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Abstract: This paper deals with the design of a control system based on fractional order mod-
els and fractional order proportional-integral-derivative (FOPID) controllers and fractional-order
proportional-integral (FOPI) controllers. The controller design takes into account the trade-off be-
tween robustness and performance as well as the trade-off between the load disturbance rejection and
set-point tracking tasks. The fractional order process model is able to represent an extensive range of
dynamics, including over-damped and oscillatory behaviors and this simplifies the process modelling.
The tuning of the FOPID and FOPI controllers is achieved by using an optimization, as a first step, and
in a second step, several fitting functions were used to capture the behavior of the optimal parameters
of the controllers. In this way, a new set of tuning rules called FOMCoRoT (Fractional Order Model
and Controllers Robust Tuning) is obtained for both FOPID and FOPI controllers. Simulation examples
show the effectiveness of the proposed control strategy based on fractional calculus.

Keywords: PID control; fractional order; automatic tuning; performance analysis; robustness

1. Introduction

Theoretical and practical studies have demonstrated the advantages of using fractional
calculus in the modelling and control of dynamic systems, mainly from an industrial
process control point of view [1,2]. For instance, in process modelling, several works (see,
for example [3–11]) have shown that fractional order models with one or two fractional
parameters can represent the process dynamics better than integer transfer functions of
low order, such as the well-known first order plus dead time (FOPDT) and second order
plus dead time (SOPDT) models. Therefore, a wider range of real-world processes can be
modeled and an improved control system design can be achieved.

In particular, this paper considers a fractional first order plus dead time (FFOPDT)
model that is able to represent a wide range of dynamics, including non-oscillatory, as
the typical first order and oscillatory ones, as those exhibited by under-damped pro-
cesses. Moreover, the effectiveness of this model has been proved through research (see
for example [12–16]). This model is useful in practice because it addresses a frequent
shortcoming of tuning rules available in the literature, that is, they are based on a specific
low-order integer transfer function, such that they can only be applied to a restricted range
of dynamics. Thanks to this feature of the FFOPDT model, it is not necessary to change
the method used to tune the integer or non-integer controller, because the structure of the
model remains the same irrespective of the over- or under-damped nature of the process.

Another interesting application of fractional calculus is the design of the control al-
gorithm. It has been demonstrated that the fractional proportional-integral-derivative
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(FOPID) controllers provide more flexibility and accuracy in the adjustment of the feedback
system. This can be used to guarantee more stringent specifications related to relative
stability—phase, gain margins, and maximum sensitivity—and performance—set-point
tracking and load-disturbance rejection—in comparison to those achievable with the classi-
cal PID controller (see, for instance [3,5,6,17–19]).

In the literature, different approaches to tune FOPID controllers have been devised.
Some of them take into account the robustness of the control system with respect to process
variations and model uncertainty, and therefore specifications such as gain crossover
frequency, phase margin, or robustness to variations of the gain are imposed, see [3,5,20,21];
while others consider the maximum sensitivity index MS as a measure of robustness, as
in [6,16,22–25].

Other approaches have applied artificial intelligence based on fuzzy logic control to
adjust the FOPID controller parameters [7,17,26], while others focus exclusively on integral
performance criteria as in [27].

Finally, some approaches take into consideration the robustness and the performance
of the closed-loop system at the same time; among them, ref [28] optimizes the load-
disturbance rejection, ref [29] minimises an objective function in the frequency response,
and [18] considers either an optimal performance for set-point tracking task or for load-
disturbance rejection.

Despite the wealth of results available in the literature, it is difficult to find a set
of rules that consider the trade-off between performance and robustness, and between
the set-point tracking task, also known as servo-control operation, and load-disturbance
rejection, also known as regulatory-control mode. To overcome these limitations, in this
paper we propose a new approach, the FOMCoRoT, to design fractional-order PID and
PI controllers. The main novelty of the proposed method is that it explicitly considers
the above mentioned trade-offs and uses an FFOPDT model, thereby taking advantage of
both a fractional controller and the flexibility of a fractional model. Furthermore, given the
considered fractional-order process model, the devised tuning rules are also more general
than those found in the literature.

