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Interference effects in finite sections of one-dimensional moir�e crystals are investigated using a Lan-
dauer-Büttiker formalism within the tight-binding approximation. We explain interlayer transport in
double-wall carbon nanotubes and design a predictive model. Wave function interference is visible at the
mesoscale: in the strong coupling regime, as a periodic modulation of quantum conductance and
emergent localized states; in the localized-insulating regime, as a suppression of interlayer transport,
and oscillations of the density of states. These results could be exploited to design quantum electronic
devices.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Quantum materials [1,2] are a class of materials that exhibit
quantum effects at the macroscopic scale. They offer the opportu-
nity to realize paradigm-shifting quantum electronics. The
controlled generation and manipulation of quantum states by
electrical, magnetic, or optical means is a key challenge in bringing
quantummaterials to applications. Twisted bilayer graphene (tBLG)
is a prime example of a tunable quantum material. The twist angle,
and the resulting bi-dimensional moir�e pattern, control the
emerging material properties: for specific magic angles, strong
interlayer coupling and flat bands arise, resulting in superconduc-
tivity and strongly correlated phases [3,4]. One-dimensional moir�e
systems are realized in double-wall carbon nanotubes (DWNT) and
are determined by two parameters: the angle between the inner
and outer tubes’ chiral vectors (like tBLG) and the difference be-
tween their radii. These degrees of freedom control the effective
interlayer interaction and the resulting electronic states. While the
physics emerging in 2Dmoir�e crystals has been studied extensively,
the understanding of its one-dimensional counterpart is limited to
the ideal infinite nanotube case [5e7] and the commensurate,
telescopic nanotubes [8e13]. Koshino et al. [5] devised a continuum
cience and Nanotechnology -
in.

r Ltd. This is an open access articl
model for the idealized infinite DWNT. They identify three regimes
with unique electronic properties (localized insulating, strong, and
weak coupling) determined by the relative alignment of the chiral
vectors of the tubes. Dispersionless flat bands appear in the local-
ized insulating regime. The electronic structure of DWNT with
weak coupling is given by the superposition of the constituent
nanotubes, whereas it is heavily perturbed in the strong coupling
regime: semiconducting tube combinations can produce a finite
density of states in their gap, and metallic tubes can become
semiconducting. Experimental evidence of DWNTs with strong
interlayer coupling has been recently reported [7], but the rela-
tionship between the measurements and the idealized infinite
DWNT model by Koshino is not trivial. Experimental conditions
impose a finite tube length and electrical contacts on the outer tube
only. As the overlap region between inner and outer tubes is finite,
strong confinement effects can arise, as in SWNTs with finite length
[14,15]. It is not clear a prioriwhether the regimes will be visible, in
what limits of nanotube overlap they could be recovered, and
whether the regime separation is even valid for finite tubes.
Answering these basic questions is essential for the use of coaxial
nanotubes in applications involving electronic transport [16].

In this work, we address these questions by studying interlayer
transmission between two concentric nanotubes that overlap in a
finite region and extend infinitely in opposite directions (telescopic
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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double-wall nanotubes, tDWNT, Fig. 1a). We predict the effects of
the length of the overlap region in the different regimes, going
beyond previous works that only consider commensurate tDWNT.
The interlayer transmission in tDWNTs composed of two armchair
nanotubes (armchair@armchair) oscillates as a function of the
overlap length, giving rise to regions with zero and maximal
transmission. The overlap length modulates the tDWNT electronic
properties. We demonstrate that this tunability extends to strongly
coupled, chiral, and incommensurate tDWNts. We explain that dips
in the transmission spectra of armchair@armchair tDWNTs emerge
due to back-scattering by localized states in the overlap region.
These transmission dips are absent in strongly coupled chiral
tDWNT due to the lack of rotational symmetries. We devise a
predictive model for the transmission, based on wave interference
in one dimension, that reproduces the tunability and position of
transmission dips. In the localized insulating regime we show that
the interlayer conductance is very small irrespective of the overlap
length, in agreement with Ref. 17. We recover the Koshino limit for
sufficiently long (but finite) overlap lengths and provide bench-
marks for experimental realizations of 1D moir�es and correlated
states in DWNT. In the weak coupling regime, we show that
interlayer transmission for chiral or incommensurate tDWNTs is
suppressed. tDWNTs composed of metallic zigzag nanotubes (zig-
zag@zigzag) also belong to the weak coupling regime but are an
exception to this rule: the interlayer transmission can be significant
if states on the inner and outer tube with different angular mo-
mentum couple. This coupling is subject to selection rules based on
the chiral indices of the tubes involved [8].
1. Results and discussion

