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Abstract. While the limit cycles of the discontinuous piecewise differential systems formed by two
linear differential systems separated by one straight line have been studied intensively, and up to now

there are examples of these systems with at most 3 limit cycles. There are almost no works studying
the limit cycles of the discontinuous piecewise differential systems formed by one linear differential

system and a quadratic polynomial differential system separated by one straight line.

In this paper using the averaging theory up to seven order we prove that the discontinuous
piecewise differential systems formed by a linear focus or center and a quadratic weak focus or center

separated by one straight line can have 8 limit cycles. More precisely, at every order of the averaging

theory from order one to order seven we provide the maximum number of limit cycles that can be
obtained using the averaging theory.

1. Introduction and statement of the main results

Piecewise differential systems are provided as one of the most remarkable non-smooth dynamical
systems and widely applied in various scientific domains of studies such as engineering, electronics,
and physics [1, 2, 8, 12, 15, 16, 24, 26, 27]. Since the 1930s many books and papers study the
piecewise differential systems, mainly due to their applications to mechanics and electrical circuits,
see for instance [6, 7, 25, 28]. The more studied piecewise differential systems are the continuous and
discontinuous piecewise differential systems separated by a straight-line, see for instance [4, 9, 10, 11,
17, 18, 19, 20, 21, 22, 23].

A limit cycle is an isolated periodic orbit in the set of all periodic orbits of a differential system. Limit
cycles play a main role in the qualitative theory of the differential systems, and also in the discontinous
piecewise differential systems. The singular point p ∈ R2 is a center of a planar differential system if
there is a neighborhood U of p where all the orbits of U \ {p} are periodic.

Our objective is to study the limit cycles which bifurcate from the periodic orbits of the linear
differential center ẋ = −y, ẏ = x, when we perturb this center by discontinuous piecewise differential
systems separated by the straight line y = 0 and formed by linear differential focus or center

ẋ = αx+ βy + γ, ẏ = −βx+ αy + δ (1)

defined in y ≥ 0, and quadratic weak focus or center at the origin

ẋ = −y − bx2 − cxy − dy2, ẏ = x+ ax2 +Axy − ay2, (2)

defined in y ≤ 0. For more details on the quadratic weak focus or center see Lemma 8.14 of [5].

Our main result is the following theorem.

Theorem 1. For ε ̸= 0 sufficiently small the maximum number of limit cycles of the piecewise dif-
ferential systems obtained perturbing the linear differential center ẋ = −y, ẏ = x by the discontinuous
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piecewise differential system formed by systems (1) and (2) obtained using averaging theory up to seven
order is eight.

Theorem 1 is proved in section 3. We note that in general to study analytically the limit cycles is a
very difficult task, here we do this study using the new theory of averaging for discontinuos piecewise
differential systems developed in [14], a summary of this theory is given in section 2.

2. The averaging theory up to order 7 for computing limit cycles

In this section we present the basic results from the averaging theory for computing the periodic
solutions of discontinuous piecewise differential systems that we shall need for proving the main results
of this paper. This improvement of the classical averaging theory for computing limit cycles of planar
discontinuous piecewise differential systems was developed in [14], a summary of this theory is given
in below. We consider discontinous differential systems of the form

ṙ(θ) =

{
F+(θ, r, ε) if 0 ≤ θ ≤ π,
F−(θ, r, ε) if π ≤ θ ≤ 2π,

(3)

where F±(θ, r, ε) =
∑7

i=0 ε
iF±

i (θ, r) + ε8R±(θ, r, ε), with θ ∈ S1 and r ∈ D, where D is an open
interval of R+, and ε is a small real parameter.

From [14] we define the following functions y±i (t, r) for k = 1, 2, 3, 4, 5, 6, 7 related to system (3) :

y±1 (s, r) =
∫ s

0

F±
1 (t, r)dt,

y±2 (s, r) =
∫ s

0

[2F±
2 (t, r) + 2∂F±

1 (t, r)y±1 (t, r)]dt,

y±3 (s, r) =
∫ s

0

[6F±
3 (t, r) + 6∂F±

2 (t, r)y±1 (t, r)

+ 3∂2F±
1 (t, r)y±1 (t, r)

2 + 3∂F±
1 (t, r)y±2 (t, r)]dt,

y±4 (s, r) =
∫ s

0

[24F±
4 (t, r) + 24∂F±

3 (t, r)y±1 (t, r)

+ 12∂2F±
2 (t, r)y±1 (t, r)

