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Abstract: Water pollution is an environmental problem that affects the ecosystem and living beings.
Adsorption is one of the best technologies for the removal of heavy metals. Since waste recovery
is the basis of the Circular Economy, agro-industrial waste is emerging as low-cost adsorbents for
these pollutants from wastewater. Residues of pine sawdust, sunflower seed hulls and corn residues
mix were evaluated as adsorbents of synthetic aqueous solutions of Ni(II), Zn(II) and Cd(II). These
residues were characterized to determine their structure and composition, and to understand the
adsorption mechanism. Adsorption efficiencies and capacities for the adsorbents and adsorbates were
determined and compared. From the obtained results, it is possible to affirm that all biomasses used
are good alternatives to the synthetic materials, with adsorption efficiencies greater than 50%. The
order of adsorption was Cd > Zn > Ni. At the concentration range checked, adsorption efficiencies
decreased in sawdust when a mixture of all metals together was considered (as present in real sewage).
Finally, the heavy metals were immobilized, with efficiencies over 88.5%, in clay ceramics (as brick’s
precursors). This procedure would help to minimize the contamination that could be generated by
the disposal of spent adsorbents, rarely explored in the literature.

Keywords: heavy metals; agro-industrial waste; adsorption; wastewater treatment; contaminant
immobilization

1. Introduction

Water pollution is a serious world environmental problem mainly caused by the
climate change, rapid urbanization and advance of industrialization [1,2]. Heavy metals are
among most released pollutants or contaminants into the water and are not biodegradable;
therefore, they accumulate in living organisms entering in the food chain, also through
the consumption of water and other contaminated products, producing corresponding
pollution biomagnification [3,4]. These metals are an environmental and public health
concern, not only because of their persistence and concentration that influence exposure,
but also because of their toxicity, and their mobility in the environment that determines
their bioavailability, which is given by the type of compound or metabolite that each metal
can form, and also by the characteristics of each the specific environment [5,6].

Nickel, zinc and cadmium are common and relevant heavy metals in the environ-
ment [4,7]. Electroplating, metallurgical and batteries industries are some of the anthro-
pogenic sources of nickel, zinc and cadmium contamination [8,9]. Also, nickel and zinc can
easily leach due to mineral weathering [10]. Ni(II) and Zn(II) are essential elements and, in
low concentrations, they are necessary for the metabolic development of humans, plants
or animals. However, these elements can be toxic and harmful to health effects when ex-
posure/assimilation exceeds the upper limit of the physiologically required range [11–13].
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For example, high exposure to nickel can cause cancer, dry cough and lung problems,
dermatitis, nausea, gastrointestinal and kidney problems in humans, and high exposure
to zinc can cause fever, vomiting, anemia, and skin problems in humans [7,8]. Cd(II) is a
highly toxic metal, even at very low concentrations, and is a non-essential element because
it has no known benefit to human health or other living beings [6,10]. Cadmium is a human
carcinogen as established by The International Agency for Research on Cancer (IARC) and
can cause kidney problems, hypertension, stomach irritation, among others, and its chronic
exposure can lead to the development of “Itai-Itai” disease [11,14].

In the province of Buenos Aires, Argentina, the permitted maximum discharge limits
of these heavy metals in sewers, surface water or stormwater conduits and the open sea
vary from 2 to 3 mg/L for Ni, 2 to 5 mg/L for Zn and 0.1 to 0.5 mg/L for Cd [15]. Industrial
effluents generally can contain concentrations of heavy metals above the maximum per-
missible limits; therefore, industries must treat their effluents before discharging them into
the environment [13,14]. There are conventional technologies for treating wastewater and
minimizing heavy metal pollution (e.g., chemical precipitation, coagulation/flocculation,
membrane filtration, electrochemical technologies, ion exchange), however they can be ex-
pensive, and can generate by-products or sludge, involving complicated procedures [8,16].
Adsorption is considered one of the best options for heavy metal removal due to its flex-
ibility in operation and design, low energy consumption, minimization of sludge and
by-products, possibility of regenerating adsorbents, and high removal efficiency even at
a very low metal concentrations [17,18]. Activated carbon (AC) is the most used and
recognized heavy metal adsorbent but it is expensive due to its preparation process and
the impossibility of its regeneration, which limits its use at large-scale application [19,20].

