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Macroscopic descriptions of ferroelectrics have an obvious appeal in terms of efficiency and physical
intuition. Their predictive power, however, has often been thwarted by the lack of a systematic procedure
to extract the relevant materials parameters from the microscopics. Here we address this limitation by
establishing an unambiguous two-way mapping between spatially inhomogeneous fields and discrete
lattice modes. This yields a natural treatment of gradient couplings in the macroscopic regime via a long-
wavelength expansion of the crystal Hamiltonian. Our analysis reveals an inherent arbitrariness in both the
flexoelectric and polarization gradient coefficients, which we ascribe to a translational freedom in the
definition of the polar distortion pattern. Remarkably, such arbitrariness cancels out in all physically
measurable properties (relaxed atomic structure and energetics) derived from the model, pointing to a
generalized translational covariance in the continuum description of inhomogeneous ferroelectric
structures. We demonstrate our claims with extensive numerical tests on 180° domain walls in common
ferroelectric perovskites, finding excellent agreement between the continuum model and direct first-
principles calculations.
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I. INTRODUCTION

Spatially inhomogeneous structures in ferroelectrics
such as domain walls, vortices, etc., have been the subject
of intense research in the past few years [1,2], because of
their emerging physical properties and nontrivial topology.
Considerable efforts are currently directed at identifying
the physical mechanisms that govern the stability of the
observed patterns and their response to external probes. In
addition to the well-known factors related to the electrical
and mechanical boundary conditions, flexoelectricity
(describing the coupling between polarization and strain
gradients [3–6]) has been receiving increasing attention in
this context. On one hand, the flexoelectric coupling
contributes substantially to the gradient energy, to the point
that a transition to a modulated phase may occur if

sufficiently strong [7–9]. On the other hand, flexoelectricity
endows the spatial gradients of the main order parameters
with potentially useful functionalities, e.g., a spontaneous
polarization at ferroelastic twin boundaries [10,11], and a
spontaneous strain at ferroelectric walls via the converse
effect [12,13].
In light of these findings, improving our understanding

of the interplay between flexoelectricity and ferroelectricity
appears as essential for future progress. Given the advances
that the first-principles theory of flexoelectricity has made
since the pioneering works of Resta [14] and Hong et al.
[15], such a goal appears now well within reach. As of
early 2020, a complete calculation of the bulk flexoelectric
tensor can be carried out [16,17] with the latest release of the
publicly distributed ABINIT [18,19] package, providing in
principle a solid theoretical reference for the interpretation of
the experimental data [13,20]. Unfortunately, these studies
have also revealed that the bulk flexoelectric coefficients are
ill defined as stand-alone material properties. More specifi-
cally, their definition is plagued by two distinct ambiguities,
which are respectively related to the treatment of elastic
and electrostatic fields in the long-wavelength expansion
[17,21,22]. This fundamental limitation prevents a straight-
forward comparison between theoretical and experimental
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results, as further considerations are needed to make sure that
the calculated values relate to what is being measured in a
physically meaningful way.
If they only concerned the specifics of how the flexo-

electric effect is defined and measured, these issues would
be of limited importance. On the contrary, the arbitrariness
of the coupling coefficients is problematic in a much
broader context, as it questions the validity of the widely
popular Landau-Ginzburg-Devonshire (LGD) theories of
ferroelectrics, a cornerstone of the theoretical understand-
ing of inhomogeneous polar structures for several decades.
At a domain wall, standard LGD models predict [12,13] a
dependence of both the energy and structure on the
flexocoupling coefficient via the converse effect, which
associates a uniform strain with a gradient of the polar order
parameter. The obvious question is then, how can we trust
such physical predictions once we know that one of the
materials properties on which they depend is ill (or at least
nonuniquely) defined?
To formulate the problem on firm theoretical grounds,

the first challenge consists in establishing a rigorous
two-way mapping between microscopic degrees of free-
dom and macroscopic order parameters. In the case of
spatially homogeneous crystal phases, such a task poses
limited conceptual issues: Building effective low-energy
Hamiltonians in terms of the physically relevant lattice
distortions (in perovskite crystals these typically include
polarization, strain, and antiferrodistortive oxygen tilts) is
now common practice [23–26] within the ab initio com-
munity. Whenever these degrees of freedom are no longer
constant over space, however, many subtleties arise, and the
partition of the energy into different macroscopic contri-
butions generally becomes nonunique [27]. The question,
then, is, are there specific criteria for ensuring that the result
is physically meaningful? And, once we have solved the
continuum equations, how can we verify that our solution
is consistent with the “training model,” i.e., our first-
principles engine?
Here we show, by deriving the continuum equations and

parameters via a rigorous long-wavelength approximation
of the first-principles lattice Hamiltonian, that the above
difficulties can be traced back to a translational freedom in
the definition of the polar distortion pattern. As a conse-
quence of such freedom, not only the flexocoupling f but
also the polarization gradient coefficient G (entering the
continuum functional via the squared gradient of the
polarization field) is affected by an inherent arbitrariness
in its definition. Crucially, we find that the respective
ambiguities in f and G cancel out exactly in any physical
prediction of the continuum model, implying that a con-
sistent treatment of both terms is essential for the overall
theory to work.
Of particular note, the aforementioned arbitrariness

directly affects the definition of the elastic displacement
field (and hence the strain), which we find to be nonunique.
Our long-wave approach to continuum theory, however,

yields unique answers for the domain-wall structure once
the local field amplitudes are converted back into atomic
distortions, enabling a straightforward validation of the
method against direct density-functional theory (DFT)
calculations. We illustrate this point by calculating 180°
ferroelectric walls in six different perovskite materials,
finding answers that are within 10%–20% of the “exact”
result. Given the extreme (one-cell thick) abruptness of the
structures, we regard this as a severe test for a continuum
approach, and such an accuracy is exceptionally good. By
calculating domain walls under hydrostatic pressure in
BaTiO3 we also demonstrate the exactness of our theory in
the limit of smooth domain walls.
From our results, a new paradigm emerges in the

construction of continuum models of ferroics: the invari-
ance of the Landau-Ginzburg-Devonshire free energy with
respect to a number of generalized gauge transformations
of the parameters and fields. This implies abandoning the
widespread belief that such parameters (e.g., the flexo-
electric coefficient) and fields (e.g., the local strain) be
well-defined physical properties of the crystal. It also
emphasizes the need for an intimate connection between
microscopics and macroscopics in order to achieve a
qualitatively sound picture.
This work is organized as follows. In Sec. II we address

the theoretical issues that arise in the design of continuum
models, focusing on the aforementioned ambiguities in
the definition of local strains, polar distortion patterns,
and flexoelectric coefficients. In Sec. III we present our
numerical tests on 180° domain walls in perovskite oxides,
alongside a detailed validation against the results of direct
first-principles calculations. In Sec. IV we discuss the
implications of our findings in the context of the relevant
literature. We summarize our work and present our con-
clusions in Sec. V.

II. THEORY

A. Statement of the problem

Consider a 180° domain wall in a ferroelectric crystal as
schematically illustrated in Fig. 1. The outer extremes of
both panels correspond to the oppositely oriented ferro-
electric domains, where the polarization (P) saturates to its
bulk value; in the central domain-wall region P transitions
from negative to positive values when moving from left to
right. The atomic structure far from the wall is well
described in terms of a periodically repeated crystalline
cell. Such a structure can be readily obtained from a bulk
calculation: one typically starts from the reference con-
figuration, breaks the centrosymmetry by hand (e.g., by
displacing atom A upward or atom O downward by a small
amount), and lets the atoms relax to their polar ground state.
Note that one can perform the relaxation while fixing either
A or O to their original locations; while the resulting
distortions dA;O differ [compare Figs. 1(a) and 1(b)], the
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two structures are related by a rigid translation of the whole
lattice, and are therefore degenerate.
Once the domain walls form, the two oppositely oriented

domains no longer enjoy translational invariance sepa-
rately: the wall lifts the indeterminacy modulo a rigid shift
of the cell, and uniquely sets the registry between the two
oppositely polarized half-lattices. The shift that we must
add to the calculated bulk atomic structure to correctly align
the two semi-infinite regions can conveniently be ration-
alized in terms of the elastic displacement field uðxÞ, which
undergoes a jump Δu when moving across the wall along
the normal direction (x). Thus, the spontaneous alignment
between the two domains can be understood physically as
an electromechanical effect, where the elastic degrees of
freedom emerge as a secondary consequence of the primary
polar distortion of the lattice. And indeed, recent works
[12,13] have clarified that the net elastic displacement is
due to converse flexoelectricity, and Δu can be related
linearly to the flexocoupling coefficient(s) of the crystal in
its cubic reference phase.
Earlier works, however, have overlooked the central

conceptual issue with the above interpretation. Since the
ferroelectric distortion pattern within the bulk domains

(quantified here by dκ, with κ ¼ A;O) is ill defined, the
amount of elastic displacement Δu that we must incorpo-
rate to obtain the correct registry between the left and right
half-lattices is also ill defined. This is obvious by looking at
Figs. 1(a) and 1(b), where we compare two different
choices for dκ and Δu. Clearly, the total atomic distortions
within each domain, given by �ðdκ þ Δu=2Þ, are the same
in Figs. 1(a) and 1(b). And yet, what we understand as the
“macroscopic elastic offset” between the domains, Δu,
markedly differs. This situation is paradoxical in light of
the widespread assumption that the local elastic displace-
ment field (and hence the local strain) be a physically
unambiguous degree of freedom of the crystal. The sketch
of Fig. 1 seems to disprove such an interpretation. As we
have anticipated in the Introduction, abandoning such a
long-established paradigm brings about a number of con-
ceptual troubles; we address them in the remainder of
this work.