This paper is organized as follows. Section 2 is devoted to the problem formulation, the
description of the process model, as well as of the control algorithm and of the performance
and robustness indices. Section 3 focuses on the design of the FOMCoRoT method for
FOPID and FOPI controllers. An analysis of the robustness and performance is presented
in Section 4 and bounds are established to decide when the use of fractional controllers is
recommended to guarantee a minimum improvement of the performance compared to the
one obtainable with classical PID/PI controllers. Then, in Section 5, simulation examples
with the corresponding results are presented. Finally, conclusions are drawn in Section 6.

2. Problem Formulation

In order to obtain the tuning rule for FOPI/FOPID controllers, we consider the closed-
loop control system shown in Figure 1, where P(s) is the controlled process model and C(s)
the controller to be tuned. In this system, r(s), u(s), d(s), and y(s), are the set-point signal,
the controller output, the load-disturbance, and the feedback signal, respectively.

Figure 1. Closed-loop control system.
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2.1. Controlled Process Model

The controlled process is a Fractional First Order Plus Dead Time model, referred here
as a FFOPDT model, whose dynamic is described by the following transfer function:

P(s) =
Ke−Ls

Tsα + 1
, (1)

where K is the static gain, T is the time constant, L is the dead-time, and α is the fractional-
order parameter. The FFOPDT dynamics are fully characterized by using two dimensionless
parameters: the fractional order α and the normalized fractional dead-time τ0, defined
as τ0 = L

T
1
α

.

This model with values of α between 1 and 2 was selected because it can easily
represent the most typical industrial processes with either over- or under-damped dynamics.
In Figure 2, it can be seen how the fractional order α modifies the shape of the step response.
It is important to highlight that when α = 1, the classical FOPDT model is obtained, and
when α = 2 a pair of pure imaginary poles are found (undamped oscillatory behavior).
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Figure 2. Step responses of the fractional system for α ∈ [1.0, 1.8].

When a fractional system is considered, the application of a rational approximation
for the non-integer term is required. For this tuning rule design, the integer representation
of the fractional term sα is obtained by applying the so-called CRONE approach [30],
defined as:

sα → sα
[ωl,ωh] ≈ Co

N

∏
k=1

1 + s
wz,k

1 + s
wp,k

, α > 0, (2)

where [ωl, ωh] (selected as [0.001, 1000] in this work) is the frequency range where the
approximation is valid and the term Co is adjusted so that the approximation has a unity
gain at the logarithmic midpoint of the approximation range. Furthermore, the parameter
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N in (2) (in this case N = 8 to meet the minimum value N = log(ωh
ωl ) recommended by [30])

is used to select the number of poles and zeros of the real-rational transfer function that
approximates the fractional term.

2.2. FOPI(D) Controller Equation

The output signal of the considered one-degree-of-freedom (1DoF) PI(D) controller is:

u(s) = Kp
{

ep(s) + ei(s) + ed(s)
}

, (3)

with

ep(s) = r(s)− y(s), (4)

ei(s) =
1

Tisλ
[r(s)− y(s)], (5)

ed(s) = −
Tdsµ

Td
ζ s + 1

y(s), (6)

where Kp is the proportional gain, Ti is the integral time, Td is the derivative time, and λ
and µ are the fractional orders for the integral and derivative part, respectively. Moreover,
Td
ζ is the derivative filter time constant (traditionally selected by fixing ζ = 10 in integer PID

controllers) [31]. In order to preserve the effectiveness of this parameter on the performance
of the closed-loop system, mainly in the rejection of the high frequency noise and without
changing the controller dynamics significantly, it was selected as:

ζ = 10T
µ−1

µ

d , (7)

for FOPID controllers with the purpose of placing the pole corner frequency one decade
after the zero frequency of the derivative action as it is often considered in the case of the
series PID controller. Notice that an integer order filter has been included because, when
using the CRONE approximation, this will be sufficient to guarantee the properness of the
controller irrespective of the derivative order µ.

Finally, as shown in (6), the derivative action is only applied to the feedback signal,
in order to avoid abrupt changes in the controller output signal, known as derivative
kick, when a set-point step change occurs [32]. In the case of a FOPI controller, we simply
set ed(s) = 0.

