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The ZpZp2 -additive codes are subgroups of Zα1
p × Zα2

p2 , and 
can be seen as linear codes over Zp when α2 = 0, Zp2 -
additive codes when α1 = 0, or Z2Z4-additive codes when 
p = 2. A ZpZp2 -linear generalized Hadamard (GH) code is a 
GH code over Zp which is the Gray map image of a ZpZp2 -
additive code. In this paper, we generalize some known results 
for ZpZp2 -linear GH codes with p = 2 to any p ≥ 3 prime 
when α1 �= 0. First, we give a recursive construction of ZpZp2 -
additive GH codes of type (α1, α2; t1, t2) with t1, t2 ≥ 1. We 
also present many different recursive constructions of ZpZp2 -
additive GH codes having the same type, and show that we 
obtain permutation equivalent codes after applying the Gray 
map. Finally, according to some computational results, we 
see that, unlike Z4-linear GH codes, when p ≥ 3 prime, the 
Zp2 -linear GH codes are not included in the family of ZpZp2 -
linear GH codes with α1 �= 0. Indeed, we observe that the 
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constructed codes are not equivalent to the Zps -linear GH 
codes for any s ≥ 2.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let Zp and Zp2 be the ring of integers modulo p and p2, respectively, where p is a 
prime. Let Zn

p and Zn
p2 denote the set of all n-tuples over Zp and Zp2 , respectively. In 

this paper, the elements of Zn
p and Zn

p2 will be called vectors of length n.
A code over Zp of length n is a nonempty subset of Zn

p , and it is linear if it is a 
subspace of Zn

p . Similarly, a nonempty subset of Zn
p2 is a Zp2-additive if it is a subgroup 

of Zn
p2 . A ZpZp2-additive code is a subgroup of Zα1

p × Zα2
p2 . Note that a ZpZp2-additive 

code is a linear code over Zp when α2 = 0, a Zp2-additive code when α1 = 0, or a 
Z2Z4-additive code when p = 2. The order of a vector u ∈ Zα1

p ×Zα2
p2 , denoted by o(u), 

is the smallest positive integer m such that mu = (0, . . . , 0 | 0, . . . , 0).
The Hamming weight of a vector u ∈ Zn

p , denoted by wtH(u), is the number of nonzero 
coordinates of u. The Hamming distance of two vectors u, v ∈ Zn

p , denoted by dH(u, v), 
is the number of coordinates in which they differ. Note that dH(u, v) = wtH(u − v). The 
minimum distance of a code C over Zp is d(C) = min{dH(u, v) : u, v ∈ C, u �= v}.

In [2], a Gray map from Z4 to Z2
2 is defined as φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1)

and φ(3) = (1, 0). There exist different generalizations of this Gray map, which go from 
Z2s to Z2s−1

2 [3–7]. The one given in [6] can be defined in terms of the elements of a 
Hadamard code [7], and Carlet’s Gray map [3] is a particular case of the one given in 
[7] satisfying 

∑
λiφ(2i) = φ(

∑
λi2i) [8]. In this paper, we focus on a generalization of 

Carlet’s Gray map from Zps to Zps−1

p , also denoted by φ, which is a particular case of 
the one given in [9]. Let Φ : Zα1

p × Zα2
p2 → Zn

p , where n = α1 + pα2, be an extension of 
the Gray map φ given by

Φ((y | y′)) = (y, φ(y′1), . . . , φ(y′α2
)),

for any y ∈ Zα1
p and y′ = (y′1, . . . , y′α2

) ∈ Zα2
p2 .

Let C ⊆ Zα1
p × Zα2

p2 be a ZpZp2-additive code. We say that its Gray map image 
C = Φ(C) is a ZpZp2-linear code of length α1 + pα2. Since C can be seen as a subgroup 
of Zα1+α2

p2 , it is isomorphic to an abelian structure Zt1
p2 × Zt2

p , and we say that C, or 
equivalently C = Φ(C), is of type (α1, α2; t1, t2). Note that |C| = p2t1+t2 . Unlike linear 
codes over finite fields, linear codes over rings do not have a basis, but there exist 
generator matrices for these codes having minimum number of rows, that is, t1+ t2 rows.

A generalized Hadamard (GH) matrix H(p, λ) = (hij) of order N = pλ over Zp is a 
pλ ×pλ matrix with entries from Zp with the property that for every i, j, 1 ≤ i < j ≤ pλ, 
each of the multisets {his−hjs : 1 ≤ s ≤ pλ} contains every element of Zp exactly λ times 
[10]. An ordinary Hadamard matrix of order 4μ corresponds to a GH matrix H(2, λ) over 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Z2, where λ = 2μ [11]. Two GH matrices H1 and H2 of order N are said to be equivalent 
if one can be obtained from the other by a permutation of the rows and columns and 
adding the same element of Zp to all the coordinates in a row or in a column.

We can always change the first row and column of a GH matrix into zeros and we 
obtain an equivalent GH matrix which is called normalized. From a normalized GH 
matrix H, we denote by FH the code consisting of the rows of H, and CH = ∪α∈Zp

(FH +
α1), where FH +α1 = {h +α1 : h ∈ FH} and 1 denotes the all-one vector. The code CH

over Zp is called generalized Hadamard (GH) code [12]. Note that CH is generally a non-
linear code over Zp. Moreover, if it is of length N , it has pN codewords and minimum 
distance N(p − 1)/p.

The ZpZp2-additive codes such that after applying the Gray map Φ give GH codes 
are called ZpZp2-additive GH codes and the corresponding images are called ZpZp2-
linear GH codes. The classification of Z2Z4-linear Hadamard codes of length 2t with 
α1 = 0 and α1 �= 0 is given in [13,14], showing that there are �(t − 1)/2	 and �t/2	 such 
non-equivalent codes, respectively. Moreover, in [15], it is shown that each Z2Z4-linear 
Hadamard code with α1 = 0 is equivalent to a Z2Z4-linear Hadamard code with α1 �= 0, 
so indeed there are only �t/2	 non-equivalent Z2Z4-linear Hadamard codes of length 2t. 
Later, in [8,16–18], an iterative construction for Zps-linear GH codes is described, the 
linearity is established, and a partial classification is obtained, giving the exact amount 
of non-equivalent non-linear such codes for some parameters.

This paper is focused on ZpZp2-linear GH codes of length pt with α1 �= 0 and p ≥ 3
prime, generalizing some results given for p = 2 in [14,19] related to the construction 
of such codes. For p = 3 and 2 ≤ t ≤ 8, these codes are compared with the ZpZp2-
linear GH codes of length pt with α1 = 0 studied in [16]. This paper is organized as 
follows. In Section 2, we recall some properties of the Gray map considered in this 
paper. In Section 3, we describe a recursive construction of ZpZp2-linear GH codes of 
type (α1, α2; t1, t2) with t1, t2 ≥ 1, α1 �= 0, and p prime. In Section 4, we present many 
different recursive constructions of ZpZp2-linear GH codes having the same type, and 
show that they give permutation equivalent codes. Finally, in Section 5, we show some 
computational results for p = 3, which point out that, unlike Z4-linear and Z2Z4-linear 
Hadamard codes, when p ≥ 3 prime, the Zp2-linear GH codes are not included in the 
family of ZpZp2-linear GH codes with α1 �= 0. Moreover, we observe that, for p = 3, the 
codes constructed in this paper are not equivalent to the Zps-linear GH codes with s ≥ 2
considered in [16] using the same Gray map.

2. Preliminary results

In this section, we give the definition of the Gray map considered in this paper for 
elements of Zp2 . We also include some of its properties used in the paper.

We consider the following Gray map φ, given in [3,20], for s = 2:
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φ : Zp2 −→ Zp
p

u �→ (u0, u1)M,
(1)

where u ∈ Zp2 ; [u0, u1]p is the p-ary expansion of u, that is, u = u0+u1p with u0, u1 ∈ Zp; 
and M is the following matrix of size 2 × p:

(
0 1 2 · · · p− 1
1 1 1 · · · 1

)
.

Let u′, v′ ∈ Zp2 and [u′
0, u

′
1]p, [v′0, v′1]p be the p-ary expansions of u′ and v′, respectively, 

i.e. u′ = u′
0 + u′

1p and v′ = v′0 + v′1p. We define the operation “�p” between elements u′

and v′ in Zp2 as u′ �p v
′ = ξ0 + ξ1p, where

ξi =
{

1 if u′
i + v′i ≥ p,

0 otherwise.

Note that the p-ary expansion of u′ �p v
′ is [ξ0, ξ1]p, where ξ0, ξ1 ∈ {0, 1}. For u, v ∈ Zp, 

we define u �p v = 1 if u + v ≥ p and 0 otherwise. We denote in the same way, “�p”, 
the component-wise operation. For u = (u | u′), v = (v | v′) ∈ Zα1

p × Zα2
p2 , we denote 

u �p v = (u �p v | u′ �p v
′). Note that p(u �p v) = (0 | p(u′ �p v

′)).
From [16], we have the following results:

Lemma 2.1. [16] Let u ∈ Zp2 and λ ∈ Zp. Then, φ(u + λp) = φ(u) + (λ, λ, . . . , λ).