For developing countries, the application and development of heavy metal removal
technologies represents a challenge [20]. In recent years, agro-industrial residues have
emerged as low-cost adsorbents, also for heavy metals, due to its availability and abun-
dance, allowing to apply processes under the bases of the Circular Economy (which corre-
sponds to the recovery and reuse of wastes) [7,10]. Every year, worldwide, tons of waste
are produced from the agro-industrial sector that are stored in the open air and disposal in
landfills, causing negative environmental impacts due to leachates and gases, following
with the CO2 generation with their burning [21]. Literature examples of agro-industrial
residues used as heavy metal adsorbents are: cow dung [5], potato peel [22], cucumber
peel [23], groundnut husk [24], eggshells [25], pine and modified pine [26], rice and rape-
seed [27], coffee husk and lignin [28], among others. All the plant-based wastes are made
up of hemicellulose, cellulose and lignin, and has a wide variety of functional groups (e.g.,
aldehydes and ketones, carboxyl groups, phenolics, hydroxyls, methyls, ethers, amides,
aminos, etc.) that can interact with pollutants through various mechanisms [7,8].

As reported by the national government in 2020, in Argentina agro-industrial is
really important and constitutes the 25% of the manufacturing industry and represents
the 40% of exports. Among the agro-industrial residues, sawdust constitutes from 9
to 15% of the forest biomass discarded by sawmills and comes mainly from pine and
eucalyptus plantations [29]. Sunflower crop is one of the most important in Argentina with
a production of 3.5 million tons of seeds per year, obtaining 50% by weight of discarded
hulls per seed [30]. On another hand, the corn production extends over a large area of the
country and generates a great volume of biomass when compared to others such as wheat
or barley [31].

This paper focuses the study of adsorption processes of Ni(II), Zn(II) and Cd(II)
by using pine sawdust, sunflower seeds hulls and corn residues mix as adsorbents. A
comparison of these three agro-industrial wastes as adsorbents is here presented, by
checking firstly each individual heavy metal adsorption process, and secondly the influence
of the mixture of these three heavy metals on their adsorption (as they are present in real
sewage all together), by corresponding adsorption experiments. Later, such biomass
residues containing heavy metals are immobilized in clay ceramics (as brick’s precursors),
to here propose an environmentally safe way to dispose the spent adsorbents together
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with adsorbates (heavy metals). This procedure would help to minimize the secondary
contamination that could be generated by the disposal of spent adsorbents, which is rarely
explored in the adsorption literature and is fundamental for the real application of the
adsorption from low-cost materials.

2. Materials and Methods
2.1. Chemicals and Reagents

All reagents used were of analytical grade. Stock solutions of concentration 1000 mg/L
of individual heavy metals ions, Ni(II), Zn(II) and Cd(II), were prepared dissolving ade-
quate amounts of Ni(NO3)2.6H2O, Zn(NO3)2.6H2O and Cd(NO3)2.4H2O (all from Panreac,
Castellar del Vallès, Spain), respectively. From these solutions the corresponding dilutions
used in the adsorption experiments were prepared and the pH (Omega 300 pH meter,
Crison Instruments, S.A, Barcelona, Spain) was adjusted with HNO3 70% (Panreac, Spain).
Solutions were prepared with Milli-Q water.

2.2. Biomass

The biomasses of sawdust, sunflower and corn were selected according to the reasons
already mentioned. The pine (Pinus elliottii) sawdust residues were provided by a sawmill
in the province of Corrientes, Argentina, and corresponded to the main cutting process of
the wood, before any addition. Sunflower seed hulls (Helianthus annuus) were provided
by a company located in the province of Santa Fe, Argentina, dedicated to the oilseed
market, and were obtained from the processing of sunflower grains. The corn residues mix
(Zea mays var. saccharata) were kindly provided by the National Institute of Agricultural
Technology (INTA), and corresponded to the harvest stage.

The development of the adsorbents included the collection of the biomass, grinding
with a knife mill (IKA A10) and sieving to a particle size of less than 1 mm to promote
adsorption. The waste did not receive additional processing (chemical or thermal treatment)
to make it as friendly as possible to the environment and reduce costs. Figure 1 shows the
macroscopic appearance of the used waste, after grinding and sieving.

Water 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

propose an environmentally safe way to dispose the spent adsorbents together with ad-
sorbates (heavy metals). This procedure would help to minimize the secondary contami-
nation that could be generated by the disposal of spent adsorbents, which is rarely ex-
plored in the adsorption literature and is fundamental for the real application of the ad-
sorption from low-cost materials. 