2 + 12∂F±
2 (t, r)y±2 (t, r)

+ 12∂2F±
1 (t, r)y±1 (t, r)y

±
2 (t, r)

+ 4∂3F1(t, r)y
±
1 (t, r)

3 + 4∂F1(t, r)y
±
3 (t, r)]dt,
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y±5 (s, r) =
∫ s

0

[120F±
5 (t, r) + 120∂F±

4 (t, r)y±1 (t, r)

+ 60∂2F±
3 (t, r)y±1 (t, r)

2 + 60∂F±
3 (t, r)y±2 (t, r)

+ 60∂2F±
2 (t, r)y±1 (t, r)y

±
2 (t, r) + 20∂3F±

2 (t, r)y±1 (t, r)
3

+ 20∂F±
2 (t, r)y±3 (t, r) + 20∂2F±

1 (s, r)y±1 (t, r)y
±
3 (t, r)

+ 15∂2F±
1 (t, r)y±2 (t, r)

2 + 30∂3F±
1 (t, r)y±1 (t, r)

2y±2 (t, r))

+ 5∂4F±
1 (t, r)y±1 (t, r)

4 + 5∂F±
1 (t, r)y±4 (t, r)]dt,

y±6 (s, r) = 720

∫ s

0

[F±
6 (t, r) + ∂F±

5 (t, r)y±1 (t, r) +
1

2
∂2F±

4 (t, r)y±1 (t, r)
2

+
1

2
∂F±

4 (t, r)y±2 (t, r) +
1

6
∂F±

3 (t, r)y±3 (t, r) +
1

6
∂3F±

3 (t, r)y±1 (t, r)
3

+
1

2
∂2F±

3 (t, r)y±1 (t, r)y
±
2 (t, r) +

1

24
∂F±

2 (t, r)y±4 (t, r)

+
1

8
∂2F±

2 (t, r)y±2 (t, r)
2 +

1

6
∂2F±

2 y1(t, r)y
±
3 (t, r)

+
1

4
∂3F±

2 (t, r)y±1 (t, r)
2y±2 (t, r) +

1

24
∂4F±

2 (t, r)y±1 (t, r)
4

+
1

8
∂3F±

1 (t, r)y±1 (t, r)y
±
2 (t, r)

2 +
1

12
∂4F±

1 (t, r)y±1 (t, r)
3y±2 (t, r)

+
1

120
∂F±

1 (t, r)y5(t, r) +
1

24
∂2F±

1 (t, r)y±1 (t, r)y
±
4 (t, r)

+
1

120
∂4F±

1 (t, r)y±1 (t, r)
5 +

1

12
∂2F±

1 (t, r)y±2 (t, r)y
±
3 (t, r)

+ ∂3F±
1 (t, r)y±1 (t, r)

2y±3 (t, r)]dt.

Here ∂kFl(s, r) means the k − th partial derivative of the function Fl(s, r) with respect to the
variable r. Also from [14] we have the functions

f±
1 (r) =

∫ ±π

0

F±
1 (t, r)dt,

f±
2 (r) =

∫ ±π

0

[F±
2 (t, r) + ∂F±

1 (t, r)y±1 (t, r)]dt,

f±
3 (r) =

∫ ±π

0

[F±
3 (t, r) + ∂F±

2 (t, r)y±1 (t, r)

+
1

2
∂2F±

1 (t, r)y±1 (t, r)
2 +

1

2
∂F±

1 (t, r)y±2 (t, r)]dt,

f±
4 (r) =

∫ ±π

0

[F±
4 (t, r) + ∂F±

3 (t, r)y±1 (t, r) +
1

2
∂2F±

2 (t, r)y±1 (t, r)
2

+
1

2
∂F±

2 (t, r)y±2 (t, r) +
1

2
∂2F±

1 (t, r)y±1 (t, r)y
±
2 (t, r)

+
1

6
∂3F±

1 (t, r)y±1 (t, r)
3 +

1

6
∂F±

1 (t, r)y±3 (t, r)]dt,
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f±
5 (r) =

∫ ±π

0

[F±
5 (t, r) + ∂F±

4 (t, r)y±1 (t, r)

+
1

2
∂2F±

3 (t, r)y±1 (t, r)
2 +

1

2
∂F±

3 (t, r)y±2 (t, r)

