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Abstract: Lipases are efficient enzymes with promising applications in the nutraceutical and food
industry, as they can offer high yields, pure products under achievable reaction conditions, and
are an environmentally friendly option. This review addresses the production of high-value-added
compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant
and antimicrobial agents, as well as structured lipids that offer specific functional properties that do
not exist in nature, with important applications in different food products, and pharmaceuticals. In
addition, the most recent successful cases of reactions with lipases to produce modified compounds
for food and nutraceuticals are reported.

Keywords: lipases; high-value compounds; antioxidant; flavors; structured lipids; food; nutraceutical
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1. Bioactives, Nutraceuticals, and Functional Foods Update

In recent years, consumers have been increasingly interested in so-called functional
foods and nutraceuticals. The concept of functional food was first introduced in Japan and
is claimed to promote health and well-being beyond its nutritive properties [1]. Similarly,
“bioactives” are nutritive substances that have a favorable impact on human health [1,2].
The bioactive compounds that are extracted from the original food and maintain their
beneficial properties for health are called nutraceuticals [2]. In the nutraceutical market,
lipases represent a great tool, and their economic cost is relevant because with added use in
2020, they were valued at USD 585.56 million. It is expected that by 2028 it will reach USD
961.85 million, at a compound annual growth rate (CAGR) of 6.4% from 2021 to 2028 [3].

The definitions of “functional foods” vary from place to place. In the USA, the Institute
of Food Technologists [4] defined functional foods as foods and food components that
provide a health benefit beyond basic nutrition for the intended population [5]. In Japan, the
term “Food with Health Claims” (FHC) is used instead and refers to foods that comply with
the specifications and standards established by the Ministry of Health, Labor, and Welfare
and are labeled with certain nutritional or health functions. In Europe, the European
Commission Concerted Action on Functional Food Science in Europe (FUFOSE) published
a consensus concept that states that a food is “functional” if it is satisfactorily demonstrated
to beneficially affect one or more target functions in the body, beyond adequate nutritional
effects, in a way that is relevant to either an improved state of health, well-being or
reduction of disease risk [6]. Subsequently, the European Food Safety Authority (EFSA)
adopted regulations about health claims that state, suggest, or imply that a relationship
exists between a food category, a food, or one of its constituents [7].
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The current awareness of the population toward the consumption of functional foods
and nutraceutical products demands that they provide not only nutrition but also functional
properties and benefits to health.

2. Lipases as Biocatalysts in the Food and Nutraceutical Industry

In the search for alternatives to improve the production of food and nutraceutical
supplements, including omics, biotechnology has provided tools to achieve and cover
the requirements demanded by legislation and consumers [8]. One way to produce
and improve such compounds is by using biocatalysts. Lipases are widely used in the
food industry [9,10]. Lipases (triacylglycerol hydrolases EC 3.1. 1.3) play a crucial role
in numerous industrial food processes [11,12] because they participate in reactions that
improve product quality and provide greater stability, solubility, durability, and better
organoleptic characteristics [10,13,14].

2.1. Lipase Characteristics

These enzymes can hydrolyze triglycerides to obtain free fatty acids, monoacylglyc-
erols (MAGs), diacylglycerols (DAGs), and glycerol; on the other hand, they can synthesize
new products in organic media by esterification, transesterification, and aminolysis mech-
anisms (Figure 1) [15,16]. Lipases have a highly conserved catalytic triad comprising
serine as a nucleophile, an aspartate/glutamate as an acidic residue, and histidine. In
their active conformation, lipases present in their active center a group of hydrophobic
residues arranged around the catalytic serine that constitute an electrophilic region known
as an oxyanion cavity. Lipases are also characterized by the presence of disulfide bridges
that give them stability and are critical for their catalytic activity [16]. Some lipases also
have a structural feature covering the active site, called the “lid,” that opens at hydropho-
bic/hydrophilic interphases. Ancient classifications denoted esterases as lipolytic enzymes
lacking a lid. However, because some lipases, such as Candida antarctica lipase B (CALB),
lack the lid, an alternative classification has been proposed [17].
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Lipases are characterized by maintaining their activity and high production in non-
aqueous media [18], high production, and stability at pH ranges and do not require cofac-
tors. According to their substrate specificity, lipases can be chemoselective, regioselective,
or stereoselective. The first lipase type can selectively catalyze a reaction. The second type
catalyzes a reaction specifically with one of the triglyceride positions (sn-1,3 regioselective,
sn-2 regioselective, or nonregioselective). Additionally, the third type catalyzes reactions
selecting only one of the stereoisomers from a mixture of enantiomers [10,16].

2.2. Sources and Tools to Improve Lipase-Catalyzed Reactions

Lipases are ubiquitous enzymes produced by various organisms, including microor-
ganisms, plants, and animals [12,19–24]. Because of the increased commercial interest in
these proteins in the food and nutraceutical industry, the use of recombinant production
technology is critical.

The productivity of lipase production bioprocesses has been increasing, reducing the
cost of enzymes by using cell factories for the heterologous production of lipases. Between
them, Komogataella phaffi (P. pastoris) is one of the most common cell factories used [25].

Lipases have been improved using natural evolution techniques, protein engineering,
bioinformatics design, directed evolution, saturation mutagenesis, site-directed mutage-
nesis, and DNA shuffling [26]. However, in the food industry, the native form is often
preferred (Figure 2).
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Table 1 shows some microbial lipases that are commercially available and immobilized
on different supports to enhance their efficiency and reuse [27–30]. Most commercially
important lipase-producing yeasts belong to the class of ascomycetes, such as Candida sp.
and Rhizopus sp. Novozymes® (Bagsværd, Denmark), DuPont® (Wilmington, DE, USA),
Roche® (Basel, Switzerland), and Amano (Yokohama, Japan) are the main companies that
produce and commercialize lipases [31].