B. Macroscopic theory

To frame our discussion, in this section we recap the
established [12] macroscopic theory for an Ising-like 180°
ferroelectric domain wall as illustrated in Fig. 1. For
simplicity, we shall exclusively focus on the transverse
(y) component of the polarization: Longitudinal (x) com-
ponents are typically small in perovskite ferroelectrics, and
would require an explicit treatment of the electrostatic
energy, which is nontrivial in the flexoelectric case [27]. We
also restrict our attention to a single strain component, the
xy shear, which is the most relevant one to our present
scope. (This implies neglecting the tetragonal distortion of
the crystal cells deep within the domains.) Within these
assumptions, the simplest free-energy functional to
describe the problem is

FðP; εÞ ¼ C
2
ε2 þ A

2
P2 þ B

4
P4 þ fε

∂P
∂x

þ G
2

�
∂P
∂x

�
2

: ð1Þ

Here P is the parallel (y) component of the polarization,
while the normal to the wall is indicated as x;

ε ¼ ∂u
∂x

ð2Þ

is the shear (xy) component of the strain, defined as the x
derivative of the parallel (y) component of the displacement
field u, C is the elastic constant (C44 component), A and B
are the standard parameters of the homogeneous Landau
potential, f is the flexocoupling coefficient, and G is the
polarization gradient coefficient. Note that the flexoelectric
coupling is written here in terms of the converse effect
(uniform strain in response to a P gradient); it is related to
the direct effect and to the standard Lifshitz-invariant
formula via simple integrations by parts:

(a)

d
O

d
A

= 0u

(b)

d
O

= 0

d
A

u

FIG. 1. Schematic model of a [100]-oriented ferroelectric
domain wall in a perovskite crystal. For simplicity, only atoms
in AO planes perpendicular to the wall are shown as red circles
(A) and black squares (O), respectively. The elastic displacement
of the crystal cells (dashed lines) is also shown. The ferroelectric
distortion of the lattice deep within the domain is indicated by red
and black arrows, respectively, for the displacements (dκ) of the A
and O sublattice with respect to their high-symmetry positions.
The macroscopic shift of the crystal cell Δu is also shown.
Displacements are exaggerated for illustration purposes. Panels
(a) and (b) illustrate how two different choices for dκ and Δu can
be made for the same atomic structure.
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fε
∂P
∂x

≃ −f
∂ε

∂x
P ≃

f
2

�
ε
∂P
∂x

−
∂ε

∂x
P

�
: ð3Þ

(The difference between the three expressions consists in
surface terms, irrelevant for the present bulk theory.)
By imposing the stationary condition,

∂F
∂ε

¼ 0; ð4Þ

the strain can be integrated out, which immediately leads to
the following result [12]:

ε ¼ −
f
C
∂P
∂x

→ u ¼ −
f
C
P: ð5Þ

(We have eliminated a trivial integration constant in u by
imposing that u vanishes whenever P ¼ 0.) Therefore, the
displacement field at a ferroelectric domain wall adopts
the exact same spatial profile as the polarization, except
for the −f=C scaling factor. From Eq. (5) one then can
extract the net elastic offset Δu that we introduced in the
previous section:

Δu ¼ −2
P0f
C

: ð6Þ

After eliminating the strain, we obtain the following
simpler expression for the free energy:

FðPÞ ¼ A
2
P2 þ B

4
P4 þ G̃

2

�
∂P
∂x

�
2

; G̃ ¼ G −
f2

C
: ð7Þ

The condition for stability is that the renormalized polari-
zation gradient coefficient be positive, GC > f2. (This
criterion is well known: if f is large enough, the system
becomes unstable and an incommensurate transition to a
modulated state may occur [7–9].) The equation of state is
given by the stationary condition with respect to P:

APþ BP3 − G̃
∂
2P
∂x2

¼ 0: ð8Þ

We shall attempt a trial solution of the type

PðxÞ ¼ P0 tanh

�
x
ξ

�
: ð9Þ

After a few steps of straightforward algebra, we arrive at

P2
0 ¼ −

A
B
; ξ2 ¼ 2G̃

jAj : ð10Þ

P0 is determined by the bulk Landau potential, while ξ is a
length, and has the obvious physical meaning of domain-
wall thickness.

The domain-wall energy per unit area can be obtained
by integrating the free-energy density along the normal to
the wall,

W ¼
Z

dx½F(PðxÞ) − F0�; ð11Þ

where F0 is the energy density of the monodomain ground
state. One arrives at

W ¼ A2

2B
ξ

Z þ∞

−∞
dx sech4ðxÞ ¼ A2

2B
ξ
4

3
¼ 8

3
jF0jξ; ð12Þ

where F0 ¼ −A2=4B is the bulk energy density. [Since F0

is an energy per unit volume, Eq. (12) correctly describes
W in units of energy per length squared].
An interesting consequence of the above derivations is

that the main physical properties of the wall (the thickness ξ
and the energy W) depend on the inhomogeneous coef-
ficients only via the renormalized gradient coupling G̃,
while other features (the elastic offset Δu) explicitly
depend on the flexocoupling f. This means that we can
replace f and G with arbitrary numbers, provided that
G − f2=C retains the original value, and extract the same
physical answers for ξ andW; Δu, on the other hand, is not
invariant with respect to such a transformation. This
property of Eq. (1) may appear at first sight as a math-
ematical curiosity, but has profound physical implications
in relation to the paradox illustrated in Fig. 1; we explore
them in the following sections.

C. Direct mapping to the microscopics

To test the validity of Eq. (1) in real systems, we need to
establish a microscopic interpretation of the order param-
eters entering the continuum functional. In full generality,
we use the following two-step procedure. First, we express
the individual atomic displacements as continuum func-
tions of the real-space coordinates r via a linear trans-
formation of the relevant vector fields vνβðrÞ:

uκαðrÞ ¼
X
νβ

vνβðrÞTνβ;κα: ð13Þ

(Tνβ;κα is the transformation matrix of the mapping, describ-
ing the displacement of the sublattice κ along α for a unit
amplitude of vνβ, where β runs over the Cartesian compo-
nents of the vector field vν.) Second, we write the displace-
ment of the atom in the lth cell by sampling the atomic

displacement fields at the undistorted lattice sites Rð0Þ
lκ :

ulκα ¼ uκαðRð0Þ
lκ Þ: ð14Þ

The combination of Eqs. (13) and (14) endows the
order parameters with the meaning of envelope functions,
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generally smooth on the scale of the interatomic spacings,
that modulate a cell-periodic displacement pattern of the
atoms over the volume of the crystal.
We assume a perovskite-structure lattice henceforth and

focus on two specific order parameters, ν ¼ u, P, corre-
sponding to the elastic displacement and ferroelectric
polarization. We identify their respective blocks of the
transformation matrix T with the threefold degenerate
acoustic and “soft” transverse modes of the undistorted
cubic structure at the zone center. Within the standard
choice of the coordinate axes, both blocks are diagonal on
the Cartesian indices,

Tuβ;κα ¼ uðβÞκ δαβ; TPβ;κα ¼ pðβÞ
κ δαβ: ð15Þ

uðβÞκ and pðβÞ
κ are sets of three five-dimensional basis

vectors, each forming a T1u irreducible representation of
the Pm3̄m point group. Regardless of the microscopics,

uðβÞκ depends neither on the sublattice index κ nor on the
Cartesian index β, as it describes a rigid shift of the cell that
is collinear with uβ [27]:

uðβÞκ ¼ 1: ð16Þ

Equation (13) reduces then to the following simplified
expression,

uκαðrÞ ¼ uαðrÞ þ PαðrÞpðαÞ
κ ; ð17Þ

where the only remaining task consists in specifying pðαÞ
κ .

As detailed in Sec. II F, we require that the homogeneous
solution of the Landau potential, Eq. (1), reproduce the

spontaneous bulk ferroelectric distortion pattern dðβÞκ via
Eq. (17):

dðβÞκ ¼ P0p
ðβÞ
κ : ð18Þ

This condition implies that pðβÞ
κ has four independent

entries and depends on β by a permutation of the oxygen
indices [21]. Equation (18) does not lead to a unique

solution for pðβÞ
κ , though: (i) There is a (trivial) freedom in

the choice of the unit in which both PðrÞ and pðβÞ
κ are

expressed, and (ii) because of the translational invariance

that we have mentioned earlier, dðβÞκ is only defined modulo
an arbirary shift of the whole lattice. In the following, we
assume that some choice has been made for (i) and (ii) and
proceed to deriving all the coefficients entering Eq. (1) in
terms of microscopic quantities; later on, we discuss the
implications of (ii) in regards to the apparent paradox
of Fig. 1.