2.3. Performance and Robustness

With the purpose of designing the tuning rule for the FOPI and FOPID controllers,
the trade-off between performance and robustness has been considered along the lines
of [33–36]. The function to be optimized is a multi-objective performance index given by:

Jt = Jer + Jed, (8)

where Jer quantifies the set-point tracking performance and Jed measures the load-disturbance
rejection performance. Both indices are computed as the integral of the absolute value of
the error, given by:

Je =
∫ ∞

0
|e(t)|dt =

∫ ∞

0
|r(t)− y(t)|dt. (9)

The integral absolute error (IAE) is commonly used because, generally, it guarantees
a low overshoot and a low settling time at the same time [37]. Note that the IAE index
is finite only if λ ≥ 1 [38]. The design procedure is usually based on a low order model
identified at the closed-loop operating point, thereby disregarding non-linearities, which
are found in most of the real-world industrial processes. Therefore, it is critical to consider
certain stability degree or robustness requirements. For these reasons, the devised tuning
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rule was obtained by minimising the integral absolute of the error (9), subject to a constraint
imposed on the maximum value of the sensitivity function, which is defined as:

MS = max
ω
|S(jω)| = max

ω

1
|1 + C(jω)P(jω)| . (10)

This index represents the inverse of the maximum distance of the Nyquist plot from
the critical point (1 + j0) and therefore provides a measure of the stability margin of the
closed-loop system. The MS value should remain, at least for stable processes, in the range
1.4 ≤ MS ≤ 2.0 [32]. In this paper the limits of this range (Mt

S = 1.4 and Mt
S = 2.0) are

considered, where Mt
S denotes the target value of the maximum value of the magnitude of

the sensitivity function.

3. Optimal Tuning

In order to find the optimal parameters for the FOPID controller, the range 1.0 ≤ α ≤ 1.8
for the fractional order α of the model has been considered. Note that for values of α greater
than 1.8, the process becomes practically an undamped second order system which is rarely
encountered in practical applications.

In the case of FOPI controllers, the fractional order α of the model in the range
1.0 ≤ α ≤ 1.6 has been established. This is because values of α greater than 1.6 leads to
extremely low values of the normalized proportional gain κp, which is in line with the long-
held perception that PI regulators are unsuitable to control highly under-damped processes.

In both cases, the fractional order α was varied in steps of 0.1 and the normalized
fractional dead-time τ0 was considered in the range 0.1 ≤ τ0 ≤ 2.0, in steps of 0.1. Note
that such a range includes both lag-dominant and dead-time dominant processes for
which (FO)PID controllers can achieve a reasonable performance. For larger values of
the normalized dead time, more complex control structures, e.g., Smith predictor, should
be used.

The optimal parameters for FOPI and FOPID controllers for both Mt
S = 1.4 and

Mt
S = 2.0 were obtained by optimizing the cost function (8) constrained to MS = Mt

S,
where the maximum sensitivity MS is defined in (10). To solve the optimization problem,
the MATLAB© solver fminimax and the active-set algorithm were used. Once the optimal
parameters were found, different fitting functions were used to obtain simple tuning rules
based on the fractional order model (1).

As an example of how the tuning rule has been obtained, in Figure 3 the optimal
values of the normalized proportional gain κp have been plotted for different values of the
normalized fractional dead-time τ0, as well as the corresponding interpolating function in
the case of the FOPID controller.

As the final result, the following general structure for the normalized FOPID controller
parameters has been devised:

κp = KpK = a1τa2
0 + a3, (11)

τi =
Ti

T
λ
α

= b1τ4
0 + b2τ3

0 + b3τ2
0 + b4τ0 + b5, (12)

λ = 1, (13)

τd =
Td

T
µ
α

= c1τ3
0 + c2τ2

0 + c3τ0 + c4, (14)

µ = d1τ3
0 + d2τ2

0 + d3τ0 + d4, (15)

Values of the constants are presented in Table 1 for Mt
S = 1.4 and in Table 2 for

Mt
S = 2.0.
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Figure 3. Determination of κp tuning rule for FOPID (Mt
S = 1.4). + are the optimal values for κp .

Solid line is the interpolating function (11).

In the case of the FOPI controller, the following general structure was devised:

κp = KpK = a1τa2
0 + a3, (16)

τi =
Ti

T
λ
α

= b1τb2
0 + b3, (17)

λ = c1τc2
0 + c3. (18)

Table 1. FOPID tuning for servo and regulatory control operation, Mt
S = 1.4.