Corollary 2.1. [16] Let λ, μ ∈ Zp. Then, φ(λμp) = λφ(μp) = λμφ(p).

Corollary 2.2. [16] Let u, v ∈ Zp2 . Then, φ(u) + φ(v) = φ(u + v − p(u �p v)).

Corollary 2.3. [16] Let u, v ∈ Zp2 . Then, φ(pu + v) = φ(pu) + φ(v).

Corollary 2.4. [16] For u, v ∈ Zp2 , φ(u + v) = φ(u) +φ(v) +(ξ0, ξ0, . . . , ξ0), where ξ0 = 1
if u0 + v0 ≥ p and 0 otherwise.

Proposition 2.1. [16] Let u, v ∈ Zp2 be two distinct elements. Then, φ(u) − φ(v) =
φ(u − v) = (λ, . . . , λ) if u − v = λp ∈ pZp2 , and φ(u) − φ(v) contains every element 
of Zp exactly once if u − v ∈ Zp2 \ pZp2 .

Proposition 2.2. [16] Let u, v ∈ Zp2 . Then, dH(φ(u), φ(v)) = wtH(φ(u − v)).

From [21], the homogeneous weight of an element u ∈ Zp2 is defined by

wt∗(u) =

⎧⎪⎨
⎪⎩

0 if u = 0,
p if u ∈ pZp2 \ {0},
p− 1 otherwise,

(2)
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and the homogeneous weight of a vector u = (u1, . . . , un) ∈ Zn
p2 is wt∗(u) =∑n

i=1 wt∗(ui). The corresponding homogeneous distance of u = (u1, . . . , un) and v =
(v1, . . . , vn) ∈ Zn

p2 is defined as follows:

d∗(u, v) =
n∑

i=1
wt∗(ui − vi). (3)

The Gray map Φ over Zn
p2 is an isometry which transforms homogeneous distances 

defined in Zn
p2 to Hamming distances defined in Znp

p [20].
Then, we define the homogeneous weight of u = (u | u′) ∈ Zα1

p × Zα2
p2 as wt∗(u) =

wtH(u) + wt∗(u′). From (3), the corresponding homogeneous distance of u = (u | u′)
and v = (v | v′) ∈ Zα1

p × Zα2
p2 is defined as follows:

d∗(u,v) = wtH(u− v) + wt∗(u′ − v′). (4)

Note that the extension of the Gray map Φ over Zα1
p ×Zα2

p2 is also an isometry by using 
this homogeneous metric, that is, d∗(u, v) = dH(Φ(u), Φ(v)) for all u, v ∈ Zα1

p × Zα2
p2 . 

Moreover, the ZpZp2-linear codes obtained from this Gray map Φ are distance invariant 
by Proposition 2.2.

3. Construction of ZpZp2-linear GH codes

The description of a generator matrix having minimum number of rows for Z2Z4-
additive GH codes with α1 �= 0, as long as an iterative construction of these matrices, is 
given in [14,19]. In this section, we generalize these results for ZpZp2-additive GH codes 
with α1 �= 0 and any p ≥ 3 prime. Specifically, we define an iterative construction for 
the generator matrices and establish that they generate ZpZp2-additive GH codes. The 
proof that the codes are GH is completely different from the binary case.

Let 0, 1, 2, . . . , p2 − 1 be the vectors having the elements 0, 1, 2, . . . , p2 − 1 repeated 
in each coordinate, respectively. Let

A1,1
p =

(
1 1 · · · 1 p p · · · p

0 1 · · · p− 1 1 2 · · · p− 1

)
. (5)

Any matrix At1,t2
p with t1 ≥ 1, t2 ≥ 2 or t1 ≥ 2, t2 ≥ 1 can be obtained by applying 

the following iterative construction. First, if A is a generator matrix of a ZpZp2-additive 
code, that is, a subgroup of Zα1

p × Zα2
p2 , then we denote by A1 the submatrix of A with 

the first α1 columns over Zp, and A2 the submatrix with the last α2 columns over Zp2 . 
We start with A1,1

p . Then, if we have a matrix A = At1,t2
p , we may construct the matrices

At1,t2+1
p =

(
A1 A1 · · · A1 A2 A2 · · · A2
0 1 · · · p − 1 p · 0 p · 1 · · · p · (p − 1)

)
(6)
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and

At1+1,t2
p =

(
A1 A1 · · · A1 pA1 · · · pA1 A2 A2 · · · A2
0 1 · · · p − 1 1 · · · p − 1 0 1 · · · p2 − 1

)
. (7)

Example 3.1. Let

A1,1
3 =

(
1 1 1 3 3
0 1 2 1 2

)

be the matrix described in (5) for p = 3. By using the constructions described in (6) and 
(7), we obtain A1,2

3 and A2,1
3 , respectively, as follows:

A1,2
3 =

(
1 1 1 1 1 1 1 1 1 3 3 3 3 3 3
0 1 2 0 1 2 0 1 2 1 2 1 2 1 2
0 0 0 1 1 1 2 2 2 0 0 3 3 6 6

)
,

A2,1
3 =

(
1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 · · · 3 3
0 1 2 0 1 2 0 1 2 0 3 6 0 3 6 1 2 · · · 1 2
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 · · · 8 8

)
.

In this paper, we consider that the matrices At1,t2
p are constructed recursively starting 

from A1,1
p in the following way. First, we add t1 − 1 rows of order p2, up to obtain At1,1

p ; 
and then we add t2 − 1 rows of order p up to achieve At1,t2

p . Note that in the first row 
there is always the row (1 | p).

The ZpZp2-additive code generated by At1,t2
p is denoted by Ht1,t2

p , and the correspond-
ing ZpZp2-linear code Φ(Ht1,t2

p ) by Ht1,t2
p . We also write At1,t2 , Ht1,t2 , and Ht1,t2 instead 

of At1,t2
p , Ht1,t2

p , and Ht1,t2
p , respectively, when the value of p is clear by the context.

Proposition 3.1. Let t1, t2 ≥ 1 and p prime. Then, Ht1,t2
p is a ZpZp2-additive code of 

type

(pt1+t2−1, (p− 1)
t1∑
i=1

pt1+t2+i−3; t1, t2). (8)

Proof. First, we prove this proposition for the code Ht1,1
p by induction on t1 ≥ 1. 

Note that, if t1 = 1, the code is of type (p, p − 1; 1, 1), which coincides with (8) since ∑t1
i=1 p

t1+t2+i−3 = 1 when t1 = t2 = 1. Assume that the type of Ht1,1
p is (α′

1, α
′
2; t1, 1), 

where α′
1 = pt1 and α′

2 = (p − 1) 
∑t1

i=1 p
t1+i−2. By using construction (7), Ht1+1,1

p is of 
type (α1, α2; t1 + 1, 1), where α1 = p ·α′

1 = p · pt1 = pt1+1 and α2 = (p − 1)α′
1 + p2 ·α′

2 =
(p − 1)pt1 + p2(p − 1) 

∑t1
i=1 p

t1+i−2 = (p − 1) 
∑t1

i=0 p
t1+i = (p − 1) 

∑t1+1
i=1 p(t1+1)+i−2. 

Therefore, for t1 ≥ 1, the type of the code Ht1,1
p is (pt1 , (p − 1) 

∑t1
i=1 p

t1+i−2; t1, 1).
Next, from the type of the code Ht1,1

p , we prove the proposition for the code Ht1,t2
p

by induction on t2 ≥ 1. Assume that the type of Ht1,t2
p is (α′

1, α
′
2; t1, t2), where α′

1 =
pt1+t2−1 and α′

2 = (p − 1) 
∑t1

i=1 p
t1+t2+i−3. By using construction (6), we have that 
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Ht1,t2+1
p is of type (α1, α2; t1, t2 + 1), where α1 = p ·α′

1 = p · pt1+t2−1 = pt1+(t2+1)−1 and 
α2 = p · α′

2 = p · (p − 1) 
∑t1

i=1 p
t1+t2+i−3 = (p − 1) 

∑t1
i=1 p

t1+(t2+1)+i−3. This completes 
the proof. �

When we include all the elements of Zp (resp. Zp2) as coordinates of a vector, we 
place them in increasing order. We denote by Np the set {0, 1, . . . , p − 1} ⊂ Zp2 and 
N−

p = Np \ {0}. As before, when including all the elements in those sets as coordinates 
of a vector, we place them in increasing order. For a set S ⊆ Zp2 and λ ∈ Zp2 , we 
define λS = {λj : j ∈ S}. For example, N3 = {0, 1, 2} ⊂ Z9, N−

3 = {1, 2} ⊂ Z9, 
2N−

3 = {2, 4}, 3Z9 = {0, 3, 6}, (Z3, Z3) = (0, 1, 2, 0, 1, 2) ∈ Z6
3 and (Z3 | Z9, 2N−

3 ) =
(0, 1, 2 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 4) ∈ Z3

3 × Z11
9 .

Lemma 3.1. Let λ ∈ N−
p and μ ∈ Zp2 . Then,

1. λZp2 + μ = Zp2 ,

2. λpZp2 + μ =
{

pZp2 if μ ∈ pZp2 ,
pZp2 + μ if μ ∈ Zp2 \ pZp2 ,

3. λ(pZp2 , p−1. . . , pZp2) + μ(1, . . . , p − 1) is a permutation of (Zp2 \ pZp2) if μ ∈ N−
p .