Conductance simulations are performed for two concentric
Fig. 1. a) Transport set-up: The scattering region consists of overlapping nanotubes,
screening region, and part of the electrodes (light red/blue), which extend in opposite
semi-infinite directions, and function as leads (red/blue). b) Projected TB band struc-
ture of an ideal (10,10)@(15,15) DWNT. The bands with negative Fermi-velocity (white)
are hybridized between the nanotubes, bands with positive Fermi-velocity (red/blue)
are localized on one tube each. c) TB electron transmission from a semi-infinite (10,10)
into a semi-infinite (15,15) SWNT through an overlap region with a length of 34.08 Å.
Horizontal lines visualize energy levels for an isolated, finite section of the systemwith
an additional 44 Å of leads on either side. The yellow-to-blue scale indicates the weight
of wave functions in the overlap region. Each dip in conductance coincides (approxi-
mately) with one or several localized eigenstates. (A colour version of this figure can be
viewed online.)
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nanotubes that overlap over a finite length L, connected to semi-
infinite SWNT leads (Fig. 1a). Nanotube edges do not the influ-
ence transport properties of nanotubes longer than 5e10 nm and
can be safely neglected for semi-infinite leads [14,15]. The main
mechanism affecting nanotube transport is the coupling regime.
Relative rotation of the nanotubes can change the moir�e pattern,
but the coupling regime remains invariant because the rotation
does not affect the 1D moir�e lattice vector. This implies that the
rotational alignment will have a minor effect on the results (see
Supplementary Information (SI) for details). Electron transmission
is only allowed at energies where conduction channels are available
in both electrodes (only metallic nanotube contacts allow trans-
mission close to the Fermi level). When electrodes consist of
semiconducting tubes, transmission can be achieved for chemical
potentials within the valence or conduction bands of both nano-
tubes. In either case, the total transmission T through this asym-
metrically contacted system can not exceed the smallest of the two
electrode transmissions. The magnitude of T depends on how
electrode states couple through the overlap region, probing sensi-
tively the interlayer interaction.

1.1. Strong coupling regime

DWNTs are in the strong coupling regime when the constituting
tubes’ chiral vectors are nearly parallel and their difference points
along the armchair direction. DWNTs consisting of armchair tubes
(n,n)@(m,m) fulfill both conditions. Armchair single-wall nano-
tubes (SWNT) present two nearly linear bands crossing at the Fermi
energy, resulting in a metallic system with 2 G0 conductance
[18,19]. Without interlayer interaction, the band structure and
conductance of an ideal DWNT would simply be the sum of the
individual SWNT ones, namely 4G0. We observe, instead, a reduc-
tion of the conductance to 1G0 and dips at specific energy values
(Fig. 1c) in the set-up of Fig. 1a (L ¼ 34.08 Å). Dips in the conduc-
tance can occur for perturbations of the sidewalls, for instance, due
to defects [20,21] or functionalization [22,23]. As the nanotube
walls are perfect, the origin of the dips must be related to intertube
interaction: The infinite (10,10)@(15,15) DWNT features a subtle
band structure (Fig. 1b) of states localized on either tube (positive
Fermi velocity, red/blue) and hybridized states (negative Fermi
velocity, white). Each of these dips corresponds to a localized
eigenstate in the overlap region (Fig. 1c horizontal lines).