Fractional Model Order α
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Mt
S = 1.4

a1 0.5638 0.5653 0.5432 0.4328 0.3650 0.3351 0.2532 0.2378 0.1849
a2 −0.9893 −1.0791 −1.1283 −1.2442 −1.2734 −1.2932 −1.4021 −1.3649 −1.5736
a3 0.1577 0.1491 0.1554 0.2161 0.1832 0.1343 0.1207 0.0284 0.0013

b1 −0.4000 0.1654 0.1383 −0.3206 −0.2715 −0.2702 −0.6129 −0.7134 0.0637
b2 1.9196 −0.5511 −0.4646 1.5184 1.4090 1.5126 2.9236 3.4332 −0.6934
b3 −3.2939 0.3352 0.2729 −2.6022 −2.6646 −2.9467 −4.5127 −5.3134 2.6015
b4 2.7735 0.5874 0.4581 1.9910 2.0294 2.0369 2.1310 2.2545 −4.2468
b5 0.2315 0.7783 0.9765 0.8235 0.8424 0.9472 1.1278 1.2233 2.9495

c1 −0.0183 −0.0267 −0.0041 0.0529 0.0613 0.0813 0.0620 −0.1829 −0.1222
c2 0.0419 0.0705 0.0059 −0.1789 −0.1725 −0.2300 −0.3381 0.4952 0.5186
c3 0.2780 0.3095 0.4054 0.5958 0.6102 0.7256 1.1030 0.7696 1.3970
c4 −0.0092 −0.0056 −0.0044 −0.0035 0.0658 0.1053 0.0961 0.2357 0.1155

d1 −0.0060 0.0229 0.0805 0.0095 0.0647 0.0903 0.1043 0.0827 0.0215
d2 0.0277 −0.0861 −0.3340 −0.1421 −0.3946 −0.4802 −0.5093 −0.4150 −0.1752
d3 −0.0967 0.0275 0.3543 0.3105 0.6515 0.7309 0.7412 0.6236 0.3322
d4 1.2090 1.2080 1.1290 1.0780 0.9217 0.9046 0.9145 0.9566 1.1100



Fractal Fract. 2022, 6, 478 7 of 16

Table 2. FOPID tuning for servo and regulatory control operation, Mt
S = 2.0.

Fractional Model Order α
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Mt
S = 2.0

a1 0.9955 0.8489 0.5728 0.5794 0.5374 0.3551 0.2700 0.2994 0.2658
a2 −1.0001 −1.1607 −1.3786 −1.3572 −1.4250 −1.6330 −1.7331 −1.7088 −1.7546
a3 0.2899 0.3599 0.4664 0.2440 0.1421 0.2829 0.2587 0.1533 0.0646

b1 −0.4951 0.1149 −0.2805 −0.1981 −0.1695 −0.0510 −0.0156 −0.3510 −0.4147
b2 2.5286 −0.4875 1.4698 1.0982 0.9569 0.2631 0.0347 1.7148 1.9312
b3 −4.5373 0.4419 −2.6825 −2.1250 −1.9021 −0.4175 0.1649 −2.6742 −2.7057
b4 3.7920 0.7243 2.4579 1.8162 1.4605 0.2979 −0.4271 1.1461 0.4894
b5 0.1189 0.6500 0.4359 0.6983 0.8765 1.1982 1.4558 1.3167 1.7059

c1 −0.0322 −0.0168 0.0593 0.0413 0.1046 0.1654 0.2576 0.0775 −0.0033
c2 0.0834 0.0282 −0.2785 −0.2214 −0.3584 −0.7399 −1.1615 −0.6308 −0.2688
c3 0.2353 0.3495 0.7055 0.7685 1.0178 1.4743 2.0619 1.8940 1.8795
c4 −0.0063 −0.0142 −0.0373 −0.0171 −0.0228 −0.0411 −0.0693 −0.0314 −0.0009

d1 0.0000 −0.0694 −0.1143 0.0000 0.0000 −0.0637 −0.0665 −0.0027 0.0089
d2 0.0105 0.2257 0.4496 0.0000 0.0000 0.2103 0.2108 −0.0069 −0.0543
d3 −0.0872 −0.2320 −0.4362 0.0000 0.0000 −0.0330 0.0234 0.2409 0.2475
d4 1.2125 1.2165 1.1699 1.0000 1.0000 0.9900 0.9861 1.0054 1.0287