4. (μN−
p , p

2
. . ., μN−

p ) + λ(0, . . . , p2 − 1) is a permutation of (Zp2 , p−1. . . , Zp2).

Proof. Items 1 and 2 follow from the fact that Zp2 is a ring and pZp2 is a proper ideal 
of Zp2 .

For Item 3, first, we have that λpZp2 = pZp2 since λ ∈ N−
p . Then, note that all 

coordinates of v = (pZp2 , p−1. . . , pZp2) +μ(1, . . . , p − 1) are distinct elements of Zp2 \pZp2 . 
Since v is a vector of length p2−p and |Zp2\pZp2 | = p2−p, we have that v is a permutation 
of the vector (Zp2 \ pZp2).

For Item 4, let μN−
p = {a1, a2, . . . , ap−1} ⊂ Zp2 . By Item 1, we have that λZp2 = Zp2 . 

Then, (μN−
p , p

2
. . ., μN−

p ) + λ(0, . . . , p2 − 1) is a permutation of

(Zp2 , p−1. . . ,Zp2) + (a1,a2, . . . ,ap−1), (9)

where ai = (ai, p
2

. . ., ai) for all i ∈ {1, . . . , p − 1}. Again, since Zp2 + ai = Zp2 , (9) is a 
permutation of (Zp2 , p−1. . . , Zp2). �
Lemma 3.2. Let Ht1,1

p be the ZpZp2-additive code generated by the matrix At1,1
p with 

t1 ≥ 2 and p prime. Let v1, v2, . . . , vt1 be the row vectors of At1,1
p of order p2. Let 

v = (v | v′) ∈ Ht1,1
p such that v =

∑t1
i=1 λivi, where λi ∈ Np and at least one λi �= 0. 

Then, v′ contains every element of pZp2 the same number of times and one of the 
following conditions is satisfied:

1. There exist λ ∈ N−
p such that v′ contains every element of λN−

p the same number 
of times and every element of Zp2 \ (pZp2 ∪ λN−

p ) zero times.
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2. There exist λ ∈ N−
p such that v′ contains every element of λN−

p the same number 
of times and every element of Zp2 \ (pZp2 ∪ λN−

p ) the same number of times.
3. Every element of Zp2 \ pZp2 appears in v′ the same number of times.

Proof. We prove this lemma by induction on t1. Let v1 = (v1 | v′1) and v2 = (v2 | v′2)
be the row vectors of A2,1

p of order p2. We have that

(
v1
v2

)
=

(
Zp Zp · · · Zp pZp2 · · · pZp2 N−

p · · · N−
p

0 1 · · · p − 1 1 · · · p − 1 0 · · · p2 − 1

)
. (10)

Let v = (v | v′) ∈ H2,1
p such that v = λ1v1 + λ2v2, where λ1, λ2 ∈ Np and (λ1, λ2) �=

(0, 0). Thus, v′ = λ1v
′
1 + λ2v

′
2. If λ2 = 0, then v′ satisfies the first condition since 

λ1pZp2 = pZp2 by Lemma 3.1. If λ1 = 0, then v′ satisfies the second condition since 
λ2Zp2 = Zp2 by Lemma 3.1. If λ1 �= 0 and λ2 �= 0, then after applying a suitable 
permutation of coordinates, we can write v′ as

λ1(pZp2 , p−1. . . , pZp2 ,1, . . . ,p − 1) + λ2(1, . . . ,p − 1,Zp2 , p−1. . . ,Zp2). (11)

By Lemma 3.1, we have that λ1(pZp2 , p−1. . . , pZp2) + λ2(1, . . . , p − 1) is a permutation of 
the vector (Zp2 \ pZp2) and λ1(1, . . . , p − 1) + λ2(Zp2 , p−1. . . , Zp2) is a permutation of the 
vector (Zp2 , p−1. . . , Zp2). Therefore, v′ is a permutation of the vector (Zp2 \ pZp2 , Zp2 , p−1. . . ,

Zp2), so it satisfies the third condition. Hence, the statement is true for t1 = 2.
Assume that the lemma holds for the code Ht1,1

p with t1 ≥ 2. Now, we have to show 
that it is also true for Ht1+1,1

p . Let w1, . . . , wt1+1 be the row vectors of At1+1,1
p of order 

p2 such that wt1+1 = (0, . . . , p − 1 | 1, . . . , p − 1, 0, . . . , p2 − 1). Let w = (w | w′) =∑t1+1
i=1 λiwi, where λi ∈ Np and at least one λi �= 0. We have to show that w′ contains 

every element of pZp2 the same number of times and satisfies one of the three conditions.
Let {vi = (vi | v′i)}1≤i≤t1 be the set of all row vectors of At1,1

p of order p2. Let 
v = (v | v′) =

∑t1
i=1 λivi. By construction, note that v = 0 or v contains every element 

of Zp the same number of times. Indeed, v is a codeword of a simplex code of length 

pt1 over Zp. Therefore, v = 0 or v = (Zp, p
t1−1
. . . , Zp) up to a permutation of coordinates. 

On the one hand, if λi = 0 for all i ∈ {1, . . . , t1}, then λt1+1 �= 0. In this case, w′ =
λt1+1(1, . . . , p − 1, 0, . . . , p2 − 1) and it satisfies the second condition since λt1+1Zp2 =
Zp2 by Lemma 3.1.

On the other hand, if there exists i ∈ {1, . . . , t1} such that λi �= 0, then v = (Zp, p
t1−1
. . . ,

Zp). If we consider v over Zp2 , we have that v = (Np, p
t1−1
. . . , Np). In this case, up to a 

permutation of coordinates, we can write w′ as

(V, p−1. . . , V, v′, p2
. . ., v′) + λt1+1(1, . . . ,p − 1,0, . . . ,p2 − 1), (12)

where V = pv = (pZp2 , p
t1−1
. . . , pZp2) since pNp = pZp2 . If λt1+1 = 0, then w′ satisfies 

the same condition as v′. Finally, we consider the general case, when λt1+1 �= 0. Since v′
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satisfies one of the three conditions, there is a permutation of coordinates π and λ ∈ N−
p

such that

π(v′) = (pZp2 , m. . ., pZp2 , λN−
p , n. . ., λN−

p , Iλ, r. . ., Iλ),

where Iλ = (Zp2 \ (pZp2 ∪ λN−
p )), for some integers m, n, r ≥ 0. Note that r = 0 if v′

satisfies the first condition, and n = r if v′ satisfies the third condition. Thus, we can 
write (12) as

(V, p−1. . . , V, π(v′), p2
. . ., π(v′)) + λt1+1(1, . . . ,p − 1,0, . . . ,p2 − 1). (13)

First, by Lemma 3.1, we have that (pZp2 , p−1. . . , pZp2) + λt1+1(1, . . . , p − 1) is a per-
mutation of (Zp2 \ pZp2), so (V, p−1. . . , V ) + λt1+1(1, . . . , p − 1) is a permutation of 
(Zp2 \ pZp2 , p

t1−1
. . . , Zp2 \ pZp2). Next, by Lemma 3.1, we have that (pZp2 , p

2
. . ., pZp2) +

λt1+1(0, . . . , p2 − 1) is a permutation of

(pZp2 , p. . ., pZp2 ,Zp2 \ pZp2 , p. . .,Zp2 \ pZp2), (14)

and (λN−
p , p

2
. . ., λN−

p ) + λt1+1(0, . . . , p2 − 1) is a permutation of (Zp2 , p−1. . . , Zp2). Again 

by Lemma 3.1, (Iλ, p
2

. . ., Iλ) +λt1+1(0, . . . , p2 − 1) is a permutation of (Zp2 , p
2−2p+1. . . , Zp2)

since |Iλ| = p2 − 2p + 1. Therefore, (13) is a permutation of

(Zp2 \ pZp2 , k1. . .,Zp2 \ pZp2 , pZp2 , k2. . ., pZp2 ,Zp2 , k3. . .,Zp2)

for k1 = pt1 − 1 + mp, k2 = mp, and k3 = n(p − 1) + r(p2 − 2p + 1), so it satisfies the 
third condition. Note that the elements in pZp2 appear k2 + k3 times and the elements 
in Zp2 \ pZp2 appear k1 + k3 times. �
Example 3.2. Let v1 = (v1 | v′1) and v2 = (v2 | v′2) be the row vectors of A2,1

3 of order 9. 
We have that (

v1
v2

)
=

(
Z3 Z3 Z3 3Z9 3Z9 N−

3 · · · N−
3

0 1 2 1 2 0 . . . 8

)
.