D. Calculation of the coupling coefficients

The homogeneous coefficients A and B are easy to
extract from a first-principles calculation: they are readily
given by a quartic fit of the energy of the primitive cell as a
function of the distortion amplitude along the direction (in

configuration space) spanned by pðβÞ
κ . The gradient terms

(especially f and G) are technically more challenging to
calculate, in that they are defined in terms of spatially
modulated (and hence non-cell-periodic) atomic distortion
patterns. Recent developments [16,22,27] in density-
functional perturbation theory have overcome these diffi-
culties by applying the long-wavelength method to the
phonon problem. We show in the following that Eq. (13)
directly connects to the formalism of Refs. [22,27], and
hence leads to a physically sound definition of C, f, and G.
Since all gradient terms are harmonic, we consider a

linear-response regime in the field amplitude with respect
to the high-symmetry cubic phase. To capture the spatial
modulation, it is convenient to work in Fourier space and
express the relevant perturbations of the continuum fields
as a constant times a complex phase, e.g., PðrÞ ¼ Pqeiq·r.
Via Eq. (14), the corresponding lattice distortions can be
written as linear combinations of monochromatic displace-
ment patterns of the atoms:

ulκα ¼ uqκαeiq·R
ð0Þ
lκ : ð19Þ

The second derivatives of the energy with respect to uqκα
define [22] the force-constants matrix at the specified wave
vector q,

Φq
κα;κ0β ¼

∂
2E

∂u−qκα ∂u
q
κ0β

; ð20Þ

which provides the formal link to the established density-
functional perturbation theory framework [22].
The macroscopic limit of Eq. (20) is taken via a long-

wave expansion [17,22] in powers of q:

Φq
κα;κ0β ¼ Φð0Þ

κα;κ0β − iqγΦ
ð1;γÞ
κα;κ0β −

qγqδ
2

Φð2;γδÞ
κα;κ0β þ � � � : ð21Þ

The zeroth order term is the usual zone-center force-
constants matrix in short-circuit electrical boundary con-
ditions. (It may be used to compute the homogeneous
quadratic coefficient A.) The first-order term vanishes in
the cubic perovskite reference structure. Finally, the sec-
ond-order term allows one to extract the sought-after
information about flexoelectricity, polarization gradient,
and elasticity via a projection onto the elastic and polar
displacement patterns. In particular, in our specific context
of the [100]-oriented wall with the polarization oriented
along [010], Eqs. (16) and (15) lead to the following
explicit formulas,
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C ¼ −
1

2Ω

X
κκ0

Φð2;xxÞ
κy;κ0y ; ð22aÞ

f ¼ −
1

2Ω

X
κκ0

Φð2;xxÞ
κy;κ0yp

ðyÞ
κ0 ; ð22bÞ

G ¼ −
1

2Ω

X
κκ0

Φð2;xxÞ
κy;κ0yp

ðyÞ
κ pðyÞ

κ0 ; ð22cÞ

where Ω is the volume of the undistorted primitive cell.
To connect with the existing first-principles theory of

flexoelectricity, it is useful to recall the definition [17,22] of
the force-response coefficient,

fκ
0 ¼ −

1

2

X
κ

Φð2;xxÞ
κy;κ0y ; ð23Þ

as the force on the sublattice κ0 produced by a gradient of
the shear strain. A comparison between Eqs. (22) and (23)
shows that the flexocoupling coefficient is properly defined
here as the geometrical force on the polar mode produced

by a strain gradient, f ¼ P
κ0 f

κ0pðyÞ
κ0 =Ω, consistent with

earlier works [27,28]. Also, the definition of the elastic
constant C is consistent with the classic result of Born and
Huang [29], as revisited recently in a modern electronic-
structure context [17,22]. Note that fκ and C comply with
the “elastic sum rule” [17,22],

C ¼ 1

Ω

X
κ0
fκ

0
; ð24Þ

as can be easily verified via Eq. (22).
The fact that we obtain the elastic tensor, which is

usually regarded as a homogeneous coupling parameter, via
a similar procedure as spatial dispersion coefficients such
as G and f, might come as a surprise. This is justified by
the fact that a uniform strain is a gradient of the elastic
displacement field, and therefore it formally enters the
long-wave expansion of the dynamical matrix on the same
footing as a gradient of the polar mode: elasticity, flex-
oelectricity, and polarization gradient coupling all occur at
second order in the wave vector q.

E. Covariance principle

As expressed via Eqs. (22), it might appear that the three
dispersion coefficients C, f, and G are well-defined (and
measurable) physical properties of the crystal; most authors
have indeed used such an assumption in the past, either
implicitly or explicitly. And yet, while C is indeed a well-
defined crystal property, neither f (as pointed out in earlier
works [21]) norG (as we demonstrate in the following) are;
on the contrary, they both suffer from an unavoidable
arbitrariness. We anticipate that their ambiguity is physical,
i.e., it is not specific to the method one uses to calculate the

coefficients within microscopic theory, and is directly
related to the paradox of Fig. 1.
After a quick glance at Eq. (22), it is not difficult to see

where this arbitrariness may come from. Of the two
ingredients that enter the definition of C, f, and G, the
Φð2;xxÞ matrix is well defined, as it directly emerges from a
long-wave expansion of the force constants. As we have

anticipated earlier, however, the basis vector pðyÞ
κ is only

defined modulo a rigid displacement of the whole lattice

(Fig. 1). In other words, we can always replace pðyÞ
κ with

any vector that differs from pðyÞ
κ by a κ-independent

constant. There is no fundamental symmetry principle that
favors one choice over the other—it is entirely a matter of
convention. Let us see what happens if we operate such a
transformation, by defining a new basis vector as

pðyÞ
κ

0 ¼ pðyÞ
κ þ λ: ð25Þ

Evidently, the homogeneous coupling coefficients are
unaffected, since the energetics of the uniform phase is
insensitive to the choice of the origin. This is not the case
for the gradient coefficients, whose transformation rules
can be straightforwardly derived by plugging Eq. (25) into
Eq. (22):

f0 ¼ f þ λC; ð26aÞ

G0 ¼ Gþ 2λf þ λ2C: ð26bÞ

The fact that both the flexoelectric and gradient coefficients
depend on an arbitrary constant λ is actually easy to
rationalize on elementary physical grounds. Introducing
a shift in the polar distortion is harmless in the homo-
geneous case, but the gradient of P comes with an extra
strain field, which contributes to both the elastic and
flexoelectric terms in the free energy.
One might wonder, at this point, whether Eq. (1) can be

trusted at all, given the aforementioned arbitrariness. To
answer this question, it is useful to understand the impact
of Eqs. (25) and (26) on the domain-wall solution.
Crucially, the renormalized gradient coefficient G̃ remains
unchanged,

G̃0 ¼ G̃; ð27Þ

as the respective λ-dependent contributions to f and G
exactly cancel out. This means that all physically measur-
able properties of the domain wall, i.e., the thickness ξ and
the energy W, are well defined regardless of the specific

convention that we choose for pðyÞ
κ ; the equilibrium solution

for PðxÞ is also unaffected. The only feature that changes
with λ is the equilibrium solution for the elastic displace-
ment field, and hence the local strain,
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u0ðxÞ ¼ −
f0

C
PðxÞ ¼ uðxÞ − λPðxÞ: ð28Þ

This result looks, at first sight, surprising: by modifying the
definition of the polar distortion we have obtained the same
profile for PðxÞ, exactly the same energy, but a different
solution for the strain field. The solution to this puzzle
resides in Eq. (14), which is our gateway from the
continuum solution back to the microscopics. And indeed,
one can quickly verify that the change in the strain field
exactly cancels out with the change in the displacements

that are associated with the redefinition of pðyÞ
κ , leaving the

equilibrium solution for the individual atomic displace-
ments well defined (that is, λ independent) and unique. This
provides, in a nutshell, the solution to the paradox of Fig. 1,
and constitutes one of our main formal results.
That Eq. (1) behaves this way is not a coincidence,

but rather the consequence of a more general covariance
principle. Suppose we operate the following transformation
of the fields and the distortion vectors,

pðαÞ
κ

0 ¼ pðαÞ
κ þ λ; ð29aÞ

u0ðrÞ ¼ uðrÞ − λPðrÞ; ð29bÞ

where λ is an arbitrary dimensionless scalar. The atomic
distortions associated with the displacement and polariza-
tion fields via Eq. (17) are manifestly invariant with respect
to Eq. (29). This means that the original and primed
quantities refer to the same configuration of the system;
i.e., they are physically equivalent macroscopic represen-
tations of the same distorted crystal structure. It is natural
then to require a priori from any continuum functional of u
and P to be covariant with respect to the choice of λ, i.e.,
that it transforms as Eq. (29). The results of this section
demonstrate that Eq. (1) complies with such a requirement,
provided that both flexoelectricity and polarization gradient
coefficients are consistently calculated.