2. Materials and Methods 
2.1. Chemicals and Reagents 

All reagents used were of analytical grade. Stock solutions of concentration 1000 
mg/L of individual heavy metals ions, Ni(II), Zn(II) and Cd(II), were prepared dissolving 
adequate amounts of Ni(NO3)2.6H2O, Zn(NO3)2.6H2O and Cd(NO3)2.4H2O (all from Pan-
reac, Spain), respectively. From these solutions the corresponding dilutions used in the 
adsorption experiments were prepared and the pH (Omega 300 pH meter, Crison Instru-
ments, S.A) was adjusted with HNO3 70% (Panreac, Spain). Solutions were prepared with 
Milli-Q water. 

2.2. Biomass 
The biomasses of sawdust, sunflower and corn were selected according to the reasons 

already mentioned. The pine (Pinus elliottii) sawdust residues were provided by a sawmill 
in the province of Corrientes, Argentina, and corresponded to the main cutting process of 
the wood, before any addition. Sunflower seed hulls (Helianthus annuus) were provided 
by a company located in the province of Santa Fe, Argentina, dedicated to the oilseed 
market, and were obtained from the processing of sunflower grains. The corn residues 
mix (Zea mays var. saccharata) were kindly provided by the National Institute of Agricul-
tural Technology (INTA), and corresponded to the harvest stage. 

The development of the adsorbents included the collection of the biomass, grinding 
with a knife mill (IKA A10) and sieving to a particle size of less than 1 mm to promote 
adsorption. The waste did not receive additional processing (chemical or thermal treat-
ment) to make it as friendly as possible to the environment and reduce costs. Figure 1 
shows the macroscopic appearance of the used waste, after grinding and sieving. 

 
Figure 1. Ground and sieved residues (A) pine sawdust, (B) sunflower seed hulls and (C) corn res-
idues mix. 

2.3. Biomass Characterization 
Physicochemical properties of adsorbents contribute to the process of adsorption of 

contaminants. Characteristics of potential adsorbents were determined from a number of 
techniques, that included the Brunauer-Emmett-Teller (BET) (Micromeritics Accusorb, 
model 2100), Scanning Electron Microscopy (SEM) (ZEISS EVO® MA 10 at the UAB Mi-
croscopy Service and FEI ESEM Quanta 200), Energy-Dispersive X-ray Spectroscopy 
(EDS) (Oxford SDD X-Act, software: AZTecOne), Attenuated Total Reflectance–Fourier 
Transform Infrared Spectroscopy (ATR-FTIR) (Nicolet 6700, Thermo Electron Corp. 
equipment), X-ray Fluorescence (XRF) (PW4024 Minipal2 PANalytical X-ray spectrometer 

Figure 1. Ground and sieved residues (A) pine sawdust, (B) sunflower seed hulls and (C) corn
residues mix.

2.3. Biomass Characterization

Physicochemical properties of adsorbents contribute to the process of adsorption of
contaminants. Characteristics of potential adsorbents were determined from a number
of techniques, that included the Brunauer-Emmett-Teller (BET) (Micromeritics Accusorb,
model 2100), Scanning Electron Microscopy (SEM) (ZEISS EVO® MA 10 at the UAB Mi-
croscopy Service and FEI ESEM Quanta 200), Energy-Dispersive X-ray Spectroscopy (EDS)
(Oxford SDD X-Act, software: AZTecOne), Attenuated Total Reflectance–Fourier Trans-
form Infrared Spectroscopy (ATR-FTIR) (Nicolet 6700, Thermo Electron Corp. equipment,
Waltham, MA, USA), X-ray Fluorescence (XRF) (PW4024 Minipal2 PANalytical X-ray spec-
trometer with copper anode and operating conditions nitrogen flow, voltage 20 kV, current
5 mA and time 100 s), and Differential Thermal Analysis (DTA) and Thermogravimetric
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Analysis (TGA) (Shimadzu TGA-50 and Shimadzu DTA-50 instruments, with TA-50 WSI
analyzer and operating conditions air, heating rate of 10 ◦C/min to 1000 ◦C and approxi-
mately 20 mg of mass). The mineral content of biomass it was determined following the
guidelines of the ASTM E1755-01 standard [32]. In addition, the possible changes produced
in the biomasses after the adsorption experiments were analyzed.

