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(Sorrell, 2007) or as Fell (2017, p. 137) stated: “Energy 
services are those functions performed using energy 
which are means to obtain or facilitate desired end ser-
vices or states.” An example of an energy service would 
be “transportation”. The improvements in energy effi-
ciency, due to innovation and technical change, decrease 
the effective cost of an energy service as it requires less 
energy to provide the same energy service, which leads 
to energy savings. However, as shown by empirical evi-
dence, this decrease in the cost of the energy service 
causes behavioral responses from consumers, causing 
what is known in the literature as the direct rebound 
effect (DRE). Hence, the DRE can be defined as the 
consumer behavioral responses, following a reduction 
in the cost of energy services, due to an improvement of 
energy efficiency. This partially or fully reduces the ini-
tially expected energy savings, or in some cases, could 
even increase the energy consumption.

The purpose of this article is twofold. First, we 
obtain empirical evidence of the DRE for all the energy 
services that require electricity for their provision in 
Spanish households.

Second, the main contribution of this article is the 
consideration of alternative energy sources in the estima-
tion of the DRE for the energy source of electricity for 
Spanish households. Using recent data, this paper deliv-
ers an estimated magnitude of the DRE in the consump-
tion of electricity of Spanish households providing short-
run and long-run estimates. The results of this research 
will contribute to the empirical literature concerning 
the DRE in a developed country of the energy services 
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provided by electricity in households. We will provide 
up to date evidence for the case of the residential sec-
tor in Spain since Freire-González (2010) employed 
a similar estimation method to ours for the DRE of 
household electricity consumption in Catalonia.

There is also recent empirical evidence of the 
rebound effect for Spain by Cansino et  al. (2022), 
who estimate the direct, the indirect, and the econ-
omy-wide rebound effect for 14 productive sectors, to 
estimate the DRE they also employed an economet-
ric estimation method. They found a positive DRE for 
the 14 productive sectors.

Other recent empirical evidence related to the 
rebound effect for Spain is done by Cansino et  al. 
(2019) and Román-Collado and Colinet (2018), 
whereas Román-Collado and Colinet Carmona (2021) 
focused on the Spanish region of Andalusia. They 
used a Logarithmic Mean Divisia Index I (LMDI-I) 
decomposition model to test how energy efficiency 
affects energy consumption in different economic sec-
tors in Spain. Cansino et al. (2019) found that there are 
energy consumption savings after energy efficiency 
improvements. Román-Collado and Colinet (2018) 
highlighted the relevance of focusing on Spanish 
household energy consumption, as it became the most 
relevant energy consumption change in Spain with a 
25.1% increase from 2000 to 2013. Román-Collado 
and Colinet Carmona (2021) found that, to achieve 
Spain’s energy consumption targets, the energy con-
sumption of Andalusia should reach the average Span-
ish energy consumption. The main additional contri-
bution of this article is the consideration of alternative 
energy sources in the estimation of the DRE for the 
energy source of electricity for Spanish households.

As different economic variables tend to change 
over time, it is expected that the magnitude of the 
rebound effect varies through the years (Sorrell, 2007, 
2018). Henceforth, this research will not only con-
tribute to the DRE literature, but it will also provide 
updated and useful information to policymakers. An 
additional contribution of our paper is that we test the 
impact of the prices of other energy sources, which 
may be substitutes or complementary goods. If we 
find that household energy services affect each other 
directly, this would involve a new source of DRE, 
which could open a new research line.

The study of the rebound effect is essential for 
policymakers whether they want to maximize energy 
and climate policy effectiveness by incorporating 

additional measures to tackle the rebound effect, 
such as energy taxation or tradable permits (Freire-
González & Puig-Ventosa, 2014; van den Bergh, 
2011) or if social welfare is a priority (as efficiency 
improvements in energy services would reduce its 
effective cost) rather than saving energy (Sorrell, 
2018).

To put our analysis into context, we show next 
some empirical evidence of the DRE. We focus on 
the DRE estimation through econometric techniques 
for a collection of energy services supplied by elec-
tricity and natural gas in households. The empirical 
evidence that we review next does not consider alter-
native energy sources for the estimation of DRE of 
the energy source studied, with the only exception 
of Freire-González (2010). Nevertheless, his coeffi-
cient of the alternative energy source variable was not 
significant. Thus, by considering alternative energy 
sources that have significance in the estimation of 
the DRE of an energy source considered, our article 
would contribute to bridging the gap in the literature 
regarding this issue.

Under certain assumptions, the estimation of the 
own-price elasticity of domestic energy demand 
would reveal the DRE. In this approach, the estima-
tion is based upon an overall improvement in energy 
efficiency of energy services used by households 
(Sorrell, 2007). Hence, the DRE refers to all energy 
services run by energy source considered.

Table  1 summarizes some empirical evidence of 
the direct rebound for household electricity and gas 
consumption. One of the first studies to analyze the 
DRE of a collection of energy services was Freire-
González (2010) for the case of Catalonia (Spain). 
He used panel data from the period 1991–2003 with 
a sample size of 43 Catalan municipalities. He found 
that the short-run and long-run elasticities were 35% 
and 49% respectively. Several subsequent studies 
have analyzed the DRE for electricity consumption 
in households using the same econometric approach 
to estimate the short-run and long-run elasticities. 
The results of these studies for residential electricity 
consumption are in line with the theory suggesting 
that the DRE is expected to be greater in developing 
regions (Sorrell, 2007), since the DREs estimated for 
China, Tunisia, and Pakistan (Alvi et al., 2018; Labidi 
& Abdessalem, 2018; Wang et  al., 2014; Zhang & 
Peng, 2017) were higher than those estimated for Cat-
alonia (Spain) and Beijing (China) (Freire-González, 
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2010; Wang et  al., 2016). Beijing is not only the 
capital of China, but also the second richest city of 
the country in per capita disposable income (Wang 
et al., 2016). Another recent measure of the DRE for 
domestic energy services was conducted by Belaïd 
et  al. (2018). They found short-run and long-run 
DREs of 60% and 63%, respectively, for all energy 
services supplied by residential gas in France. The 
size of both effects may seem large for a developed 
country considering the economic literature on the 
DRE. However, these results should be taken with 
caution, since they used average data for the whole 
country, which may not capture the heterogeneity 
among French regions. Table 1 indicates the findings 
of these studies.

The most common control variables used by the 
studies shown in Table 1 are the price of the energy 
source considered (electricity or natural gas), an 

income variable such as household disposable income 
or GDP, and the climatic variables such as heating 
and cooling degree days.