The number, position, and width of the dips depend on L
(Fig. 2a). At L z 50 Å and L z 150 Å, the dips in transmission are
barely visible. At intermediate overlap lengths, the interlayer
conductance is reduced, the dips are broader, and transmission is
blocked completely for L z 100 Å and L z 200 Å, following a pe-
riodic behavior. This reduction of the maximum conduction as well
as the oscillationwith overlap length was predicted in Ref. [10], and
we can now show that localized states cause the dips observed in
the conductance at fixed overlap lengths. We further show that the
modulation of the transmission can be observed in a wide range of
energy and overlap lengths.

The reduction of the maximum conductance near the Fermi
energy with respect to the pristine DWNT can be explained by
taking into account the nature of the transport setup and the
character of the bands in the DWNT. The asymmetric setup limits
the conductance from 4G0 to the minimum of the electrode con-
ductances (2G0). The reduction of the maximum conductance to
1G0 is traced back to the three-fold rotational symmetry of the
outer tube, which results in the cancellation of one of the two
available transport channels [10]. We note here that this reduction
can already be inferred from the eigenstates of the pristine DWNT.
The electronic eigenstates with positive Fermi-velocity are unaf-
fected by the interlayer interaction and have to scatter back into the



Fig. 2. TB electron transmission from a (10,10) SWNT into a (15,15) SWNT through a
finite overlap region at different overlap lengths calculated with a) LB þ TB formalism,
and b) our model (Eq.(1)). Overlaps are sampled with a high density below 50 Å (1/40 ,

2.459 Å) and lower density above (1/2.459 Å). The model reproduces both trends in LB-
transmission: the energy-independent modulation of the transmission with overlap
length on long spatial period, and the secondary modulation of the transmission
dependent on energy and overlap. (A colour version of this figure can be viewed
online.)

Fig. 3. Schematic of standing waves in the overlap region between two semi-infinite
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electrode, effectively limiting the possible available channels to the
electrode bands with negative Fermi velocity. These electrons
couple to the two hybridized DWNT states, and have the possibility
to be transmitted through the device. Depending on the overlap
length this transmission occurs with almost no back-scattering
(L z 50 Å, 150 Å) or is completely blocked (L z 100 Å). In order
to understand the origin of the transmission dips, we calculate the
eigenstates of finite segments of the open system including addi-
tional nanotube rings on each side of the scattering region. In the
limit of infinitely long electrode regions, we would recover the
states of the open system. We find that each dip corresponds to a
localized state (Fig. 1c) and that the agreement between eigene-
nergies and dip energies varies slightly, depending on the exact
number of additional nanotube rings. The eigenstates localized in
the overlap region (L ¼ 34.08 Å) are all similar in shape: the wave
function weight on the atoms at the tube terminations are the
highest, and they decay towards the electrode regions (SI Fig. 6).
We remark that nanotube edge states do not affect the transport
properties in the relevant energy window [�0.8 eV, 0.8 eV], as
demonstrated by the computed wavefunctions in this energy range
(SI Fig. 6).

To explain the origin of the localized states and the modulation
of the transmission, we construct a simple model, assuming linear
dispersion of the SWNT and DWNT bands with one common Fermi
wave vector kF and velocity vF. We further assume that the energy
separation of the bands with negative vF in the DWNT is symmetric,
giving two new vectors at each energy k±ðEÞ ¼ kðEÞ± 1

