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INTRODUCTION

Consider the following: writing (and reading) ferroelectric
memories without applying voltage;1–3 piezoelectric-like transduc-
tion without piezoelectric materials;4–6 bone remodeling7 and
mammalian hearing;8,9 asymmetric fracture toughness;10 and bulk
photovoltaic effects in non-polar materials.11 What do these appar-
ently disparate phenomena have in common? Flexoelectricity.

Flexoelectricity is defined as a coupling between dielectric
polarization and strain gradient. Although discovered in the late
1960s,12–16 the field of flexoelectricity in solid materials lay rela-
tively dormant and understudied for decades and studies on flexoe-
lectricity mostly focused on liquid crystals.17 This situation changed
in the early 2000s, with a series of reports from Cross18 showing
that the flexoelectric coefficient in materials with high dielectric
constants could have rather large flexoelectric coefficients —
sufficiently large to make piezoelectric-like transducers with decent
performance using non-piezoelectric materials.18

Piezoelectricity, the linear coupling between polarization and
strain, is still the most direct, and generally stronger, form of elec-
tromechanical coupling, and entire journals have been dedicated to
their study. Unfortunately, nature has not been very kind to us in
terms of giving us many piezoelectric materials and, even worse,
the best ones we know tend to contain toxic lead. By contrast, flex-
oelectricity couples electrical polarization to strain gradients
through a fourth order material property tensor. Symmetry tells us
that fourth order tensors are universal and thus all dielectrics
possess flexoelectricity. This is the key advantage of flexoelectricity.
All insulators (and, as recently discovered, also semiconductors),
will electrically polarize if subjected to non-uniform deformation,
and this is true also for biomaterials. The challenge of generating

electricity from mechanical pressure thus changes from being a
chemical one, focused on the synthesis of asymmetric materials, to
a structural one, focused on the generation of non-centrosymmetric
deformations.

The flexoelectric effect tends to be rather weak for most mate-
rials; in bulk ceramics, piezoelectricity wins over flexoelectricity in
terms of the ability to convert mechanical stress into voltage. A
further breakthrough, however, came with the realization that at
the nanoscale strain, gradients can be much larger than at the mac-
roscale, and, therefore, the importance of flexoelectricity grows
with miniaturization.19–24 With the coming of age of nanotechnol-
ogy, the development of advanced materials characterization
methods, and commensurate developments in theoretical and com-
putational materials science, we have seen an explosion of literature
on flexoelectricity. Flexoelectricity has now permeated into
wide-ranging topics: smart material design,25–28 sensors and
actuators,29–31 MEMS/NEMS and memory devices,31,2,32 soft
robotics,33 energy harvesting,34,11,35–37 2D materials and domain
walls,6,38–40 and understanding of biological phenomena. Much of
these developments have been summarized in review articles.24,23,38

Flexoelectricity started out as a proposed replacement of pie-
zoelectricity, with disadvantages in terms of magnitude that were
partially compensated by its universality and larger magnitude at
small scales. This “poor man’s piezoelectricity” status, however, is
being reassessed. Not only can flexoelectricity be an adequate alter-
native (or, in some cases, the only alternative) to piezoelectricity
but it can also be a complement to piezoelectricity (the two are not
mutually exclusive), and, excitingly, it can generate novel physical
responses that would NOT be possible by piezoelectricity alone,
such as asymmetric mechanical responses, mechanical reading and

Journal of
Applied Physics EDITORIAL scitation.org/journal/jap

J. Appl. Phys. 131, 020401 (2022); doi: 10.1063/5.0079319 131, 020401-1

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/5.0079319
https://doi.org/10.1063/5.0079319
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0079319
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0079319&domain=pdf&date_stamp=2022-01-11
http://orcid.org/0000-0002-6761-3499
http://orcid.org/0000-0003-0214-4828
mailto:psharma@central.uh.edu
https://aip.scitation.org/journal/jap


writing of ferroelectric domains, or bending-induced bulk photo-
voltaic effects. By enabling new physical phenomena, flexoelectric-
ity emerges from under the shadow of piezoelectricity as an
exciting research subject in its own right; hence the title of this
Editorial.

SUMMARY OF AREAS COVERED

The articles in the “Trends of Flexoelectricity” Special Topic
Collection in Journal of Applied Physics reflect the diversity and
the breadth of the emerging field. The collection covers a wide
variety of topics ranging from the application of flexoelectricity in
flexible electronics,41 sensing,42 energy harvesting,43,44 semiconduc-
tors,45,46 to actuators utilized in structural health monitoring.47

We also see the prospects of using flexoelectricity for mechanical
reading of memory devices3 and topics underpinning the theory of
flexoelectricity.48,49 An extensive and detailed overview of the
mathematical and computational modeling of flexoelectricity is
presented in Ref. 50.

Possible approaches of enhancing flexoelectric properties are
discussed in polymers,51,52,44,53 ceramics,54–57 ferroelectrics,58–62

and two-dimensional (2D) materials.63,62 There is also an intrigu-
ing proposal regarding flexoelectricity in metals.42 The role of sur-
faces on flexoelectricity is elaborated in Ref. 64 and the origin of
flexoelectricity from a quantum mechanics point of view is dis-
cussed in Ref. 65.

CONCLUDING REMARKS

The “Trends of Flexoelectricity” Special Topic illustrates the
emancipation of flexoelectricity, with articles covering many of the
new possibilities enabled by this phenomenon. Current research
topics reflect the diversity in this field and range from theoretical
developments, novel devices that exploit flexoelectricity, novel phys-
ical phenomena, and investigations in soft matter and biology. It is
a timely endeavor to collect advances in the finally flourishing field
of flexoelectricity and its emergence from the shadows.
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