+
1

2
∂2F±

2 (t, r)y±1 (t, r)y
±
2 (t, r) +

1

6
∂3F±

2 (t, r)y±1 (t, r)
3

+
1

6
∂F±

2 (t, r)y±3 (t, r) +
1

6
∂2F±

1 (s, r)y±1 (t, r)y
±
3 (t, r)

+
1

8
∂2F±

1 (t, r)y±2 (t, r)
2 +

1

4
∂3F±

1 (t, r)y±1 (t, r)
2y±2 (t, r)

+
1

24
∂4F±

1 (t, r)y±1 (t, r)
4 +

1

24
∂F±

1 (t, r)y±4 (t, r)]dt,

f±
6 (r) =

∫ ±π

0

[F±
6 (t, r) + ∂F±

5 (t, r)y±1 (t, r) +
1

2
∂2F±

4 (t, r)y±1 (t, r)
2

+
1

2
∂F±

4 (t, r)y±2 (t, r) +
1

6
∂F±

3 (t, r)y±3 (t, r) +
1

6
∂3F±

3 (t, r)y±1 (t, r)
3

+
1

2
∂2F±

3 (t, r)y±1 (t, r)y
±
2 (t, r) +

1

24
∂F±

2 (t, r)y±4 (t, r)

+
1

8
∂2F±

2 (t, r)y±2 (t, r)
2 +

1

6
∂2F±

2 y±1 (t, r)y
±
3 (t, r)

+
1

4
∂3F±

2 (t, r)y±1 (t, r)
2y±2 (t, r) +

1

24
∂4F±

2 (t, r)y±1 (t, r)
4

+
1

8
∂3F±

1 (t, r)y±1 (t, r)y
±
2 (t, r)

2 +
1

12
∂4F±

1 (t, r)y±1 (t, r)
3y±2 (t, r)

+
1

120
∂F±

1 (t, r)y±5 (t, r) +
1

24
∂2F±

1 (t, r)y±1 (t, r)y
±
4 (t, r)

+
1

120
∂4F±

1 (t, r)y±1 (t, r)
5 +

1

12
∂2F±

1 (t, r)y±2 (t, r)y
±
3 (t, r)

+ ∂3F±
1 (t, r)y±1 (t, r)

2y±3 (t, r)]dt,

f±
7 (r) =

∫ ±π

0

[F±
7 (t, r) + ∂F±

6 (t, r)y±1 (t, r) +
1

2
∂F±

5 (t, r)y±2 (t, r)

+
1

2
∂2F±

5 (t, r)y±1 (t, r)
2 +

1

6
∂F±

4 (t, r)y3(t, r)

+
1

2
∂2F±

4 (t, r)y±1 (t, r)y
±
2 (t, r) +

1

6
∂3F±

4 (t, r)y±1 (t, r)
3

+
1

24
∂F±

3 (t, r)y±4 (t, r) +
1

6
∂2F±

3 (t, r)y±1 (t, r)y
±
3 (t, r)

+
1

4
∂3F±

3 (t, r)y±1 (t, r)
2y±2 (t, r) +

1

24
∂4F±

3 (t, r)y±1 (t, r)
4

+
1

8
∂2F±

3 (t, r)y±2 (t, r)
2 +

1

120
∂F±

2 (t, r)y±5 (t, r)

+
1

24
∂2F±

2 (t, r)y1(t, r)y
±
4 (t, r) +

1

12
∂3F±

2 (t, r)y±1 (t, r)
2y±3 (t, r)

+
1

8
∂3F±

2 (t, r)y±1 (t, r)y
±
2 (t, r)

2 +
1

12
∂4F±

2 (t, r)y±1 (t, r)
3y±2 (t, r)

+
1

120
∂5F±

2 (t, r)y±1 (t, r)
5 +

1

12
∂2F±

2 (t, r)y±2 (t, r)y
±
3 (t, r)
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+
1

720
∂F±

1 (t, r)y±6 (t, r) +
1

120
∂2F±

1 (t, r)y±1 (t, r)y
±
5 (t, r)

+
1

48
∂3F±

1 (t, r)y±1 (t, r)
2y±4 (t, r) +

1

48
∂2F±

1 (t, r)y±2 (t, r)y
±
4 (t, r)

+
1

36
∂4F±

1 (t, r)y±1 (t, r)
3y±3 (t, r) +

1

72
∂2F±

1 (t, r)y±3 (t, r)
2

+
1

48
∂5F±

1 (t, r)y±1 (t, r)
4y±2 (t, r) +

1

16
∂4F±

1 (t, r)y±1 (t, r)
2y±2 (t, r)

2

+
1

48
∂3F±

1 (t, r)y±2 (t, r)
3 +

1

12
∂3F±

1 (t, r)y±1 (t, r)y
±
2 (t, r)y

±
3 (t, r)

+
1

720
∂6F±

1 (t, r)]dt.