Other important bottlenecks of the free enzymes in general and lipases are the low
operational stability in synthesis reactions using solvents and substrates such as alcohols
and organic acids, the high cost of the enzymes, and the need to reuse the biocatalyst
minimizing product separation.
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Table 1. Sources of lipases with applications in food and nutraceutical industry.

Source/Commercial Name Type Application/Products Reference

Candida antarctica lipase B
(CALB)/Novozym 435/Lipozyme 435 Recombinant Flavor esters [32]

Candida rugosa Wild type Glycerides, production flavor compounds [33,34]

Termomyces lanuginosus/Lipozyme TL IM Engineered Food formulation, Interesterification of fats and oils [35,36]

Aspergillus sp. Wild type Flavor and fragance [37]

Aspergillus oryzae Wild type Interesterification of fats and oils [36]

Geotrichum candidum Wild type Oil with increased unsaturation [36]

Rhizomucor miehei/Lipozyme RM IM Recombinant

Enhancing fruit fragrance [38]

Modification of the amount and composition of
volatile components in bovine milk [39]

Ras Cheese Flavor Concentrate (RCFC) [40]

Rhizopus oryzae Wild type Human Milk Fat Substitutes [41]

Lactococcus chungangensis Wild type Flavoring in milk, cream cheese, yogurt and butter. [42]

Lactobacillus plantarum Wild type Fermented food and cheese [43,44]

Staphylococcus epidermidis Wild type Flavor-compound production [45]

Ophiostoma piceae Wild type Flavor-compound production [46]

Meyerozyma guilliermondii Wild type Feed industry [47]

Different approaches are being applied (Figure 2) to solve these drawbacks. The use
of enzyme immobilization methods normally increases biocatalyst stability, specificity and
selectivity, allows the reutilization of the enzyme, and minimizes downstream processes,
and has been reflected in the number of articles and patents published in this field [48].

Advances in the study of lipases seek to develop more efficient processes and, for this
purpose, their stability under certain temperatures, solvents, and pH conditions, among
others. The development of a specific reaction medium to increase the activity, stability,
and productivity of biocatalysts has been a recurring topic of research over the last three
decades. The remarkable properties and useful applications of enzymes, particularly
lipases, have inspired various strategies to improve their performance in near-anhydrous
media. Therefore, medium engineering can be used to modulate the activity and selectivity
of lipase-catalyzed reactions [49].

Ionic liquids (ILs) are molten salts that originate from the association of organic cations
and organic/inorganic anions. The use of ILs as solvents in biocatalysis processes has
recently received increased attention, and substantial progress has been made, particularly
in lipase-catalyzed reactions. ILs have the advantages of low volatility, low inflammability,
and a low melting point [50]. Deep eutectic solvents [51] are eutectic mixtures of salts and
hydrogen bond donors with sufficiently low melting points to act as solvents. DESs were
demonstrated to be a viable alternative to traditional organic solvents and ILs in many
biocatalytic processes, particularly for lipases. DESs have additional advantages over ILs
in simple preparation and lower costs because of their renewable and readily available
raw materials [52].

3. Established Applications of Lipases in the Food and Nutraceutical Industry

Lipases in the food industry and nutraceutical production can be used in aqueous
extracts and purified, immobilized, or whole cells to exploit the available raw material and
increase their economic and nutritional value. These enzymes can be used to modify fats
and oils and synthesize structured lipids or antioxidants with increased antioxidant power
or modified lipophilicity, flavors, and aromas [53,54].
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3.1. Fats and Oils

Patent searches suggest that lipase has an impressive number of applications in the
modification of fats and oils and enhancement of flavor in food products—e.g., cheese,
butter, milk, and chocolate [55]. Some applications of lipases in dairy products and the
synthesis of structured lipids are described in the following sections.

3.1.1. Dairy Products

In the dairy sector, lipases are used to provide desirable aromatic characteristics to
cheddar, provolone, and Romano cheeses conferred by these free short-chain fatty acids
generated in the hydrolysis of fats [40,56]. Recent advances have allowed the biosynthesis
of short-chain ethyl esters with fruity notes in whole milk by coupling ethanolic fermenta-
tion with transesterification using the commercial lipase Palatase. For fermentation, the
following microorganisms were used: Kluyveromyces marxianus, Lactobacillus fermentum,
and L. Paracasei. Many esters were obtained in ethanolic fermentation using K. marxianus
yeast and lipase. This method of milk fermentation and lipase addition represents a new
alternative for flavoring milk [57].

3.1.2. Structured Lipids

In recent years, structured lipids have become a topic of great importance in the food
and nutraceutical industry because technological advances allow a generation of products
of better quality and that better meet consumer demands. Within this innovation in food
processes, structured lipids (SLs) have been generated [58,59].

Structured lipids are fats and oils whose fatty acid composition has been modified
for nutritional purposes to achieve greater bioavailability because they are not naturally
occurring. In several cases, lipids have certain limitations of use in their original state
because of the specific composition of their fatty acids [60].

In other cases, even when they are available as raw materials, they cannot always meet
nutritional demand, e.g., restrictions on the daily intake of saturated fatty acids and trans
fatty acids have been increased because they are related to cardiovascular diseases [61,62].
Another clear example would be access to cocoa butter; its availability may be limited
by external factors such as climate change, fluctuating prices, and availability [63,64].
Therefore, the search for alternatives to address these major issues is justified.

In principle, deciding which type of fatty acids to use and in which position of the
molecule to restructure is possible by obtaining structured lipids [58]. For this procedure,
the use of stereospecific enzymes allows new lipids with a stable structure to be obtained.
Lipases can hydrolyze a triglyceride in an aqueous medium, but they also catalyze the bind-
ing of a fatty acid to a glycerol molecule in an anhydrous reaction medium [65]. Recently,
the use of immobilized biocatalysts has minimized the production costs of structured lipids
through reusing them in successive batches [58].