Methodology and data

Methodological developments on the estimation of 
the direct rebound

This subsection details the theoretical and meth-
odological developments for the estimation of the 
DRE using econometric approaches. We follow the 
theoretical developments made by Berkhout et  al. 
(2000), Sorrell (2007), and Sorrell and Dimitropoulos 
(2008). There is a consensus in the economic litera-
ture regarding the measurement of the DRE through 
the efficiency elasticity of the demand for useful work 

Table 1  Econometric estimates of direct rebound of all energy services in households that use electricity or gas

Source: own elaboration

Author/year Country Energy source Short run Long run Data Estimation 
technique

Price coefficient 
of other energy 
sources

Freire-
González 
(2010)

Catalonia 
(Spain)

Electricity 35% 49% Panel: 
1991–2002

Sample size: 43

Fixed effects 
and error 
correction 
model

Price of natural 
gas, not sig-
nificant

Wang et al. 
(2014)

China Electricity 72% 74% Panel: 
1996–2010

Sample size: 30

Fixed effects 
and error 
correction 
model

Not included in 
the model

Wang et al. 
(2016)

Beijing (China) Electricity 16% 40% Time series: 
1990–2013

Fixed effects 
and error 
correction 
model

Not included in 
the model

Zhang and 
Peng (2017)

China Electricity 72% on aver-
age, 68% 
low-income 
regime, 55% 
high income 
regime

Panel: 14 years 
(2000–2013) 
and 29 
provinces of 
China

Linear panel 
model and 
panel thresh-
old model

Not included in 
the model

Alvi et al. 
(2018)

Pakistan Electricity 42.9% 69.5% Panel: 
1973–2016

Sample size: 
not specified

Fixed effects 
and error 
correction 
model

Not included in 
the model

Labidi and 
Abdessalem 
(2018)

Tunisia Electricity 81.7% Panel: 1995, 
2000, 2005, 
and 2010

Sample size: 21

Fixed effect Not included in 
the model

Belaïd et al. 
(2018)

France Natural gas 60% 63% Time series: 
1983–2014

OLS and 
ARDL

Not included in 
the model
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(Berkhout et al., 2000). This is the primary definition 
of the DRE:

where ηε(E) is the efficiency elasticity of the demand 
for energy and ηε(S) is the efficiency elasticity of the 
demand for useful work. One definition of useful 
work or useful output is what consumers required in 
terms of an end-use service (Patterson, 1996). For 
example, a useful work measure of transportation 
service from private car ownership can be the calcu-
lation of passenger kilometers. This calculation can 
come from the product of the number of cars, the 
mean driving distance per car per year, and the aver-
age number of passengers carried per year (Sorrell & 
Dimitropoulos, 2008).

From this theoretical development, the different 
results found in the literature are the following:

 (i) A zero DRE, when the efficiency elasticity 
of the demand for useful work equals to zero 
(ηε(S) = 0). Hence, the efficiency elasticity of 
the demand for energy (ηε(E)) is equal to minus 
one. This would imply that final energy savings 
are proportional to the efficiency improvement.

 (ii) A positive DRE, when the efficiency elasticity 
of the demand for useful work is between 0 and 
1 (0 < ηε(S) < 1) and, therefore, the efficiency 
elasticity of the demand for energy is between 
0 and −1 (−1 < ηε(E) < 0)  (Sorrell & Dimitro-
poulos, 2008). This implies energy savings that 
are less than proportional to the improvement 
in energy efficiency. This is the most common 
outcome in the literature.

 (iii) A positive DRE, causing an increase in energy 
consumption, when the demand for useful work 
is elastic  (ηε(S) > 1) and (ηε(E) > 0). Thus, an 
improvement in energy efficiency increases 
energy consumption (what is known as back-
fire) (Saunders, 1992).

Under certain assumptions, the DRE can be meas-
ured indirectly, without data on energy improvements, 
through price elasticities (Sorrell, 2007; Sorrell & 
Dimitropoulos, 2007, 2008). First, symmetry: for a 
normal good, it is expected that rational consumers 
will respond in the same way to a decrease in energy 
prices as they do to an improvement in energy effi-
ciency (and vice versa) (Sorrell et al., 2009). Second, 

(1)��(E) = ��(S) − 1

exogeneity: energy prices (PE) are exogenous, so they 
do not affect energy efficiency (Sorrell, 2007). Under 
these assumptions, the DRE can be expressed as:

where the energy cost elasticity for useful work 
( �Ps

(S) ) can be used as a proxy for the efficiency elas-
ticity of useful work. It is expected that �Ps

(S) ≤ 0 if 
useful work is a normal good (Sorrell & Dimitropou-
los, 2008).

It is also possible to arrive at another definition 
for the DRE, through the estimation of the own-price 
elasticity of energy demand 

(

�PE
(E)

)

.

The additional assumption required for this defini-
tion (besides symmetry and exogeneity) is that energy 
efficiency does not change with the level of energy 
use (Sorrell & Dimitropoulos, 2008). To deal with 
endogeneity (energy efficiency affects energy costs 
and energy costs affect energy efficiency), empirical 
estimates can be addressed analyzing cointegration 
relationships between the variables (Freire-González, 
2010). Since periods of rising prices may induce 
improvements in efficiency, to avoid overestimating 
the size of the effect, empirical estimates must be 
based upon periods of stability or decrease of energy 
prices (Sorrell, 2007; Sorrell et  al., 2009; Sorrell & 
Dimitropoulos, 2008).

We estimate the DRE through Eq.  3. Given the 
assumptions explained above, we use the own-price 
elasticity of electricity demand as a proxy for the 
efficiency elasticity of the demand for useful work of 
electricity (Eq. 1). Sorrell (2007) clarified that Eq. 1 
requires energy efficiency data for the energy service 
considered, and for this type of data generally there 
is limited variation in energy efficiency providing 
results with large variance. On the other hand, Eq. 3 
only requires data on energy prices, usually more 
available than data on energy efficiency, which pro-
vides a greater variation in the independent variable 
(Sorrell, 2007).

Most of the empirical evidence briefly reviewed in 
the “Introduction” section suggests that the DRE is 
lower than 100%, implying that there will be energy 
savings after an improvement in efficiency. However, 
it is important to point out that these estimates only 
measure the DRE without considering the indirect 

(2)��(E) = −�Ps
(S) − 1

(3)��(E) = −�PE
(E) − 1
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rebound effect, when both the direct and indirect 
rebound effect can be linked through a re-spending 
framework (Freire-González, 2011), leading to differ-
ent rebounds at microeconomic level. In this frame-
work, low estimations of the DRE give rise to the 
possibility that the indirect rebound effect reaches a 
wider range of values; likewise, high estimations of 
the DRE entail less potential fluctuation of the indi-
rect rebound effect (Freire-González, 2017a). Given 
this relationship between both effects, it is not possi-
ble to confirm whether the direct and indirect rebound 
effect is greater or lower than 100% when only the 
DRE is measured. Freire-González (2017b) found 
direct and indirect rebound effects greater than 100% 
of energy efficiency in households in Cyprus, Poland, 
Belgium, Bulgaria, Lithuania, Sweden, Denmark, 
and Finland by using a combination of econometric 
estimations of energy demand functions, re-spending 
modeling, and generalized input–output of energy 
modeling.

A comprehensive way to jointly estimate the direct 
and indirect rebound is through the Almost Ideal 
Demand System (AIDS) (Deaton & Muellbauer, 
1980). These models, however, require a lot of infor-
mation on consumption, expenditures, prices, and 
other variables from a basket of goods and services 
which is often not available. Chitnis and Sorrell 
(2015) estimated a direct and indirect rebound effect 
of 48% for electricity efficiency improvements in UK 
households through an AIDS, and using the same 
methodology, Lin and Liu (2013) found a direct and 
indirect rebound effect of 165.22% (backfire) in Chi-
nese households.

The existing literature suggests that the magnitude 
of the DRE lies between 30 and 50% (Sorrell et al., 
2009). As energy efficiency data is usually unavail-
able, most studies rely either on the elasticity of 
demand for energy services with respect to the price 
of energy or on the elasticity of demand for energy 
with respect to the price of energy to estimate the 
DRE (Sorrell, 2007; Sorrell et  al., 2009). Under the 
assumptions explained above, both approaches are 
accepted in the DRE literature (Freire-González, 
2017b; Sorrell & Dimitropoulos, 2007). Regard-
ing the term of the effects, Sorrel stated: “Rebound 
effects may be larger or smaller over the long-run as 
a greater range of behavioral responses become avail-
able” (Sorrell, 2018; p. 14).