2 dkF . An
incoming electron with energy E ¼ � vF(k � kF) needs to couple to
the hybridized states with the same energy to pass from one layer
into the other. The resulting superposition of overlap states prop-
agates with two wave vector components: the average wave vector
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k, and the wave vector difference dkF/2 modulating the incoming
wave. As this superposition propagates through the scattering de-
vice its weight oscillates between the two tubes. If the wavelength
of the modulation is commensurate with the overlap region
(dkFL ¼ 2np) the incoming electron will be reflected at the termi-
nation and scatters back into the electrode. However, if the overlap
length fits (2nþ 1)/4wavelengths of themodulation (L¼ (2nþ 1)p/
2dkF) the electron passes through the overlap region without back-
scattering (Fig. 3). At intermediate lengths, the incoming wave is
partially transmitted reducing the conductance without fully
blocking it. Similarly, at certain energies, which depend on the
overlap length, the primary component k becomes commensurate
with the overlap. This allows a standing wave to form in the
quantum box of the overlap region, which blocks the transmission
and explains the emergence of dips at specific energies. We
combine the two trends to model the transmission using sine
functions:

TðE; LÞ ¼ sin
�
L
dkF
2

�
2,sin

�
L
�
kF �

E
vF

��
2

T
�
E;
2pn
dkF

�
¼ 0

T
�
� vF

�pn
L

þ kF
�
; L

�
¼ 0

(1)

Fig. 2 shows the impressive agreement between the trans-
mission calculated with this simple model and the tight-binding
results. The model reproduces the energy-independent global
oscillation of the transmission with the overlap length and allows
us to predict the periodicity of the transmission oscillation from the
shift of the Fermi vector (dkF z 0.071 Å�1) for any nanotube com-
bination. For this tube shift (dkF z 0.065 Å�1) the corresponding
periodicity is 89 Å. The periodicity observed in our simulations is
only slightly larger (100 Å). The curvature of regions without
transmission (dark blue) can be recovered when the non-linearity
of the bands is included in the model (Supplementary
nanotubes. (A colour version of this figure can be viewed online.)
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Information). The model also reproduces the E and L dependent
position of the smaller dips observed in the transmission.
Furthermore, the shape of localized eigenstates matches the ex-
pected character (Fig. 3). The sine functions make the dips
smoother compared to the LB-calculation, but the general trends
are accurately reproduced. This simple expression is an approxi-
mation of the more accurate one derived in Ref. 8 when the linear-
band approximation is applied. Numerical interpolation of the band
structure allows for very accurate reproduction of the LB þ TB
transmission (SI Fig. 5). However, the simple approach is qualita-
tively correct and can intuitively be connected to the image of 1D
waves.

We now consider an example of an incommensurate and chiral,
strongly coupled, metallic DWNT: (18,15)@(23,20). The band
structure can be computed by artificially imposing periodicity using
a commensurate supercell consisting of 4 and 3 repetitions of
(18,15) and (23,20), respectively, and straining both tubes by ± 1%
(SI Fig. 7). For the telescopic setup, the maximum conductance
(2G0) can be attained due to the strong hybridization of both linear
bands between the tubes, resulting in two simultaneously available
conduction channels. The maximum of the conductance near EF
(Fig. 4a) oscillates with the overlap length between 2G0 and 0, with
a period of 90(1) Å (Fig. 4b). Our simple model of wave function
interference in a quantum box predicts a spatial period of 96 Å,
using a shift of the Fermi wave vectors dkF z 0.065 Å�1 extracted
from the band structure in Ref. [5]. Despite its simplicity, our model
is semi-quantitative and catches the main physical mechanisms at
play: the oscillations of the transmission are caused by the differ-
ence in the Fermi wave vectors of the two tubes and will appear in
all combinations of strong coupling, metallic@metallic nanotubes.
The suppression of transmission at discrete energies observed in
(10,10)@(15,15) results from achirality and does not occur in chiral
nanotubes. The wave functions of chiral tubes possess no rotational
symmetry around the tube axis. Therefore they can only have nodes
Fig. 4. Strong coupling (M@M): TB electron transmission from (18,15) into (23,20) a)
for three selected overlap length L showcasing perfect (L ¼ 44 Å), partially blocked
(L ¼ 20 Å), and blocked transmission (L ¼ 88 Å). b) For a wide range of overlap lengths.
The transmission oscillates as a function of L. At 0 eV and 0.31 eV sharp features occur
irrespective of L. (A colour version of this figure can be viewed online.)
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at few, specific points along the tube circumference, and cannot
form localized states in the overlap region (SI Fig. 8). Avoided
crossings in the band structure [5] results in sharp dips at 0 eV and
0.31 eV when the conductance is substantial (L z 44 Å, L z 20 Å),
and peaks at ±0.31 eV when conductance is suppressed (L z 88 Å)
(Fig. 4).
1.2. Localized insulating regime