Values of the constants are presented in Table 3 for Mt
S = 1.4 and in Table 4 for

Mt
S = 2.0. It is important to highlight that when the fractional order α of the model was

also equal to one, the optimal value for the fractional term λ of the integral mode was
also equal to one. The same happens for values of the normalized fractional dead-time τ0
greater than 0.6 and Mt

S = 2.0 and therefore, in those cases, there is not any advantage in
using a more complex structure for the controller as the FOPI. For that reason, the fitting
functions presented in Equations (16)–(18) were limited to the mentioned range.

Table 3. FOPI tuning for servo and regulatory control operation, Mt
S = 1.4.

Fractional Model Order α
1.1 1.2 1.3 1.4 1.5 1.6

Mt
S = 1.4

a1 0.1646 0.1461 0.1132 0.06155 0.06375 0.3025
a2 −1.413 −1.32 −1.313 −1.535 −1.245 −0.4086
a3 0.1514 0.1339 0.116 0.1153 0.07255 −0.1073

b1 0.08874 0.03202 0.01904 0.06183 0.1728 −0.9853
b2 1.83 2.729 −1.338 −1.173 −0.986 0.263
b3 0.9161 1.016 1.017 0.8984 0.6747 2.295

c1 0 0 0 1.8 × 10−10 0.003039 −0.09594
c2 0 0 0 −9.306 −2.057 1.694
c3 1.01 1.03 1.043 1.059 1.068 1.445
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Table 4. FOPI tuning for control and regulatory control operation, Mt
S = 2.0.

Fractional Model Order α
1.1 1.2 1.3 1.4 1.5 1.6

Mt
S = 2.0

a1 0.4784 0.3539 0.1929 0.07267 0.1209 0.1949
a2 −1.16 −1.289 −1.524 −1.901 −1.439 −1.036
a3 0.2257 0.2792 0.4144 0.504 0.227 0.2001

b1 1.2 −0.1899 0.4381 −0.4154 −1.421 −1.13
b2 0.3124 −0.8787 0.2076 1.891 0.5037 0.09457
b3 0.1598 2.258 1.01 1.586 2.43 2.849

c1 0.2798 −0.04119 5.739 × 10−4 1.673 × 10−4 5.772 × 10−5 0.6522
c2 0.002471 0.3394 −1.891 −3.252 −3.51 −0.1015
c3 0.727 1.041 1.011 1.014 1.017 0.7017

4. Robustness and Performance Analysis for the Tuning Rule
4.1. FOPID Controllers

For FOPID controllers, the devised tuning rule for κp, τi, τd, λ, and µ are given by
the expressions (11)–(15), where the values of the coefficients are presented in Table 1 for
Mt

S = 1.4 and in Table 2 for Mt
S = 2.0. Note that the optimal value for λ is always equal

to one, and therefore the advantages in performance and robustness of using a FOPID
controller are given by the fractional order µ associated with the derivative part. This is in
line with the results shown in [18], where it was proven that the fractional order associated
with the integral part did not provide any advantage when a FOPID controller is designed
by minimizing the integral absolute error.

To show the effectiveness of the FOMCoRoT tuning rule, two aspects were evaluated.
The first was the maximum sensitivity MS. The second was a comparison against the per-
formance obtained with PID controllers designed by the same constraint on the maximum
sensitivity and minimizing the same performance index (8). The optimal performance
indexes for PID controllers, denoted by JtPID, were taken from [39] and the Jt performance
index was obtained by applying the FOMCoRoT tuning rule developed in this work using
FOPID controllers. For this comparison, the index η is defined as:

η =
Jt

JtPID
, (19)

was used. Note that η less than one denotes and improvement in the performance provided
by the tuning rule FOMCoRoT.

The evaluation of the maximum sensitivity value was made considering the fractional
order α from 1.0 to 1.8 and the normalized fractional dead-time τ0 from 0.1 to 2.0, in steps of
0.05 for both parameters. The results are shown in Figure 4 for both Mt

S = 1.4 (blue surface)
and Mt

S = 2.0 (yellow surface). As it can be seen in the figure, the maximum sensitivity has
a stable behavior very close to the target one.