With all the knowledge generated on the subject, we can generate these products for
nutritional, pharmacological, or industrial use, such as breast milk substitutes, cocoa butter,
and low-calorie or enriched triacylglycerols [41,58,66,67].

In the case of low-calorie triacylglycerols, the energy equivalents are reduced. Typi-
cally, these compounds are used to control poor fatty acid absorption and other metabolic
problems. They are characterized based on triglycerides (TAGs) of this nature containing
short or medium-chain fatty acids in the sn-1,3 positions; in the sn-2 position, they have a
long-chain fatty acid esterified; therefore, the absorption of external fatty acids is released
and metabolized more rapidly [68]. They can be synthesized by acidolysis of a TAG or oil
containing long-chain fatty acids with one of the medium-chain fatty acids or by interester-
ification of a TAG or oil with methyl or ethyl esters. In the lipase-catalyzed synthesis of SL,
ethyl esters are preferred as acyl donors because they avoid the presence of high amounts of
free fatty acids (FFAs) in the reaction medium; in food production, methanol poses toxicity
risks [69,70]. In this context, the production of low-calorie triacylglycerols was achieved
using as raw material cheap oils extracted from agro-food residues, such as spent coffee
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grounds and olive pomace, and as catalysts, the regioselective lipase sn-1,3 from R. oryzae,
which was immobilized on magnetic nanoparticles. This enzyme was shown to be a highly
promising biocatalyst to produce structured lipids for both oils, presenting even higher
activity than the commercial immobilized T. lanuginosus lipase (Lipozyme TL IM). For the
two oils evaluated, a preference for acidolysis was observed, in addition to high stability
when reused in acidolysis and interesterification of olive pomace oil [67].

However, SLs are an option to generate products that partially or totally substitute
human milk in certain cases because, in terms of the fatty acid composition and distribution,
they are manufactured to improve fat and mineral absorption, promote softer stools, and
reduce constipation in infants [58,71,72].

Human milk fat substitute (HMFS) is synthesized by enzymatic interesterification of
vegetable oils, animal fats, or oil mixtures, commonly using an immobilized regioselective
lipase in either solvent or solvent-free media [70,73].

A recently reported lipase/acyltransferase from C. parapsilosis was used as a biocatalyst
to synthesize HMFS by interesterification of ethyl oleate with tripalmitin in solvent-free
media representing a new alternative to commercial immobilized lipases [70]. Because
human milk is one of the most complex mixtures of natural lipids, studies using this
approach will continue to advance steadily.

3.2. Vitamin Esters

Food contains components known as bioactive compounds that, when consumed,
provide energy to the body, promote good health and minimize the risk of disease. The
bioactive compounds that are extracted from the original food and maintain their bene-
ficial properties for health are called nutraceuticals [2]. For consumption and consumer
acceptance, the functionality of bioactive compounds, safety, and nontoxicity must be
guaranteed beforehand [74]. Highlighting a representative example, antioxidants play
a crucial role in the food industry because, during food processing, the matrices used
mostly incorporate lipids as emulsifiers or additives, making lipid oxidation a challenge to
consider [75–78]. Lipid oxidation involves the attack of molecular oxygen on unsaturated
fat molecules, which can generate undesirable volatile flavoring compounds that contribute
to rancidity [79]. Even when quality controls are followed during food product preparation
and packaging, the rate of lipid oxidation is influenced by several endogenous and exoge-
nous parameters, including oxygen, light metals, and polyunsaturated lipids, primarily
because the latter are prone to oxidation [80,81]. Antioxidants are used to mitigate this
effect, meaning molecules that reduce, neutralize, or deplete molecular oxygen, remove
pro-oxidative metal ions, and scavenge reactive oxygen species (ROS), hydrogen peroxide
or superoxide anion radicals [82–85].

Antioxidants occur naturally, and the best known are ascorbic acid (vitamin C), to-
copherols (vitamin E), carotenoids, and thiols [86]. During their absorption in the body,
they complement the defense action as they help to slow down the use of endogenous
antioxidants and improve the body’s ability to avoid oxidative stress [82,87–90]. The lack of
action of endogenous antioxidants, either by diminution or stress, is related to the modifi-
cation of lipid membrane components [91], resulting in neurodegenerative, cardiovascular,
inflammatory diseases, diabetes, male infertility, and cancers of the breast, lung, liver, colon,
prostate, ovary and brain [87,92–97]. The excessive presence of reactive oxygen species
promotes the expression of oncogenic genes [93]. Antioxidants, as nutraceuticals, play
a key role in the nutritional base because of their close relationship with biological pro-
cesses; thus, skin benefits are also attributed to them for delaying aging [98–100]. Although
the concept of nutraceuticals is not new, the trend to use antioxidants with biochemi-
cal properties of high stability and biocompatibility as a complementary ingredient has
become interesting [84,101,102].

In this context, the synthesis of vitamin derivatives obtained with biocatalysts is a tool
that seems to minimize the technical problems of chemical synthesis or extraction from
natural sources and is an ecological and environmentally friendly alternative [74,103–105].
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3.2.1. Retinol (Vitamin A) Esters

Retinol is a vitamin A derivative found in foods (fish, dairy products, and meats).
This molecule has attracted increased attention in the food and cosmetic industry for all
the benefits of its consumption because it controls mitochondrial energy homeostasis by
functioning as an electron carrier, maintains visual health, minimizes skin aging, promotes
bone growth, and strengthens the immune system; thus, vitamin A plays a crucial role
in the health of the organism [106,107]. This process involves a series of several steps,
which generate various byproducts; thus, achieving good quality of the final product may
require extensive time, derive waste pollutants to the environment and make the disposal
of chemical catalysts difficult [108]. This process involves a series of several steps, which
generate various byproducts; thus, achieving good quality of the final product may require
too much time, deposit too many waste pollutants in the environment, and create difficult
disposal of the chemical catalysts [109,110]. Recently, immobilized lipase (Novozym 435)
was successfully employed as a biocatalyst to generate a retinol derivative (retinol laurate).
The process was previously optimized using biochemical process modeling and prediction
tools (artificial neural network, ANN) and ultrasonic systems. The reaction, compared
with the traditional method, takes less time, and the final product shows higher stability to
oxidation; thus, it could be used as an additive in human food supplements [110].