The localized insulating regime is achieved when the chiral
vectors of the inner and outer tube are nearly parallel and their
difference points along the zig-zag direction. We consider two
representatives of this family, (27,3)@(36,3) and (27,3)@(35,3),
which are metallic-metallic (M@M) and metallic-semiconducting
(M@SC), respectively. Interference effects are observable as peaks
in the (27,3)@(35,3) DOS in Fig. 5. The small (3.12 Å) interlayer
spacing enhances the coupling and suppresses the increase in DOS
near the onset of the outer tube parabolic bands (gray area in Fig. 5
and SI Fig. 9). This effect can be observed already in short DWNT
segments (L < 81 Å) and is not exclusive to the infinite tubes of
Ref. 5. In (27,3)@(36,3), instead, the interference is weaker due to
the larger interlayer spacing (3.51 Å) and the onset of the parabolic
bands is clearly visible at ±0.35 eV (Fig. 6). A series of peaks are
observed in the DOS of both cases (Figs. 5 and 6). This is consistent
with the emergence of flat bands (SI Fig. 9) predicted by Koshino
et al., who attribute them to the localization of electrons in an
effective potential with a long spatial period (z1200 Å for these
two cases). However, our simulations indicate that localized states
already emerge in much shorter tube segments (L z 244 Å), and
could be experimentally observable even without requiring long,
pristine DWNT samples. While some of the localized states emerge
at these short overlap lengths, the peak density in the DOS
Fig. 5. Localized insulating DWNT (M@SC): density of states in the scattering region (a)
and electron transmission (b) from (27,3) into (35,3) for different overlap lengths.
Interference between the tubes results in sharp spikes and flat bands (SI Fig. 9), which
are more pronounced with increasing overlap length. The transport gap of the outer
tube is highlighted in striped gray. (A colour version of this figure can be viewed
online.)



Fig. 6. Localized quasi-insulating (M@M): density of states in the scattering region (a)
and electron transmission (b) from (27,3) into (36,3) for different overlap lengths.
Interference between the tubes results in sharp spikes and flat bands at EF and at the
edge of the quasi-insulating gap, which are more pronounced with increasing overlap
length. (A colour version of this figure can be viewed online.)
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increases with overlap length and is significantly lower than pre-
dicted by Koshino. This shows that theminima of effective potential
that cause localization, emerge successively with increasing over-
lap. The full set localized states will be observable only if the
overlap length is larger than the period of the effective potential.

We observe additional oscillations of lower magnitude in the
DOS of (27,3)@(36,3) DWNT, which can not be attributed to flat
bands. These oscillations occur in the energy ranges between �
0.35 eV to� 0.05 eV and 0.1 eVe0.35 eV and are a result of the finite
overlap length which causes a quantization of the wave vectors of
states in the finite overlap region. Analogous to the discussion in
the strong coupling regime, we assume linear dispersion of the low
energy bands and determine the energy spacing of states
commensurate with the overlap length:

dE ¼ vF
p

L
z5:6 eV A

̊ p

L
; (2)

which matches the observed periods in the DOS (dEDOS) quite well
(Table 1).

Given the small size of these oscillations, they will likely be
challenging to observe experimentally. These oscillations are not
predicted by Koshino, since they are caused by the finite length of
Table 1
Oscillation periods in DOS of a (27,3)@(36,3) tDWNT in the energy
ranges� 0.35 eV to� 0.05 eV and 0.1 eVe0.35 eV for three different overlap length
extracted from TB þ LB calculations (dEDOS) and calculated using Eq. (2) (dE).