2.4. Batch Adsorption Experiments

The removal of heavy metals by means of the aforementioned agro-industrial residues
was carried out under batch adsorption experiments at room temperature. A volume of
10 mL of a mono-metal solution, of Ni(II), Zn(II) or Cd(II) of 0.18 mmol/L, or a multi-metal
solution of all together with a concentration of 0.18 mmol/L for each heavy metal was
placed in contact with 0.1 g of adsorbent in tubes. The pH of the solutions was initially
adjusted to 4–5 following previous literature [26,33]. The system was stirred at 40 rpm in
a rotary mixer (CE 2000 ABT-4, SBS Instruments SA) for 24 h to ensure that equilibrium
was reached. The liquid phase was filtered through 0.22 µm filters (Millex-GS, Millipore,
Burlington, MA, USA). The metal concentration in the aqueous solution (not adsorbed)
was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) (XSERIES
2 ICP-MS, Thermo Scientific, Waltham, MA, USA) from the Autonomous University of
Barcelona. The adsorption of each heavy metal was expressed as adsorption percentage
(A%), calculated from Equation (1), and the adsorption capacity of each adsorbent (qe) was
calculated from Equation (2):

A% (%) =
(C0 − Ce)

C0
× 100 (1)

qe

(
mmol

g

)
=

(C0 − Ce)× V
m

(2)

where C0 and Ce (mmol/L) are the initial and equilibrium concentrations of heavy metal
in solution, respectively, V (L) is the volume of the heavy metal solution, and m (g) is the
mass of the adsorbent [34,35]. Adsorption experiments are prepared by duplicate and the
average results are reported.

2.5. Spent Adsorbents Disposal in Clay Ceramics

Safe disposal of spent adsorbents is necessary to minimize secondary contamination,
especially if large-scale adsorption technology implementation is considered. Pine sawdust,
sunflower seed hulls and corn residues mix, after being used as adsorbents, were added
to the clay, and clay ceramics were prepared with the aim of immobilizing adsorbed
heavy metals.

The amount of residue contaminated with Ni(II), Zn(II) and Cd(II) that was used
in the clay ceramics corresponded to 20% in volume with respect to the volume of clay,
in accordance with what was observed by the authors in previous studies [36]. For this
reason, adsorption experiments were previously carried out scaling 20 times the amount of
adsorbent (2 g) and 20 times the moles of metal ion (3.6 × 10−5). As a consequence of the
increase in adsorbent mass, the solution volume had to be increased to 40 mL so that the
liquid covers the entire surface of the biomass.

The methodology used in the preparation process of the clay ceramics is detailed
in Figure 2 and it was designed considering the characteristics of the raw materials, the
pressure and firing conditions used in the brick factory. The clay was provided by a local
brick factory and is the same that the manufacturer uses in the hollow brick production
process. Firing of clay ceramic was carried out in an electric oven INDEF 332.
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Figure 2. Clay ceramics preparation process.

It is essential to evaluate the mobility of heavy metals present in manufactured clay
ceramics to determine the feasibility of immobilize these contaminants in the ceramic
structure. Leaching tests were carried out based on EPA method 1311 [37], which is a
method accepted by Argentine laws for hazardous waste.

Clay ceramics prepared from spent adsorbents were crushed and sieved to a particle
size of less than 9.5 mm. In beakers, crushed clay ceramics were mixed with leaching
solution in a 1:20 solid-liquid ratio. According to the alkalinity of the ceramic, an extraction
fluid of pH 4.93 ± 0.05 was prepared from 5.7 mL of acetic acid, 64.3 mL of sodium
hydroxide 1 mol/L and completing with distilled water up to 1 L. The covered beakers
were shaken at 100 rpm in an orbital shaker (SK-0330-Pro) for 22 h. The mixtures were
then filtered through filter paper washed with 1 mol/L nitric acid and rinsed with distilled
water. The TCLP extracts of the solid phases were acidified with concentrated nitric acid
until pH < 2 and stored refrigerated at 4 ◦C. Finally, the extracts were analyzed by Atomic
Absorption Spectrophotometry (AAS) (Shimadzu 6800 with flame) from the Fares Taie
Biotechnological Center. The results of the leaching tests were compared with the estimated
initial mass of heavy metals in the clay ceramics. In this way, the retention efficiency was
calculated according to Yilmaz et al. [38].