An additional issue to be considered in the esti-
mation of the DRE is that different energy sources 
may be complementary or substitutes. Therefore, 
the price of other energy sources may be influencing 
the demand of a particular energy source and so, it 
should be taken into account in the estimation of the 
DRE. The only previous study that included the price 
of another energy source was Freire-González (2010), 
though he did not find it to be significant. We propose 
to include it in the model to obtain a more accurate 
estimation of the DRE. Moreover, in case of being 
significant, it would open a new line of research, as 
it would involve evidence that there is an additional 
source of rebound to the ones usually considered in 
the literature.

Data

We obtained annual data from 2007 to 2016 for the 
52 provinces of Spain for all the variables described. 
We obtained the price of domestic electricity and nat-
ural gas from the Eurostat (2016).1 These prices do 
not vary between provinces, but they do over time. 
We gathered the information about heating oil prices 
from the Eurostat (2016).2 We could not find data for 
renewable energy prices, which is mainly biomass. 
According to IDAE (Instituto para la Diversificación 
y ahorro de la Energía), the renewable energy sources 
used by Spanish households are the following: bio-
mass (96.6%), solar thermal (0.03%), and geothermal 
(0.002%). In this sense, Vinterbäck and Porsö (2011, 
p. 9) stated that for Spain: “There is no official infor-
mation or statistics about prices of wood pellets and 
briquettes. There are several independent organiza-
tions related to the wood sector (e.g. Confemadera, 
Cismadera, Cesefor) that handle internal data about 
prices, but these statistics are not available for all 
stakeholders but only for organization members and 
people registered on the webpage.”

We assigned the price of electricity and natural gas 
considering their price categories. The price catego-
ries of each Spanish energy carrier (electricity and 
natural gas) are shown in Appendix Table 6 and 7. In 

1 http:// appsso. euros tat. ec. europa. eu/ nui/ show. do? datas et= 
nrg_ pc_ 204& lang= en
2 https:// ec. europa. eu/ energy/ en/ data- analy sis/ weekly- oil- bulle 
tin

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
https://ec.europa.eu/energy/en/data-analysis/weekly-oil-bulletin
https://ec.europa.eu/energy/en/data-analysis/weekly-oil-bulletin
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the case of electricity consumption, we can find prov-
inces that fell into two categories (Band DB and DC) 
along the 10 years, such as Álava, Burgos, and Can-
tabria. On the other hand, there are provinces whose 
price category remained the same during the 10 years, 
such as Barcelona and Madrid (Band DC), and Ávila 
and Cáceres (Band DB). This feature is also present 
in natural gas consumption. We captured this price 
variability for both energy sources (electricity and 
natural gas) considering the average household con-
sumption per province per year to be the dependent 
variable in the estimates. Heating oil is charged at the 
same price regardless of the amount used.

Given data availability issues, the household dis-
posable income of each Spanish region, which was 
obtained from the National Institute of Statistics 
(INE, 2016),3 is used as a proxy for the household 
disposable income per province. Nevertheless, we 
transformed all the monetary variables to constant 
2016 prices by accounting for the inflation in each 
province.

We collected data on the minimum and maximum 
daily temperature of each province from the State 
Meteorological Agency of Spain (AEMET, 2016).4 
The base temperature chosen to calculate the heat-
ing and the cooling degree days are 21°C and 22°C 
respectively; Appendix Table  8 shows the formula 
used. Nevertheless, there is no consensus regarding 
the suitable values of the “threshold” or base tem-
perature to define the comfort zone (Blázquez et al., 
2013). In this sense, the base temperature for heating 
degree days was defined following the values cho-
sen by Freire-González (2010) for his estimation of 
the DRE for Catalonia; and the cooling degree days 
base temperature was defined following the Spanish 
Technical System Operator (REE, 1998). Data on 
electricity consumption (the dependent variable in 
the estimates) and subscribers was obtained from the 
Ministerio de Industria, Comercio y Turismo (2016).5

The data collection process could be improved by 
collecting the specific price charged for each energy 
service. We estimate the DRE for a collection of 
energy services that require electricity; therefore, 

the DRE for each energy service is disguised into 
our results. It would also be desirable to enlarge the 
panel data by collecting data at the municipality level. 
However, the cost of collecting this specific type of 
data for Spain might exceed its benefits since differ-
ent types of data used in different types of economet-
ric estimation methods give an estimated magnitude 
of the DRE of around 30%, for a developed country 
(Sorrell & Dimitropoulos, 2007). Thus, given the pre-
sent data availability, our results provide useful and 
robust information, especially regarding the direct 
influence that arises between households’ energy 
services.

Econometric models estimated

This subsection shows the econometric models esti-
mated to measure the DRE. Following the proposal 
of Freire-González (2010), the estimation of the DRE 
was performed by obtaining the price and income 
elasticities using a double-logarithmic functional 
form for the demand of electricity consumption in 
households. A general household electricity demand 
model for Spain can be specified as follows:

where Eit/hhit is the aggregate electricity consumption 
divided by the number of households subscribed in 
period t, in province i; PEit

 is the price of electricity in 
period t, in province i; PXit

 is the price of other energy 
sources needed in Spanish households in period t, in 
province i, such as natural gas (G) and heating oil 
(HO); Yit is the households’ disposable income in 
period t, in province i; CDDit and HDDit are the cool-
ing and heating degree days in period t, in province i, 
respectively; and Eit − 1/hhit − 1  is the average electric-
ity consumption in period t − 1, in province i; which 
captures the long-run effects.

We expect a negative sign in the coefficient accom-
panying the price of electricity, that is, an increase in 
electricity prices would reduce the electricity consump-
tion. The relationship between electricity consump-
tion and the price of other energy sources seems more 
complex. To identify whether electricity and the other 
energy sources are substitutes or complementary goods, 
we can focus on the energy services provided from each 

(4)

ln
(

E
it
∕hh

it

)

= � + �1 lnPEit
+ �2 lnPXit

+ �3 ln Yit

+�4 lnCDDit
+ �5 lnHDDit

+ �6 ln
(

E
it−1∕hhit−1

)

3 Instituto Nacional de Estadistica. (Spanish Statistical Office), 
www. ine. es/
4 Agencia Estatal de Meteorología (AEMET). Sede Cataluña, 
from aemet.es/es/portada
5 https:// energ ia. gob. es/ balan ces/ Publi cacio nes/

http://www.ine.es/
https://energia.gob.es/balances/Publicaciones/


Energy Efficiency           (2022) 15:47  

1 3

Page 7 of 21    47 

Vol.: (0123456789)

energy carrier. Considering the period 2010–2015, elec-
tricity is the major energy source in providing lighting 
and energy for appliances. This energy service amounts 
for approximately 74% of the total electricity consump-
tion in Spanish households (IDAE, 2015). For space 
cooling services, electricity is the main energy source 
with a 99% share (IDAE, 2015). Therefore, families do 
not have many possibilities of substituting the energy 
sources for these energy services. As regards space heat-
ing, which is the energy service with the greatest share 
of energy consumption in Spanish households, electric-
ity has a share of 7% (IDAE, 2015), biomass, natural 
gas, and heating oil being the most important energy 
sources. If we combined the energy services of space 
heating, water heating, and cooking, electricity amounts 
for 14% of the total energy consumption for those energy 
services (IDAE, 2015) (see Appendix Fig. 1 and Table 9 
for further information). Nevertheless, most families just 
have one type of installation to provide each of these 
energy services and, therefore, there are not many pos-
sibilities for substituting the energy sources providing 
them. Households need not only electricity to satisfy 
their demand for energy services, but they also require 
other energy sources, such as natural gas and heating 
oil. Therefore, when we estimate the DRE of a collec-
tion of energy services provided by electricity, we could 
expect a negative (complementary) relationship between 
the other energy sources used in households and the 
residential electricity consumption. That is, an increase 
in the price of the other energy sources would tend to 
reduce the consumption of electricity.