Let v = (v | v′) ∈ H2,1
3 such that v = λ1v1 + λ2v2, where λ1, λ2 ∈ N3 = {0, 1, 2} and 

(λ1, λ2) �= (0, 0). Thus, v′ = λ1v
′
1 + λ2v

′
2. Now,

v′ ∈
⋃

λ1,λ2∈N3
(λ1,λ2) �=(0,0)

{λ1v
′
1 + λ2v

′
2}

= {v′1, 2v′1, v′2, 2v′2, v′1 + v′2, 2v′1 + v′2, v
′
1 + 2v′2, 2v′1 + 2v′2}

= {(0, 3, 6, 0, 3, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2),
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(0, 6, 3, 0, 6, 3, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4),

(1, 1, 1, 2, 2, 2, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8),

(2, 2, 2, 4, 4, 4, 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 1, 1, 3, 3, 5, 5, 7, 7),

(1, 4, 7, 2, 5, 8, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 0, 0, 1),

(1, 7, 4, 2, 8, 5, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 0, 8, 1, 0, 2, 1, 3),

(2, 5, 8, 4, 7, 1, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0),

(2, 8, 5, 4, 1, 7, 2, 4, 4, 6, 6, 8, 8, 1, 1, 3, 3, 5, 5, 7, 7, 0, 0, 2)}.

Note that v′1 and 2v′1 satisfy the first condition of Lemma 3.2, v′2 and 2v′2 satisfy the 
second condition, and the remaining vectors the third condition. Therefore, v′ satisfies 
Lemma 3.2.

Corollary 3.1. Let Ht1,t2
p be the ZpZp2-additive code generated by the matrix At1,t2

p with 
t1 ≥ 2, t2 ≥ 1, and p prime. Let u = (u | u′) ∈ Ht1,t2

p such that o(u) = p2. Then, u′

contains every element of pZp2 the same number of times and the remaining coordinates 
are from Zp2 \ pZp2 .

Proof. Let {vi}1≤i≤t1 be the set of row vectors of At1,t2
p of order p2. Since o(u) = p2, 

u can be expressed as u =
∑t1

i=1 λivi + w, where λi ∈ Np, at least one λi �= 0, and w
is a codeword of order at most p. If w = 0, then from Lemma 3.2 and construction (6), 
u′ holds the property. If w �= 0, then from Lemma 3.2, construction (6), and Item 2 of 
Lemma 3.1, u′ also holds the property. �
Lemma 3.3. Let Ht1,1

p be the ZpZp2-additive code of type (α1, α2; t1, 1) generated by the 
matrix At1,1

p with t1 ≥ 2 and p prime. Let v1, v2, . . . , vt1 be the row vectors of At1,1
p of 

order p2. Let v = (v | v′) ∈ Ht1,1
p such that v =

∑t1
i=1 λipvi, where λi ∈ Np and at least 

one λi �= 0. Then, v = (0, α1. . ., 0), and v′ contains every element of pZp2 \ {0} exactly 
α1/p + (pα2 − (p − 1)α1)/p2 times and (pα2 − (p − 1)α1)/p2 times the element 0.

Proof. We prove this lemma by induction on t1. Let v1 = (v1 | v′1) and v2 = (v2 | v′2)
be the row vectors of A2,1

p of order p2. Recall that A2,1
p is the matrix given in (10). Let 

v = (v | v′) ∈ H2,1
p such that v = λ1pv1+λ2pv2, where λ1, λ2 ∈ Np and (λ1, λ2) �= (0, 0). 

Thus, v = (0, p2
. . ., 0), and v′ = λ1pv

′
1 +λ2pv

′
2. If λ2 = 0, then the first p(p −1) coordinates 

of v′ are 0 and the remaining p2(p − 1) coordinates contain every element of pZp2 \ {0}
exactly p2 times. If λ1 = 0, then the first p(p −1) coordinates of v′ contain every element 
of pZp2 \ {0} exactly p times and the remaining p2(p − 1) coordinates contain every 
element of pZp2 exactly p(p − 1) times. Therefore, every element a ∈ pZp2 \ {0} appears 
p + p(p − 1) = p2 times in v′, and the element 0 appears p(p − 1) times. If λ1 �= 0 and 
λ2 �= 0, then after applying a suitable permutation of coordinates of v′, we can write v′

as
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λ1(0, V, p. . ., V ) + λ2(V,W, p. . .,W ),

where 0 is the all-zero vector of length (p − 1)p, V = p(1, . . . , p − 1) of length (p − 1)p, 
and W = (pZp2 , p−1. . . , pZp2). Therefore, by Lemma 3.1, we have that every a ∈ pZp2 \{0}
appears p + (p − 1)p = p2 times in v′, and the element 0 appears (p − 1)p times. Since 
α1 = p2 and α2 = (p − 1)(p + p2) by Proposition 3.1, the statement is true for t1 = 2.

Assume that the lemma holds for the code Ht1,1
p of type (α1, α2; t1, 1) with t1 ≥ 2. 

Now, we have to show that it is also true for Ht1+1,1
p . Note that the type of Ht1+1,1

p is 
(α′

1, α
′
2; t1 + 1, 1), where α′

1 = pα1 and α′
2 = (p − 1)α1 + p2α2. Let w1, . . . , wt1+1 be the 

row vectors of At1+1,1
p of order p2. Let w = (w | w′) =

∑t1+1
i=1 λipwi, where λi ∈ Np and 

at least one λi �= 0. Let {vi = (vi | v′i)}1≤i≤t1 be the set of all row vectors of At1,1
p of 

order p2. Let v = (v | v′) =
∑t1

i=1 λivi. We have that

w′ = (0, p−1. . . ,0, pv′, p2
. . ., pv′) + λt1+1p(1, . . . ,p − 1,0, . . . ,p2 − 1).

If λt1+1 = 0, there is at least one i ∈ {1, . . . , t1} such that λi �= 0, so v′ �= 0. By induction 
hypothesis, every a ∈ pZp2 \ {0} appears

p2(α1

p
+ pα2 − (p− 1)α1

p2 ) = α1 + pα2 = α′
1
p

+ pα′
2 − (p− 1)α′

1
p2

times in w′, and the element 0 appears

α1(p− 1) + p2(pα2 − (p− 1)α1

p2 ) = pα2 = pα′
2 − (p− 1)α′

1
p2

times. Now, assume that λt1+1 �= 0. Note that p(0, 1, . . . , p2 − 1) = (pZp2 , p. . ., pZp2). 
Then, by Lemma 3.1, we have that (pv′, p2

. . ., pv′) + λt1+1p(0, . . . , p2 − 1) contains every 
element of pZp2 exactly p2α2/p = pα2 times. Therefore, since every a ∈ pZp2 \ {0}
appears α1+pα2 times in w′, and the element 0 appears pα2 times, the result follows. �
Example 3.3. Let v1 = (v1 | v′1) and v2 = (v2 | v′2) be the row vectors of A2,1

3 of order 9, 
which are shown in Example 3.2. Let v = (v | v′) ∈ H2,1

3 such that v = λ13v1 + λ23v2, 
where λ1, λ2 ∈ N3 = {0, 1, 2} and (λ1, λ2) �= (0, 0). Thus, v′ = λ13v′1 + λ23v′2. Now,

v′ ∈
⋃

λ1,λ2∈N3
(λ1,λ2) �=(0,0)

{λ13v′1 + λ23v′2}

= {3v′1, 6v′1, 3v′2, 6v′2, 3v′1 + 3v′2, 6v′1 + 3v′2, 3v′1 + 6v′2, 6v′1 + 6v′2}

= {(0, 0, 0, 0, 0, 0, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6),

(0, 0, 0, 0, 0, 0, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3),

(3, 3, 3, 6, 6, 6, 0, 0, 3, 3, 6, 6, 0, 0, 3, 3, 6, 6, 0, 0, 3, 3, 6, 6),
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(6, 6, 6, 3, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3),

(3, 3, 3, 6, 6, 6, 3, 6, 6, 0, 0, 3, 3, 6, 6, 0, 0, 3, 3, 6, 6, 0, 0, 3),

(3, 3, 3, 6, 6, 6, 6, 3, 0, 6, 3, 0, 6, 3, 0, 6, 3, 0, 6, 3, 0, 6, 3, 0),

(6, 6, 6, 3, 3, 3, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, 0),

(6, 6, 6, 3, 3, 3, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6)}.

Note that, in any case, every element a ∈ 3Z9 \ {0} = {3, 6} appears 9 times in v′, and 
the element 0 appears 6 times.

Theorem 3.1. The ZpZp2-additive code H1,1
p generated by the matrix

A1,1
p =

(
1 1 · · · 1 p p · · · p

0 1 · · · p− 1 1 2 · · · p− 1

)

is a ZpZp2-additive GH code of type (p, p − 1; 1, 1).