3. Results and Discussion
3.1. Biomass Characterization

The phenomena that occur in an adsorbent are related to its specific surface and, there-
fore, to the total volume of pores and their dimensions, that influence the interaction with
the adsorbate and the obtained adsorption efficiency. Table 1 shows the results obtained
from the BET analysis for pine sawdust, sunflower seed hulls and corn residues mix. All
biomasses showed the presence of mesopores and the surface area values are in agreement
with those reported in the literature for adsorbents of lignocellulosic origin [34,39]. Corn
biomass presented a higher surface area, total pore volume, and mean pore size comparing
with the other two biomass residues (pine sawdust and sunflower seed hulls). Bilal et al. [7]
reported that the adsorption of contaminants increases with the increase in the surface area
of the adsorbent, since the adsorption process is a surface phenomenon.
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Table 1. BET analysis results of surface area, total pore volume and mean pore size for biomass residues.

Biomass Surface Area (m2/g) Total Pore Volume (cm3/g) Mean Pore Size (nm)

Pine sawdust 1.1 0.003 9.4
Sunflower seed hulls 0.7 0.0009 4.9

Corn residues mix 1.5 0.006 14.9

SEM images allow to obtain information about the morphological characteristics
(texture, topography and surface characteristics) of the adsorbents. So, the SEM images
of the three studied agro-industrial wastes are presented in Figure 3. Biomass analyzed
particles showed an elongated shape and a fibrous microstructure. An irregular and rough
surface with cavities can be observed in all cases, which forms a network of holes and fibers.
These characteristics can facilitate the adsorption of heavy metals [40]. No appreciable
changes were detected in the morphology of the adsorbents related to the interaction
with metal ions, as reported by Zhang et al. [33], after the adsorption of heavy metals.
The combination of SEM with EDS detector and analyzer system allowed to obtain the
distribution of heavy metals on the biomasses after adsorption by mapping. As shown in
Figure 4, the distribution, and therefore adsorption, of nickel, zinc and cadmium in the
adsorbents was across the entire surface.
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(B) sunflower seed hulls, (C) corn residues mix, after adsorption of Cd(II), Zn(II) and Ni(II), respectively.

ATR-FTIR made it possible to determine the presence of functional groups in biomass
responsible for the metal adsorption mechanism, for example, either by electrostatic forces
or complexation. ATR-FTIR spectra for the biomass residues studied here are shown in
Figure 5. The large number of IR bands was associated with the typical complex nature of
agro-industrial biomasses [41–43]. The assignment of the main IR bands at the respective
approximate wavelengths are summarized in Table 2. The great similarity between the
ATR-FTIR spectra of sawdust, sunflower and corn was due to the fact that the composition
of these three biomasses is based on cellulose and lignin.

The presence of numerous functional groups in biomass facilitates the adsorption of
heavy metals [7]. A comparison of the ATR-FTIR spectra of the biomasses before and after
the adsorption of the heavy metals is also shown in Figure 5, being both spectra were very
similar in each biomass case. However, slight differences were observed, such as a shift of
the band at 1603–1624 cm−1 in the three biomasses, and shift of the band at 1224–1238 cm−1

in the pine sawdust and corn residues, after the contact with heavy metals. These results
may be indicative that carboxyl, alcohol, phenol, amide, and other functional groups could
provide possible adsorption sites for the retention of the studied heavy metals, and were
similar to those found in previous works in the literature [44,45].
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Table 2. Assignment of the main bands obtained by ATR-FTIR for biomass residues.

Wavenumber (cm−1) Assignment

3332–3336 O-H stretching of carboxylic acids and alcohols/phenols, and N-H of amino and amide groups
2918–2922 Asymmetric C-H stretching of CH3
2846–2850 Symmetric C-H stretching of CH2 and stretching of methoxy groups
1722–1726 C-O stretching of carbonyl, C=O of acetyl, carboxyl, aldehydes and aromatic/conjugated esters

1603–1624 COO- stretching of carboxyl groups, C=C of the aromatic ring, and C=O, C-N, C-N-H stretching of
amides, and O-H bending

1508–1510 C=C stretching of aromatic ring, N-H bending
1458 C=C aromatic, C=O stretching and symmetric bending of C-H, O-H

1419–1437 O-H bending of acids, vibrations of aromatic rings and bending of CH2 and aromatic functional
groups such as C=C and C=O

1371 Asymmetric C-H bending of CH3, CH2
1321–1325 O-H bending of phenol group, C–N groups
1224–1240 C-O stretching of phenols and carboxylic acids, and alkyl aryl ether bonds
1153–1157 Asymmetric stretching of the C-O-C pyranose backbone
1095–1109 C-OH and C-H stretching
1034–1036 C-O stretching in carboxyl group, C-O-C, dialkyl ether, C-H of aromatics, and C=C and C-C-O