Households’ disposable income is expected to 
have a positive relation with electricity demand, as 
we consider that electricity is a normal good. Degree 
days measure the duration and intensity of warm or 
cold temperatures, along different periods. They are 
computed using a base temperature that should ade-
quately separate the cold and heat branches of the 
demand–temperature relationship (Pardo et al., 2002). 
Concerning the weather variables, a wider tempera-
ture range is expected to have a positive influence 
on electricity consumption (Romero-Jordán et  al., 
2014), that is, the colder (warmer) the temperatures 
are from the base temperature, the greater is the use 
of heating (cooling) devices run by electricity. In this 
sense, HDD and CDD are expected to have a posi-
tive relationship with electricity demand. Regarding 
the lagged electricity consumption, a positive sign 
is expected, due to existing inertia in electricity 

consumption (Abel, 1990; Romero-Jordán et  al., 
2014). Given these relationships and the models used 
in previous studies concerning the direct rebound 
estimation in households, we presume that all rel-
evant variables have been accurately included in the 
model.

Two‑step error correction model

In the long run, households’ energy demand can be 
adjusted completely to changes in prices and income 
within the unit period, which is 1 year in our model 
(Sorrell & Dimitropoulos, 2007). On the contrary, in 
the short run, households’ energy demand has fewer 
adjustment possibilities. Therefore, to estimate both 
short-run and long-run price elasticities in household 
electricity consumption, an error correction model 
(ECM) (Granger, 1981) is used to calculate the DRE 
(Alvi et  al., 2018; Freire-González, 2010). An ECM 
is an econometric model that deals with the cointe-
gration of variables to obtain both short-run and 
long-run estimators, and solve spurious relationships 
between them (Greene, 2003). For residential elec-
tricity demand, we can expect that households would 
respond not only to current values of independent 
variables but also to past values. As this effect might 
persist over time, an ECM with lagged variables 
is an appropriate model to deal with these potential 
endogeneity issues providing consistent estimations 
(Greene, 2003). In this case, the ECM is performed 
in two steps. First, a fixed effects model is estimated 
following this specification:

where α represents the common fixed effect or con-
stant; μi are the individual fixed effects. The fixed 
effects model has been estimated using a general-
ized least squares (GLS) method, correcting potential 
heteroskedasticity and autocorrelation problems by 
using cross-sectional weights. This model provides 
long-run elasticities. Second, the predicted residuals 
from estimating Eq.  5 have been saved and used as 
exogenous variable in a regression containing differ-
enced endogenous and exogenous variables plus the 
lagged error term (ϑuit − 1), which is a specification of 
an ECM. The ECM model is specified as follows:

(5)
ln
(

E
it
∕hh

it

)

= � + �
i
+ �1 lnPEit

+ �2 lnPXit
+ �3 lnYit

+�4 lnCDDit
+ �5 lnHDDit

+ u
it
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A significant and negative coefficient accompany-
ing the error correction term (ϑituit − 1) would imply 
that the system corrects its previous period disequi-
librium. Expected values of the error correction term 
are between 0 and −1. Table 2 shows that three of the 
eight statistics reject the null hypothesis of no coin-
tegration, suggesting the existence of cointegration. 
The ECM has also been estimated assuming cross-
sectional heteroskedasticity, that is, with a GLS speci-
fication. In both steps, the ECM has been estimated 
with the common coefficients to all provinces; the 
fixed effect of each province is displayed in Appendix 
Table 10.

The Hausman test confirms that there are differ-
ences between the random and the fixed effects esti-
mators (Table  3). Hence, the fixed effects estimator 
is more suitable than the random effects to estimate 
the two-step ECM because Table 3 output rejects the 

(6)
Δln

(

E
it
∕hh

it

)

=∝ +�1ΔlnPEit
+ �2ΔlnPXit

+�3ΔlnYit + �4Δ lnCDD
it
+ �5ΔlnHDDit

+�Δ6 ln
(

E
it−1∕hhit−1

)

+ �
it
u
it−1 + �

it

null hypothesis of no correlation between the unique 
errors and the regressors. Likewise, Table  4 shows 
that the first step equation of the ECM suggests that 
cross-sectional effects are significant. Moreover, the 
cross-sectional fixed effects test equation is relevant 
for all the variables.

System generalized method of moments

As previously stated, we expect a significant influ-
ence from past values of the explanatory variables on 
the current values of the dependent variable. To deal 
with this dynamic relationship, we can also estimate 
the model through a dynamic generalized method 
of moments (GMM) panel estimator. This estima-
tor is consistent and unbiased if we assume that the 
unobserved heterogeneity (μi) is fixed (Wintoki et al., 
2012).

To deal with potential endogeneity issues, the 
dynamic GMM estimators instrument current val-
ues of explanatory variables with their lagged val-
ues (Wintoki et  al., 2012). According to Rood-
man (2009b), the dynamic GMM panel estimators, 
whether using difference or system GMM, are 
designed for situations when the time span (T) ana-
lyzed is relatively small with respect to the cross 
sections (N). Relating the econometric method to 
our data generating process, we can see that the indi-
viduals (52) are relatively large compared to the time 
frame (10).

We base our estimation on the system GMM esti-
mator (Arellano & Bond, 1991; Arellano & Bover, 
1995; Blundell & Bond, 1998; Holtz-Eakin et  al., 

Table 2  Pedroni residual cointegration test

Statistic Prob. Weighted 
statistic

Prob.

Panel v-statistic −4.473 1.000 −4.633 1.000
Panel rho-statistic 9.151 1.000 8.746 1.000
Panel PP-statistic −15.135 0.000 −14.542 0.000
Panel ADF-statistic NA NA NA NA
Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.
Group rho-statistic 11.627 1.000
Group PP-statistic −27.688 0.000
Group ADF-statistic NA NA

Table 3  Hausman test

Correlated random effects—Hausman test

Test cross-sectional random effects

Test summary Chi‑Sq. statistic Chi‑Sq. d.f. Prob.
Cross‑sectional 

random
66.046 6 0.000

Table 4  Redundant fixed effects tests

Test cross‑sectional fixed effects
Effects test Statistic d.f. p‑value
Cross-sectional F 49.126 (51.462) 0.000

Cross-sectional fixed effects test equation
Variable Coefficient Std. error t‑statistic p‑value
C −2.303 0.410 −5.611 0.000
lnP

Eit
−0.811 0.056 −14.388 0.000

lnP
Git

0.064 0.033 1.938 0.053
lnP

HOit
−0.331 0.051 −6.401 0.000

lnCDDit 0.159 0.011 13.978 0.000
lnHDDit −0.219 0.019 −11.424 0.000
lnYit 0.405 0.040 10.097 0.000
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1988). This approach also addresses fixed effects, 
heteroskedasticity, and autocorrelation (Roodman, 
2009a).