L [Å] dEDOS[eV] dE[eV]

1016 0.016 0.017
528 0.031 0.033
284 0.058 0.062
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the overlap. This quantization effect is absent in the (27,3)@(35,3)
DWNT, because its outer tube is semiconducting and, therefore,
only one set of linear bands is present. In both localized insulating
DWNTs considered here, the interlayer conductance is very small
(�0.01 G0) around the Fermi energy (�0.35 eVe0.35 eV) and only
becomes relevant in those regions where non-linear bands are
present in the inner and outer nanotubes. This demonstrates that
not only themetallic/semiconducting nature of the individual tubes
is important for the conductance between layers, but that the
coupling regime also plays a significant role. Consequently, metallic
shells inmulti-wall carbon nanotubes are likely to contribute less to
the overall conductance than previously expected due to the low
interlayer conductance, unless the strong coupling condition is
fulfilled. This explains the low interlayer conductivity reported in
Ref. [11]. Different examples of localized-insulating tDWNT (met-
allic@metallic) with shorter interlayer spacing (dR) can be found in
SI Fig. 10 (dR ¼ 3.4 Å) and SI Fig. 11 (dR ¼ 3.1 Å).

1.3. Weak coupling regime

In the weak coupling regime, there is a distinction between
DWNTs composed of two zig-zag nanotubes (zig-zag@zig-zag) and
all others. In zig-zag@zig-zag tDWNTs the rotational symmetry
plays an important role, specifically, the three-fold rotational
symmetry of (9,0)@(18,0) leads to significant interlayer trans-
mission near the Fermi-level [8]. Similar to (10,10)@(15,15), the
commensurability allows the formation of localized states in the
overlap region and causes the transmission to be blocked at the
corresponding energies. For other tDWNTs in this regime,
composed of either incommensurable or chiral nanotubes, the
interlayer transmission is negligible as a result of weak coupling (SI
Fig. 13-16).

In the Supplementary Information, we present the results ob-
tained for ten different combinations of SWNT, covering all possible
combinations of different chirality, commensurabilities, and
coupling regimes. The strong and localized insulating coupling
conditions are very restrictive and do not permit the mixing of
chiral and achiral nanotubes.

1.4. Conclusion

In conclusion, we show that the two main coupling regimes
predicted for double-wall carbon nanotubes (strong coupling and
localized insulating) are present already in finite DWNT segments.
These regimes should be identifiable in experimental set-ups even
when DWNT segments are short. For strongly coupled arm-
chair@armchair metallic nanotubes, the interlayer transmission is
significant and modulated by two phenomena. It is blocked by
localized states at discrete energies for any given overlap region
length, and it oscillates with the overlap length due to wave
interference in the overlap region. The rotational symmetry of the
tDWNT can reduce the maximal transmission, blocking trans-
mission through one of the electrode channels completely, as seen
for (10,10)@(15,15), or partially [10]. In other strongly coupled
tDWNTs, where at least one nanotube is chiral, wave interference
also leads to an oscillation of the maximal transmission. However,
the absence of rotational symmetry prevents the formation of
localized states and the corresponding back-scattering. Based on
the picture of 1D waves in a quantum box, we derive an expression
for the interlayer transmission of strongly coupled nanotubes. The
simplified model describes the modulation of transmission with
excellent accuracy. In weakly coupled zigzag@zigzag metallic
tDWNTs, the interlayer transmission is strongly affected by the
rotational symmetry. This leads to significant transmission be-
tween the layers of (9,0)@(18,0), while the interlayer transmission



Table 2
Optimized tight-binding parameters.