The function fk(r) = f+
k (r) − f−

k (r) is called the averaged function of order k. If fℓ(r) ≡ 0 for
ℓ ∈ {1, . . . , 6} but fℓ+1(r) ̸≡ 0, then the simple positive real roots of the functions fℓ+1(r) provide
limit cycles of the piecewise differential system (3).

3. Proof of Theorem 1

Consider the linear center we shall study which periodic orbits of this center become limit cycles
when we perturb the center inside the discontinuous piecewise differential systems formed by systems
(1) and (2), i.e. in y ≥ 0 we have the differential system

ẋ = −y + αx+ βy + γ,
ẏ = x− βx+ αy + δ,

and in y ≤ 0 we have the differential system

ẋ = −y − bx2 − cxy − dy2,
ẏ = x+ ax2 +Axy − ay2,

where

a =a1ε+ a2ε
2 + a3ε

3 + a4ε
4 + a5ε

5 + a6ε
6 + a7ε

7,

b =b1ε+ b2ε
2 + b3ε

3 + b4ε
4 + b5ε

5 + b6ε
6 + b7ε

7,

c =c1ε+ c2ε
2 + c3ε

3 + c4ε
4 + c5ε

5 + c6ε
6 + c7ε

7,

d =d1ε+ d2ε
2 + d3ε

3 + d4ε
4 + d5ε

5 + d6ε
6 + d7ε

7,

A =A1ε+A2ε
2 +A3ε

3 +A4ε
4 +A5ε

5 +A6ε
6 +A7ε

7,

α =α1ε+ α2ε
2 + α3ε

3 + α4ε
4 + α5ε

5 + α6ε
6 + α7ε

7,

β =− 1 + β1ε+ β2ε
2 + β3ε

3 + β4ε
4 + β5ε

5 + β6ε
6 + β7ε

7,

γ =γ1ε+ γ2ε
2 + γ3ε

3 + γ4ε
4 + γ5ε

5 + γ6ε
6 + γ7ε

7, and

δ =δ1ε+ δ2ε
2 + δ3ε

3 + δ4ε
4 + δ5ε

5 + δ6ε
6 + δ7ε

7.

We have developed the parameters of the differential systems until seven order in ε, because then each
parameter can contribute in all the averaged functions until order seven, otherwise the results obtained
will be more poor with respect to the number of limit cycles that the piecewise differential systems
here studied can exhibit. Moreover in the expression of β the −1 is there because we want that when
ε = 0 the linear differential system (1) has a center.

After we write the discontinuous piecewise differential system in polar coordinates (ṙ, θ̇), where

x = r cos(θ) and y = r sin(θ). Then we take as independent variable the angle θ, and the system (ṙ, θ̇)
becomes the differential equation dr/dθ. By doing a Taylor expansion truncated at 7-th order in ε
we obtain an expression for dr/dθ written as the one of the differential system (3). In short we have
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written our discontinuous piecewise differential system formed by systems (1) and (2) in the normal
form (3) for applying the averaging theory. We give only the expression of functions F±

i (r, θ) for
i = 1, ..., 3. The explicit expressions of F±

i (r, θ) for i = 4, 5, 6, 7 are quite large so we omit them, but
they can be obtained easily using an algebraic manipulator as mathematica or mapple,

F+
1 (r, θ) =γ1 cos(θ) + δ1 sin(θ) + α1r,

F−
1 (r, θ) =− r2

(
(c1 − a1) sin(θ) cos

2(θ) + a1 sin
3(θ) + (d1 −A1) sin

2(θ) cos(θ) + b1 cos
3(θ)

)
,

F+
2 (r, θ) =

(
−2γ1δ1 cos(2θ) + γ2

1 sin(2θ)− δ21 sin(2θ) + 2α1β1r
2 + 2α2r

2 + 2α1γ1r sin(θ)

−2α1δ1r cos(θ) + 2β1γ1r cos(θ) + 2β1δ1r sin(θ) + 2γ2r cos(θ) + 2δ2r sin(θ)) /(2r),