The dynamic model is specified as follows (Arel-
lano & Bover, 1995; Baltagi, 2008; Blundell & Bond, 
1998; Roodman, 2009a). See Roodman (2009a) for 
further details regarding the difference and system 
GMM:

The two orthogonal conditions of the disturbance 
term are the fixed effects (μi) and the idiosyncratic 
shocks (υit) (Roodman, 2009b). For these conditions 
to be valid, the instruments must provide an exoge-
nous source of variation on the explanatory variables. 
For example, past values of the explanatory variables 
have no direct effect on the current dependent vari-
able (electricity consumption per province) and only 
affect it through its effect on current values of the 
explanatory variables (Wintoki et al., 2012).

To remove the fixed effects (μi) from Eq. 7, Arel-
lano and Bond’s (1991) estimator subtracts the pre-
vious observation from the contemporaneous one 
which is known as “difference GMM”:

Nevertheless, the weakness of this estimator is that 
it increases data loss (due to the first difference trans-
formation) especially in unbalanced panels (Rood-
man, 2009a). There is also a potential endogenous 
issue, as the yi, t − 1 term in ∆yi, t − 1 = yi, t − 1 − yi, t − 2  is 
correlated with νi, t − 1 in ∆νit = νit − νi, t − 1. Addition-
ally, predetermined variables in x´ could also add 
another endogeneity problem, as they might also be 
correlated with νi, t − 1 (Roodman, 2009b).

Arellano and Bover (1995) presented an alternative 
transformation of Eq. 7, by using forward orthogonal 
deviations. They proposed to subtract the average 
of all future available observations. For each (T − 1) 
observation, they subtract the mean of the remaining 
future observations available in the sample, instead 
of subtracting the previous observation from the con-
temporaneous one (Roodman, 2009a). Thus, only the 
last observation is kept out of the computation. For 
example, in a panel data of (T = 3), the difference 
GMM produces one instrument per instrumenting 

(7)
yit = �yi,t−1 + �x�

it
+ �it

�it = �i + �it
E
(

�i

)

= E
(

�it
)

= E
(

�i�it
)

= 0

(8)Δyit = �Δyi,t−1 + Δx�
it
� + Δ�it

variable and the system GMM produces two (Arel-
lano & Bover, 1995; Blundell & Bond, 1998; Rood-
man, 2009b). Arellano and Bover (1995), Blundell 
and Bond (1998), and Roodman (2009b) also demon-
strated a weak instrumentation of difference GMM, 
especially if the variables are close to a random walk, 
system GMM being the favored alternative. Sys-
tem GMM augments difference GMM by estimating 
simultaneously in differences and levels (Roodman, 
2009b).

The system GMM estimator instruments the equa-
tion in levels with first-differenced variables in a 
“system” of equations that includes both equations in 
levels and differences (Wintoki et al., 2012):

Blundell and Bond (1998) contributed to the 
method by eliminating the fixed effect not through 
instrumenting differences with levels but instrument-
ing levels with differences (Roodman, 2009b). The 
assumption required for the system GMM is that 
changes in any instrumenting variable (w) are uncor-
related with the fixed effects E(∆witμi) = 0 (Roodman, 
2009b).

In the design of the instrument matrix, we assume 
the climatic variable cooling degree days to be strictly 
exogenous. For the appropriate instruments for 
predetermined variables, we use the lagged dependent 
variable, the price of electricity, and the natural 
gas price, with a lag limit of 2, and longer for the 
transformed equation, and lag 2 for the equation in 
levels (Roodman, 2009a).

Results

In this section, we show the obtained results, the 
first three columns of Table 5 provide the results of 
this article, and the latter two are the correspond-
ing robustness checks for the estimation method of 
the third column, which is the system GMM. The 
coefficients highlighted in bold font are the coeffi-
cients of the variables of interest in this article. As 
we can see in Table 5, the sign and significance of 
the alternative energy sources (natural gas and heat-
ing oil) indicate a complementary relationship with 
electricity consumption.

(9)
[

yit
Δyit

]

= 𝛼 + 𝜅

[

yit−p
Δyit−p

]

+ 𝛽

[

x́it
Δx́it

]

+ 𝜈it
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As explained above, we also estimate the param-
eters for the relevant variables of the system GMM 
through pooled OLS and fixed effects. These estima-
tions will give us the suitable range of values of the 
lagged dependent variable (Bond, 2002; Roodman, 

2009a). The p-values are below each coefficient. The 
standard errors are in parentheses below each p-value.

Regarding the ECM model, the long-run coef-
ficients of electricity price, natural gas price, and 
cooling degree days have a significance level of  

Table 5  Empirical estimates of the residential electricity demand in Spain

We use asterisks alongside each coefficient to denote its significance: *p < 0.05, **p < 0.01, ***p < 0.001

Dependent variable: ln(Eit/hhit) ECM System GMM Pooled OLS Fixed effects

Long run Short run (∆ln)

α −1.923*** −0.001 −0.578*** −0.574*** −0.785*
0.000 0.618 0.000 0.000 0.047
(0.498) (0.003) (0.134) (0.139) (0.386)

lnP
Eit

−0.358*** −0.348*** −0.261*** −0.378*** −0.418***
0.000 0.000 0.000 0.000 0.000
(0.039) (0.045) (0.049) (0.068) (0.088)

lnP
Git

−0.142*** −0.129*** −0.079** −0.016 −0.132**
0.000 0.000 0.008 0.494 0.001
(0.016) (0.015) (0.028) (0.024) (0.037)

lnP
HOit

−0.104** −0.121**
0.013 0.006
(0.042) (0.044)

lnCDDit 0.061** 0.062*** 0.048** 0.030** 0.080*
0.001 0.000 0.004 0.009 0.030
(0.018) (0.013) (0.015) (0.011) (0.036)

lnHDDit 0.067*
0.034
(0.031)

lnYit 0.111*
0.042
(0.055)

∆ ln(Eit − 1/hhit − 1) 0.092* 0.596*** 0.716*** 0.177**
0.044 0.000 0.000 0.001
(0.046) (0.099) (0.059) (0.050)

uit − 1 −0.790***
0.000
(0.061)

R-squared 0.945 0.560 0.758 0.560
Prob (F-statistic) 0.000 0.000 0.000 0.000 0.000
Durbin-Watson stat. 1.470 2.048
Number of instruments 48
Number of groups 52 52 52 52
AR(1) test (p − value) 0.012
AR(2) test (p − value) 0.642
Hansen test of over-identification (p − value) 0.183
Diff-in-Hansen tests of exogeneity (p − value) 0.766
IV (lnCDD) Hansen test excluding group 0.157
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1%. Alternatively, the coefficients of the price of 
heating oil, the heating degree days, and the house-
holds’ disposable income have a significance level of 
5%. The sign of the coefficients is as expected, that 
is, an increase in the price of electricity would reduce 
its consumption. In the same way, an increase in the 
price of heating oil and natural gas would reduce 
residential electricity consumption. This seems to 
corroborate that there is a complementary relation-
ship between these energy sources in providing the 
collection of energy services needed in households. 
Blázquez et  al. (2013) also found a significant and 
negative coefficient for the gas variable in their analy-
sis of residential electricity demand in Spain, consid-
ering the period 2000 to 2008 and 47 Spanish prov-
inces. They considered the number of gas consumers 
divided by the number of houses to use the gas pen-
etration rate as a proxy for the gas price.