F. Converse mapping to the continuum fields

It is ironic, in light of these results, to realize that
macroscopic theory is far better suited to predicting
equilibrium atomic positions rather than “traditional”
macroscopic quantities, such as the strain. To rationalize
such an outcome, and get convinced that “it cannot be
otherwise,” it is illuminating to consider the converse
mapping between continuum fields and microscopics,
i.e., the procedure that allows one to extract the values
of PðrÞ and uðrÞ given a distorted configuration of the
crystal. We shall follow the same two-step procedure as in
Sec. II C, but taken in reverse order: (i) transform the
discrete sublattice distortions into continuum functions of
all space, (ii) perform a local projection of the individual
atomic displacements onto the subspace spanned by the

active lattice modes, i.e., those associated to the fields vνðrÞ
via the transformation matrix T.
Step (i) does not involve any ambiguity as long as the

atomic displacement pattern is mesoscopic in nature (i.e.,
the distortion amplitudes vary on a length scale that is much
larger than the interatomic spacings). Such an assumption
implies that, if we express the distortion in reciprocal space,
all phonon amplitudes uκαðqÞ vanish at the zone boundary.
This is a sufficient condition for the Fourier continuation of
the atomic displacements from discrete to continuum,

ulκα ¼ uκαðRð0Þ
lκ Þ → uκαðrÞ; ð30Þ

to be uniquely defined [27]. (Whenever the above condition
breaks down one can still extract continuum fields from the
atomistics by applying standard “macroscopic averaging”
[30,31] techniques).
Regarding step (ii), we shall define the continuum fields

by inverting Eq. (13),

vνβðrÞ ¼
X
κα

uκαðrÞT̃κα;νβ; ð31Þ

where T̃κα;νβ is the converse transformation matrix, which
satisfies the condition T̃T ¼ I. Similarly to the direct one,
T̃ is diagonal on the Cartesian indices, T̃κα;νβ ¼ δαβT̃κα;να.
The columns referring to ν ¼ u, P, which we indicate as

ũðαÞκ ¼ T̃κα;uα and p̃ðαÞ
κ ¼ T̃κα;Pα, are the duals to the direct

basis vectors, respectively, uðβÞκ and pðβÞ
κ , that we introduced

in Sec. II C. The basic requirement on the direct and dual
vectors is that they form an orthonormal set:

X
κ

ũðαÞκ uðβÞκ ¼
X
κ

p̃ðαÞ
κ pðβÞ

κ ¼ δαβ;

X
κ

ũðαÞκ pðβÞ
κ ¼

X
κ

p̃ðαÞ
κ uðβÞκ ¼ 0: ð32Þ

This is a necessary condition to ensure consistency, e.g.,
that a subsequent application of the direct and converse
mapping recovers the initial values of the continuum fields.
The most general choice that satisfies these constraints
consists in introducing a set of sublattice-dependent
weights wκ whose sum is unity,

P
κ wκ ¼ 1. Then, we

define the duals as

ũðβÞκ ¼ wκ; ð33aÞ

p̃ðβÞ
κ ¼ wκp

ðβÞ
κ : ð33bÞ

This way, the orthonormality of the elastic displacement
vectors is enforced by construction, while the remainder of

Eq. (32) leads to the following two conditions on pðβÞ
κ :
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X
κ

wκp
ðβÞ
κ ¼ 0; ð34aÞ

X
κ

wκ½pðβÞ
κ �2 ¼ 1: ð34bÞ

Equation (34a) is a “hard” requirement on pκ, and must
always be enforced after some choice of weights is made.
This condition lifts the indeterminacy of the polar distortion
vector that we illustrated in Fig. 1, and clarifies the role of
wκ in subtracting the (weighted) average displacement of
the cell from the polar mode. Doing so is consistent with
physical intuition: the polarization, by its nature, is a
distortion of the lattice that does not move the unit cell
of the crystal as a whole. Thus, the translational freedom
that we have described in the earlier sections can be
equivalently expressed as a weight freedom in the converse
mapping to the macroscopics, which provides an even more
direct connection to the theory of Ref. [21].
Equation (34b), on the other hand, is a consequence of

Eq. (33b), which is to some extent arbitrary. Indeed, one
can always multiply Eq. (34b) by a constant factor; such
freedom has to do with the choice of units that we use to
measure the polar distortion amplitude. (For example, one
could require P0 to coincide with the spontaneous polari-
zation of the ferroelectric crystal, as customary in macro-
scopic theories.) The present convention, which consists in
measuring PðxÞ in length units, has the drawback that the
normalization condition [Eq. (34b)], and hence the values
of all coefficients of Eq. (1), depends on the choice of
weights. Still, we prefer it here because it bears a direct
formal link to the eigenvectors of the dynamical matrix
(see Appendix A), and for consistency with earlier works
[10,27,28].
Equations (34a) and (34b), together with the prescrip-

tions of Sec. II C, yield a well-defined procedure to
construct the eigendisplacement vectors, and hence the
model parameters, given a set of weights wκ. Starting from
the atomic distortions in the relaxed ferroelectric structure

with the polarization oriented along β, dðβÞκ , we first of all
enforce Eq. (34) via

d̄ðβÞκ ¼ dðβÞκ −
X
κ

wκd
ðβÞ
κ : ð35Þ

Then, we define the amplitude of the spontaneous dis-
tortion as

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
κ

wκ½d̄ðβÞκ �2
r

: ð36Þ

Finally, we enforce Eq. (34b) by defining the dimensionless

eigendisplacement vector as pðβÞ
κ ¼ d̄ðβÞκ =P0.

G. Arbitrariness of the strain field

With the above derivations, we have established the
continuum displacement field as a weighted average over
all sublattices:

uðrÞ ¼
X
κ

wκuκðrÞ: ð37Þ

The issue with this formula, which is otherwise rather
trivial, is the fact that the weights are completely arbitrary.
There may be, of course, some choices that are preferable
over others, for different reasons. Several authors [13,27],
for example, advocate the use of the physical masses of the
atoms as weights; this is convenient for dynamical prob-
lems, where masses indeed play a role, and provides the
physically intuitive interpretation of the displacement field
as the displacement of the local center of mass. Then,
microscopists routinely use the positions of the heaviest
ions to define the local strain, as they correspond to the
brightest spots in the images; this implies setting their
weight to unity, and the others to zero. Simply taking the
average displacement of the cell (with equal weights) is not
uncommon, either.
The key point is that there is no fundamentally right (or

wrong) choice: since spatial inversion is broken in the polar
structure, within the bulk domains the relation between the
cell origin and the atomic positions cannot be fixed by
symmetry (see Fig. 1). Yet, the “covariance” of Eq. (1) with
respect to the weight arbitrariness guarantees that the
physics is uniquely described, even if the strain field
(and hence the net elastic offset across the wall, Δu)
depends on such choice. Note that this result, which has
been established here for a static domain-wall structure,
holds in full generality: In Appendix B we generalize it to
the time-dependent regime, and use it to reconcile the
existing controversies around the so-called “dynamical
flexoelectric effect.”
An important consequence of the formalism developed

here is that the definitions of strain and polarization are
intimately related: they are both bound, respectively, via
Eqs. (37) and (34), to the same weight choice ambiguity.
And indeed, Eq. (29) shows that uðrÞ is ambiguous only in
the presence of a spatially nonuniform polarization, and is
uniquely defined otherwise. To see this, recall that the strain
is defined as the first gradient of the displacement field. If
PðrÞ vanishes or is constant over space, Eq. (29) yields
∂uα=∂rβ ¼ ∂u0α=∂rβ, independent of λ; i.e., the strain
becomes a well-defined quantity. This is manifestly con-
sistent with Eq. (37): if all the uκðrÞ are equal modulo a
constant (which is true if the polarization is uniform), their
spatial gradients coincide; then, any choice of the weights
yields the same result for the strain.
We have achieved, therefore, a complete physical pic-

ture. There are three, at first sight unrelated, ambiguities in
the mapping from continuum to atomistics and vice versa,
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and concern (i) the definition of the local strain, (ii) the
definition of the polar distortion, and (iii) the definition of
the flexocoupling and gradient coefficients in the free
energy. We have shown that (i)–(iii) share the same formal
root, and can be expressed as a freedom in the choice of a
set of atomic weights wκ. This choice should be made once
and for all at the beginning, and consistently respected
throughout the calculation of all free-energy coefficients;
then, the physical answers that we extract from Eq. (1)
should not depend on the specific set of wκ that we use. The
variational solution of the continuum differential equations
does depend, in general, on wκ, but it must be this way: if
we are asking, for example, “what is the local displacement
of the cell at the point r,” the answer inevitably depends on
how we define such a displacement via Eq. (37). Similar
considerations hold whenever we use the information on
uðrÞ, extracted from experimental or theoretical domain-
wall structures via Eq. (37), to estimate the flexocoupling
coefficient by inverting Eq. (6).

III. RESULTS

A. Computational parameters

Our calculations are performed in the framework
of DFT as implemented in the “in-house” LAUTREC code
[32]. We use the local-density approximation [33], the
projector augmented wave method (PAW) [34], and a
plane-wave basis set with a kinetic energy cutoff of
50 Ry in all our calculations. The PAW datasets are
generated by treating the following orbitals as valence
electrons: Bað5s25p66s2Þ, Cað3s23p64s2Þ, Kð3s23p64s1Þ,
Nað2s22p63s1Þ, Nbð4s24p65s24d3Þ, Oð2s22p4Þ,
Pbð6s25d106p2Þ, Srð4s24p65s2Þ, Tið3s23p64s23d2Þ, and
Zrð4s24p65s24d2Þ. In all calculations, the Brillouin zone is
sampled using Monkhorst-Pack [35] meshes that are
equivalent (or better) to an 8 × 8 × 8 k-point grid in the
five-atom bulk cell.
For each of six ABO3 perovskites (BaTiO3, CaTiO3,

KNbO3, NaNbO3, PbTiO3, and PbZrO3) we first calculate

the equilibrium lattice parameter a0 of the cubic reference
structure by fitting the energy to the Murnaghan equation of
state. (The resulting values are listed in Table I.) Using the
corresponding a0 × a0 × a0 five-atom cells, we then dis-
place the atoms along one of the main axes and reoptimize
their positions, leading to tetragonal configurations with
lower energy. The displacements from the cubic positions
dκ and the energy differences ΔE and spontaneous polari-
zation P (calculated via the method of Ref. [36]) are
reported in Table I. Based on the calculated values of ΔE
and equilibrium polar distortion amplitude P0, we then
calculate A and B as