3.2.2. Fatty Acid Esters of L-Ascorbic Acid (Vitamin C)

Ascorbic acid (vitamin C) is a water-soluble antioxidant not produced by the human
body. Among its health benefits, some are derived from its antioxidant properties, such as
preventing male infertility and neurodegenerative diseases, in addition to counteracting
the effects of solar radiation, smoke, and environmental pollution [111]. The antioxidant
property of ascorbic acid is due to its ability to donate individual hydrogen atoms and
subsequent formation of monodehydroascorbate (Figure 3), which reacts more rapidly
with radicals than with fully reduced or fully oxidized compounds [112]. The drawback of
degrading drives the use of strategies such as the addition of fatty acids to improve their
stability and physiological and antioxidant activity [113]. These derivatives are formed
by the addition of a donor acyl to the primary alcohol to produce the corresponding 6-O-
ascorbyl ester without interfering with its antioxidant capacity, catalyzed by lipases, and
generating compounds such as ascorbyl palmitate and ascorbyl oleate (Figure 3).
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Another method to improve the stability and physicochemical properties of vitamin C
involve using emulsions and microchannel emulsification, which promote less interaction
of the compound with the oxygen present in the medium and provide greater solubility in
fats [115,116]. However, ascorbyl esters of unsaturated fatty acids possess equally good
properties, such as miscibility in hydrophobic media [117].

Obtaining ascorbic acid derivatives was originally achieved by chemical processes,
which have been migrating to the use of lipases because different solvents can be used in
regioselective reactions, achieving high yields and easier product isolation. Lipases have
been successfully employed to catalyze the synthesis of ascorbyl esters from saturated and
unsaturated free fatty acids, alkyl and vinyl esters, TAGs, and oils as acyl donors. The
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experimental conditions and yields mentioned in the literature to obtain some ascorbic
acid derivatives are shown in Table 2. This type of reaction can also be exploited to
synthesize chalcogen-containing vitamin C derivatives and use CALB to obtain esters
containing differently substituted selenium, sulfur, and tellurium, which are of interest for
their anticancer, antibacterial, and enzyme inhibitory capabilities [118].

Table 2. Summary of enzymatic synthesis of fatty acid esters of vitamin C.

Vitamin
Derivative Acyl Donor Solvent Biocatalyst Reaction

Conditions
Conversion

(%) Reference

L-ascorbyl
palmitate Palmitic acid tert-butyl alcohol

Indigenously
immobilized lipase

PyCal (CALB)

AA:PA molar ratio
1:5; 20 mL

tert-butyl alcohol,
0.6 g of biocatalyst,

60 ◦C (batch)

50

[119]

L-ascorbyl
palmitate Palmitic acid tert-butyl alcohol Novozym 435

AA:PA molar ratio
1:5; 20 mL

tert-butyl alcohol,
0.6 g of biocatalyst,

60 ◦C (batch)

50

L-ascorbyl
palmitate Palmitic acid 2-Methyl-2-butanol

(2M2B) Novozym 435
AA:PA molar ratio

1:8; 12 g/L
biocatalyst; 55 ◦C

81 [114]

One of the widely used lipases for the acylation of L-ascorbic acid is Candida antarctica
lipase B (Novozym 435) because of its good yield and conversion rate (Table 2). However,
the price of immobilized has decreased more than chemical reagents because the processes
of recombinant enzyme production and subsequent processing increase their prices. Dur-
ing the modification of vitamin C, the most used reaction solvents are tertiary alcohols
(e.g., 2-methyl-2-butanol and tert-butyl alcohol).

3.2.3. Tocopherols (Vitamin E) Esters

The term vitamin E refers to a group of fat-soluble compounds that includes α, β, γ,
and δ-tocopherol and α, β, γ, and δ-tocotrienol (Figure 4), among which α-tocopherol has
higher antioxidant activity. In contrast, γ and δ-tocopherols and tocotrienols have higher
cancer preventive but lower systemic properties [120]. Additionally, its effects include
protecting against reactive oxygen species (ROS), reactive nitrogen species (RNS), and
polyunsaturated fatty acid (PUFA) oxidation in the membrane, as well as modulating
signal transduction and enhancing the immune response [121]. Furthermore, vitamin E
can be combined with vitamin C to enhance the immune system, restore the antioxidant
functions of vitamin E, and provide other benefits together [122–124].
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Vitamin E is naturally synthesized only by photosynthetic organisms, so it is mainly
extracted from plants, nuts, and seeds; therefore, to improve the amount and specific
production of α-tocopherol, genetic modifications have been made in crops, such as overex-
pression of the γ-TMT gene that allows the conversion of γ-tocopherol to α-tocopherol [128].
However, once vitamin E has been extracted from crops, it is enriched using vegetable
oil deodorizing distillate processes where lipases such as Lipozyme IM50 (immobilized
sn-1,3-specific lipase from Rhizomucor miehei) are used, with which enrichments close to
50% are achieved [129]. Vitamin E derivatives are a more stable form than their precursor
and can be synthesized chemically [130] or enzymatically, the latter being performed by
lipases (see Table 2). Thus, in commercial products, we can find vitamin E esters in the form
of vitamin E acetate, vitamin E succinate, vitamin E ferulate, vitamin E eicosapentaenoic
acid ester, and vitamin E docosahexaenoic acid ester (Figure 4). The synthesis of these
vitamin E derivatives is affected by factors such as the enzyme used, reaction medium,
water activity, acyl donors, and acyl acceptors employed [125,126,131].