F−
2 (r, θ) =− 1

8
sin(2θ)a21r

3 − 1

8
sin(6θ)a21r

3 − 3

32
sin(2θ)A2

1r
3 +

1

32
sin(6θ)A2

1r
3 +

5

32
sin(2θ)b21r

3

+
1

8
sin(4θ)b21r

3 +
1

32
sin(6θ)b21r

3 +
3

32
sin(2θ)c21r

3 − 1

32
sin(6θ)c21r

3 +
5

32
sin(2θ)d21r

3

− 1

8
sin(4θ)d21r

3 +
1

32
sin(6θ)d21r

3 − 1

8
cos(2θ)a1A1r

3 +
1

8
cos(6θ)a1A1r

3 +
1

4
a1b1r

3

+
3

8
cos(2θ)a1b1r

3 +
1

4
cos(4θ)a1b1r

3 +
1

8
cos(6θ)a1b1r

3 +
1

16
sin(2θ)A1b1r

3

+
1

8
sin(4θ)A1b1r

3 +
1

16
sin(6θ)A1b1r

3 +
1

8
sin(2θ)a1c1r

3 +
1

8
sin(6θ)a1c1r

3

+
1

16
cos(2θ)A1c1r

3 − 1

16
cos(6θ)A1c1r

3 +
1

8
b1c1r

3 +
1

16
cos(2θ)b1c1r

3 − 1

8
cos(4θ)b1c1r

3

− 1

16
cos(6θ)b1c1r

3 +
1

4
a1d1r

3 − 3

8
cos(2θ)a1d1r

3 +
1

4
cos(4θ)a1d1r

3 − 1

8
cos(6θ)a1d1r

3

− 1

16
sin(2θ)A1d1r

3 +
1

8
sin(4θ)A1d1r

3 − 1

16
sin(6θ)A1d1r

3 +
3

16
sin(2θ)b1d1r

3

− 1

16
sin(6θ)b1d1r

3 +
1

8
c1d1r

3 − 1

16
cos(2θ)c1d1r

3 − 1

8
cos(4θ)c1d1r

3 +
1

16
cos(6θ)c1d1r

3

− 1

2
sin(θ)a2r

2 +
1

2
sin(3θ)a2r

2 +
1

4
cos(θ)A2r

2 − 1

4
cos(3θ)A2r

2 − 3

4
cos(θ)b2r

2

− 1

4
cos(3θ)b2r

2 − 1

4
sin(θ)c2r

2 − 1

4
sin(3θ)c2r

2 − 1

4
cos(θ)d2r

2 +
1

4
cos(3θ)d2r

2,

F+
3 (r, θ) =γ3 cos(θ) +

(γ2 cos(θ) + δ2 sin(θ) + α2r) (γ1 sin(θ)− δ1 cos(θ) + β1r)

r
+ α3r

+ δ3 sin(θ) + ((γ1 cos(θ) + δ1 sin(θ) + α1r)
(
γ2
1 sin

2(θ) + δ21 cos
2(θ) +

(
β2
1 + β2

)
r2

− cos(θ) (2γ1δ1 sin(θ) + r (2β1δ1 + δ2)) + r (2β1γ1 + γ2) sin(θ)))/r
2,

F−
3 (r, θ) =r2

(
r
(
− (a1 − c1) sin

2(θ) cos(θ) + a1 cos
3(θ) + (A1 + b1) sin(θ) cos

2(θ)

+d1 sin
3(θ)

) (
− (a2 − c2) sin(θ) cos

2(θ) + a2 sin
3(θ)− (A2 − d2) sin

2(θ) cos(θ) + b2 cos
3(θ)

)

− r
(
− (a1 − c1) sin(θ) cos

2(θ) + a1 sin
3(θ)− (A1 − d1) sin

2(θ) cos(θ) + b1 cos
3(θ)

)
(
r
(
− (a1 − c1) sin

2(θ) cos(θ) + a1 cos
3(θ) + (A1 + b1) sin(θ) cos

2(θ) + d1 sin
3(θ)

)
2

− a2 cos
3(θ) + a2 sin

2(θ) cos(θ) +A2(− sin(θ)) cos2(θ)− b2 sin(θ) cos
2(θ)− c2 sin

2(θ) cos(θ)

−d2 sin
3(θ)

)
+ (a3 − c3) sin(θ) cos

2(θ)− a3 sin
3(θ) + (A3 − d3) sin

2(θ) cos(θ)− b3 cos
3(θ)

)
.

