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Abstract. It is known that planar discontinuous piecewise linear differential

systems separated by a straight line have no limit cycles when both linear
differential systems are centers.

Here we study the limit cycles of the planar discontinuous piecewise linear

differential systems separated by a circle, when both linear differential systems
are centers. Our main results show that such discontinuous piecewise differ-

ential systems can have 0, 1 or 2 limit cycles, but no more limit cycles than

2.

1. Introduction and statement of the main result

1.1. Historical facts. The problem of existence of limit cycles has been extensively
treated in the literature since the early days of celestial mechanics. More recently,
much work has been done on the rigorous mathematical foundation of nonsmooth
dynamical systems problems, in particular, in the search of typical minimal sets
that there are no counterparts in the smooth universe. It is worth to mention that,
some existing smooth techniques are useful in solving many nonsmooth problems.

Some of the orbits of planar differential systems are difficult to study, this is the
case of the limit cycles. Recall that a limit cycle of a differential system (S) is a
periodic solution of (S) which is isolated in the set of all periodic solutions of (S).
Concerning the nonsmooth universe and in the 2–dimensional case one can find
many results on the existence of limit cycles when the switching set is an imbedded
curve in R2, see [1–15, 18–29].

One of the main properties of smooth integrable systems in the plane R2 is
that their periodic orbits usually appear in continuous one–parameter families, in
contrast to the periodic orbits of piecewise nonsmooth integrable systems which
typically are limit cycles, see [2–6, 18–28].

Andronov, Vitt and Khaikin [1] started the study of the discontinuous piecewise
linear differential systems in the plane, mainly motivated for their applications
to some mechanical problems. Recently the interest for this kind of differential
systems increased due mainly to the fact that these differential systems model many
processes appearing in mechanics, electronics, economy,... See for these applications
the survey of Makarenkov and Lamb [27], and the books of Simpson [30] and of
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di Bernardo, Budd, Champneys and Kowalczyk [7], together with the hundreds of
references quoted in these works.

In the plane the discontinuous piecewise linear differential systems separated by
a straight line are the easiest possible discontinuous piecewise linear differential
systems. For these systems a crossing limit cycle is a limit cycle which has exactly
two points on the line of discontinuity. But for these easy systems there are open
questions as the following: Is three the maximum number of crossing limit cycles
that a discontinuous piecewise linear differential systems separated by a straight line
can have? See for instance [6, 10–12,14,20,23,23].

1.2. Setting the problem. The main goal of this article is to discuss the existence
of limit cycles of nonsmooth piecewise integrable systems in the plane R2 where
the switching set is concentrated on a closed curve. Recently, the mentioned great
interest in non-smooth dynamics leads us the need to explore new challenges in this
subject. In the classical smooth case we find in the literature an endless number
of papers involving the problem on the existence of limit cycles in the plane, see
for instance the books [31, 32] and the hundreds of references therein. Moreover,
problems involving the existence of limit cycles bifurcating from a smooth center are
extensively studied in the last decades, see the book [8] and the references quoted
there.

We recall that a center of a planar differential system is a singular point p of the
system for which there is a neighborhood U such that all the orbits of U \ {p} are
periodic.

It is interesting to note that if we consider discontinuous piecewise linear differ-
ential systems formed by two centers separated by a straight line, then such systems
have no crossing limit cycles, for a proof see Theorem 4 of [20].

In this paper we deal with discontinuous piecewise linear differential systems (C)
formed by two centers separated by a circle, that without loss of generality we can
assume that is the circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

A crossing periodic orbit for a system (C) is a periodic orbit which has exactly
two points on the circle S1 of discontinuity, and of course a crossing limit cycle for
a system (S) in (C) is a crossing periodic orbit isolated in the set of all crossing
periodic orbits of system (S).

To provide a sharp upper bound on the number of limit cycles for a class of planar
differential systems is in general a very difficult problem, consider for instance the
16-th Hilbert problem. Thus, in particular, for the class of quadratic polynomial
differential systems we have systems with four limit cycles, but we do not know
if there is a uniform bound for the maximum number of limit cycles for all the
systems of this class. See for more details [17, 18].

We shall provide an upper bound for the number of limit cycles of the planar
discontinuous piecewise linear differential systems separated by a circle, when both
linear differential systems are centers. We stress that the respective proof is non-
trivial although the expressions of the systems are very friendly. It should be noted
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that, as far as the authors know, there are few developed techniques or tools within
the theory of discontinuous piecewise linear differential systems. So new techniques
in this regard are, of course, notoriously welcomed.

1.3. Statement of the main results. The objective of this paper is to study
the number of crossing limit cycles that systems in the class (C) can have, and to
present an exotic center. Our main result is the following.

Figure 1: Three periodic solutions of the center (0,−1) of the discontinuous piecewise

linear differential system formed by the centers (1) and (2).