Among the characteristics of α-tocopherol, it has three stereogenic centers at carbons
2, 4”- and 8”- and the RRR-α-tocopherol form is considered the most bioactive of the eight
existing ones (RRR-, RSR-, RRS-, RSS-, SRR-, SSR-, SRS-, and SSS-). However, commercially,
it is found as a mixture of all its stereoisomers in the esterified form (all-rac-α-tocopheryl
acetate), obtained chemically from soybean byproducts [132,133]. For this reason, when
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manufacturing food products with the different stereoisomers of this compound, separa-
tion strategies such as the use of chromatographic methods should be included [134,135].
Currently, some foods, such as meat, are supplemented with vitamin E to improve shelf
life, quality, and nutritional experience [136,137].

3.3. Bakery Products

New requirements in bakery products make the development of new formulations
that conform to what would be green or less harmful labels. In bakery products, lipases
have been successfully applied to improve dough processing, strength, volume, structure,
and softness, decrease stickiness, and increase the quality and shelf life [138,139].

With a focus on the intermediate product of bread, dough plays an indispensable role
in becoming the final product because it is a semisolid foam that is converted into a solid
cellular sponge upon baking so that the mixture of the lipid fraction of wheat, eggs, or
baker’s fat exerts major roles in gas incorporation and its stabilization, which are necessary
to achieve a fluffy product [140].

Although wheat flour contains low levels of lipids, they affect the quality of fresh
bread because they are related to storage duration. Briefly, the studies are directed toward
knowledge of the relationship of the flours or their reformulation by adding lipids from
other sources and their effect on quality.

Recently, lipases have been successfully applied to investigate how endogenous or ex-
ogenous lipids affect bread making. Lipases hydrolyze galactolipids, and their presence in
the dough improves bread volume. The flour was defatted and subsequently reconstituted
by adding different fractions of these lipids to determine the relationship of endogenous
lipids in wheat flour and their impact on bread volume. The hydrolysis of endogenous
lipids and their enzymatically released products are responsible for the positive effects
on bread [138,141].

To understand the role of endogenous wheat lipids on the evolution of bread crumb
firmness during storage, three lipases—Lipopan F, Lecitase Ultra, and Lipolase—were
evaluated, and sodium lactylate stearoyl surfactant (SSL) was used as a surfactant. By
forming amylose-lipid (AM-L) inclusion complexes, the surfactants retarded bread crumb
firming. Some endogenous wheat lipids have surfactant-like structures, so the use of
enzymes in bread making would increase the level of free fatty acids that allow the for-
mation of amylose-lipid complexes. The evaluation of three enzymes showed that lipases
and SSL similarly affected the texture of breadcrumbs during storage. However, after
seven days of storage, the sample containing Lipolase significantly reduced amylopectin
retrogradation, evidencing the importance of the formation of amylose-lipid inclusion
complexes. Therefore, lipases have been proposed as alternatives to surfactants because
they produce molecules in situ that possess hydrophilic and hydrophobic structures like
those of surfactants [141,142].

3.4. Flavors and Fragances

In the world market, a high demand exists for fragrance and flavor esters for different
industries, including food, cosmetics, and pharma, as ingredients of many products (food,
beverages, candies, jellies, jams, wines, dairy products, perfumes, body lotions, shampoos,
and other toiletries) [143,144]. The flavor and fragrance market was valued at $28 billion
in 2019 and is expected to expand at a compound annual growth rate (CAGR) of 4.7% to
$35 billion from 2021 to 2027 [145]. Another characteristic is that many of these products
are chiral [146]. This potential chiral product can be consulted in the database [147].

Many of these products are obtained after extraction from their natural sources (plants,
fruits, and flowers). However, the low concentration of these products in their natu-
ral sources, climatic dependence of the source, and low yield and high production cost
of the extraction and purification phases make it challenging to assume an increased
world demand [143].



Catalysts 2022, 12, 960 11 of 24

A wide range of flavors and fragrances can be obtained by chemical synthesis, solving
the of raw material producing the same products at a lower cost. However, these products
have not been labeled as natural according to European legislation (EC 1334/2008), and
obtaining pure chiral compounds is challenging. In this context, the substitution of a
chemical using biotechnology (microbial biosynthesis or applied biocatalysis) is being
widely explored because the products can be labeled as natural if the employed reactants
are labeled as natural. The resolution of chiral compounds is generally higher with no
problems in selectivity, reaching higher yields and with an easier downstream due to the
absence of undesirable side reactions. However, the operational conditions (P, T) are softer
than those of the chemical approach. A marketplace of bioflavors is actually 100–500 $/kg,
and more than 100 flavor products are commercialized [148]. In 2019, the global biotech
flavor market was close to 0.5 billion US$, approximately 1.5% of the estimated global
market in the same year and is expected to grow at a compound annual growth rate (CAGR)
of 9.3% from 2020 to 2027. Similarly, biotech vanillin represents ca. 3% of the total vanillin
market, and it is speculated to increase at a CAGR exceeding 13% by 2023 [149].

Thus, the significant demand for these esters has boosted the need for greener produc-
tion routes and food safety aspects for human consumption, making enzymatic synthesis
a favorable alternative to chemical catalysts [150,151]. Approximately 4000 enzymes are
known, and close to 200 have been mainly commercialized for stereoselective organic
synthesis and the biotechnological production of flavor compounds [148]. Between them,
lipases are the most applied enzyme family to produce flavor and fragrances. Although
their natural biocatalysis is the hydrolysis of lipids to produce free fatty acids, glycerol,
or other alcohols, they also work in reactions of esterification and trans- and interester-
ification and the transfer of acyl groups from esters to other nucleophiles (e.g., amines
and thiols) [143,152].