874–895 Changes in aromatic structures such as C–H stretching of aromatics

The XRF analysis for the biomasses before and after the adsorption of heavy metals is
presented in Figure 6. The Cr peaks come from the tube used as the source of the equipment
(anode). Signals corresponding to Cl, K, Ca, Mn and Fe were observed, although the
intensities varied according to the residue. The presence in biomasses of Ni, Zn and Cd
was observed after adsorption (Cd signals were detected in the Ca and K energy zone),
associated with the decrease in the intensities of elements such as Ca and K, mainly.
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The percentage of ash obtained was 0.2%, 2.0% and 10.2% for pine sawdust, sun-
flower seed hulls and corn residues mix, respectively. The XRD patterns of the biomasses
(Figure S1 of the supplementary material) evidenced the presence of a significant amount
of amorphous phase, in agreement with the mentioned results. The XRF equipment used
does not allow the measurement of elements lighter than Na, and H, C and O are part
of hemicellulose, cellulose and lignin as the main components of the biomasses. For that
reason, the composition of the corresponding ashes was also analyzed by XRF (results
collected in Figure 7). Differences in mineral content and composition were observed.
Probably potassium, calcium, magnesium and phosphorus are involved in the adsorption
of heavy metals through ion exchange mechanism, as reported previously [46].
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Biomasses of plant origin are mainly composed of lignin and cellulose, as mentioned
above, together with hemicellulose, low molecular weight compounds, lipids, proteins,
starch, water, etc. [7]. The DTA-TGA profiles were obtained for the three biomasses here
selected, and provided a description of the thermal behavior and an estimated percentage
composition of biomasses, which was in agreement with the literature [47,48]. As seen in
Figure 8, TGA analysis, the total weight loss was 96% for pine sawdust, 97% for sunflower
seed hulls, and 86% for corn residues mix, and was divided into three stages. The first
weight loss stage (up to 230 ◦C) was 7% for pine sawdust, 12% for sunflower seed shells
and 10% for corn residues mix. This stage was related to the loss of moisture, which was
characterized by an endothermic peak at 52 ◦C in pine sawdust and at 60 ◦C in sunflower
seed hulls. The degradation of low molecular weight compounds was identified with an
exothermic peak at 263 ◦C, and was observed in sawdust. The second weight loss stage
was 48% for sawdust (up to 311 ◦C), 56% for sunflower (up to 297 ◦C) and 50% for corn (up
to 338 ◦C). This stage could be related to the degradation of hemicellulose and pectin into
volatile compounds of lower molecular weight. Finally, the third weight loss stage was 41%
(up to 500 ◦C), 29% (up to 460 ◦C) and 26% (up to 508 ◦C) for biomasses of pine sawdust,
sunflower seed hulls and corn, respectively, and it could be related to the degradation of
cellulose and lignin into CO2, H2O and ashes. From the TGA analysis, the final residue
corresponds to the mineral content and was higher for corn than for sawdust and sunflower,
in accordance with the results obtained following the guidelines of the ASTM E1755-01
standard. The two large exothermic peaks in the three DTA curves were assigned to the
decomposition of the biopolymers present in the biomass: such as hemicellulose, cellulose
and lignin. Since these biopolymers are closely related in the biomass structure, the thermal
degradation of each biopolymer cannot be clearly defined independently, probably being



Water 2022, 14, 3298 11 of 19

hemicellulose responsible of the first peak and cellulose and lignin together of the second
peak [30].
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3.2. Adsorption Process Characterization

Biomasses of pine sawdust, sunflower seed hulls and corn residues mix were evaluated
as adsorbents of mono-metal aqueous solutions of Ni(II), Zn(II) and Cd(II). The results
obtained are shown in Figure 9.
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sawdust, sunflower seed hulls and corn residues mix.