Proof. Note that H1,1
p can be partitioned into p disjoint sets A0, A1, . . . , Ap−1, where 

A0 = {λ(0, 1, . . . , p − 1 | 1, 2, . . . , p − 1) : λ ∈ Zp2} and Ai = A0 + i(1 | p), 
i ∈ {1, . . . , p − 1}. Therefore, we can also partition Φ(H1,1

p ) into p disjoint sets 
Φ(A0), Φ(A1), . . . , Φ(Ap−1), where Φ(Ai) = Φ(A0) +i ·1, i ∈ {1, . . . , p −1}, by Lemma 2.1. 
Thus, it is enough to show that Φ(A0) is a GH matrix H(p, p). We take two distinct 
elements u, v ∈ A0. We have to show that Φ(u) − Φ(v) contains every element of Zp

exactly p times.
Let u = λ1(0, 1, . . . , p − 1 | 1, 2, . . . , p − 1) and v = λ2(0, 1, . . . , p − 1 | 1, 2, . . . , p − 1), 

where λ1 �= λ2 ∈ Zp2 . Then, u − v = (λ1 − λ2)(0, 1, . . . , p − 1 | 1, 2, . . . , p − 1) =
(x0, . . . , xp−1 | y1, . . . , yp−1). Now. we consider two cases. On the one hand, if λ1 − λ2 ∈
pZp2\{0}, then the first p coordinates of u − v are 0, and the last p −1 coordinates contain 
exactly all the elements of order p from Zp2 , that is, the elements μp for μ ∈ {1, . . . , p −1}. 
Since φ(μp) = (μ, μ, . . . , μ), Φ(u − v) contains every element of Zp exactly p times. 
Therefore, Φ(u) −Φ(v) contains every element of Zp exactly p times, by Proposition 2.1. 
On the other hand, if λ1 − λ2 ∈ Zp2 \ pZp2 , then yi ∈ Zp2 \ pZp2 , i ∈ {1, . . . , p − 1}. In 
the first p coordinates, Φ(u) −Φ(v) coincides with (λ1 − λ2)(0, 1, . . . , p − 1), so in these 
coordinates, it contains every element of Zp once. Since yi ∈ Zp2 \ pZp2 , Φ(u) − Φ(v)
contains every element of Zp exactly 1 + 1 · (p − 1) = p times, by Proposition 2.1. 
Therefore, in any case, Φ(A0) is a GH matrix H(p, p). �
Example 3.4. The Z3Z9-additive code H1,1

3 generated by the matrix A1,1
3 , given in 

Example 3.1, is a Z3Z9-additive GH code of type (3, 2; 1, 1). Indeed, we have that 
H1,1

3 = Φ(H1,1
3 ) = ∪λ∈Z3(Φ(A0) + λ1), where A0 = {λ(0, 1, 2 | 1, 2) : λ ∈ Z9}, and 

then Φ(A0) consists of all the rows of the GH matrix



D.K. Bhunia et al. / Finite Fields and Their Applications 83 (2022) 102093 13
H(3, 3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 2 1
0 2 1 0 2 1 1 2 0
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 1 0
0 2 1 1 0 2 0 1 2
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 0 2
0 2 1 2 1 0 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The Z3Z9-linear code H1,1
3 has length N = 9, pN = 3 · 9 = 27 codewords and minimum 

distance N(p − 1)/p = 9(3 − 1)/3 = 6.

Proposition 3.2. The ZpZp2-additive code Ht1,1
p generated by the matrix At1,1

p , with t1 ≥ 2
and p prime, is a ZpZp2-additive GH code.

Proof. Let Ht1,1
p be the ZpZp2-additive code of type (α1, α2; t1, 1) generated by At1,1

p . 
We can write that Ht1,1

p = ∪λ∈Zp
(A0 + λ · (1 | p)), where A0 is the set of all codewords 

of the code generated by At1,1
p after removing the row (1 | p). Let Ht1,1

p = Φ(Ht1,1
p ). 

By Lemma 2.1, Ht1,1
p = ∪λ∈Zp

(Φ(A0) + λ · 1). If we prove that Φ(A0) corresponds to 
the rows of a GH matrix H(p, α2 + α1/p), then the result follows. We take two distinct 
elements u, v ∈ A0. Now, we have to show that Φ(u) − Φ(v) contains every element of 
Zp exactly α2 + α1/p times.

We consider two cases depending on the order of u−v. First, let o(u−v) = p. Then, 
by Lemma 3.3, the number of 0 in Φ(u − v) is

α1 + p · pα2 − (p− 1)α1

p2 = α2 + α1

p
,

and the number of times an element a ∈ Zp \ {0} appears in Φ(u − v) is

p · (α1

p
+ pα2 − (p− 1)α1

p2 ) = α2 + α1

p
.

Thus, in this case, Φ(u−v) = Φ(u) −Φ(v) contains every element of Zp exactly α2+α1/p

times, by Proposition 2.1.
Second, let o(u − v) = p2. Let u − v = (z | z′). We have that z contains every 

element of Zp exactly α1/p times. Moreover, by Corollary 3.1, z′ contains every element 
of pZp2 exactly α times, α > 0, and the remaining α2 − pα coordinates of z′ are from 
Zp2 \ pZp2 . Therefore, by Proposition 2.1, Φ(u) − Φ(v) contains every element of Zp

exactly α1/p + pα + (α2 − pα) · 1 = α2 + α1/p times. �
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Proposition 3.3. Let Ht1,t2
p be a ZpZp2-additive GH code of type (α1, α2; t1, t2) with 

t1, t2 ≥ 1 and p prime. Then, with the above construction (6), Ht1,t2+1
p is a ZpZp2-

additive GH code of type (pα1, pα2; t1, t2 + 1).

Proof. We can write that Ht1,t2
p = ∪λ∈Zp

(A0 + λ · (1 | p)), where A0 is the set of all 
codewords of the code generated by At1,t2 after removing the row (1 | p). Let Ht1,t2

p =
Φ(Ht1,t2

p ). By Lemma 2.1, Ht1,t2
p = ∪λ∈Zp

(Φ(A0) + λ · 1). Since Ht1,t2
p is a ZpZp2-

additive GH code of type (α1, α2; t1, t2), then Φ(A0) corresponds to the rows of a GH 
matrix H(p, α2 + α1/p).

Let Ht1,t2+1
p = Φ(Ht1,t2+1

p ). By applying a suitable permutation on the coordinates 
of the elements of Ht1,t2+1

p , we can get an equivalent code Ht1,t2+1
∗ of length pα1 + p2α2

such that Ht1,t2+1
∗ = ∪μ∈Zp

(Φ(B0) +μ ·1), where Φ(B0) = {(Φ(A0), Φ(A0), . . . , Φ(A0)) +
λ · (0, 1, . . . , p − 1) : λ ∈ Zp}. Since Φ(A0) corresponds to the rows of a GH matrix 
H(p, α2 + α1/p), then Φ(B0) corresponds to the rows of a GH matrix H(p, α1 + pα2). 
Therefore, Ht1,t2+1

p is a ZpZp2-additive GH code of type (pα1, pα2; t1, t2 + 1). �
Theorem 3.2. The ZpZp2-additive code Ht1,t2

p generated by the matrix At1,t2
p , with t1, t2 ≥

1 and p prime, is a ZpZp2-additive GH code.

Proof. It follows from Theorem 3.1, and Propositions 3.2 and 3.3. �
Example 3.5. Let H1,2

3 be the Z3Z9-additive code generated by the matrix A1,2
3 given 

in Example 3.1. By Theorem 3.2, H1,2
3 = Φ(H1,2

3 ) is a Z3Z9-linear GH code of type 
(9, 6; 1, 2). Actually, we can write H1,2

3 = ∪λ∈Z3(FH + λ1), where FH consists of all the 
rows of a GH matrix H(3, 9). Also, note that H1,2

3 has length N = 27, pN = 3 · 27 = 81
codewords and minimum distance N(p − 1)/p = 27(3 − 1)/3 = 18.

Example 3.6. Let H2,1
3 be the Z3Z9-additive code generated by the matrix A2,1

3 given 
in Example 3.1. By Theorem 3.2, H2,1

3 = Φ(H2,1
3 ) is a Z3Z9-linear GH code of type 

(9, 24; 2, 1), which has length N = 81, pN = 3 · 81 = 243 codewords and minimum 
distance N(p − 1)/p = 81(3 − 1)/3 = 54.

Proposition 3.4. Let Ht1,t2
p be a ZpZp2-additive GH code of type (α1, α2; t1, t2) with 

t1, t2 ≥ 1 and p prime. Let Ht1,t2
p be the corresponding ZpZp2-linear GH code of length 

pt, with t ≥ 2. Then, α1 = pt−t1 , α2 = pt−1 − pt−t1−1 and t = 2t1 + t2 − 1.

Proof. Since Ht1,t2
p is a ZpZp2-linear GH code of length α1 + pα2 = pt, then |Ht1,t2

p | =
p · pt = pt+1. Note that |Ht1,t2

p | = |Ht1,t2
p | = p2t1+t2 , and hence t = 2t1 + t2 − 1. 

By Proposition 3.1, α1 = pt1+t2−1 = pt−t1 . Then, since α1 + pα2 = pt, α2 = pt−1 −
pt−t1−1. �
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Remark 3.1. Let H = Ht1,t2
p be a ZpZp2-additive GH code of type (α1, α2; t1, t2) with 

t1, t2 ≥ 1 and p prime. Let H = Φ(Ht1,t2
p ) be the corresponding ZpZp2-linear GH code 

of length α1 + pα2. Then, since H is a GH code, its minimum distance is

(p− 1)(α1 + pα2)
p

.

Let H1 be the punctured code of H by deleting the last α2 coordinates over Zp2 . Note 
that, by construction, H1 is a GH code over Zp of length α1 and minimum distance 
(p − 1)α1/p.

Remark 3.2. Since the length of the ZpZp2-linear GH code Φ(H1,1
p ) is p2, its minimum 

distance is (p − 1)p2/p = p(p − 1) by Remark 3.1.