3.4.1. Short-Chain Fatty Acids and Isoamyl Alcohol Esters

Among the critical fragrance compounds produced via the esterification of short-chain
alcohols and short-chain fatty acids, isoamyl alcohol esters, such as isoamyl butyrate and
acetate, can be found. These esters serve as flavoring agents in numerous industries because
of their characteristic fruity banana and intense banana flavor, respectively [153–156].
However, the use of short-chain fatty acids, being more hydrophilic, lowers the pH of
the microenvironment and may lead to enzyme inactivation, while the use of short-chain
alcohols tends to strip the essential water from the enzyme and serves as a dead-end
inhibitor, making the enzymatic synthesis of esters challenging. Additionally, the use of
isoamyl alcohol, which has a branched structure, exerts a higher steric hindrance on enzyme
activity. Therefore, isoamyl alcohol might serve as an interesting model for understanding
esterification with such acids and alcohols [157,158].

Isoamyl acetate (IAAC) has been produced in batch and continuous packed bed
columns using porcine pancreatic lipase and Candida rugose lipase immobilized on chitosan
and Ca-Ag chitosan. Operational conditions were optimized, and the amount of IAAC
was close to ten times higher in a batch than in a continuous reactor [159]. IAAC was also
obtained from the acylation of isoamyl alcohol with acetic anhydride by Candida antarctica B
(CALB; Novozym 435) in ionic liquids in a continuously operated miniaturized enzymatic
packed bed reactor. Up to a 92% isoamyl alcohol conversion with a volumetric productivity
of 61 mmol L−1 min−1 was obtained. Interestingly, no decrease in productivity was
observed 14 days after the operation [160]. Applying the same reaction and immobilized
CALB from Sigma-Aldrich, the reaction was also made successfully in a miniaturized
intensified reactor, obtaining a concentration of IAAC close to 1.2 mol L−1 [161]. In addition
to using biocatalysis as an environmentally friendly approach for ester production, the use
of byproducts as substrates for flavor ester production has emerged as a relevant way to
support circular economy principles and reduce waste generation [162].

During large-scale bioethanol synthesis for fuel or food production, fusel oil is gen-
erated, a byproduct obtained in the fermentation and distillation steps, and removed
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during alcohol rectification. This byproduct accounts for approximately 0.25% by volume
of bioethanol [163]. The quality and amount of generated fusel oil are affected by the pro-
cessing parameters, such as the mash preparation, fermentation conditions, and distillation
process. Higher alcohols (e.g., isoamyl alcohol, isobutanol, and butanol), water, aldehydes,
and esters are the main compounds found in fusel oil samples [4,164]. Due to its intense
odor, the use of fusel oil as a solvent is limited, although it has been used as a foam coating
or added into diesel or gasoline to increase the cetane index and octane number. However,
because of its high alcohol content (specifically isoamyl alcohol), it is attractive as a low-cost
substrate for esterification and the production of various aromatic esters [164,165].

IAAC was produced from fusel oil in supercritical carbon dioxide (SC-CO2) using
immobilized CALB (Lipozyme 435), demonstrating that acetic anhydride was a better acyl
donor than ethyl acetate and acetic acid [21] in terms of IAAC conversion and specific pro-
ductivity [4]. The same authors tested the same strategy using CALB (Novozyme 435) in a
continuous packed bed reactor, obtaining the highest conversion at the lowest substrate rate.
Additionally, Novozyme 435 maintained its stability and activity during the bioprocess [4].

IAAC was also obtained from the transesterification reaction of isoamyl alcohol and
ethyl acetate using Aspergillus oryzae lipase obtained by fermentation and immobilized on
sodium alginate with in situ ethanol removal. Under optimal conditions, conversion of
IAAC of 89.55% and a yield ethanol extraction of 69.60% were obtained [166].

The production of isoamyl butyrate (IABU) from fusel oil and butyric acid in hexane
using Lipozyme TL IM was also optimized, obtaining a conversion close to 96% in 24 h,
a concentration of IABU of 1.64 mol L−1, and a productivity of 0.19 mmol ester g−1

mixture h−1 [164].
Another example of the production of IABU from fusel oil and butyric acid using

cyclohexane as a solvent was described using a covalently immobilized heterologous Rhizo-
pus oryzae lipase. The enzyme showed better performance (1.8 times higher yield) in the
synthesis of IABU than IAAC. The results were scaled up to a 150 mL reactor, and no differ-
ences were observed in the yield, initial reaction rate, operational stability, and productivity
using commercial isoamyl alcohol and fusel oil. Additionally, the structural isomers of
isoamyl alcohol were evaluated. In conclusion, isoamyl ester industrial production has
been proposed [167].

The esterification of fusel oil alcohols by butyric acid has also been reported with
pancreatic lipase and Candida rugosa lipase with high yield under the optimized conditions
of temperature, time, and acid/alcohol ratio [168].

Lipases are also used in the biocatalytic production of natural Green Leaf Volatiles
(GLVs), which are aroma compounds associated with the green note odor. GLVs are widely
used as aromas and food additives in the cosmetics and perfumes industry as well as in the
food industry [169].

These examples indicate the successful synthesis of IAAC from fusel oil in a two-phase
system, demonstrating that it is a viable alternative to pure isoamyl alcohol and an example
of a circular economy reducing the waste generated from ethanol production plants.

The use of lipase-displaying microorganism whole-cell biocatalysts is a promising
alternative to classical immobilization supports with the advantage of low-cost preparation
and, in some cases, high enzymatic activity [170]. CALB-displaying K. phaffii cells have
been tested in the synthesis of a set of flavors esters, between them IAAC and IABU, and
scaled up to a 5 L batch enzymatic bioreactor with conversions higher than 95% after four
hours of reaction, with excellent operational stability. After ten batches, only an activity
loss of 10% was detected in the presence of solvents [170].