A ¼ 4ΔE
ΩP2

0

; B ¼ −
4ΔE
ΩP4

0

: ð38Þ

In order to calculate the second-order term in the long-
wave expansion of the force-constant matrix, Eq. (21), we
use the real-space supercell approach of Ref. [21]. This
implies calculating the second-order moments of the
interatomic force constants according to

Φð2;xxÞ
κy;κ0y ¼

X
l

Φl
κy;κ0yðRl þ τκ0 − τκÞ2x: ð39Þ

[Because of inversion symmetry, displacements of the
atoms along y do not generate electric fields along x; this
implies that the interatomic forces decay exponentially with
distance, and the lattice sums in Eq. (39) converge to a
unique, well-defined value.] To compute Φl

κy;κ0y, we carry
out calculations in which we displace one atom at the time
by 0.005 a.u. along y and extract the resulting forces. In
practice, we use a 8a0 × a0 × a0 supercell, with the same
geometry as in Fig. 2, except that we use the centrosym-
metric paraelectric structure as reference. (The resulting
matrix elements are given in Appendix A.)
Finally, to validate the model results against full DFT

calculations, we prepare two domains with opposite polari-
zation in a long (100)-oriented supercell (as in Fig. 2, for

TABLE I. Data computed using DFT for six perovskite oxides: simple-cubic lattice parameter a0 (in Å);
displacements (in Å) of the atoms from their high-symmetry positions in the distorted tetragonal structure at fixed
lattice constants a0, dκ , for the A cation (dA), B cation (dB), apical anion (dO1

), and equatorial anions (dO2;3
); energy

of this relaxed tetragonal configuration with respect to the simple cubic one (in meV/f.u.); and polarization of the
tetragonal phase (in C=m2). (*) indicates calculations of BaTiO3 under hydrostatic pressure; see Sec. III D.

a0 dA dB dO1
dO2;3

ΔE P

BaTiO3 3.935 þ0.0186 þ0.0538 −0.0359 −0.0183 −2.87 0.188

BaTiOð�Þ
3

3.904 þ0.0087 þ0.0237 −0.0117 −0.0064 −0.083 0.078

CaTiO3 3.799 þ0.2369 þ0.0584 −0.0432 −0.1261 −36.72 0.508
KNbO3 3.947 þ0.0244 þ0.0553 −0.0229 −0.0287 −3.77 0.205
NaNbO3 3.907 þ0.2097 þ0.0498 −0.0480 −0.1057 −18.75 0.359
PbTiO3 3.879 þ0.1894 þ0.0793 −0.0524 −0.1081 −30.56 0.578
PbZrO3 4.102 þ0.3674 þ0.0716 −0.0241 −0.2075 −187.50 0.647
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different values ofN), andweallow the atoms to relax along y
till the forces on them are negligible. We consider both AO-
centered and BO2-centered wall types. Note that we neglect
octahedra rotations, strain relaxations, or other wall orienta-
tions that might result in energetically more favorable
structures. Our main goal here is testing the continuum
approximation on a minimal Landau model of a ferroelectric
wall, and discussing the subtleties related to the treatment of
gradient effects. In this sense, incorporating additional
degrees of freedom to achieve a more realistic picture would
have constituted an unnecessary complication. In some
members of our materials set such a simplified model does
not yield a physically meaningful description of the bulk or
domain-wall structure (or both). For this reason,weprimarily

focus our attention on BaTiO3, PbTiO3, and KNbO3, and
present the data on other materials for comparison purposes
and future reference.

B. DFT calculations of domain walls

We start by discussing our direct DFT calculation of
the domain-wall structures. Figure 3 shows the resulting
atomic displacements from the high-symmetry positions.
Two features are common to all materials: the domain walls
are atomically thin and the atomic positions at the center of
each domain depend only on the material, and not on
the type of wall (AO or BO2). The six oxides considered
here can be roughly classified into two categories: those
for which the relative displacement between A cations in

FIG. 2. Example of unit cell used in some of our full-DFT calculations (here, N ¼ 8, and domains with opposite orientations give rise
to an AO-type domain wall).
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wall (either AO- or BO2-centered) are shown for three of the six perovskites considered in this work.
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adjacent domains is significantly larger than the one between
B cations (CaTiO3, NaNbO3, PbTiO3, and PbZrO3), and
those for which this is not the case (BaTiO3 and KNbO3).
Such an outcome reflects the bulk distortion patterns quoted
inTable I, which indeed shows thatBaTiO3 andKNbO3 have
similar properties, e.g., regarding the small displacements of
their A cations. A similar classification also applies to the
domain-wall energies, listed in Table II: for BaTiO3 and
KNbO3 the domain-wall energies are significantly smaller
than in other oxides (about one order of magnitude smaller
than in PbTiO3), with the BO2-type wall energy approx-
imately 50% higher than the AO-type value. In other
oxides the energies are larger, and for both types of wall
they are within 25% of each other. (The BO2 type becomes
favored for CaTiO3 and PbZrO3.) This picture is consistent
with earlier calculations [37] in PbTiO3 and BaTiO3,
even though in our calculations the relaxation of the cell
parameters is not allowed.
The atomic configurations and energies of some per-

ovskite oxide domain walls have been studied in the past
using DFT-based methods. Padilla et al. [38] carried out a
pioneering study on 180° domain walls in BaTiO3 using an
effective Hamiltonian built from DFT results; they reported
that the walls are atomically thin and centered at the Ba
atoms, consistent with our results, and that the domain-wall
energies are of the order of 10 mJ=m2. Full DFT studies of
180° domain walls in PbTiO3, first by Pöykkö and Chadi
[39] and later by Meyer and Vanderbilt [37], reached the
same conclusion regarding thickness, and predicted
domain-wall energies of 100 to 200 mJ=m2. In this case,
the most favorable domain walls are found to be centered
on the Pb atoms, which is again consistent with our
findings. To the best of our knowledge, Ref. [37] was
the first to point out the geometrical offset of the atomic
rows between the oppositely polarized domains; we discuss
this point extensively in the next section.
More recent studies have revealed that surprises may be

in store even in systems that were hitherto believed to be
simple and well understood. A particularly illuminating

example concerns the prediction of secondary Bloch-like
components in PbTiO3 [40]. The contribution of secondary
(or coprimary) antiferrodistortive modes (involving rota-
tions of the O6 octahedra) to the domain-wall energy and
structure has also been studied in selected cases [41,42].
These works clearly indicate that our Eq. (1) is too
simplified to provide a realistic picture in many materials;
a follow-up work is currently under way to generalize our
model to more complex geometries and boundary con-
ditions. Although experimental probing of the structure and
energetics of ferroelectric domain walls is still challenging,
by now the characterization methods are mature enough to
allow for a meaningful comparison to theoretical results.
For example, it is now widely accepted that domain walls
in perovskite oxides can be atomically thin (see, for
example, Ref. [43] and other references therein) as we
have found here.

C. Landau model calculations of domain walls

In this section we develop Landau models for each of our
six perovskite oxides according to the guidelines specified
earlier. We start from the calculated distortion pattern (dκ)
and energy gain (ΔE) of the tetragonal ferroelectric phase,
as reported in Table I. After processing the latter values via
the procedure described in Secs. II C and II F, we readily
obtain the values of A, B, and pκ for each bulk material. The
gradient-mediated coefficients of the model (C, f, G) are

then computed from pκ and the calculated Φð2;xxÞ
κy;κ0y via

Eq. (22). To illustrate our arguments, we use two different
choices of weights for defining pκ (and hence the A, B, f,
and G parameters of the model), by setting wκ either to
equal values or to the physical masses of the atoms. We
shall compare the results and demonstrate their mutual
consistency in the following.
In Table III we summarize our results for the calculated

model parameters depending on the weight choice. As
expected, all parameters (with the exception of the elastic
coefficient) considerably differ between the equal-mass and
the standard-mass convention. Recall that this difference is
twofold. First, there is a trivial scale factor (proportional to
some power of P0) that is due to the normalization of the
polar eigendisplacements pκ. The present choice of meas-
uring the polar order parameter via the norm (in length
units) of the atomic distortion amplitude differs from the
usual convention of macroscopic theories. To connect with
the latter we provide in Table V (Appendix C) the same
coefficients in SI units, where we have set P0 to the
spontaneous polarization of the bulk crystal, in C=m2. In
this case, the A and B coefficients agree between different
choices of the weights, while a discrepancy remains in both
f and G. Such a dependence of f and G on the weight
choice relates to the ambiguity in the definition of the
center of mass, which is subtracted by construction from pκ

via Eq. (34). As we said, either source of arbitrariness must

TABLE II. Domain-wall properties for six perovskite oxides:
domain-wall energy W as computed using DFT (for the two
possible AO and BO2 domain walls) and as computed using the
Landau model; and domain-wall thickness ξ as computed using
the Landau model.