According to the results of adsorption percentage (A%) and adsorption capacity
(qe) obtained, Ni(II) presented a lower adsorption, compared to Zn(II) and Cd(II), in all
the biomasses studied. The adsorption follows the order: Ni(II) < Zn(II) < Cd(II), as
shown in Figure 9, for sawdust, sunflower and corn, as it was also reported for other
waste of lignocellulosic origin, such as coffee residues, rice husks, cocoa husks, and pa-
per manufacturing wastes [49,50]. This behavior is related to the different characteristics
and affinity of the metal ions for adsorbent adsorption sites [51]. Comparing the val-
ues of the hydration energies (Ni(II): −2106 kJ/mol, Zn(II): −2044 kJ/mol and Cd(II):
−1806 kJ/mol), related to hydrolysis of metal ions, the nickel ion has a higher hydration
energy than the zinc and cadmium ions and, therefore, it is less easy to lose its water
molecules from its coordination sphere, which would prevent it from being adsorbed by the
adsorbent through complexation or ion-exchange mechanisms. According to Mahmood-
ul-Hassan et al. [52] and Qu et al. [53], smaller ions are more hydrated than larger ones,
which could hinder adsorption.

The higher surface area, pore volume and mineral fraction in corn residues could have
positively contributed to the adsorption of heavy metals. However, the differences in the
adsorption results are not too significant between the three biomasses.

The obtained results are of the same order as results reported in the literature for
batch adsorption experiments of Ni(II), Zn(II) and Cd(II) using sawdust, sunflower and
corn residues (Table S1, supplementary material). However, the differences between the
results of adsorption percentage (A%) are not only due to the characteristics of the biomass
adsorbent but were also due to the concentration of contaminant, dosage of the adsorbent,
pH of the solution, temperature, contact time, among others, that are factors that can affect
the adsorption process [7]. Some of these factors were evaluated by the authors in previous
work on the adsorption of heavy metals on adsorbent materials of plant origin [26,46,54,55].

The determination of the adsorption of heavy metals of a mixing metal solutions
represents a closer situation to a real effluent. The competition between the metal ions for
the adsorption sites occurs due to the saturation of the adsorption sites of the adsorbent
whose dosage remains fixed to that of the individual systems [7]. Figure 10 compares
the results of A% for the adsorption of mono-metal aqueous solutions of Ni(II), Zn(II)
and Cd(II), and the multi-metal aqueous solution made up of heavy metals mentioned
above with a concentration of 0.18 mmo/L of each of them. At this initial concentration,
the results of A% for each of the heavy metals were similar when the adsorption was
carried out separately and when it was carried out within the mixture, on sunflower seed
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hulls and corn residues mix. However, the adsorption of heavy metals in pine sawdust
was lower for the multi-metal aqueous solution than for each metal separately, being the
nickel ion the most affected by the competition with the other two heavy metals for the
adsorption sites of the adsorbent, as expected (as Ni was the less adsorbed, as seen in
Figure 9). Zhao et al. [46], also reported a lower performance of sawdust as an adsorbent
when comparing the results of A% obtained for the adsorption of a mixture consisting of
Cr(III), Cd(II), Cu(II) and Pb(II), on poplar sawdust and two other agricultural residues.
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3.3. Spent Adsorbent Disposal

There is limited information available in the literature on the toxic effects of spent
adsorbents, and their regeneration decreases their performance and generate new contam-
inant materials. The safe disposal of used and/or spent adsorbents is nowadays raising
as a need to consider it for a more sustainable processes that can help to preserve the
environment [56]. Based on the previous experience of the authors [54,55], the local pro-
duction of ceramics for bricks construction is presented as a possible alternative for the
safe disposal of spent adsorbents that would contribute to the real applicability of them as
metal adsorbents.

In Figure 11, the adsorption percentages obtained from the experiments using 0.1 g
of adsorbent and 1.8 × 10−6 moles of each of the heavy metals in the multi-metal system
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are compared with those results obtained by increasing the residue mass by 20 times
to 2 g and moles of adsorbate to 3.6 × 10−5 moles. As can be seen, by maintaining
the adsorbent/adsorbate ratio constant, the adsorption percentage remained constant.
These results were considered in the preparation of clay ceramics with 20% by volume of
contaminated biomass with respect to the volume of clay.
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adsorbent and moles of adsorbate in the multi-metal system of heavy metals for: (A) pine sawdust,
(B) sunflower seed hulls, (C) corn residues mix.

The macroscopic appearance of the clay ceramics is shown in Figure 12. All the
samples presented a reddish color due to the Fe content of the natural clay and a porous
surface according to the TGA and DTA results of the included lignocellulosic residues.
As can be seen in Figure 8, at the ceramic firing temperature (950 ◦C), the added biomass
burned out creating pores and releasing gases in the clay ceramics matrix.

