trial or a
prospective–retrospective study with a completely independent dataset and performing a
controlled comparison with standard options of clinical management [173].

6.5. Clinical Implementation

Some key aspects of clinical implementation of a cancer biomarker are regulatory
approval by authorities (e.g., FDA or European Medicines Agency), commercialization,
health insurance coverage, and incorporation into clinical practice guidelines [164]. These
factors are highly dependent on each national health system and particular national reg-
ulations. Moreover, regulatory processes may be different if the biomarker assay is an
in vitro diagnostic device or a laboratory-developed test [164]. Finally, acceptability to
physicians and patients is also essential when implementing a biomarker assay in the clinic.
Moreover, healthcare providers should know what biomarker assay to use, when, and how
to interpret the results to take advantage of the full potential of the biomarker. Therefore,
good clinical guidelines are critical and must be updated regularly. Equally important is
the need that the healthcare facilities are equipped with the appropriate infrastructure for
efficient sample collection and handling, as well as testing, if no subcontract is applied.
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Big challenges remain in the process of cancer biomarker development, especially the
need to generate high levels of evidence of a cancer biomarker value. Recently, Parker
et al. [177] performed the first extensive analysis of the outcomes of cancer biomarker use.
Interestingly, they found statistical evidence that biomarker usage has a substantial clinical
benefit in cancer patients, even when analyzing biomarkers not yet approved by regulatory
authorities. However, Ou et al. [167] “urge oncologists to resist the temptation of adopting
unvalidated biomarker findings into practice”. Similarly, Dr. Hayes [178] expressed his
concern about biomarker assays not approved by regulatory agencies but extensively used,
assuming accuracy and reliability. He often says, “a bad tumor biomarker test is as bad
as a bad drug”. Other authors propose what is called an adaptive assessment approach
for cancer screening biomarkers based on new high-throughput technologies [137]. In
this case, after condensed randomized controlled trials with surrogate endpoints, there
would be conditional approval by regulatory authorities and patient access to the screening
intervention. Then trials would continue with the definitive endpoint generating more
evidence, which would lead to final approval or disapproval. The objection to this approach
is that patients would be exposed to the risks associated with premature biomarker test
application [137].

In summary, a good cancer biomarker should fulfill all the previously mentioned
requirements (Figure 2). Moreover, an ideal biomarker assay should be rapid, preferably
binary, easily measurable in an accessible biological specimen, easily adaptable to routine
clinical practice, and with a short processing time [167]. Unfortunately, up to now, very
few cancer biomarkers, out of all promising biomarkers that have been discovered, have
satisfied these rigorous characteristics and therefore have been approved by regulatory
agencies. Major impediments in the confirmation of claimed discovered biomarkers and
translation to the clinic are, among others, (1) the lack of standardization methods in sample
collection, handling, and storage; and (2) the lack of large sample sizes for validation trials,
causing a lack of statistical power [179]. These aspects could be overcome by collaborative
approaches with multidisciplinary teams involving industry and science, with experts in
clinics, biology, epidemiology, statistics, regulation, and healthcare economics [167,179].

7. Conclusions and Future Perspectives

Cancer cells undergo multiple changes, and these alterations have been used for
decades as cancer biomarkers, mainly tested in tumor tissue. Recent research in the cancer
biomarker field has helped in the development of new DNA, RNA, and protein-based
cancer biomarkers that can be detected from easily available body fluids. NGS has opened
up possibilities for analyzing all cancer-associated genetic alterations in a single assay.
Moreover, increased benefits of including analysis of both germline and somatic mutations
in a single panel are being recognized for precision oncology. However, most NGS-based
tests are optimized for panel, sequencing platform, and site. In addition, although high-
throughput transcriptomic and proteomic studies have identified new candidate cancer
biomarkers, only very few have been clinically implemented. The biggest challenge in
cancer biomarker detection from body fluids is their very low concentration. To overcome
this, highly sensitive detection technologies are being developed. For example, nanoparti-
cles with a high surface-to-volume ratio make it possible to attach different molecules to
their surface; this, combined with sensor technology, for signal amplification and detection,
offers opportunities for the development of more sensitive cancer biomarkers from the body
fluids. Finally, it is important to consider all the steps needed to develop a new biomarker.
Before clinical implementation, requirements related to analytical and clinical validation, as
well as clinical utility, must be fulfilled in order to obtain the necessary regulatory approval
by authorities.
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