Figure 2: The unique limit cycle of the discontinuous piecewise linear differential system

formed by the centers (3) and (4).

Theorem 1. Let (C) be the class of planar discontinuous piecewise linear differ-
ential systems formed by two centers separated by the circle S1. Then the following
statement hold.

(a) There are systems in (C) with infinitely many crossing periodic orbits, in
fact with a continuum of crossing periodic orbits forming a center, see Fig-
ure 1.
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(b) There are systems in (C) without crossing periodic orbits.

(c) There are systems in (C) having exactly one crossing limit cycle, see Figure
2.

(d) There are systems in (C) having exactly two crossing limit cycles, see Figure
3.

(e) Every system in (C) has at most two crossing limit cycles.

Figure 3: The two limit cycles of the discontinuous piecewise linear differential system

formed by the centers (6) and (7).

Theorem 1 is proved in section 2.

The results of Theorem 1 show once again that the shape of the discontinuity
line plays a main role on the number of crossing limit cycles that discontinuous
planar piecewise linear differential systems can exhibit, see also [4, 5, 26,28].

Figure 4: An exotic center.



LIMIT CYCLES IN FILIPPOV SYSTEMS 5

We exhibit in section 3 a planar discontinuous piecewise linear differential sys-
tems formed by two centers separated by the circle S1 possessing an unusual center
(exotic center). That means that its phase portrait contains the origin as a canoni-
cal smooth center and there are on the switching set two 2–fold singularities of the
center type, see Figure 4.

2. Proof of Theorem 1

Proof of statement (a) of Theorem 1. We consider in the bounded region limited
by the circle S1 the linear differential center

(1) ẋ = 1− y, ẏ =
1

4
x.

In all this paper the dot denotes derivative with respect to the time t, except if we
say explicitly another thing. This system has the first integral

H1(x, y) =
1

4
x2 + y2 − 2y.

In the unbounded region of R2 with boundary the circle S1 we have the linear
differential center

(2) ẋ = −1

2
− y, ẏ = x.

This system has the first integral

H2(x, y) = x2 + y2 + y.

For all α ∈ [0, 2π) \ {±π/2} the two ellipses

H1(x, y) = H1(cosα, sinα) and H2(x, y) = H2(cosα, sinα),

intersect exactly with the circle S1 in the two points (± cosα, sinα). Therefore
the discontinuous piecewise linear differential system formed by the centers (1)
and (2) has a continuum of crossing periodic solutions, which intersect the circle
at the two points (± cosα, sinα) for all α ∈ [0, 2π) \ {±π/2}. See three crossing
periodic solutions of this continuum of crossing periodic solutions corresponding to
the values of α equal to 0, 1.0572619009906146.. and 5.114273122257285.. in Figure
1. �

Proof of statement (b) of Theorem 1. This statement has an easy proof it is suffi-
cient to consider the discontinuous piecewise linear differential system having the
linear center ẋ = −y, ẏ = x in the bounded region limited by the circle S1, and an
arbitrary center different from the previous one in the unbounded region limited by
S1. Clearly a such discontinuous piecewise linear differential system has no crossing
periodic orbits. �

Proof of statement (c) of Theorem 1. In the unbounded region limited by the circle
S1 we consider the linear differential center

(3) ẋ =
1

3
− x

2
− y

2
, ẏ = x+

y

2
− 1

2
.
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This system has the first integral

H1(x, y) = 4
(
x+

y

2

)2
− 8

(x
2

+
y

3

)
+ y2.

In the bounded region of R2 with boundary the circle S1 we have the linear
differential center

(4) ẋ =
2

5
− y, ẏ = 1 + x.

This system has the first integral

H2(x, y) = (x+ 1)2 +

(
2

5
− y
)2

.

This discontinuous piecewise differential system formed by the linear differential
systems (3) and (4) has exactly one crossing limit cycle, because the unique real
solutions (α, β, γ, δ) of the system

(5)

H1(α, β) = H1(γ, δ),
H2(α, β) = H2(γ, δ),
α2 + β2 = 1,
γ2 + δ2 = 1,

where (α, β, γ, δ) satisfying (α, β) 6= (γ, δ) are
(

10
(
232− 7

√
29
)

2697
,
−928− 175

√
29

2697
,

10
(
232 + 7

√
29
)

2697
,

175
√

29− 928

2697

)
,

and the one interchanging (α, β) by (γ, δ), which defines the same crossing limit
cycle. See this crossing limit cycle in Figure 2. �

Proof of statement (d) of Theorem 1. In the unbounded region limited by the circle
S1 we consider the linear differential center

(6) ẋ = −x− y − 1

8

(
9 + 5

√
3
)
, ẏ = 2x+ y +

5

8

(
1 +
√

3
)
.

This system has the first integral

H1(x, y) = 2x2 + x
(

2y +
√

2
)

+ y
(
y +
√

2 + 1
)
.