W (mJ=m2) ξðÅÞ
DFT (AO) DFT (BO2) Eq. (12) Eq. (10)

BaTiO3 2.95 4.59 4.43 2.204

BaTiOð�Þ
3

0.321 0.322 0.324 5.441

CaTiO3 63.2 60.8 70.5 2.463
KNbO3 4.46 6.61 6.03 2.303
NaNbO3 26.6 32.7 34.3 2.557
PbTiO3 54.9 58.1 63.8 2.855
PbZrO3 200 133 252 2.170
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have no impact on the physical results that we extract from
the model—we use this criterion to validate the internal
consistency of our theory.
As a first test of such a claim, we use the calculated

values of the coefficients to compute the energy and the
width of the domain walls following Eqs. (10) and (12). We
find that the results are indeed consistent (to machine
precision) between the two weight choices. Table II shows
that the domain-wall energies extracted from the model are
also consistent with the results of our full DFT calculations;
the level of agreement is remarkable considering the
simplicity of the Landau model. The wall width, in
particular, is of the order of the cubic lattice parameter
in all cases, which provides a rather difficult test for the
continuum approximation. (The latter is expected to break
down at length scales that are comparable with the lattice
periodicity.) Note that the direct DFT calculations yield a
marked dependence of the domain-wall energy on the wall
location with respect to the underlying atomic structure;
such a dependence is obviously missing within the con-
tinuum description.
Next, we compute the elastic displacement field by

combining Eqs. (5) and (9):

uðxÞ ¼ −
f
C
PðxÞ ¼ −

f
C
P0 tanh

x
ξ
: ð40Þ

The resulting profile, shown in Fig. 4, drastically differs
depending on the weight choice, but is in excellent agree-
ment with the “local center of mass” that we extract from
our explicit domain-wall calculations by using the same

weight convention. (For an AO wall, we compute this by
considering the positions of the A and O atoms in a AO
layer together with an average of the B and O atoms in
adjacent BO2 layers—we follow an equivalent procedure
for the BO2 walls.) In all materials considered here, taking
unit weights (discontinuous lines) leads to flatter profiles
than taking atomic weights (continuous lines), but with
neither choice the centers of mass is fully aligned across
the wall. Any choice of weights, on the other hand, leads to
the same values of atomic displacements predicted by the
Landau model via Eq. (13). The resulting curves are plotted
as continuous lines next to the full DFT results for the
domain-wall structures in Fig. 3. The agreement between
the displacements predicted by the Landau model and those
from full DFT calculations is obvious.
For a more quantitative analysis, we extract the overall

displacement of the center of mass across the wall Δu from
the relaxed domain-wall structures, and use it to estimate
the effective flexocoupling coefficient by inverting Eq. (6):

feff ¼ −C
Δu
2P0

: ð41Þ

The results for both choices of weights are compared in
Table IV to the values predicted by the macroscopic model.
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TABLE III. Coefficients of the Landau model of Eq. (1)
computed from DFT calculations. The values are calculated by
expressing both u and P fields in Bohr units of length. Then, A is
in 10−3 Ha bohr−5; B in 10−3 Ha bohr−7; f, G, and C are all in
atomic units of pressure, i.e., 10−3 Ha bohr−3. In the top block
unit weights are used. In the bottom block physical atomic masses
are used as weights.

A B C f G

BaTiO3 −0.276 74.6 4.61 −0.560 2.47

BaTiOð�Þ
3

−0.0503 83.3 4.77 −0.590 2.66

CaTiO3 −0.219 3.29 3.47 −0.861 2.59
KNbO3 −0.322 77.8 3.27 −1.62 3.86
NaNbO3 −0.135 2.65 2.56 −1.36 2.30
PbTiO3 −0.234 4.79 3.45 −1.06 3.73
PbZrO3 −0.365 2.26 2.09 −0.386 3.14

BaTiO3 −0.448 195 4.61 −3.82 7.04

BaTiOð�Þ
3

−0.0801 212 4.77 −3.86 7.35

CaTiO3 −0.219 3.30 3.47 −2.28 3.87
KNbO3 −0.316 74.9 3.27 −4.15 8.26
NaNbO3 −0.215 6.72 2.56 −2.60 5.14
PbTiO3 −0.302 8.02 3.45 −5.49 13.1
PbZrO3 −0.431 3.14 2.09 −2.75 7.24

OSWALDO DIÉGUEZ and MASSIMILIANO STENGEL PHYS. REV. X 12, 031002 (2022)

031002-12



One can note that the equal-weight convention yields
values of f and feff that are systematically smaller than
those obtained by setting wκ to the physical atomic masses.
Overall, the values of feff and f nicely agree, differing at
most by few tenths of a volt in all cases.
Interestingly, the continuum approach yields a slight

overestimation of the converse flexoelectric effect at the
wall; such a feature appears to be systematic across all the
materials set and irrespective of the weight convention
being used. A possible explanation might lie in the
atomically sharp nature of the domain-wall structures,
which clearly challenges the continuum description. The
estimated values of feff , however, appear to be largely
insensitive to the atomistic details of the wall (AO- and
BO2-type walls yield very similar values for most materi-
als); therefore, it is unlikely that the aforementioned
discrepancy originates from the continuum approximation
itself. We suspect that such an effect may depend on higher-
order terms (either in the gradient expansion or in the polar
distortion amplitude) that we neglect in Eq. (1). In any case,
the accuracy of the present theory is more than sufficient for
a quantitative comparison of first-principles calculations
and experiments, e.g., along the lines of Ref. [13].

D. “Soft” ferroelectric walls: BaTiO3 under pressure

The values of ξ in Table II are smaller than one lattice
parameter in all cases, which agrees with the usual
perception that 180° ferroelectric domain walls are very
thin. In order to evaluate the accuracy of the polarization
profile of Eq. (9) it would be desirable to study thicker
ferroelectric domain walls with a smaller distortion ampli-
tude; in such a limit we expect the free-energy functional of
Eq. (1) to match the results of direct DFT calculations
exactly. One way to access this regime consists in using an

external parameter to bring the material closer to the phase
transition. [The domain-wall thickness, also known as
correlation length, diverges in a vicinity of a ferroelectric
phase transition, because of the vanishing A coefficient at
the denominator of Eq. (10).] Temperature is the most
obvious choice in an experimental context; this is, however,
impractical in the context of direct DFT simulations. A
simpler alternative consists in applying a hydrostatic
pressure p to our simulation cells; in many ferroelectrics,
this results in a suppression of the ferroelectric instability
already at moderate values of p, thus mimicking the effect
of increasing temperature in real experiments.
We apply this strategy to BaTiO3 by repeating all the

calculations under hydrostatic pressure; the corresponding
results are indicated in the tables with a (*) symbol. We find
that, at a lattice constant of 99.2% of the equilibrium a0 (see
Table I), the A parameter is still negative, but its absolute
value is about an order of magnitude smaller (see Table III)
than in standard conditions. Consistently, as the soft mode
eigenvalue approaches zero the atomic displacements
around the wall become smoother, and the value of ξ
increases to 5.441 Å. The profile of atomic displacements
for these walls is shown in Fig. 5: the results of the Landau
model (continuous lines; parameters are reported in
Table III) are essentially in perfect agreement with the
full DFT results in a 20a0 × a0 × a0 unit cell (symbols),
both for the AO and for the BO2 types of domain wall. The
agreement regarding domain-wall energy is also extremely
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FIG. 5. Atomic displacements parallel to an AO domain wall
(top panel) and to a BO2 wall (middle panel), and elastic
displacement (bottom panel), as a function of the distance from
the domain wall. In all cases the system studied is compressed
BaTiO3, built using supercells with a lattice parameter of 0.992a0.

TABLE IV. Value of feff ¼ −CΔu=2P0, in V, as computed with
DFT and with our Landau model. In the top block unit masses are
used. In the bottom block actual atomic masses are used.

DFT (AO) DFT (BO2) Landau model

BaTiO3 −0.203 −0.198 −0.283
BaTiOð�Þ

3
−0.279 −0.279 −0.288

CaTiO3 −0.409 −0.454 −0.681
KNbO3 −0.676 −0.670 −0.793
NaNbO3 −1.07 −1.09 −1.33
PbTiO3 −0.395 −0.400 −0.628
PbZrO3 0.038 −0.124 −0.373

BaTiO3 −1.43 −1.43 −1.52
BaTiO3

� −1.47 −1.48 −1.49
CaTiO3 −1.53 −1.57 −1.80
KNbO3 −1.93 −1.92 −2.05
NaNbO3 −1.75 −1.76 −2.01
PbTiO3 −2.63 −2.64 −2.87
PbZrO3 −2.04 −2.20 −2.45
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good (see Table II): Equation (12) yields 0.324 mJ=m2,
while from full DFT calculations we obtain 0.321 mJ=m2

(for the AO type) and 0.322 mJ=m2 (for the BO2 type).
Note that the direct DFT calculations of the domain-wall

energies and atomic structures are numerically much more
challenging than in the zero pressure case, because of the
extreme softness of the ferroelectric instability. To achieve a
reasonable level of accuracy, and hence allow for a mean-
ingful comparison to the model results, we had to be
unusually careful with the usual computational parameters:
(i) the domain-wall calculations were performed with a
larger 20a0 × a0 × a0 unit cell, to accommodate the thicker
wall structure, (ii) the five-atom unit cell calculations were
done using a 20 × 8 × 8 Monhkhorst-Pack grid, exactly
reproducing the folded Brillouin zone of the supercell (the
ferroelectric distortion amplitude and double-well potential
depth is remarkably sensitive to the k-point mesh), (iii) the
tolerance on residual forces was set to 0.0001 eV=Å,
approaching the inherent precision limits of the numerical
algorithms. On the other hand, the calculation of the
Landau model parameters required a similar computational
effort as in the zero-pressure case, highlighting the obvious
advantages of our multiscale approach in softer ferroic
materials.