The index η for Mt
S = 1.4 in Figure 5 shows that the improvement in the performance

provided by the use of a FOPID controllers is greater than 5 % (black dashed line in Figure 5)
in two specific regions when 1.0 ≤ α ≤ 1.2 and 0.1 ≤ τ0 ≤ 1.3, approximately, and when
1.7 ≤ α ≤ 1.8. It is important to highlight that the first region encompasses most of the
dynamics present in practical control applications, including first order and overdamped
dynamics. In this region, the performance improvement achievable with the FOMCoRoT
method can be as high as 10.5% larger than the one obtained with PID controllers. The
second region comprises highly underdamped dynamics and, according to [40], for the
fractional order range 1.7 ≤ α ≤ 1.8 the corresponding overshoot should roughly be
between 53.2% and 67.2% and the improvement in the performance can reach 31.2%.
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Figure 4. Evaluation of MS using the FOPID controller.
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Figure 5. Index η for FOPID controllers with Mt
S = 1.4.

The index η for Mt
S = 2.0 is shown in Figure 6. As in the case Mt

S = 1.4, some
regions can be defined where the increase in the performance provided by the use of the
FOMCoRoT method for FOPID over the optimal performance obtained with PID controllers
is larger than or equal to 5%. The first region is characterized by α = 1.8 and τ0 ≥ 0.4, and
an improvement in the performance of up to 34% can be achieved. The second region is
defined by α = 1.7 and τ0 ≥ 0.6, and in this case, the improvement can reach values of
21%. The third region is for α = 1.6 and τ0 ≥ 1.2, with an amelioration of up to 11% in the
Jt index.
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Figure 6. Index η for FOPID controllers with Mt
S = 2.0.

4.2. FOPI Controllers

For FOPI controllers, the FOMCoRoT tuning rule for κp, τi, and λ are given by the
expressions (16)–(18), where the values of the parameters are presented in Table 3 for
Mt

S = 1.4 and in Table 4 for Mt
S = 2.0. Note that the advantages in performance and

robustness of using a FOPI controller are given by the fractional order λ associated to the
integral part.

The evaluation of the maximum sensitivity was made considering the fractional order
α from 1.1 to 1.6 and the normalized fractional dead-time τ0 from 0.1 to 2.0 for Mt

S = 1.4
and from 0.1 to 0.6 for Mt

S = 2.0, both parameters were varied in steps of 0.05. Note that
these cover a wider range than the one used to devise the tuning rules. The results are
shown in Figure 7. The maximum sensitivity index is very close to the target one.

Figure 7. Evaluation of MS for FOPI.

To evaluate the performance obtained by applying the FOMCoRoT tuning along the
line comparison carried out for FOPID controllers, it is defined the performance index:

η =
Jt

JtPI
, (20)
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where JtPI is obtained from [39].
As expected, this index is always less or equal than one because an improvement in

the performance of the closed-loop system is always obtained using a fractional controller.
The index η is shown in Figure 8 for Mt

S = 1.4, where black dashed line delimits
the regions where a 5% performance improvement can be achieved. The performance
improvement for τ0 in the interval [0.1 1.3] and α = 1.6 can be up to 24%; for τ0 in the range
[0.1 2.0] and α = 1.5, up to 10%; for τ0 in [0.1 0.4] and [1.3 2.0] and α = 1.4, up to 14%;
for τ0 in [0.2 0.3] and [1.4 2.0] and α = 1.3, up to 12%, and for τ0 in [0.1 0.2] and α = 1.1,
up to 13%.

The performance analysis based on index η for FOPI controllers with Mt
S = 2.0 is

shown in Figure 9. The interval where the performance improves by more than 5% is given
by τ0 ∈ [0.1 0.3] and α = 1.6, and the improvement in performance can be up to 14%.
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Figure 8. Index η for FOPI controllers with Mt
S = 1.4.
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Figure 9. Index η for FOPI controllers with Mt
S = 2.0.
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5. Simulation Examples

In order to demonstrate the effectiveness of the designed tuning rule FOMCoRoT, a
high order process P1 studied in [18] and shown in Equation (21), as well as a fractional
order process P2 studied in [16] and shown in Equation (22), are considered. All numerical
simulations have been performed using MATLAB©.