Now we compute the averaged function fi(r) defined in section 2, and for i = 1 we get

f1(r) =
2

3
(a1 + c1) r

2 + πα1r + 2δ1.
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So the polynomial f1(r) can have at most two positive real roots r1 and r2, which provide two limit
cycles for the discontinuous piecewise differential system (1)-(2) when ε is sufficiently small. These
limit cycles tend to the circular periodic orbits of radius r1 and r2 of the linear differential center
ẋ = −y, ẏ = x when ε → 0.

In order to apply the averaging theory of second order we need that f1(r) ≡ 0. In order to eliminate
the coefficients of this polynomial we must take c1 = −a1, α1 = 0 and δ1 = 0. Computing the function
f2(r) we obtain

f2(r) =
π

8
a1 (b1 + d1) r

3 +
2

3
(a2 + c2) r

2 + πα2r + 2δ2.

This polynomial can have at most three positive real roots, and consequently the averaging theory up
to order 2 can provide at most three limit cycles for the discontinuous piecewise differential system
(1)-(2) when ε is sufficiently small, which again when ε → 0 they will tend to the circular periodic
orbits of the linear differential center ẋ = −y, ẏ = x of radius the roots of the polynomial f2(r).

In order to apply the averaging theory of third order we need to have f2(r) ≡ 0, for that we must
take c2 = −a2, α2 = 0 and δ2 = 0 in order to eliminate the coefficients of r2, r and the constant term.
For the coefficient of r3 we have two cases b1 = −d1 or a1 = 0. Therefore we start with the first case
b1 = −d1.

Case 1: b1 = −d1 and a1 ̸= 0. Computing the function f3(r) we obtain

f3(r) =
2

5
a1b

2
1r

4 +
π

8
a1 (b2 + d2) r

3 +
2

3
(a3 + c3) r

2 + πα3r + 2δ3.

Then the polynomial f3(r) can have at most four positive real roots, and therefore provide when ε is
sufficiently small at most four limit cycles for the discontinuous piecewise differential system (1)-(2).

In order to apply the averaging theory of fourth order we need that f3(r) ≡ 0. So we must take

b1 = 0, d2 = −b2, c3 = −a3, α3 = 0 and δ3 = 0.

Then computing the function f4(r) we get

f4(r) =
π

8
a1 (b3 + d3) r

3 +
2

3
(a4 + c4) r

2 + πα4r + 2δ4.

So the polynomial f4(r) can have at most three positive real roots, and produce at most three limit
cycles for the discontinuous piecewise differential system (1)-(2) when ε is suffiiciently small.

In order to apply the averaging theory of fifth order we need that f4(r) ≡ 0, for that we must take

d3 = −b3, c4 = −a4, α4 = 0 and δ4 = 0.

Computing the function f5(r) we obtain

f5(r) =
2

5
a1b

2
2r

4 +
π

8
a1 (b4 + d4) r

3 +
2

3
(a5 + c5) r

2 + πα5r + 2δ5.

So the polynomial f5(r) can have at most four positive real roots, and consequently the discontinuous
piecewise differential system (1)-(2) can have at most four limit cycles for ε sufficiently small.

In order to apply the averaging theory of sixth order we need that f5(r) ≡ 0, therefore it is necessary
to take

b2 = 0, d4 = −b4, c5 = −a5, α5 = 0 and δ5 = 0.

Computing the function f6(r) we get

f6(r) =
π

8
a1 (b5 + d5) r

3 +
2

3
(a6 + c6) r

2 + πα6r + 2δ6

This polynomial can have at most three positive real roots.
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In order to apply the averaging theory of seventh order we must have f6(r) ≡ 0. So in order to
eliminate the coefficients of f6(r) we must take

d5 = −b5, c6 = −a6, α6 = 0, and δ6 = 0.

Computing the function f7(r) we get

f7(r) = Ar8 +Br7 + Cr6 +Dr5 + 2
5a1b

2
3r

4 + 1
8πa1 (b6 + d6) r

3 + 2
3 (a7 + c7) r

2 + πα7r + 2δ7,

such that

A = −128a31
(
−57258a21A

2
1 + 904365a41 − 210418A4

1

)