Leaching tests based on EPA Method 1311 were performed to determine the possible
leaching levels of Ni(II), Zn(II) and Cd(II) from the clay ceramics prepared with the addition
of each of the spent adsorbents. Heavy metal concentrations were not detected in the
TCLP extracts of the ceramic matrices because they were below the detection limits of the
equipment used (Ni(II) < 0.05 mg/L, Zn(II) < 0.02 mg/L and Cd(II) < 0.05 mg/L, by AAS).
For this reason, they were lower than the permissible limits of Argentina (nickel 5 mg/L
and cadmium 1 mg/L, zinc not reported) [57].
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Table 3 shows the retention efficiency calculated for each one clay ceramics matrices.
It was calculated from the mass of each of the heavy metals added in the ceramic (included
in the spent adsorbent) and in the TCLP extract obtained for each tested ceramic. Based on
these results, with heavy metal retentions above 88.5% in all cases, we can propose such
clay ceramics prepared with added spent adsorbents with potential use in construction,
and useful for the stabilization and immobilization of heavy metals together with the
corresponding spent adsorbents. At firing temperatures in the followed leaching tests (EPA
Method 1311), the organic residues can burn out and the heavy metals would be able to
form stable phases with the clay minerals, which would decrease their bioavailability [58].

Table 3. Heavy metal retention efficiency for clay ceramics prepared from spent adsorbent with the
mixture of heavy metals.

Clay Ceramics
Retention Efficiency (%)

Ni(II) Zn(II) Cd(II)

Pine sawdust >88.5 >98.2 >97.1
Sunflower seed hulls >95.9 >99.1 >98.5

Corn residues mix >93.4 >98.7 >97.9

According to Mohajeran et al. [59], the particle size of the sample determines the
contact surface with the leaching solution and therefore influences the concentration of
heavy metals detected. This fact is important because in the leaching tests the clay ceramics
were used crushed, but in practice the clay bricks will be used whole, so the leaching may
be even lower, even there is still no legislation that imposes a test and limits on the leaching
of heavy metals in construction materials [60].

4. Conclusions

One of the challenges of these times is the minimization of waste generated by agro-
industrial activities and/or the reuse of this waste in applications that improve the quality
of life. In this sense, considering that there is still no universal process to remove heavy
metals from wastewater and effluents, adsorption from agroindustry residues is emerging
as a simple, low-cost and efficient alternative.

Agro-industrial residues such as pine sawdust, sunflower seed hulls and corn residues
mix, without any additional treatment, are characterized. These results are correlated with
the performance of these materials as adsorbents of heavy metals such as Ni(II), Zn(II) and
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Cd(II). In addition, SEM-EDS and XRF confirmed the presence of these heavy metals in the
residues after the adsorption process.

Batch adsorption experiments from aqueous mono-metal solutions of nickel, zinc
and cadmium ions, with concentrations of 0.18 mmol/L, with all three biomass residues
selected showed promising results, with adsorption percentages greater than 50%. Ni(II)
presented the lowest adsorption percentages and adsorption capacities compared to Zn(II)
and Cd(II), possibly due to the higher hydration energy that could hinder its accessibility to
the adsorbent. At this concentration, in a multi-metal solution, the decrease in adsorption
due to the competition of heavy metals for the limited adsorption sites of pine sawdust
determined that it is necessary to study multi-component systems to evaluate the actual
performance of the adsorption process in practice.

Sawdust, sunflower and corn residues could be used as an alternative to traditional
synthetic materials to remove heavy metals from wastewater given their properties, low
cost and availability. However, more research is needed for the scale-up and possible
commercial application of these agro-industrial residues as adsorbents of toxic metals from
industrial wastewater.

Furthermore, a solution to the safe disposal of such biomass adsorbents after the
adsorption process (containing heavy metals as pollutants) was proposed in this research
work. The stabilization of these spent adsorbents in clay ceramics with possible use in
construction is presented as an alternative for the immobilization of Ni(II), Zn(II), Cd(II)
and their mixture. The heavy metal leaching tests of the ceramic matrices prepared with
added spent adsorbents confirmed an effective immobilization for all heavy metals, whose
concentrations were found to be below the permissible limits. The clay ceramics showed
retention efficiencies over 88.5%.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14203298/s1, Figure S1: XRD patterns of pine sawdust, sunflower
seed hulls, and corn residues mix; Table S1: Main results of literature studies about the adsorption of
Ni(II), Zn(II) and Cd(II) on sawdust, sunflower and corn. References [44,52,61–67] are cited in the
“supplementary materials”.
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