P1 =
1

(s + 1)8 , Pm1 =
e−4.86s

4.01s1.07 + 1
, Pm2 =

e−4.95s

3.06s + 1
. (21)

Consider the process P1. For the purpose of comparison, and in order to apply different
tuning methods, two models were identified: a fractional order model Pm1, by using the
IDFOM tool [41], and the integer order model Pm2 that was considered in [18].

The accuracy of the model is evaluated by measuring the integral of the absolute value
of the difference between the step response of the actual system P1 and the model, Pm1
or Pm2 (IAEm index). For Pm1 the IAEm index is equal to 0.6031 and for Pm2 it is equal
to 0.5938 and therefore, in this example, the advantages of the fractional calculus in the
robustness and performance of the closed-loop system due the controller’s algorithm will
mainly be quantified.

Three methods were applied to tune the parameters of different structures of FOPID
controllers. The technique proposed in [18] (referred here as P.&V. SP for set-point tracking
or P.&V. LD for load-disturbance rejection) which considers a FOPID controller in series
form and a FOPDT model, and aims at minimizing the integrated absolute error when
a step change in the set-point or in the load-disturbance appears, with a constraint on
the maximum sensitivity index. The second method proposed in [16], (referred here as
H-F) uses series FOPID controller and a fractional order model as the one considered in
this work, which aims for a trade-off performance in both set-point tracking and load-
disturbance rejection, also considering the maximum sensitivity index as measure of
robustness. The third approach is the FOMCoRoT method developed in this work. The
results for performance and robustness are presented in Table 5 for Mt

S = 1.4 and Mt
S = 2.0.

As was mentioned above, in this work the derivative mode was only applied to the feedback
signal in order to avoid extreme changes in the controller output when a step change in
the set-point value is applied. However, for the sake of fair comparison, the tracking
performance when the derivative action is applied to the error signal is also evaluated. To
this end, the performance indexes J∗er and J∗t are defined, similarly to J Jer and Jt, respectively,
but replacing −y(t) with r(t)− y(t).

Figure 10 shows the closed-loop responses for both tasks: a step change in the set-point
value and in the load-disturbance signal. It can be noted in Table 5 that, when the constraint
on robustness is given by Mt

S = 1.4, the best performance is achieved with the closed-
loop system designed using the FOMCoRoT method (Jed only has practically the same
value in comparison with the one obtained by applying P.&V. LD). When the robustness is
given by a nominal value Mt

S = 2.0, the best performance in the feedback system is again
provided by the FOMCoRoT method (only Jed is better with the H-F 2.0 method, but this
can be attributed to a greater value of the maximum sensitivity index, MS = 2.8553). If
the analysis is focused on the overall performance given by the indices Jt or J∗t , the best
performance is obtained by applying the FOMCoRoT method.

For the fractional order process P2 two models were identified: a fractional order
model Pm3 by applying the methodology proposed by [16] and an integer order model Pm4
obtained by applying the three points 123c identification method presented in [42].

P2 =
1

s2.6 + 2.2s1.5 + 2.9s1.3 + 3.32s0.9 + 1
, Pm3 =

e−0.5171s

6.8601s1.0413 + 1
, Pm4 =

e−0.655s

5.406s + 1
. (22)

The model accuracy was also evaluated through the IAEm index. For Pm3 the IAEm
index is equal to 0.7557 and for Pm4 it is equal to 0.2566. It can be noted that the fractional
model provides a lower accuracy than the integer model. This is because, despite the
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increased flexibility of the fractional model, different identification methods yield different
results. In any case, the fractional model is sufficiently accurate to be used effectively with
the FOMCoRoT tuning rules.

Table 5. Comparison between tuning rules for FOPID in the control of an integer process.