Climatic variables show a positive relationship 
with electricity consumption, that is, we could expect 
a greater use of heating and cooling devices run by 
electricity, as the weather gets cooler or hotter with 
respect to the base temperature. The income vari-
able suggests that electricity consumption is a normal 
good, meaning that, the higher a household’s dispos-
able income gets, the higher the electricity consump-
tion is.

Regarding the statistics values of the long-run 
ECM, the weighted Durbin-Watson Statistic esti-
mated below 1.5 strongly indicates a positive first-
order serial correlation.

Regarding the second step of the ECM, which pro-
vides the short-run elasticities, the significance of 
the error correction term confirms that the series are 
cointegrated.

The significance level of 5% of the lagged depend-
ent variable indicates that the electricity consumption 
in period t − 1 has a positive effect on the electricity 
consumption in period t. Moreover, the value of the 
error correction term (uit − 1) indicates that the sys-
tem corrects its previous disequilibrium at a speed of 
79%. In the short run, we found no significance of the 
HDDit coefficient, nor the income variable.

It is important to recall that the income variable is 
at the regional level and not at the province level; this 
data issue might explain the significance level of just 

5% in the long run and no significance of the variable 
in the short run.

Regarding the system GMM estimates, we also 
found a significance level of 1% for the coefficients 
of electricity price, natural gas price, and cooling 
degree days, and all these three coefficients have the 
expected sign. The results of these estimates heighten 
the potential complementary relationship between 
different energy sources when providing the collec-
tion of energy services needed by households, espe-
cially for electricity and natural gas. The sign and 
significance of the lagged dependent variable confirm 
the dynamic setting of our model.

The lagged dependent variable coefficient seems a 
good estimate of the parameter; a useful check of it, 
when estimating through difference or system GMM, 
is to estimate the specified model through OLS and 
fixed effects. The first estimation will give us the upper 
bound limit and the latter the lower bound one (Bond, 
2002; Roodman, 2009a). The coefficient of the lagged 
dependent variable of the system GMM estimate fell 
into this range of values (0.716 > 0.596 > 0.177).

The Hansen test failed to reject the null hypothesis 
of joint validity of the instruments. Additionally, for 
this specific test, the conventional threshold of 0.05 
and 0.10 when deciding whether a coefficient is sig-
nificant or not should not be the only criterion. We 
should also treat with caution if the p-value is greater 
than 0.25 (Roodman, 2009b). The problem of too 
many instruments is that this impairs the efficiency 
of this test. This can overfit the endogenous vari-
ables and not succeed in taking out their endogenous 
component (Roodman, 2009a). In this sense, Rood-
man (2009b, p. 142) stated that: “The conventional 
thresholds (0.05 and 0.10) are liberal when trying to 
rule out correlation between instruments and the error 
term.” The Hansen test reported from our estimations 
is below 0.25. Furthermore, as regards this issue, a 
minimally arbitrary rule of thumb found in the litera-
ture is that the number of instruments should be less 
than the number of groups (Roodman, 2009a), which 
is the case in our estimates (48 < 52).

The difference-in-Hansen of 0.766 also failed 
to reject the null hypothesis of joint validity of all 
instruments; this statistic tests the validity of addi-
tional moment restrictions necessary for system  
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GMM (Heid et  al., 2012). The cooling degree days 
is a valid strictly exogenous instrument given its 
reported Hansen test.

By construction, a first-order autocorrelation is 
expected, which is confirmed by the reported p-value 
of the AR(1), which rejects the null hypothesis of no 
first-order serial correlation. Furthermore, there is no 
evidence of a significant second-order serial correla-
tion AR(2), as the null hypothesis was not rejected. 
This presumes a proper specification of the system 
GMM (Heid et al., 2012).

We use robust standard errors for the system 
GMM, and we also use the one-step system GMM 
results as we did not see major efficiency gains 
from the two steps. The p-value of the F-statistic 
of the five estimates rejects the null hypothesis that 
all slope coefficients are equal to zero. Hence, the 
estimated coefficients (excluding the constant) are 
jointly significant in explaining the household elec-
tricity consumption in Spain.

The estimated results suggest a direct rebound 
between 26 and 35% in the short run and 36% in the 
long run for all energy services supplied by electricity 
in households. That is, an overall costless exogenous 
(Gillingham et  al., 2016) increase in electricity effi-
ciency potentially entailing savings of 10 megawatts 
hour (Mwh) per year in electricity consumption would 
be reduced by between 26 and 35% in the short run and 
36% in the long run. This would decrease final electric-
ity savings to between 7.4 and 6.5 Mwh per year in the 
short run and 6.4 Mwh per year in the long run.

Our findings are in line with previous studies 
concerning the DRE in households’ electricity con-
sumption, with a slightly higher DRE in the long 
run than in the short run. Our estimated DRE in 
Spanish households falls within the expected range 
in relation to the literature concerning this issue, 
around 30%, indicating electricity savings after the 
improvement in efficiency, as long as only the DRE 
is considered. Price elasticities are greater than 
income elasticities and weather variables’ elastici-
ties are smaller than the former two. Taking into 
consideration the findings of this article, which are 
in line with the results of Freire-González (2010) 
for Catalonia, one can expect a greater response 
from households to price changes than to changes 
in income or weather variables in Spain. This fact 
highlights the relevance of improvements in effi-
ciency to obtain energy savings, since the own-price 

elasticity of energy demand can be the proxy of the 
DRE (Sorrell, 2007). In the same sense, the varia-
tion in the associated pollutant emissions in Spain 
might be greater when prices change than when 
other variables change.

Appendix Table 11 shows the robustness checks 
of the two econometric approaches we used. For 
the ECM approach, we specified a model using 
only the variables which have a significance level 
of 0.1% in the original model and so we drop the 
parameters of heating oil price, heating degree 
days, and income.

For the system GMM approach, we specified a 
fixed effect model without lags as instruments and 
without the lagged dependent variable. We also 
specified another system GMM without the lagged 
dependent variable to arrange a new set of instru-
ments. We use the same lag limits as the original 
model.

Considering the variable of interest, which is 
the own-price elasticity of electricity demand, 
the resulting magnitudes from these models, with 
different specifications, are in the range of val-
ues shown in the literature between 30 and 50% 
(Freire-González, 2017b). Nevertheless, the alter-
native econometric models presented in Appen-
dix Table 11 could overestimate the magnitude of 
our variable of interest because they estimate the 
econometric model without controlling some vari-
ables of the original model.

According to the literature, the estimation of the 
DRE through the own-price elasticity of energy 
demand could overestimate its magnitude (Sorrell, 
2007). For most conversion devices, it is necessary 
to purchase new equipment to improve energy effi-
ciency. Hence, if higher capital costs from more 
efficient conversion devices are not considered, 
the DRE could be overestimated to some extent. 
However, if the government promotes energy effi-
ciency through subsidies, in order to make energy-
efficient devices cheaper than the inefficient ones, 
the DRE may be underestimated (Sorrell, 2007; 
Sorrell & Dimitropoulos, 2008).