5892561675
,

B = −
(
467937a51A2 − 733185a2a

4
1A1 − 83718a31A

2
1A2 − 232218a2a

2
1A

3
1 + 385a1A

4
1A2 − 385a2A

5
1

)
π

39813120
,

C = − 64

18243225

(
−8811a31A1b3 + 120a1A

3
1b3 + 4824a31A

2
2 − 1080a31A1A3 + 10824a3a

2
1A

2
1

−25608a2a
2
1A1A2 − 144a22a1A

2
1 − 720a1A

2
1A

2
2 − 3280a1A

3
1A3 + 3280a3A

4
1 + 720a2A

3
1A2

+10962a3a
4
1 − 23544a22a

3
1

)
,

D =
(
1820a1A1A2b3 − 336a1A

2
1b4 − 770a2A

2
1b3 − 504a31A4 + 504a4a

2
1A1 − 1365a3a

2
1A2 + 504a4A

3
1

+1575a2a
2
1A3 + 210a1A

3
2 − 210a2a3a1A1 + 210a22a1A2 + 210a1A1A2A3 − 504a1A

2
1A4

−210a2A1A
2
2 − 210a32A1 − 1575a3A

2
1A2 + 1365a2A

2
1A3 − 144a31b4 + 450a2a

2
1b3

)
π/69120.

This polynomial can have at most eight positive real roots.

Now we continue the computations just after f2(r) taking the second case a1 = 0.

Case 2: a1 = 0. Computing the function f3(r) we obtain

f3(r) =
π

8
a2 (b1 + d1) r

3 +
2

3
(a3 + c3) r

2 + πα3r + 2δ3.

This polynomial can have at most three positive real roots. In order to apply the averaging theory of
fourth order we must have f3(r) ≡ 0. So we must take c3 = −a3, α3 = 0, δ3 = 0, and in order to
eliminate the coefficient of r3 in f3 we must take d1 = −b1 or a2 = 0. Then there are two subcases.

Subcase 2.1: d1 = −b1 and a2 ̸= 0. Computing f4(r) we get

f4(r) =
2

5
a2b

2
1r

4 +
π

8
a2 (b2 + d2) r

3 +
2

3
(a4 + c4) r

2 + πα4r + 2δ4.

This polynomial can have at most four positive real roots. In order to apply the averaging theory of fifth
order we must have f4(r) ≡ 0. Therefore we need to b1 = 0, c4 = −a4, d2 = −b2, α4 = 0 and δ4 = 0.
Computing f5(r) we get

f5(r) =
π

8
a2 (b3 + d3) r

3 +
2

3
(a5 + c5) r

2 + πα5r + 2δ5.

This polynomial can have at most three positive real roots. In order to apply the averaging theory
of sixth order we must have f5(r) ≡ 0. So we must take d3 = −b3, c5 = −a5, α5 = 0 and δ5 = 0.
Computing f6(r) we get

f6(r) =
2

5
a2b

2
2r

4 +
π

8
a2 (b4 + d4) r

3 +
2

3
(a6 + c6) r

2 + πα6r + 2δ6.

This polynomial can have at most five positive real roots. In order to apply the averaging theory
of seventh order we need to have f6(r) ≡ 0. So we must take b2 = 0, d4 = −b4, c6 = −d6, α6 =
0 and δ6 = 0. Computing f7(r) we have

f7(r) =
77πa2A

5
1

7962624
r7− 1024A3

1 (41a3A1 + 9a2A2)

3648645
r6+Er5+

π

8
a2 (b5 + d5) r

3+
2

3
(a7 + c7) r

2+πα7r+2δ7,
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such that

E =
7πA1

(
−110a2A1b3 − 30a2A

2
2 + 195a2A1A3 + 72a4A

2
1 − 225a3A1A2 − 30a32

)

69120
.

This polynomial can have at most six positive real roots by the Descartes Theorem, which states:
Consider the real polynomial p(x) = ai1x

i1 + ai2x
i2 + · · · + airx

ir with 0 ≤ i1 < i2 < · · · < ir and
aij ̸= 0 real constants for j ∈ {1, 2, · · · , r}. When aijaij+1

< 0 we say that aij and aij+1
have a

variation of sign. If the number of variations of signs is m, then p(x) has at most m positive real
roots. Moreover it is always possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r − 1 positive real roots. For a proof see [3].

Now we start the computations from f3(r) just before the Subcase 2.1 taking the second subcase
a2 = 0.

Subcase 2.2: a2 = 0. Therefore we take a2 = 0, c3 = −a3, α3 = 0 and δ3 = 0; which give f3(r) = 0.
Now computing f4(r) we get

f4(r) =
π

8
a3 (b1 + d1) r

3 +
2

3
(a4 + c4) r

2 + πα4r + 2δ4.