Tuning Rule Mt
S Kp Ti λ Td µ MS Jer Jed J∗er Jt J∗t

P.&V. SP 1.4 0.34 2.96 1 2.43 1.2 1.4026 10.7959 9.1082 9.1615 19.9041 18.2697
P.&V. LD 1.4 0.33 2.63 1 2.53 1.2 1.4283 10.8432 8.7614 8.9092 19.6046 17.6706
P.&V. SP 2.0 0.54 3.15 1 2.97 1.2 2.1195 9.4469 6.4376 6.8593 15.8845 13.2969
P.&V. LD 2.0 0.59 3.07 1 2.62 1.2 2.1156 9.467 6.4112 7.266 15.8782 13.6772

H-F 1.4 0.2352 2.43 1 4.01 1.07 1.4988 12.4727 10.4577 10.4726 22.9304 20.9302
H-F 2.0 0.5 2.43 1 4.01 1.07 2.8553 8.9615 5.5793 7.5733 14.5407 13.1526

FOMCoRoT 1.4 0.571 5.0104 1 1.9429 1.1371 1.3983 8.9024 8.769 8.771 17.6714 17.54
FOMCoRoT 2.0 0.9917 5.8036 1 1.9001 1.1353 1.9771 8.3925 5.8549 6.459 14.2473 12.3138
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Figure 10. Closed-loop system response designed for Mt
S = 2.0 (at the top) and for Mt

S = 1.4
(at the bottom) to control P1.

In Table 6, the performance indexes when step changes appear in the set-point and in
the load-disturbance values are presented. It can be noted that the best performance for
each operation mode (measured with the Jer or Jed index) and for the overall performance
(Jt index) is obtained when the controller parameters are tuned with the FOMCoRoT method.
This can be noted also in Figure 11.

Table 6. Comparison between tuning rules for FOPID controllers in the control of a fractional process.

Tuning Rule Mt
S Kp Ti λ Td µ MS Jer Jed J∗er Jt J∗t

P.&V. SP 1.4 3.8255 5.4555 1 0.2169 1.2 1.3703 1.8059 1.4266 1.6346 3.2325 3.0612
P.&V. LD 1.4 2.6563 1.2797 1 0.4811 1.1 1.3962 2.8454 0.7184 2.3704 3.5638 3.0887
P.&V. SP 2.0 5.7387 5.5095 1 0.3177 1.1 1.7828 1.4267 0.9604 1.1408 2.3872 2.1012
P.&V. LD 2.0 4.0728 0.937 1 0.4811 1 1.8299 1.9595 0.3303 1.65 2.2808 1.9803

H-F 1.4 0.2369 0.2586 1 6.8601 1.0413 1.5003 7.1647 1.1131 1.121 8.2778 2.2341
H-F 2.0 0.5036 0.2586 1 6.8601 1.0413 2.8689 6.7233 0.5238 0.5412 7.2471 1.0649

FOMCoRoT 1.4 7.6136 3.8014 1 0.1514 1.2048 1.397 1.3301 0.4993 1.1131 1.8294 1.6124
FOMCoRoT 2.0 13.9519 3.3554 1 0.1277 1.2028 2.0435 1.0017 0.2405 0.7637 1.2422 1.0042
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Figure 11. Closed-loop system response designed for Mt
S = 2.0 (at the top) and for Mt

S = 1.4
(at the bottom) to control P2.

6. Conclusions

This paper deals with the design of a closed-loop control system using fractional order
models and controllers. The procedure used to develop the FOMCoRoT method guarantees
a suitable performance in both set-point tracking and load-disturbance rejection, because it
has been designed to minimize a combined performance index that takes into account both
operation modes. Moreover, the tuning rule designed in this work provides guaranteed
stability margins due to a constraint in the control system robustness obtained by imposing
suitable values for the maximum sensitivity index MS.

Through performance analysis and simulation results, it can be concluded that FOPID
and FOPI controllers provide a major impact in the closed-loop system performance when
a high degree of robustness is required.

Two simulation examples have shown the effectiveness of the FOMCoRoT method in
combination with a FFOPDT model, and this work will allow the user to have a systematic
method to decide whether it is suitable to use the fractional calculus to design the control
system for a given application or not.

Finally, it is worth pointing out that the proposed method deals with the design
of industrial controllers, but other research lines such as controllability, observability,
optimal control, robust control, etc. should be pursued in fractional order control systems
in order to have a complete theoretical framework for these systems, and in particular
an understanding of how the fractional order impacts the above-mentioned structural
properties of a system.
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