Remark 3.3. The above constructions (6) and (7) give always ZpZp2-linear GH codes 
with α2 �= 0 since the starting matrix A1,1

p has α2 �= 0. If α2 = 0, the ZpZp2-linear GH 
codes coincide with the codes obtained from a Sylvester GH matrix, so they are always 
linear and of type (pt2−1, 0; 0, t2) [12]. Therefore, we only focus on the ones with α2 �= 0
to study whether they are linear or not.

4. Same type equivalent ZpZp2-linear GH codes

In this section, we see that if we consider other starting matrices, instead of the matrix 
A1,1

p given in (5), and apply the same recursive constructions (6) and (7), or (6) and a 
new construction more general than (7), we also obtain ZpZp2-additive GH codes with 
α1 �= 0. Indeed, the corresponding ZpZp2-linear GH codes, after applying the Gray map 
Φ, are permutation equivalent to the codes Φ(Ht1,t2

p ) of the same type constructed in 
Section 3.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}. A permutation 
π ∈ Sn acts linearly on vectors (c1, . . . , cn) ∈ Zn

p by permuting their coordinates as 
follows: π(c1, . . . , cn) = (cπ−1(1), . . . , cπ−1(n)). Given two permutations π1 ∈ Sn and 
π2 ∈ Sm, we define (π1|π2) ∈ Sn+m, where π1 acts on the coordinates {1, . . . , n} and π2

on {n + 1, . . . , n + m}.
Two codes C1 and C2 over Zp of length n are said to be monomially equivalent (or just 

equivalent) provided there is a monomial matrix M such that C2 = {cM : c ∈ C1}. Recall 
that a monomial matrix is a square matrix with exactly one nonzero entry in each row 
and column. They are said to be permutation equivalent if there is a permutation matrix 
P such that C2 = {cP : c ∈ C1}. Recall that a permutation matrix is a square matrix 
with exactly one 1 in each row and column and 0s elsewhere. A permutation matrix 
represents a permutation of coordinates, so we can also say that they are permutation 
equivalent if there is a permutation of coordinates π ∈ Sn such that C2 = {π(c) : c ∈ C1}.
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Remark 4.1. Let τ = (τ1 | τ2) ∈ Sα1+α2 . Then, there is a permutation τ ′ = (τ1 | τ ′2) ∈
Sα1+pα2 such that, for all u ∈ Zα1

p × Zα2
p2 ,

Φ(τ(u)) = τ ′(Φ(u)).

Example 4.1. Let p = 3 and α1 = α2 = 2. Let τ = (1, 2)(3, 4) ∈ S4. Then, 
τ ′ = (1, 2)(3, 6)(4, 7)(5, 8) ∈ S8. For u = (u1, u2 | u′

1, u
′
2) ∈ Z2

3 × Z2
9, τ(u) =

(u2, u1 | u′
2, u

′
1) and we have Φ(τ(u)) = (u2, u1, u′

2,1, u
′
2,2, u

′
2,3, u

′
1,1, u

′
1,2, u

′
1,3), where 

φ(u′
i) = (u′

i,1, u
′
i,2, u

′
i,3) for i ∈ {1, 2}. It is easy to see that Φ(τ(u)) = τ ′(Φ(u)).

Remark 4.2. Let ai = i + μip ∈ Zp2 , where i ∈ N−
p and μi ∈ Np. Since φ(ai) and φ(i)

contain every element of Zp exactly once by the definition of φ, there is a permutation 
πi ∈ Sp such that πi(φ(ai)) = φ(i) for all i ∈ {1, 2, . . . , p − 1}. Moreover, from this 
permutation πi, we can define a permutation σi ∈ Sp2 on the set of the elements of 
Zp2 such that σi(c) = b if and only if π−1

i (φ(c)) = φ(b). Then, πi(φ(b)) = φ(c) and 
πi(φ(σi(c))) = φ(c), or equivalently,

(πi | · · · | πi)(Φ(σi(w))) = Φ(w), (16)

where w = (0, 1, . . . , p2 − 1).

Example 4.2. Let p = 3. Recall that the Gray map from Z9 to Z3
3 is defined as

φ(0) = (0, 0, 0), φ(1) = (0, 1, 2), φ(2) = (0, 2, 1),

φ(3) = (1, 1, 1), φ(4) = (1, 2, 0), φ(5) = (1, 0, 2),

φ(6) = (2, 2, 2), φ(7) = (2, 0, 1), φ(8) = (2, 1, 0).

For a1 = 4 ∈ Z9, since φ(4) = (1, 2, 0) and φ(1) = (0, 1, 2), π1 = (1, 2, 3) ∈ S3. For 
a2 = 5 ∈ Z9, since φ(5) = (1, 0, 2) and φ(2) = (0, 2, 1), π2 = (1, 3, 2) ∈ S3. The 
permutation σ1 ∈ S9 satisfies (16), that is,

Φ(σ1(0, 1, 2, 3, 4, 5, 6, 7, 8)) = (π−1
1 | · · · | π−1

1 )(Φ(0, 1, 2, 3, 4, 5, 6, 7, 8)) =

(0, 0, 0, 1, 2, 0, 2, 1, 0, 1, 1, 1, 2, 0, 1, 0, 2, 1, 2, 2, 2, 0, 1, 2, 1, 0, 2) =

Φ(0, 4, 8, 3, 7, 2, 6, 1, 5).

Therefore, σ1(0, 1, 2, 3, 4, 5, 6, 7, 8) = (0, 4, 8, 3, 7, 2, 6, 1, 5), that is, σ1 = (2, 8, 5)
(3, 6, 9) ∈ S9. Similarly, σ2(0, 1, 2, 3, 4, 5, 6, 7, 8) = (0, 7, 5, 3, 1, 8, 6, 4, 2) and σ2 =
(2, 5, 8)(3, 9, 6) ∈ S9. Then, for i ∈ {1, 2}, we have that

(πi | · · · | πi)(Φ(σi(0, 1, 2, 3, 4, 5, 6, 7, 8))) = Φ(0, 1, 2, 3, 4, 5, 6, 7, 8).

Lemma 4.1. Let a, a′, b ∈ Zp2 , such that a ≡ a′ mod p. Then, p(a �p b) = p(a′ �p b).
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Proof. Let [a0, a1]p, [a′0, a′1]p, and [b0, b1]p be the p-ary expansions of a, a′, and b, respec-
tively. By definition, we have that a �p b = ξ0 + ξ1p and a′ �p b = ξ′0 + ξ′1p, where

ξi =
{

1 if ai + bi ≥ p,

0 otherwise
and ξ′i =

{
1 if a′i + bi ≥ p,

0 otherwise.

Since a ≡ a′ mod p, we have that a0 = a′0 and hence ξ0 = ξ′0. Therefore, p(a �p b) =
ξ0p = ξ′0p = p(a′ �p b). �
Corollary 4.1. Let a, b, ̄a, ̄b ∈ Zp2 , such that ā ≡ a mod p and b̄ ≡ b mod p. Then,

p(a�p b) = p(ā�p b̄).

Lemma 4.2. Let ai = i + μip ∈ Zp2 , where i ∈ N−
p and μi ∈ Np. Let πi ∈ Sp such 

that πi(φ(ai)) = φ(i). Let b, c ∈ Zp2 satisfying πi(φ(b)) = φ(c). Then, b ≡ c mod p and 
πi(φ(λb)) = φ(λc) for all λ ∈ Np.

Proof. First, we show that b ≡ c mod p. Let y = (0, 1, . . . , p −1) ∈ Zp
p. By the definition 

of φ, φ(ai) = iy + μi · 1. Thus, πi(φ(ai)) = i(πi(y)) + μi · 1. Since πi(φ(ai)) = φ(i), we 
have that

i(πi(y)) + μi · 1 = φ(i). (17)

Let b = j + μjp and c = k + μkp, where j, k, μj , μk ∈ Np. By the definition of φ, φ(b) =
jy+μj ·1 and φ(c) = ky+μk ·1. Thus, πi(φ(b)) = jπi(y) +μj ·1. Since πi(φ(b)) = φ(c), 
we have that jπi(y) + μj · 1 = ky + μk · 1. Then, ijπi(y) + iμj · 1 = iky + iμk · 1. By 
(17), we have that ji(πi(y)) + jμi · 1 = jφ(i) and then

jφ(i) − jμi · 1 + iμj · 1 = iky + iμk · 1. (18)

By the definition of φ, φ(i) = iy. Thus, from (18), we have that (j − k)iy + (iμj − jμi −
iμk) · 1 = 0, and therefore, j = k, that is, b ≡ c mod p.

Now, we prove that πi(φ(λb)) = φ(λc) for all λ ∈ Np, by induction on λ. For λ = 0, it 
is true trivially, and for λ = 1, it is true by the condition given in the statement. Assume 
that the lemma is true for λ ∈ N−

p . By Corollaries 2.1, 2.2, and 2.3, φ((λ + 1)b) =
φ(λb) + φ(b) + φ(p(λb �p b)). Then,

πi(φ((λ + 1)b)) = πi(φ(λb)) + πi(φ(b)) + πi(φ(p(λb�p b)))

= φ(λc) + φ(c) + πi(φ(p(λb�p b))), (19)

by induction hypothesis. By the definition of φ, πi(φ(p(λb �p b))) = φ(p(λb �p b)). Since 
b ≡ c mod p, we have that p(λb �p b) = p(λc �p c) by Corollary 4.1. Therefore, from 
(19), πi(φ((λ + 1)b)) = φ(λc) + φ(c) + φ(p(λc �p c))) = φ((λ + 1)c). This completes the 
proof. �
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Corollary 4.2. Let ai = i + μip ∈ Zp2 , where i ∈ N−
p and μi ∈ Np. Let πi ∈ Sp such that 

πi(φ(ai)) = φ(i). Then, πi(φ(λai)) = φ(λi) for all λ ∈ Np.