This polynomial can have at most three positive real roots. In order to apply the averaging theory of
fifth order we must have f4(r) ≡ 0. So we need c4 = −a4, α4 = 0, δ4 = 0, and in order to eliminate
the coefficient of r3 we need to have d1 = −b1 or a3 = 0. Here also we have two subcases.

Subcase 2.2.1: d1 = −b1 and a3 ̸= 0. Computing f5(r) we get

f5(r) =
2

5
a3b

2
1r

4 +
π

8
a3(b2 + d2)r

3 +
2

3
(a5 + c5) r

2 + πα5r + 2δ5.

This polynomial can have at most four positive real roots. In order to apply the averaging theory of
sixth order we should have f5(r) ≡ 0. So we need b1 = 0, d2 = −b2, c5 = −a5, α5 = 0 and δ5 = 0.
Now we compute f6(r) and we obtain

f6(r) =
π

8
a3 (b3 + d3) r

3 +
2

3
(a6 + c6) r

2 + πα6r + 2δ6.

This polynomial can have at most three positive real roots. In order to apply the averaging theory of
seventh order we must have f6(r) ≡ 0. So we must take d3 = −b3, c6 = −a6, α6 = 0 and δ6 = 0.
Computing f7(r) we get

f7(r) = − 41984a3A
4
1

3648645 r6 +
7πA2

1(72a4A1−225a3A2+170a3b2)
69120 r5 + 2

5a3b
2
2r

4 + π
8 a3 (b4 + d4) r

3

+ 2
3 (a7 + c7) r

2 + πα7r + 2δ7.

This polynomial can have at most six positive real roots.

Subcase 2.2.2: a3 = 0. Hence we return to the fourth order and we take c4 = −a4, α4 = 0, δ4 = 0,
which give f4(r) ≡ 0. Computing f5(r) we get

f5(r) =
π

8
a4(b1 + d1)r

3 +
2

3
(a5 + c5)r

2 + πα5r + 2δ5.

This polynomial can have at most three positive real roots. In order to apply the averaging theory
of sixth order we must have f5(r) ≡ 0. So we must take c5 = −a5, α5 = 0, δ5 = 0, and in order to
eliminate the coefficient of r3 we have two subcases d1 = −b1 or a4 = 0.
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Subcase 2.2.2.1: d1 = −b1 and a4 ̸= 0. Computing f6(r) in this case we get

f6(r) =
2

5
a4d

2
1r

4 +
π

8
a4(b2 + d2)r

3 +
2

3
(a6 + c6)r

2 + πα6r + 2δ6.

This polynomial can have at most four positive real roots. In order to apply the averaging theory of
seventh order we must have f6(r) ≡ 0. So we must take d1 = 0, d2 = −b2, c6 = −a6, α6 = 0, and δ6 =
0. Computing f7(r) we get

f7(r) =
7π

960
a4A

3
1r

5 +
π

8
a4 (b3 + d3) r

3 +
2

3
(a7 + c7) r

2 + πα7r + 2δ7

This polynomial can have at most four positive real roots by the Descartes Theorem.

Subcase 2.2.2.2: a4 ̸= 0. We return to the fifth order and we take a4 = 0, c5 = −a5, α5 = 0, δ5 = 0,
which give f5(r) ≡ 0. Computing f6(r) we get

f6(r) = −π

8
c5(b1 + d1)r

3 +
2

3
(a6 + c6)r

2 + πα6r + 2δ6.

This polynomial can have at most three positive real roots. In order to apply the averaging theory of
seventh order we must have f6(r) ≡ 0. So we must take c6 = −a6, α6 = 0, δ6 = 0, and in order to
eliminate the coefficient of r3 here also we have two cases d1 = −b1 or c5 = 0. For d1 = −b1 computing
f7(r) we obtain

f7(r) = −2

5
b21c5r

4 − π

8
c5 (b2 + d2) r

3 +
2

3
(a7 + c7) r

2 + πα7r + 2δ7

This polynomial can have at most four positive real roots. Computing f7(r) in the case c5 = 0 we get

f7(r) = −π

8
c6(b1 + d1)r

3 +
2

3
(a7 + c7)r

2 + πα7r + 2δ7.

This polynomial can have at most three positive real roots.

In summary, in all the previous cases the polynomials fi(r) can have at most 2, 3, 4, 6 and 8 real
positive roots. Hence the maximum number of limit cycles that we can obtain using the averaging
theory up to seven order is eight. This completes the proof of Theorem 1.
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