IV. DISCUSSION

The impact of flexoelectricity on the properties of
ferroelectric domain walls was studied in several recent
works [12,13,44–46]. Yudin and Tagantsev [12] established
the role of flexoelectricity in determining the elastic offset
at the wall, as well as its impact on domain-wall energy and
thickness via the renormalization of the polarization gra-
dient coefficient G. These formal results, which we have
largely built upon in our present work, were applied by
Wang et al. [13] to domain-wall structures in PbTiO3 that
were obtained via either first-principles calculations or
experimental microscopy images. These authors, however,
assumed that an “authentic” [13] definition of the strain
exists, and overlooked (as did earlier works on this topic)
the inherent arbitrariness that we highlight here. The
definition used by Ref. [13] corresponds to using physical
masses as weights within our formalism. Within such a
convention, however, our result of f44 ¼ −2.87 V (or
feff44 ¼ −2.64 V as extracted from the direct calculation
of the BO2-centered domain-wall structure) in PbTiO3

disagrees with the value of f44 ¼ −5.4 V quoted by
Wang et al. by a factor of 2. We believe that the source
of the disagreement lies in Eq. (9b) of Wang et al. [13],
where an additional factor of 2 is indeed present compared
to our Eq. (41). Note that our calculated C ¼ 101 GPa is in
excellent agreement with the value of C44 ¼ 100.8 GPa
quoted therein, ruling out possible issues in the definition
of the shear elastic constant. Once the result of Ref. [13] is
divided by 2, it is in excellent agreement with ours.

From the point of view of the physics, themain conceptual
advance of our work can be summarized as follows. The
contribution of flexoelectricity to the domain-wall properties
is ill defined; however, the contribution of the polarization
gradient energy is ill defined as well, and including both
terms is essential for guaranteeing that their respective
arbitrariness cancels out. The obvious question then is, is
it really necessary to consider both terms explicitly? Or can
we choose the weights in such a way that the contribution of
flexoelectricity vanishes identically, leaving only the gra-
dient terms? A quick glance at Fig. 4 suggests, at first sight,
that the answer to the latter question be “yes”: for the equal-
weights case, the elastic offset between the domains is
already small—by weighing the cations slightly less than
the oxygens, one could certainly makeΔu to vanish exactly.
However, this would “renormalize out” flexoelectricity only
for a [100]-oriented wall; the same choice of weights would
not yield a vanishing Δu for a different (say, [110])
orientation. This means that, for a truly isotropic material,
flexoelectricity can be reabsorbed into the polarization
gradient energy, while anisotropic crystals generally require
its explicit treatment. In other words, one can equivalently
state that the renormalized gradient coefficients G̃ contain a
nonanalytic elastic contribution, which generally prevents
their representation in a straightworward tensorial form. This
adds up to the more conventional sources of nonanaliticity,
due to the long-range electrostatic interactions, which we
have not covered in the present work. Interestingly, electro-
static and elastic interactions mediated by flexoelectricity
sharemany similarities, as the former also enjoy a covariance
principle [27] and become analytic (i.e., short-ranged) in
isotropic media [27].
Another conceptual advance of this work consists in

establishing a first-principles theory of the polarization
gradient coefficient G. The established procedure to infer
the value of G from the phenomenological point of view
consists in analyzing the dispersion of the phonon band
associated with the soft mode [47]. The conceptual diffi-
culties of definingG in a microscopic context, and the often
counterintuitive consequences of combining LGD models
with density-functional theory, have been emphasized very
recently [48]. (For example, an estimation based on the
calculated spontaneous polarization and domain-wall
energy resulted [48] in a large variation of G as a function
of the applied pressure.) In contrast with the results of
Ref. [48], the G coefficient as defined in our work changes
little (2%–3% deviation for an isotropic compressive strain
of 1%) with external pressure in BaTiO3, consistent with
the usual assumptions of LGD theory. This, together with
the excellent accuracy of the domain-wall energies and
structures calculated within our continuum approach,
allows us to reach a more optimistic conclusion (compared
to Ref. [48]) regarding the suitability of LGD equations for
the description of realistic domain-wall structures.
Before closing, it is useful to place the methodology

that we have developed here in the context of the existing
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literature. Our strategy differs in spirit from Landau-
Ginzburg-Devonshire theories in that the latter have been
traditionally approached with a phenomenological mindset.
Granted, combining first-principles techniques with LGD
theories is not new: the former are being increasingly used
[49] to estimate a subset, or even the entirety of the LGD
model coefficients. However, such a practice is seldom
supported by a formal link between the macroscopic and
microscopic degrees of freedom, which has thwarted so far a
quantitative validation of LGD models against the ab initio
results. (At the qualitative level, successful comparisons do
exist; seeRef. [45] for an example that is relevant to the topics
of this work.) The conceptual novelty of our approach
consists in deriving the macroscopic field equations as a
rigorous long-wave approximation to the discrete lattice
Hamiltonian. This constitutes a muchmore intimate synergy
between the two levels of theory, which allows for quanti-
tatively accurate predictions (compared to the “training” first-
principles model) of the relevant physical properties. Most
importantly, our approach leads to a deeper awareness of the
internal structure of the theory, the mutual relation between
the many physical quantities involved, and their potential
dependence on some arbitrary choices that are inevitable in
the mapping of the problem onto continuum fields.
For the above reasons, our “first-principles macro-

scopic theory” belongs to the class of methods that are
commonly known as second principles. The latter are
obtained via an appropriate coarse graining of the first-
principles Hamiltonian, whose physically relevant low-
energy degrees of freedom are treated explicitly, while most
of the original complexity is integrated out. In the case of
ferroelectrics, the reference in this context is the “effective
Hamiltonian” method, pionereed by Zhong et al. [24];
many improvements and generalizations thereof have been
introduced over the years [50,51]. Performing a fair
comparison of the virtues and shortcomings of either
strategy would require substantial additional work, and
will be best carried out in the framework of a separate
publication. Here we limit ourselves to observe that, once
the continuum differential equations are discretized on a
regular mesh corresponding to the unit cells of the original
perovskite lattice, our approach essentially reduces to an
effective Hamiltonian—at least for the simple domain-wall
geometry considered here. [A generalization to the full
three-dimensional case appears feasible, too, by writing all
the couplings of Eq. (1) in a tensorial form and by explicitly
treating the electrostatic energy.] From this point of view,
the present method effectively bridges the gap between
atomistic and continuum approaches, while preserving an
exact limit at length scales that are large compared to the
interatomic spacings.

V. CONCLUSIONS

We have established a formal mapping between con-
tinuum fields and atomistics, and demonstrated its

predictive power in the study of spatially inhomogeneous
structures (e.g., domain walls) in ferroics. Our formalism
demonstrates the necessity of abandoning some widespread
beliefs in continuum theory, for example, that the local
strain field be a physically well-defined degree of freedom
of the crystal. While the arbitrariness in the definition of the
elastic strain has a profound impact on the continuum
model coefficients, we demonstrate that the physical
answers derived from the model are robust against the
specific convention that is being used.
On one hand, this results in a fundamental principle of

invariance that we deem of great practical utility in
validating the internal consistency of the continuum equa-
tions. On the other hand, and most importantly, our results
provide a stringent benchmark to determine what are the
physically sound questions that one can ask, and what
are not. As illustrated by our practical tests, examples of
well-posed questions concern the domain-wall energy, or
the atomic positions; we show that macroscopic theory
(within the validity range of the continuum approximation)
can be an excellent tool to predict both—with comparable
accuracy to the full first-principles “training model.”
Conversely, questions of the type “what is the contribution
of flexoelectricity to the domain-wall energy?” or “what is
the impact of the dynamic flexoelectric effect on the
acoustic phonon dispersion?” are physically meaningless,
as the answer can be about “anything,” depending on some
(necessarily) arbitrary choices that one makes along
the way.
In the present work we have voluntarily chosen, for the

sake of clarity, a minimal model of macroscopic phenom-
ena where the above ideas have a nontrivial impact. (For
example, we have neglected most components of the strain
tensor, as well as competing antiferrodistortive modes.)
This choice has inevitably limited the predictive power of
our study in some materials. An obvious future develop-
ment of this work consists in extending the scopes of our
first-principles continuum approach to more complex
structures, e.g., involving a higher dimensionality or a
broader range of degrees of freedom. For example, it will be
interesting to clarify whether the principle of invariance
established here also applies to the bichiral domain-wall
structures described in Refs. [44,45], or to the secondary
Bloch-like components that were theoretically predicted in
PbTiO3 [40]. Also, incorporating the effect of octahedral
tilts appears especially promising, in light of the results of
Ref. [10]. Generalizing the ideas developed here in such
directions will be an exciting avenue for further study.
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APPENDIX A: RELATION TO THE
EIGENMODE REPRESENTATION

In this appendix, we shall link the formalism developed
in the main text to the prescriptions of Ref. [27] for the
construction of the continuum Hamiltonian. Their proposed
strategy consists in identifying the distortion patterns
associated with the mechanical displacement and polari-
zation fields with, respectively, the acoustic and “soft”
polar eigenmodes of the zone-center dynamical matrix D.
We adopt here a slightly more general definition by
introducing the following operator,