A novel lipase obtained from metagenomics studies [171] is another example of a
successful approach using whole cells—in this case, in the cell factory E. coli—to produce
isoamyl acetate in a fluidized bed reactor with a reutilization of at least five cycles [172].
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3.4.2. Other Flavors and Alternative Reaction Systems

Other flavors, such as ethyl butyrate, are the major component of many fruit flavors,
such as pineapple, passion fruit, and strawberry [144]. The esterification was successfully
implemented using Rhizopus oryzae lipase as a biocatalyst immobilized onto different
supports. The best results were obtained with an acid:alcohol ratio of 1.45, and the reaction
rate increased with increasing butyric acid concentration [173,174]. However, too high
concentrations of butyric acid deactivated the enzyme [175].

Another problem concerns the difference in solubility between the substrates. En-
zymatic bioreaction is usually performed in an aqueous environment; however, many
flavor precursors and flavor products are not well soluble in water. Biphasic and al-
ternative systems (aqueous]/organic, solid/gas, supercritical fluids, and ILs) overcome
solubility problems [148].

As an alternative to using an enzymatic approach, the novo synthesis can also produce
a mixture of flavors using the whole metabolic pathways of the microorganism. Using
genetic engineering techniques, encoding specific genes from other microorganisms in cell
factories, such as E. coli, has led to increased production of these compounds [148]. Reviews
in this field have been recently published [149,176]. These natural metabolic routes have
also been implemented in an enzymatic cascade reaction to produce cinnamyl cinnamate
via a three-enzyme cascade incorporating the lipase Novozym 435 and in situ cofactor
regeneration [177]. Additionally, a three-enzyme system (including lipase) to degrade
curcumin to natural vanillin has been proposed [178].

4. Trends in the Use of Lipases in Food and Nutraceuticals
4.1. Phenolic Antioxidants

Phenolic compounds are secondary metabolites mainly extracted from fruits, veg-
etables, and cereals, to which they impart color, flavor, and fragrance [179–181]. These
compounds are mainly classified into flavonoids, phenolic acids, stilbenes, and curcum-
inoids. They help with the control of diseases such as diabetes, obesity, hypertension,
hyperlipidemia, and hyperglycemia, as well as inhibit adipogenesis [182–184].

Despite the benefits of consuming these phenolic compounds, the dose required to
obtain their antioxidant power is limited by their low bioavailability and physiological
stability, explaining why the synthesis of phenol polymers using enzymes such as glucan-
otransferases and lipases has been resorted to [185–187].

The antioxidant activity of phenolic compounds present in foods can occur under
different mechanisms. In the first case, by transferring a hydrogen atom from part of the
phenolic compound to free radicals to be neutralized by a mechanism of transfer of a
single electron from the phenolic compound with which it is left with an odd number of
electrons distributed in the aromatic ring, the free radical forms an energetically stable
spice with an even number of electrons. In the second case, proton transfer occurs from the
phenolic compound to form an anion that subsequently donates an electron to transform
the free radical into a stable molecule, and finally, a third case occurs by transition metal
chelation [188]. However, when phenolic compounds are added to foods, their antioxidant,
antimicrobial, anticarcinogenic, anti-inflammatory, antidiabetic, and antiobesity capacities
are altered, increasing or decreasing them, because of intermolecular interactions with
the macronutrients present. Thus, understanding these changes would allow their ex-
ploitation to improve the quality, stability, organoleptic properties, and shelf life of the
final products [189,190].

Due to their valuable benefits, the industrial demand for antioxidants in different
sectors induces the search for new alternatives that facilitate the availability of these
compounds. Thus, the use of new bioinformatics, molecular, proteomic, and biocatalysis
tools suggests new antioxidant molecules to enhance their nutraceutical benefits [191,192].

The following section discusses cases of enzymatic modification and the synthesis of
antioxidants for their biochemical improvement and benefit using biocatalytic processes to
generate new molecules with nutraceutical prospects.
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As mentioned previously, using lipases to synthesize food additives is a valuable tool
for modifying ester or carboxyl groups. The aim is to improve the organoleptic properties
of the ingredients and their miscibility with lipids, for which a hydrophilic element is
introduced into the ester molecule. With the intervention of lipases through the acylation
process, the structural modification of some flavonoids has been achieved, enhancing their
stability and antioxidant activity; however, recent work has focused on the synthesis of
lipophilic antioxidants [193]. Thus, a new compound called cyanidin-3-O-(dodecanoyl6)
galactoside was obtained, generated after acylating lauric acid with the compound cyanidin-
3-O-galactoside extracted from alpine bearberry (Arctostaphylos alpine L.) and biocatalyzed
by the commercial immobilized enzyme Novozym 435. Modification of this anthocyanin
significantly improved its lipophilicity and thermostability while retaining its original
antioxidant properties [193].

Another case of success by biocatalysis was performed with a natural phenolic acid,
where caffeic acid was esterified by the commercial enzyme Novozym 435 to generate
glyceryl-1-caffeate from ethyl caffeate and glycerol. Esterification of this compound with
decanoic acid using the immobilized enzyme from Thermomyces lanuginosus (TL IM) and
Novozym 435 in the presence of propylene carbonate was selective to monoacylated and
diacylated products, respectively. This ingenious process is based on the low volatility of
the solvent allowing the reaction to be performed under a vacuum and does not require
sieves to remove the water produced. Likewise, the glyceryl caffeate ester products had
greater stability than α-tocopherol in avoiding the oxidation of bulk tuna oil [194].

The search for new antioxidants with high antibacterial power synthesized from poorly
studied precursors generates high expectations in research. For example, the enzymatic
acylation of umbelliferone with different vinyl esters catalyzed with the enzyme Novozym
435 has been investigated for the first time. This allowed the generation of umbelliferone
esters that presented a minimum inhibitory concentration of 1 mM for strains of clinical
interest, such as Staphylococcus aureus (resistant to methicillin and oxacillin) and Klebsiella
pneumoniae; for the Pseudomonas aeruginosa strain, its inhibitory capacity was 0.5 mM [195].