Regarding the symmetry assumption, Schimek 
(1996) found approximately equal magnitudes when 
estimating the DRE through the elasticity of the 
demand for travel with respect to fuel efficiency (ηε(S)) 
and with respect to fuel prices 

(

�PE
(E)

)

 (Sorrell & 
Dimitropoulos, 2007). The energy service considered 
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in their study was transportation. In contrast, Whea-
ton (1982) found a significant larger magnitude of the 
DRE when estimating it with respect to fuel prices 
than with respect to fuel efficiency (Sorrell & Dimitro-
poulos, 2007). One possible explanation of this could 
be that energy prices are more salient for consumers 
than energy efficiency. Hence, the symmetry assump-
tion, when estimating the DRE with respect to elec-
tricity prices, could give an upper bound magnitude. 
Concerning the exogeneity assumption, it should not 
be a source of bias since the period analyzed is based 
upon a period of stability in energy prices.

Conclusions

The purpose of this article is twofold. First, we 
obtain empirical evidence of the DRE for all energy 
services that require electricity for their provision 
in Spanish households. Second, the main contribu-
tion of this article is the consideration of alterna-
tive energy sources in the estimation of the DRE for 
the energy source of electricity for Spanish house-
holds. To do so, we add to the econometric estima-
tion method the price of alternative energy sources. 
We have found significant coefficients for the prices 
of the alternative energy sources, that is, natural 
gas and heating oil have an influence on electricity 
consumption in the case of Spain. Improvements 
in energy efficiency in energy services that require 
natural gas or heating oil would increase the DRE 
for electricity given its complementary relationship. 
This is the main contribution of this article because, 
as explained in Table 1, previous estimations of the 
DRE do not consider alternative energy sources, with 
the only exception of Freire-González (2010), who 
found no significant coefficient for the variable of the 
alternative energy source for the case of Catalonia.

This newness in the estimation of the DRE opens 
up a new line of research, by means of exploring the 
relationship between different sources of energy in the 
study of the different rebound effect channels, either 
direct, indirect, or economy-wide. In this sense, Hunt 
and Ryan (2014) developed a theoretical and empirical 
illustration of three household’s energy sources, such 
as electricity, natural gas, and oil products. Neverthe-
less, they assumed as an indirect rebound effect the 
changes in the demand for energy services that result 
from an increase in the efficiency of a different energy 

service. However, in this study, we provide empirical 
evidence that the prices of natural gas and heating oil 
may have a direct influence on electricity consumption. 
The direct relationships between household energy 
services that we found open the study of a new source 
for the DRE, which will help to assess its magnitude 
(Greening et  al., 2000). If there are no measures to 
tackle the DRE in Spain, our results indicate that elec-
tricity savings would be diminished.

Another contribution of this paper is that it is the 
first empirical analysis of this type for Spain because 
other research done for Spain focus on the economy-
wide rebound effect (Duarte et  al., 2018; Freire-
González, 2020; Guerra & Sancho, 2010). Using 
recent data from all the provinces of Spain, a time 
frame of 10 years, and controlling the weather vari-
ables by using information on all provinces’ weather 
stations, we found a positive DRE with energy sav-
ings. We also provide the individual short-run and 
long-run fixed effects of each Spanish province. Hence, 
our results provide useful information to policymak-
ers at different levels. Since we estimated the DRE of 
a collection of energy services, the magnitude of the 
DRE of each of them is disguised (Sorrell & Dimi-
tropoulos, 2007). Our results are more relevant for 
the energy services of lighting and energy for appli-
ances, as they dominate the consumption of electricity. 
Given the goals assumed by Spain in the EU context as 
regards energy efficiency and greenhouse gas emission 
mitigation, Spanish policymakers should incorporate 
additional measures to tackle all sources of DRE to 
increase the effectiveness of the measures to produce 
electricity savings and reduce the associated pollutant 
emissions (Freire-González & Puig-Ventosa, 2014).
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Appendix 1 Energy carrier price categories

Table 6
Table 7

Appendix 2 Calculation method of the climatic 
variables

Table 6  Electricity price categories

Source: own elaboration based on Eurostat (2016)
http:// appsso. euros tat. ec. europa. eu/ nui/ show. do? datas et= nrg_ 
pc_ 204& lang= en

Band Annual consumption

DA Consumption < 1000 kWh
DB 1000 kWh < consumption < 

2500 kWh
DC 2500 kWh < consumption < 

5000 kWh
DD 5000 kWh < consumption < 

15,000 kWh
DE Consumption > 15,000 kWh

Table 7  Natural gas price categories

Source: own elaboration based on Eurostat (2016)
http:// appsso. euros tat. ec. europa. eu/ nui/ show. do? datas et= nrg_ 
pc_ 204& lang= en

Band Annual consumption

D1 Consumption < 20 GJ
D2 20 GJ < consumption < 200 

GJ
D3 Consumption > 200 GJ

Table 8  Calculation of heating and cooling degree days

Source: https:// www. degre edays. net/ calcu lation

Condition Heating degree days formula
Tmin > Tbase HDD = 0
(Tmax + Tmin)/2 > Tbase HDD = (Tbase − Tmin)/4
Tmax ≥ Tbase HDD = (Tbase − Tmin)/2 − 

(Tmax − Tbase)/4
Tmax < Tbase HDD = Tbase − (Tmax + Tmin)/2
Condition Cooling degree days formula
Tmax < Tbase CDD = 0
(Tmax + Tmin)/2 <  Tbase CDD = (Tmax − Tbase)/4
Tmin ≤ Tbase CDD = (Tmax − Tbase)/2 − 

(Tbase − Tmin)/4
Tmin > Tbase CDD = (Tmax + Tmin)/2 − Tbase

Table 8

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
https://www.degreedays.net/calculation
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Appendix 3 Data on final energy consumption 
of Spanish households

Fig. 1
Table 9

Fig. 1  Sources of energy 
for final energy consump-
tion in Spanish households 
(Ktep) (2010-2015). 
Source: IDAE (2015)
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Table 9  Final energy consumption by uses of residential sector (Ktep). Period 2010–2015

Energy source Space heating Space cooling Water heating Cooking Lighting and 
appliances

TOTAL

2015
Electricity 444 141 450 560 4431 6025
Heat 0 0 0 0 0 0
Gas 1398 0 1291 329 0 3017
Solid fuels 72 0 6 11 0 89
Petroleum products 2174 0 625 187 0 2985
 LPG 393 0 465 187 0 1045
  Other kerosene 0 0 0 0 0 0
  Diesel oil 1781 0 160 0 0 1941
Renewable energy 2460 2 259 27 0 2749
   Solar thermal 16 0 205 0 0 221
  Biomass 2439 0 52 27 0 2517
  Geothermal 5 2 3 0 0 11
TOTAL 6548 143 2631 1113 4431 14,865
2014
Electricity 448 142 454 565 4472 6081
Heat 0 0 0 0 0 0
Gas 1433 0 1324 337 0 3094
Solid fuels 75 0 6 11 0 92
Petroleum products 1876 0 607 191 0 2674
  LPG 401 0 474 191 0 1066
  Other kerosene 0 0 0 0 0 0
  Diesel oil 1476 0 133 0 0 1608
Renewable energy 2479 2 243 27 0 2751
  Solar thermal 15 0 188 0 0 203
  Biomass 2459 0 52 27 0 2537
  Geothermal 5 2 3 0 0 11
TOTAL 6311 144 2634 1131 4472 14,691
2013
Electricity 450 143 456 568 4494 6111
Heat 0 0 0 0 0 0
Gas 1479 0 1366 348 0 3193
Solid fuels 77 0 6 11 0 95
Petroleum products 1858 0 636 204 0 2698
  LPG 429 0 507 204 0 1140
  Other kerosene 0 0 0 0 0 0
  Diesel oil 1429 0 128 0 0 1558
Renewable energy 2462 2 231 27 0 2722
  Solar thermal 14 0 176 0 0 190
  Biomass 2443 0 52 27 0 2521
  Geothermal 5 2 3 0 0 10
TOTAL 6327 145 2695 1158 4494 14,819
2012
Electricity 476 151 482 600 4749 6458
Heat 0 0 0 0 0 0
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Source: IDAE (2015)