D̃κα;κ0β ¼
1ffiffiffiffiffiffiffiffiffiffiffi
wκwκ0

p Φð0Þ
κα;κ0β; ðA1Þ

which reduces to the standard definition of D when the
weights are set to the physical atomic masses mκ. (In our
formalism the weights are dimensionless, so the appropriate
choice in this case consists in setting them to the fractional
mass of the sublattice; then, D̃ reduces to MtotD, where
Mtot ¼

P
κ mκ is the total mass of the cell.) Following

Ref. [27], we define the eigendisplacement pattern jναi
associated to a given normal mode να (ν runs over the four
T1u irreps of the cubic perovskite structure, including
acoustic and optical TO1–TO3 modes; α is a Cartesian
direction) as

hκβjναi ¼
ffiffiffiffiffiffi
1

wκ

s
hκβjvðνÞα i; ðA2Þ

where jvðνÞα i are the normalized eigenvectors of D̃. (The
present use of the bra-ket notation follows the conventions
established in earlier works [27,28]. Both bras and kets are
real vectors in a space of dimension 3Nat, where Nat is the
total number of atoms in the unit cell; hκβj form a complete
orthonormal basis.) This definition results in a generalized
orthonormality condition for the eigendisplacements,

hναjWjν0βi ¼ δνν0δαβ; ðA3Þ

where the “overlap operator” W is defined as

Wκα;κ0β ¼ wκδκκ0δαβ: ðA4Þ

One can show [27] that, within such prescriptions, the
eigendisplacements associated to the acoustic mode
(ν ¼ u) are independent of the weights, thus recovering
Eq. (16). Then, by setting ν ¼ u and ν0 ¼ TO1–TO3 in

Eq. (A3), we find that both Eqs. (34) and (34b) are
automatically satisfied by all polar modes. We can, thus,
identify the symbol hκβjναi with the transformation matrix
introduced in Sec. II C:

hκβjναi ¼ Tκβ;να: ðA5Þ

In particular, the elastic displacement and polarization basis
vectors are defined by

hκβjuαi ¼ δαβ; hκβjTO1αi ¼ δαβp
ðαÞ
κ ; ðA6Þ

where we have assumed that TO1 corresponds to the
ferroelectric “soft mode.”
There is a slight drawback with such a procedure:

different conventions for the weights lead to definitions

of pðαÞ
κ that are generally not related via Eq. (25). Indeed,

the configuration space spanned by pðαÞ
κ changes depending

on the weights, as the three polar optical modes of the
perovskite structure can mix. (This is a well-known issue in
the construction of effective Hamiltonian for ferroelectrics,
where typically the lowest eigenvector of the force-constant

matrix is used for pðαÞ
κ ; this corresponds to choosing equal

weights in the context of our formalism.) In practical cases,

pðαÞ
κ might not reproduce the correct distortion pattern (and

energetics) of the bulk ferroelectric ground state, which is
undesirable in the study of a domain wall. To avoid this
issue, in this work we have followed the prescriptions of

Sec. II F and defined pðαÞ
κ starting from the relaxed

distortion pattern of the bulk ferroelectric crystal instead.
In the limit of a weak ferroelectric instability, one can show

that this definition of pðαÞ
κ exactly matches the eigenvector

representation provided by Eq. (A6) regardless of the
choice of the weights.

APPENDIX B: DYNAMICAL EQUATIONS
OF MOTION

Tagantsev [52] and Kvasov and Tagantsev [53] claimed
that there are two well-defined contributions to the bulk
flexoelectric tensor, static and dynamic in nature, and that
they are, in principle, separately measurable. Later works
[22] clarified that such a partition is arbitrary, and that
(i) the total flexoelectric coefficient is meaningful for
dynamical problems and (ii) either the total or the “static”
flexoelectric tensor yield identical answers at mechanical
equilibrium. To firm up our arguments, we shall revisit this
long-standing debate on the static versus dynamic contri-
bution to the flexoelectric tensor in light of the results
presented so far. We shall see that it bears strong con-
nections to the aforementioned ambiguities in the defini-
tions of the continuum fields, and that our formalism
resolves once and for all the existing confusion around
this topic. The coupled dynamics of the polar and acoustic
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degrees of freedom is, of course, irrelevant to the study of
static structures, such as the domain walls that we consider
in this work. Still, it is interesting to discuss this topic here,
as it provides an additional proof of the internal consistency
of our arguments.
To describe the dynamical evolution of the mechanical

and acoustic degrees of freedom, we need to work out the
kinetic energy density in terms of the mode velocities. We
shall write it as

T ðrÞ ¼ 1

2

X
νν0αβ

_vναðrÞMνα;ν0β _vν0βðrÞ; ðB1Þ

where αβ run over all the Cartesian components of the
vector fields indexed by νν0, and the matrix Mνα;ν0β, of the
dimension of a mass density, is the normal mode repre-
sentation of the “mass operator” M:

Mνα;ν0β ¼
1

Ω
hναjMjν0βi;

hκαjMjκ0βi ¼ mκδκκ0δαβ: ðB2Þ

(As usual, κκ0 are sublattice indices;mκ are atomic masses.)
The off-diagonal kinetic term, coupling the acoustic and
optical mode velocities, has been identified as a dynamical
contribution to the bulk flexoelectric tensor by Tagantsev
and co-workers [12,52,53].
Based on the arguments of the earlier sections, it is clear

that the magnitude of such contribution, and even whether
it exists at all, depends on the choice we make for the
weights wκ. The definition given by Tagantsev of the
“static” flexoelectric tensor corresponds, within our for-
malism, to using equal weights in the construction of our

free-energy functional coefficients. If we do so, the matrix
element MuP then reduces to their definition of the
“dynamic” contribution. If we made a different choice,
the partition between the two would change arbitrarily—
and yet both the dynamical (phonon frequencies and dis-
persions) and static properties (domain-wall energy, equi-
librium atomic positions) predicted by our Lagrangian
would be exactly the same. It is interesting to consider
the special case where the weights are set to the physical
masses of the atoms divided by the total mass of the
cell, wκ ¼ mκ=ð

P
κ0 mκ0 Þ. The orthogonality condition,

Eq. (A3), immediately leads then to MuP ¼ 0; i.e., the
“dynamical flexoelectric effect” disappears altogether.
Given that the magnitude, and even the very existence,
of such an effect depends on some arbitrary convention we
have made along the way in order to map our lattice-
dynamical problem onto a continuum Lagrangian density,
we are forced to conclude that such an effect is not
measurable. Still, we find that incorporating a mass cross
term, as suggested in Ref. [12], is necessary to guarantee
that the physical predictions of the theory are unaffected by
such ambiguities.

APPENDIX C: SUPPORTING NUMERICAL DATA

In Table V we provide the complete list of the calculated
model coefficients for all materials. This is essentially the
same data as in Table III, only expressed in SI units while
setting P0 to the spontaneous ferroelectric polarization of
the bulk crystal. This conversion is useful for two purposes.
First, it shows that the A and B coefficients are consistent
between different weight choices, provided that the respec-
tive distortion vectors pκ are related via Eq. (25); i.e., they
only differ by a sublattice-independent constant. [This is
obviously the case if the electrical polarization is chosen as

TABLE V. Coefficients (in SI units) of the Landau model of Eq. (1) computed from DFT calculations, when P0 is
the spontaneous polarization of the bulk crystal (measured in C=m2). In the top block unit weights are used. In the
bottom block physical atomic masses are used.

A (109 m=F) B (1010 Ω2 m3=kg) C (1011 Pa) f (V) G (10−10 m3=F) G̃ (10−10 m3=F)

BaTiO3 −0.857 2.43 1.36 −0.283 0.214 0.208

BaTiOð�Þ
3

−0.145 2.36 1.40 −0.288 0.221 0.215

CaTiO3 −1.66 0.645 1.02 −0.681 0.550 0.505
KNbO3 −0.934 2.22 0.961 −0.793 0.313 0.248
NaNbO3 −1.56 1.21 0.755 −1.33 0.746 0.510
PbTiO3 −1.00 0.299 1.01 −0.628 0.447 0.409
PbZrO3 −4.15 0.991 0.616 −0.373 1.00 0.979

BaTiO3 −0.857 2.43 1.36 −1.52 0.378 0.208

BaTiOð�Þ
3

−0.145 2.36 1.40 −1.49 0.373 0.215

CaTiO3 −1.66 0.645 1.02 −1.80 0.822 0.505
KNbO3 −0.934 2.22 0.961 −2.05 0.684 0.248
NaNbO3 −1.56 1.21 0.755 −2.01 1.05 0.510
PbTiO3 −1.00 0.299 1.01 −2.87 1.22 0.409
PbZrO3 −4.15 0.991 0.616 −2.45 1.95 0.979
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a measure of the atomic distortion, but not when the total
norm of the distortion is used; in the latter case there is
generally an overall scaling factor that originates from
Eq. (34b).] Second, the coefficients are now expressed in
the same units as in conventional macroscopic theory,
allowing for a direct comparison. In the case of BaTiO3, for
example, our calculated polarization gradient coefficient G
is in good agreement with the phenomenological value of
G ¼ 0.2 × 10−10 m3=F reported in Ref. [45].
The elements of the second-moment interatomic force-

constant matrix, calculated via Eq. (39), are reported in
Table VI for reference.
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