onsite intra-layer inter-layer

pps ppp pps ppp

Ep[eV] �2.04 H1nn[eV] 3.93 �2.81 Hinter[eV] 0.505 0.709
S1nn 0.573 0.301 Sinter 0.003 0.062
H2nn[eV] 1.17 �0.679 g[Å] 0.408 0.387
S2nn 0.018 0.047 h[Å] 1.12 0.620
H3nn[eV] 1.11 �0.298
S3nn 0.074 0.040
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in (18,0)@(27,0) is negligible. In other weak coupling tDWNTs,
where at least one tube is chiral or the two tubes are incommen-
surate, the interlayer transmission is negligible. Lastly, in the
localized insulating regime the interlayer transmission is also
heavily suppressed near the Fermi-level. In this regime, the emer-
gence of flat bands causes strong oscillations in the DOS. Notably,
the flat bands already appear in segments significantly shorter than
the predicted spatial periodicity of the underlying effective po-
tential (z1200 Å for tubes discussed above). The number of
localized states is directly linked to the overlap length. Our results
highlight that applications like nano-electronic switches based on
tDWNTs are very sensitive to their structure. Chiral tDWNTs are the
most promising candidates for such applications. These tubes
preserve the oscillating behavior found in all strongly coupled
tDWNTs, while the absence of rotational symmetries prevents
back-scattering at localized states.
2. Methods

2.1. Tight-binding model

We model interlayer and intralayer interactions using a non-
orthogonal tight-binding (TB) model with one orbital per carbon
site, based on Reich et al. [24], Laissardiere et al. [25], and Bonnet
et al. [6]. We extend the model to include curvature effects, using
pps interactions in addition to the ppp interactions, and interlayer
hopping to third nearest neighbors. The interlayer interaction
ranges up to a cut-off distance of 5 Å and is described by expo-
nential decays:

Hpps=pðdÞ ¼ Hinter
pps=pe

ðd�a0Þ
gpps=p (3)

Spps=pðdÞ ¼ Sinterpps=pe
ðd�a0Þ
hpps=p ; (4)

where a0 ¼ 3.35 Å is the interlayer spacing of bulk graphite. The TB
parameters were fit to electronic band structures of single and
double-wall carbon nanotubes obtained from first-principles den-
sity functional theory. We first fix the ppp parameters of the intra-
layer interaction by fitting to the band structure of graphene, to
reproduce correct behavior in the limit of very large nanotubes.
Next, we fix the pps parameters of the intra-layer interaction to
reproduce the ab initio bands of nanotubes with radii between 5.2
Åto 6.2 Å: (9,9), (16,0), and (9,6) (SI Fig. 1). Lastly, we optimize the
interlayer parameters to reproduce the ab initio bands of two
DWNTs: (16,0)@(24,0) and (9,6)@(15,10). The optimized parame-
ters are summarized in Table 2. The transmission and density of
states (DOS) are extracted using the Landauer-Büttiker formalism
(LB) formalism [26] as implemented in TBTrans [27]. All calcula-
tions are performed at zero voltage between the two electrodes.

Our ab initio and tight-binding simulations are sufficiently ac-
curate to describe the interlayer interaction. The LDA functional
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provides a good description of carbon nanostructures [28]. We used
an extended basis set that is large enough to describe interlayer
interaction in our ab initio simulations. Our tight-binding model is
based on these ab initio simulations and therefore retains this ac-
curacy to model double-wall carbon nanotubes, even without
explicitly including vdW corrections.

2.2. First-principles calculations

First-principles calculations were done with the SIESTA [29,30]
implementation of the density functional theory (DFT) method. We
employed the local density approximation (LDA) exchange-
correlation functional as parametrized J. P. Perdew and Y. Wang
[31] in conjunction with optimized norm-conserving Vanderbilt
(ONCV) scalar-relativistic pseudopotentials [32,33] with 2s and 2p
valence electrons, and a custom double-zeta polarized basis set
(details in the Supplementary Information). The Brillouin zone was
sampled using aG-centered, one-dimensional grid with 78 k-points
for the pristine armchair nanotubes.
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