Table 9  (continued)

Energy source Space heating Space cooling Water heating Cooking Lighting and 
appliances

TOTAL

Gas 1625 0 1501 382 0 3509
Solid fuels 89 0 7 13 0 110
Petroleum products 1784 0 653 214 0 2651
  LPG 451 0 533 214 0 1198
  Other kerosene 0 0 0 0 0 0
  Diesel oil 1333 0 120 0 0 1453
Renewable energy 2452 2 220 26 0 2700
  Solar thermal 13 0 165 0 0 178
  Biomass 2434 0 51 26 0 2512
  Geothermal 5 2 3 0 0 10
TOTAL 6426 153 2863 1236 4749 15,428
2011
Electricity 482 153 489 608 4814 6545
Heat 0 0 0 0 0 0
Gas 1580 0 1460 372 0 3411
Solid fuels 100 0 8 15 0 122
Petroleum products 1913 0 677 220 0 2809
  LPG 462 0 546 220 0 1228
  Other kerosene 0 0 0 0 0 0
  Diesel oil 1451 0 130 0 0 1581
Renewable energy 2413 2 206 26 0 2647
  Solar thermal 12 0 152 0 0 164
  Biomass 2396 0 51 26 0 2473
  Geothermal 5 2 3 0 0 10
TOTAL 6488 155 2839 1240 4814 15,535
2010
Electricity 479 152 486 605 4786 6508
Heat 0 0 0 0 0 0
Gas 1972 0 1821 464 0 4257
Solid fuels 141 0 11 21 0 173
Petroleum products 2238 0 771 248 0 3257
  LPG 521 0 617 248 0 1386
  Other kerosene 0 0 0 0 0 0
  Diesel oil 1717 0 154 0 0 1871
Renewable energy 2403 2 186 26 0 2617
  Solar thermal 11 0 133 0 0 144
  Biomass 2388 0 51 26 0 2464
  Geothermal 5 2 3 0 0 9
TOTAL 7233 154 3275 1363 4786 16,812
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Appendix 4. Fixed effects of each Spanish province

Table 10

Table 10  Cross-sectional fixed effects

Provinces Long-run Fixed 
effect (μi)

Short-run Fixed 
effect (μi)

1. Alava −0.070 0.008
2. Albacete 0.002 −0.000
3. Alicante 0.030 −0.014
4. Almeria 0.029 −0.003
5. Avila −0.412 −0.018
6. Badajoz −0.034 0.002
7. Barcelona 0.116 0.010
8. Bizkaia 0.027 0.001
9. Burgos −0.084 0.036
10. Caceres −0.151 −0.014
11. Cadiz 0.081 −0.010
12. Cantabria −0.008 0.010
13. Castellon −0.009 0.006
14. Ceuta 0.140 0.015
15. Ciudad Real 0.060 −0.001
16. Cordoba 0.227 0.006
17. Coruna A 0.083 −0.006
18. Cuenca −0.178 −0.007
19. Gipuzkoa 0.045 0.008
20. Girona 0.006 0.004
21. Granada 0.014 −0.011
22. Guadalajara 0.003 0.013
23. Huelva 0.001 0.006
24. Huesca −0.075 −0.000
25. Baleares 0.380 0.002
26. Jaen 0.150 0.001
27. La Rioja −0.143 0.002
28. Las Palmas 0.297 −0.009
29. Leon −0.187 0.007
30. Lleida 0.079 0.011
31. Lugo −0.079 0.008
32. Madrid 0.120 −0.004
33. Malaga 0.188 −0.007
34. Melilla 0.092 −0.010
35. Murcia 0.206 0.001
36. Navarra −0.001 −0.002
37. Ourense −0.208 −0.002
38. Palencia −0.245 0.011
39. Pontevedra 0.094 −0.001
40. Asturias −0.050 −0.016

Source: own elaboration

Table 10  (continued)

Provinces Long-run Fixed 
effect (μi)

Short-run Fixed 
effect (μi)

41. Tenerife 0.170 −0.011
42. Salamanca −0.198 −0.007
43. Segovia −0.093 0.005
44. Sevilla 0.262 −0.004
45. Soria −0.317 0.011

46. Tarragona −0.036 0.001
47. Teruel −0.200 −0.008
48. Toledo 0.132 −0.008
49. Valencia 0.073 −0.006
50. Valladolid −0.058 0.005
51. Zamora −0.289 −0.009
52. Zaragoza 0.014 −0.000
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Appendix 5. Robustness checks Table 11

Table 11  Robustness checks
Dependent variable:ln
(Eit/hhit)

ECM ECM System GMM System GMM 
(OM)

Fixed effects

Long run Short run (∆ln) Long run (OM) Short run (∆ln) 
(OM)

α −0.520** 0.003 −1.923*** −0.001 −0.937*** −0.578*** −0.520**
0.001 0.091 0.000 0.618 0.000 0.000 0.001
(0.162) (0.002) (0.498) (0.003) (0.241) (0.134) (0.162)

lnP
Eit

−0.408*** −0.409*** −0.358*** −0.348*** −0.567*** −0.261*** −0.408***
0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.033) (0.036) (0.039) (0.045) (0.065) (0.049) (0.033)

lnP
Git

−0.159*** −0.137*** −0.142*** −0.129*** −0.049 −0.079** −0.159
0.000 0.000 0.000 0.000 0.358 0.008 0.000
0.015 (0.014) (0.016) (0.015) (0.053) (0.028) (0.015)

lnP
HOit

Without Without −0.104** −0.121**
0.013 0.006
(0.042) (0.044)

lnCDDit 0.063*** 0.061*** 0.061** 0.062*** 0.120*** 0.048** 0.063
0.000 0.000 0.001 0.000 0.000 0.004 0.000
0.0169 (0.012) (0.018) (0.013) (0.240) (0.015) (0.016)

lnHDDit Without Without 0.067*
0.034
(0.031)

lnYit Without Without 0.111*
0.042
(0.055)

∆ ln(Eit − 1/hhit − 1) 0.132** 0.092* Without 0.596*** Without
0.001 0.044 0.000
(0.041) (0.046) (0.099)

uit − 1 −0.813*** −0.790***
0.000 0.000
(0.058) (0.061)

R-squared 0.945 0.559 0.945 0.560 0.945
Prob (F-statistic) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson stat. 1.445 2.062 1.470 2.048 1.445
Number of instruments 34 48 Without
Number of groups 52 52 52 52 52 52 52
AR(1)  test (p − value) 0.037 0.012
AR(2) test (p − value) 0.103 0.642
Hansen test of 

over-identification 
(p − value)

0.059 0.183

Diff-in-Hansen tests of 
exogeneity (p − value)

0.543 0.766

IV (lnCDD) Hansen test 
excluding group

0.056 0.157

Source: own elaboration
(OM) stands for original model

We use stars alongside each coefficient to denote its significance: *p < 0.05, **p < 0.01, ***p < 0.001
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