Considering that these improved products present greater solubility in lipid sub-
stances, the prospect of these compounds as additives, antioxidants, and antimicrobials in
different industrial sectors proves to be a real and available alternative.

To improve the bioavailability of a flavonoid, a whole-cell enzyme system, a cell-bound
lipase, and an intracellular enzyme were employed, which, by acylation and hydrolysis,
respectively, allowed the bioconversion of naringin into two lipophilic derivatives: naringin
esters and naringenin. The high antioxidant power of naringin esters was superior to its
precursor, in addition to showing markedly enhanced permeability in human intestinal
Caco-2 cells. However, naringenin is a product that can reduce bitterness in food products;
thus, it has expectations in the industrial sector [54].

Continuing with the acylation mechanism, the antioxidant activity of some pheno-
lipids, such as alkyl ferulate esters generated by biotransformation with lipases, was
improved [51]. This new product showed significant antibacterial properties against Listeria
monocytogenes (0.1 mM inhibitory capacity) and biofilm formation. The possible mechanism
of action of the improved compound was related to the permeability and integrity of cell
envelopes because it caused leakage of some cellular components in the bacteria under
study. The new compound could bind to membrane proteins to disrupt protein activity or
inhibit their synthesis, as well as bind to bacterial DNA and form complexes that affect their
activity. This new compound has prospects in the nutraceutical industry because it can be
employed as an adjuvant to address foodborne infections and biofilms [196]. Modification
of polyphenol stilbenes, such as resveratrol, is another success of lipase. An acylation study
using lipases from Alcaligenes sp. obtained a yield of approximately 70% of a new product
that, after being characterized, was identified as 3-O-acetyl-resveratrol. The generation of
this compound was observed when enzymes from T. lanuginosus and Pseudomonas cepacia
were used. During the kinetic study, formation of the compounds identified as 3,4′-diacetyl-
resveratrol and 3,5,4′-triacetylated in which all phenols were substituted was observed.
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During the development of this study, an increase in temperature from 40 ◦C to 60 ◦C had
a positive effect on the reaction yield; however, catalyst inactivation also occurred. When
evaluating different acyl donors, such as free fatty acids, ethyl esters, and triglycerides,
significant effects were only found with saturated and unsaturated vinyl esters. Addition-
ally, the incorporation of long chains such as stearate was analyzed, achieving yields of up
to 55% of monoesterified compounds at long reaction times, and the formation of di- and
triacetylated compounds was not achieved [197–199].

However, a recent study used lipase from Candida sp. immobilized on hydrophobic-
modified hollow mesoporous silica spheres (HMSS-C8). The catalytic efficiency of the
enzyme was 15 times higher than that of the non-immobilized lipase, and the bioconversion
to resveratrol ester was 98.8%, which was achieved in 2 h, the fastest reaction time recorded
to date. This new compound presented higher solubility in plant lipids and provided
greater stability to oxidation, demonstrating its potential as an oil-soluble antioxidant [200].
The reactions described above can be visualized in Figure 5.
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4.2. Prebiotics and Biosurfactants

Prebiotics are nutrients that are broken down by gut microbiota (probiotics). In recent
years, their relationship with human health attracted growing interest [201]. During fer-
mentation, the metabolic activity of microorganisms can change the nutritive and bioactive
properties of food matrices, making them beneficial during consumption. Some oligo and
polysaccharides act as prebiotic substrates that are fermented by the intestinal microbiota
into short-chain fatty acids that are resistant to intestinal digestion. Although more clinical
studies demonstrating the full functionality of the new products and strategies to increase
yields are lacking, the advances thus far are very promising.

While prebiotic oligosaccharides are water soluble, lipase-catalyzed esterification of
oligosaccharides produces functionalized amphoteric molecules with biosurfactant/emulsifying
properties and increased prebiotic activity, in addition to other bioactive properties, such as
antibacterial, anti-inflammatory, and cytotoxic properties [127,202–204].

The acylation process has also allowed the use of other raw materials, such as sucrose,
for value-added purposes, such as sugar fatty acid esters (SFAEs), which are compounds
that have a carbohydrate moiety and one or more fatty acids as lipophilic SFAEs are
nonionic surfactants that can be synthesized in a single enzymatic reaction step using
lipases [205]. These products are employed in the food industry because of their high
biodegradability and safety. They are synthesized by chemical and enzymatic methods,
the latter being the most recent and studied because the reactions are performed under
milder conditions and give greater confidence to the consumer by removing the synthetic
chemical label.

In this context, the synthesis of sucrose monolaurate was achieved by transesterifica-
tion mediated by T. lanuginosus lipase immobilized on silica gel (Lipozyme TL IM), which
has an antibacterial effect. With this precedent, new uses for biosurfactants alone or as
adjuvants to address foodborne infections are sought [202].

Additionally, during the process, several challenges are encountered, such as the
selection of the appropriate solvent for the reactions, because some hydrophilic organic
solvents can dissolve sugars and fatty acids; at relatively high concentrations, most enzymes
are affected. This is where the alternative of ionic liquids seems to minimize these effects,
promoting favorable catalysis conditions [206,207].

5. Concluding Remarks

In this work, we observed the fundamental role of lipases in generating new products
with high added value in the food and nutraceutical industry. Thus, the demand for
these proteins in their different presentations is increasing. Enzymes are an alternative
tool to produce new esters. In recent years, the use of lipases at the industrial level has
been limited by their availability and costs; however, today, with the presence of new
enzymes with properties that confer greater robustness, high yields, and stability to be
reused in various reactions, they are positioned as a viable, accessible and compatible
tool with the ecosystem that also provides valuable benefits to the food and nutraceutical
sector, positively impacting the health of consumers. In the future, new advances in using
biocatalysts are expected to continue to reduce the process steps and reaction times required
to generate new products.
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