Proposition 4.1. Let a = (a1, . . . , ap−1) ∈ Zp−1
p2 such that {pa1, . . . , pap−1} = pZp2 \ {0}. 

Consider the matrix

A1,1
p,a =

(
1 1 · · · 1 p p · · · p

0 1 · · · p− 1 a1 a2 · · · ap−1

)
.

The code generated by A1,1
p,a, denoted by H1,1

p,a, is a ZpZp2-additive GH code of type 
(p, p − 1; 1, 1). Moreover, the corresponding ZpZp2-linear code is permutation equivalent 
to Φ(H1,1

p ).

Proof. First, note that there is a permutation σ̄ ∈ Sp−1 such that σ̄(a1, . . . , ap−1) =
(a′1, . . . , a′p−1), where (pa′1, . . . , pa′p−1) = (p, 2p, . . . , (p − 1)p). Thus, there is a permu-
tation σ = (Id | σ̄) ∈ S2p−1 such that σ(H1,1

p,a) = H1,1
p,a′ , where a′ = (a′1, . . . , a′p−1). By 

Remark 4.1, σ induces a permutation in the corresponding ZpZp2-linear code. There-
fore, we can assume that the coordinates of a = (a1, . . . , a2) are in such an order that 
(pa1, . . . , pap−1) = (p, 2p, . . . , (p − 1)p), that is, ai = i +μip, where i ∈ N−

p and μi ∈ Np.
For any i ∈ N−

p , by Remark 4.2, there is a permutation πi ∈ Sp such that πi(φ(ai)) =
φ(i). Let π1,1 = (Id | π1 | π2 | · · · | πp−1) ∈ Sp2 , where Id ∈ Sp is the identity 
permutation. Next, we show that π1,1(Φ(H1,1

p,a)) = Φ(H1,1
p ). Consider the matrices

A1,1
p,a =

(
v1
v2

)
=

(
1 p
Zp a

)
and A1,1

p =
(

u1
u2

)
=

(
1 p
Zp N−

p

)
.

Note that v1 = u1 and pv2 = pu2. If x ∈ H1,1
p,a, then x can be expressed as x = αv1+βv2, 

where α ∈ Np ⊂ Zp2 and β ∈ Zp2 . By Corollary 2.3, we have that Φ(x) = Φ(αv1) +
Φ(βv2) and also Φ(βv2) = Φ(λv2) + Φ(μpv2), where β = λ + μp and λ, μ ∈ Np. By 
Corollary 2.1, Φ(μpv2) = μΦ(pv2) and Φ(αv1) = αΦ(v1). Therefore, Φ(x) = Φ(λv2) +
μΦ(pv2) +αΦ(v1). Note that π1,1(Φ(pv2)) = Φ(pv2) and π1,1(Φ(v1)) = Φ(v1). Thus, in 
order to show that π1,1(Φ(H1,1

p,a)) = Φ(H1,1
p ), we only need to check that π1,1(Φ(λv2)) =

Φ(λu2). Since π1,1 is the identity in the first p coordinates, we just need to prove that 
πi(φ(λai)) = φ(λi) for all i ∈ N−

p and λ ∈ Np, which is true by Corollary 4.2. �
Example 4.3. Let p = 3. Let S = {(a1, a2) : (3a1, 3a2) = (3, 6) = 3Z9 \ {0}}. Note that 
S = {(1, 2), (1, 5), (1, 8), (4, 2), (4, 5), (4, 8), (7, 2), (7, 5), (7, 8)} and it can also be written 
as {(1 +3x, 2 +3y) ∈ Z2

9 : x, y ∈ N3}. Therefore, in this case, we can consider 9 different 
starting matrices

A1,1
3,a =

(
1 1 1 3 3
0 1 2 a1 a2

)
,
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where a = (a1, a2) ∈ S. By Proposition 4.1, these matrices generate 9 different Z3Z9-
additive codes H1,1

3,a of type (3, 2; 1, 1) whose corresponding Z3Z9-linear codes, Φ(H1,1
3,a), 

are permutation equivalent to each other. Note that if a = (1, 2), we obtain the matrix 
A1,1

3 given in Example 3.1. Moreover, it is clear that if we permute the coordinates of a, 
we also obtain Z3Z9-linear codes which are permutation equivalent to the previous ones.

Example 4.4. Let p = 2. Consider a = (a1) ∈ Z4. We have that the possible values for 
a1 such that {2a1} = {2} are 1 and 3. If a1 = 1, then the matrix A1,1

2,a = A1,1
2 . In the 

case that a1 = 3, then A1,1
2,a is the matrix A1,1

2 after multiplying by 3 the last row, so 
H1,1

2,a = H1,1
2 .

Theorem 4.1. Let a = (a1, . . . , ap−1) ∈ Zp−1
p2 such that {pa1, . . . , pap−1} = pZp2 \ {0}. 

Let At1,t2
p,a be the matrix obtained by using constructions (6) and (7), starting with the 

following matrix

A1,1
p,a =

(
1 1 · · · 1 p p · · · p

0 1 · · · p− 1 a1 a2 · · · ap−1

)
, (20)

instead of A1,1
p . Then, the codes generated by At1,t2

p,a , denoted by Ht1,t2
p,a , are ZpZp2-additive 

GH codes of type (α1, α2; t1, t2) with α1 �= 0. Moreover, the corresponding ZpZp2-linear 
codes are permutation equivalent to Φ(Ht1,t2

p ).

Proof. As in the proof of Proposition 4.1, we can assume that the coordinates of a =
(a1, . . . , ap−1) are in such an order that (pa1, . . . , pap−1) = (p, 2p, . . . , (p −1)p). Therefore, 
ai = i + μip, where i ∈ N−

p and μi ∈ Np. For each i ∈ N−
p , by Remark 4.2, there is a 

permutation πi ∈ Sp such that πi(φ(ai)) = φ(i) and σi ∈ Sp2 on the set of the elements 
of Zp2 such that σi(c) = b if and only if π−1

i (φ(c)) = φ(b). Again, by Remark 4.2, we 
also have (16), that is, (πi | · · · | πi)(Φ(σi(w))) = Φ(w), where w = (0, 1, . . . , p2 − 1).

Let At1,t2
p,a = (A1 | A′

2) be the matrix A1,1
p,a if t1 = t2 = 1, or the matrix obtained by 

applying (6) and (7) recursively from A1,1
p,a if t1 > 1 or t2 > 1. Let At1,t2

p = (A1 | A2) be 
the matrix defined in Section 3. By construction, the second row of At1,t2

p,a contains the 
block of coordinates a1, . . . , ap−1 repeated pt2−1(p2)t1−1 = p2t1+t2−3 times. For the 
-th 
block of coordinates a1, . . . , ap−1, where 
 ∈ {1, . . . p2t1+t2−3}, define I� as the coordinate 
positions corresponding to Φ(a1, . . . , ap−1) within the Gray map image of this second 
row. Let πt1,t2 ∈ Sα1+pα2 be the permutation such that it coincides with (π1 | · · · | πp−1)
when it is restricted to the coordinates I�, for all 
 ∈ {1, . . . , p2t1+t2−3}, and it is the 
identity elsewhere. Note that π1,1 = (Id | π1 | · · · | πp−1) ∈ Sp2 , where Id ∈ Sp.

Now, we consider the matrix Āt1,t2
p,a = (A1 | Ā2) constructed with the following re-

cursive construction. We start with the matrix Ā1,1
p,a = A1,1

p,a and if Āt1,t2
p,a = (A1 | Ā2), 

then

Āt1,t2+1
p,a =

(
A1 A1 · · · A1 Ā2 Ā2 · · · Ā2
0 1 · · · p − 1 p · 0 p · 1 · · · p · (p − 1)

)
(21)
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and

Āt1+1,t2
p,a = σt1+1,t2

(
A1 · · · A1 pA1 · · · pA1 Ā2 · · · Ā2
0 · · · p − 1 1 · · · p − 1 0 · · · p2 − 1

)
, (22)

where σt1+1,t2 permutes the columns as follows. Let B be the matrix Āt1+1,t2
p,a before 

applying σt1+1,t2 . For each block of coordinates a1, . . . , ap−1 in the second row of B and 
the corresponding coordinates of the last row of B, we consider the following submatrix 
of B:

(
a1 · · · ap−1 a1 · · · ap−1 · · · a1 · · · ap−1
0 · · · 0 1 · · · 1 · · · p2 − 1 · · · p2 − 1

)
. (23)

Note that there are pt2−1(p2)t1−1 = p2t1+t2−3 such submatrices, named S1, . . . ,
Sp2t1+t2−3 . Then, σt1+1,t2 is the permutation such that it coincides with σi when it 
is restricted to the p2 columns corresponding to the columns having ai in the first row 
of the submatrix S� for all i ∈ N−

p and 
 ∈ {1, . . . , p2t1+t2−3}, and it is the identity 
elsewhere. By (16) and the definition of πt1+1,t2 , we have that

πt1+1,t2(Φ(σt1+1,t2(0,1, . . . ,p − 1 | 1, . . . ,p − 1,0,1, . . . ,p2 − 1)) =

(0,1, . . . ,p − 1 | 1, · · · ,p − 1,0,1, . . . ,p2 − 1). (24)

Let H̄t1,t2
p,a be the code generated by Āt1,t2

p,a . Since H̄t1,t2
p,a is permutation equivalent to 

Ht1,t2
p,a , we also have that Φ(H̄t1,t2

p,a ) is permutation equivalent to Φ(Ht1,t2
p,a ) by Remark 4.1. 