In the bounded region of R2 with boundary the circle S1 we have the linear
differential center

(7) ẋ = x− 5y

4
+

1√
2

+
1

8
, ẏ = x− y − 1√

2
.

This system has the first integral

H2(x, y) = 4x2 − 4x
(

2y +
√

2
)

+ y
(

5y − 4
√

2− 1
)
.

This discontinuous piecewise differential system formed by the linear differential
systems (6) and (7) has exactly two crossing limit cycles, because the unique real
solutions (α, β, γ, δ) of the system (10) are the four solutions (1, 0, 0, 1), (0, 1, 1, 0),(
− 1√

2
,− 1√

2
,

1√
2
,− 1√

2

)
and

(
1√
2

, − 1√
2
,− 1√

2
,− 1√

2

)
. Hence, the pairs (1, 0),
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(0, 1) and

(
− 1√

2
,− 1√

2

)
,

(
1√
2
,− 1√

2

)
are the intersection points of the two cross-

ing limit cycles with the circle S1. See these two crossing limit cycles in Figure
3. �

We shall use the next result which is well known, see for instance [24,26].

Lemma 2. Doing a rescaling of the independent variable and a linear change of
variables every linear differential system in R2 having a center can be written as

(8) ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c,

with a > 0 and ω > 0.

Proof of statement (e) of Theorem 1. In the bounded region limited by the circle
S1 we consider the arbitrary linear differential center (8), which has the first integral

H1(x, y) = 4(ax+ by)2 + 8a(cx− dy) + y2ω2.

In the unbounded region limited by the circle S1 we consider the arbitrary linear
differential center

(9) ẋ = −Bx− 4B2 + Ω2

4A
y + dD, ẏ = Ax+By + C,

with A > 0 and Ω > 0. This system has the first integral

H2(x, y) = 4(Ax+By)2 + 8A(Cx−Dy) + y2Ω2.

If this discontinuous piecewise differential system formed by the linear differential
systems (8) and (9) has a crossing limit cycle which intersect the circle x2 + y2 = 1
in the pair of points (α, β) and (γ, δ), then these points must satisfy the system

H1(α, β) = H1(γ, δ),
H2(α, β) = H2(γ, δ),
α2 + β2 = 1,
γ2 + δ2 = 1,

with (α, β) 6= (γ, δ), or equivalently the system

(10)

H1(α, β) = h1,
H2(α, β) = h2,
H1(γ, δ) = h1,
H2(γ, δ) = h2,
α2 + β2 = 1,
γ2 + δ2 = 1.

The two first equations of system (10) has at most four real solutions for (α, β),
because these solutions are the intersection of two ellipses. These four solutions
are also the four solutions of the third and fourth equations of system (10). Since
these four solutions on the circle x2 + y2 = 1 must be the intersection points of
the crossing limit cycles with the circle, we can have at most two crossing limit
cycles. �

This completes the proof of Theorem 1.
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3. Exotic Center

Let f(x, y) = x2 + y2 − 1, H0(x, y) = x2 +
y2

2
and

H1(x, y; θ) = (x cos θ + y sin θ)2 +
(−x sin θ + y cos θ)2

2
.

Notice that the Hamiltonian vector field X0 originated by H0 has four tangential
contacts with Σ = f−1(0) at p1 = (0, 1), p2 = (1, 0), p3 = (0,−1) and p4 = (−1, 0).
Since the level curves ofH1 are the same level curves ofH0 after a rotation of angle θ,
we obtain that the Hamiltonian vector field Yθ generated by H1 has also four contact
points at q1(θ) = (sin θ, cos θ), q2(θ) = (cos θ,− sin θ) q3(θ) = (− sin θ,− cos θ), and
q4(θ) = (− cos θ, sin θ).

Of course the orbits of X0 (resp. Yθ) are symmetric with respect to the lines
containing the segments p1p2 and p3p4 (resp. q1q2 and q3q4).

If θ = π/2 or θ = 3π/2, we have that all the tangency points of the Hamilton-
ian systems X0 and Yθ coincide generating four fold–fold points. Since the phase
portrait of this discontinuous piecewise linear differential system is symmetric with
respect to the x-axis and the y-axis, we have that p1 and p3 are parabolic fold–
fold points surrounded by crossing periodic orbits presenting a behavior similar to
a singularity of type center. Also, the singularities p2 and p4 are connected by
four orbits giving rise to pseudo–separatrices for the discontinuous piecewise linear
system formed by X0 and Yθ.

If θ = π/4, 3π/4, 5π/4, 7π/4, then it follows from symmetry that the orbits of
Yθ give rise to two connections between the fold–regular points p1 and p2.

If θ is different from the values mentioned in items 1 and 2 the two previous
paragraphs, then we have that the system presents a polycycle having two parabolic
fold–fold singularities.
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