Therefore, to prove the statement, we just need to show that Φ(H̄t1,t2
p,a ) is permutation 

equivalent to Φ(Ht1,t2
p ). We proceed by induction. Let vj = (vj | v′j) be the j-th row of 

Āt1,t2
p,a = (A1 | Ā2) and uj = (uj | u′

j) be the j-th row of At1,t2
p , j ∈ {1, . . . , t1 + t2}.

First, assume t1 = t2 = 1. Note that v′2 contains the coordinates a1, . . . , ap−1 exactly 
once and, we recall that π1,1 = (Id | π̄1,1) ∈ Sp2 , where Id ∈ Sp and π̄1,1 = (π1 | · · · |
πp−1). By the proof of Proposition 4.1, π1,1(Φ(λ1v1 + λ2v2)) = Φ(λ1u1 + λ2u2) for all 
λ1, λ2 ∈ Zp2 , so π1,1(Φ(H1,1

p,a)) = π1,1(Φ(H̄1,1
p,a)) = Φ(H1,1

p ), and π̄1,1(Φ(λ1v
′
1 + λ2v

′
2)) =

Φ(λ1u
′
1 + λ2u

′
2).

Now, assume that the permutation πt1,t2 = (Id | π̄t1,t2), where Id ∈ Sα1 , satisfies

πt1,t2(Φ(
t1+t2∑
j=1

λjvj)) = Φ(
t1+t2∑
j=1

λjuj)

for all λj ∈ Zp2 , so πt1,t2(Φ(H̄t1,t2
p,a )) = Φ(Ht1,t2

p ) and in particular
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π̄t1,t2(Φ(
t1+t2∑
j=1

λjv
′
j)) = Φ(

t1+t2∑
j=1

λju
′
j). (25)

Note that πt1,t2 is defined from the second row of At1,t2
p,a , which coincides with the second 

row of Āt1,t2
p,a by construction.

First, consider the code H̄t1,t2+1
p,a generated by Āt1,t2+1

p,a given in (21) and Ht1,t2+1
p

generated by (6). Note that, for j ∈ {1, . . . , t1 + t2}, the j-th row of Āt1,t2+1
p,a and At1,t2+1

p

are (vj , . . . , vj | v′j , . . . , v′j) and (uj , . . . , uj | u′
j , . . . , u

′
j), respectively, where vj = uj . By 

the construction of Āt1,t2+1
p,a , we have that πt1,t2+1 = (Id | π̄t1,t2+1), where Id ∈ Spα1

and π̄t1,t2+1 = (π̄t1,t2 | · · · | π̄t1,t2) ∈ Sp2α2 . Moreover, since the first pα1 coordinates are 
exactly the same in both codes Φ(H̄t1,t2+1

p,a ) and Φ(Ht1,t2+1
p ), and πt1,t2+1 is the identity 

in these coordinates, we can focus on the last ones. Let v = (v | v′) ∈ H̄t1,t2+1
p,a . We 

have that v′ =
∑t1+t2

j=1 λj(v′j , . . . , v′j) + λw, where w = (p · 0, p · 1, . . . , p · (p − 1)). Then, 
Φ(v′) = Φ(

∑t1+t2
j=1 λj(v′j , . . . , v′j)) + Φ(λw) by Corollary 2.3. Applying (25) and since 

π̄t1,t2+1(Φ(λw)) = Φ(λw), we have that

π̄t1,t2+1(Φ(v′)) =π̄t1,t2+1(Φ(
t1+t2∑
j=1

λj(v′j , · · · , v′j))) + π̄t1,t2+1(Φ(λw))

=Φ(
t1+t2∑
j=1

λj(u′
j , . . . , u

′
j)) + Φ(λw).

Applying again Corollary 2.3, we have that Φ(H̄t1,t2+1
p,a ) and Φ(Ht1,t2+1

p ) are permutation 
equivalent by using the permutation πt1,t2+1.

Second, consider the code H̄t1+1,t2
p,a generated by Āt1+1,t2

p,a given in (22), and 
Ht1+1,t2

p generated by (7). We have that, for j ∈ {1, . . . , t1 + t2}, the j-th row 
of Āt1+1,t2

p,a and At1+1,t2
p are (vj , . . . , vj | pvj , . . . , pvj , v′j , . . . , v

′
j) and (uj , . . . , uj |

puj , . . . , puj , u′
j , . . . , u

′
j), respectively, where vj = uj . Moreover, the (t1 + 1 + t2)-th row 

of Āt1+1,t2
p,a and At1+1,t2

p are σt1+1,t2(0, 1, . . . , p − 1 | 1, . . . , p − 1, 0, 1, . . . , p2 − 1) and 
(0, 1, . . . , p − 1 | 1, . . . , p − 1, 0, 1, . . . , p2 − 1), respectively. The first pα1 +(p − 1)α1 =
(2p − 1)α1 coordinates are exactly the same in both codes H̄t1+1,t2

p,a and Ht1+1,t2
p , 

and hence the first pα1 + p(p − 1)α1 = p2α1 coordinates are also the same in both 
codes Φ(H̄t1+1,t2

p,a ) and Φ(Ht1+1,t2
p ). By the definition of π̄t1,t2 and σt1,t2 , we have that 

πt1+1,t2 = (Id | π̄t1+1,t2), where Id ∈ Sp2α1 and π̄t1+1,t2 = (π̄t1,t2 | · · · | π̄t1,t2), and 
σt1+1,t2 = (Id | σ̄), where Id ∈ S(2p−1)α1 . Therefore, we can focus on the last coordi-
nates, that is, we consider

t1+t2∑
j=1

λj(v′j , . . . , v′j) + λσ̄(w), (26)

where w = (0, 1, . . . , p2 − 1). From (26), by Corollaries 2.2 and 2.3, we have that
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Φ(
t1+t2∑
j=1

λj(v′j , . . . , v′j) + λσ̄(w))

= Φ(
t1+t2∑
j=1

λj(v′j , . . . , v′j)) + Φ(λσ̄(w)) + Φ(p((
t1+t2∑
j=1

λj(v′j , . . . , v′j)) �p λσ̄(w))).

(27)

Applying (25), π̄t1+1,t2(Φ(
∑t1+t2

j=1 λj(v′j , . . . , v′j))) = Φ(
∑t1+t2

j=1 λj(u′
j , . . . , u

′
j)) and, from 

(24) and Lemma 4.2,

π̄t1+1,t2(Φ(λσ̄(w))) = Φ(λw). (28)

By Lemma 4.2, note that σ̄(w) ≡ w mod p. Moreover, v′j ≡ u′
j mod p for all j ∈

{1, . . . , t1 + t2} by construction. Thus, we also have that

π̄t1+1,t2(Φ(p((
t1+t2∑
j=1

λj(v′j , . . . , v′j)) �p λσ̄(w)))

= Φ(p((
t1+t2∑
j=1

λj(u′
j , . . . , u

′
j)) �p λw)), (29)

by Corollary 4.1 and because π̄t1+1,t2 fixes the Gray map image of elements of order p
by construction. Therefore, from the previous equations, we have that

π̄t1+1,t2(Φ(
t1+t2∑
j=1

λj(v′j , . . . , v′j) + λσ̄(w)))

= Φ(
t1+t2∑
j=1

λj(u′
j , . . . , u

′
j)) + Φ(λw) + Φ(p((

t1+t2∑
j=1

λj(u′
j , . . . , u

′
j)) �p λw))

= Φ(
t1+t2∑
j=1

λj(u′
j , . . . , u

′
j) + λw),

by Corollary 2.3. Therefore, the codes Φ(H̄t1+1,t2
p,a ) and Φ(Ht1+1,t2

p ) are permutation 
equivalent by using the permutation πt1+1,t2 , and the result follows. �
Theorem 4.2. Let a = (a1, . . . , ap−1), b = (b1, . . . , bp−1) ∈ Zp−1

p2 such that {pa1, . . . ,
pap−1} = {pb1, . . . , pbp−1} = pZp2 \ {0}. Let At1,t2

p,a be the matrix obtained by using 
constructions (6) and (7), starting with the matrix A1,1

p,a given in (20). From At1,t2
p,a =

(A1 | A2), we apply the following construction

At1+1,t2
p,a,b =

(
A1 · · · A1 pA1 · · · pA1 A2 · · · A2
0 · · · p − 1 b1 · · · bp−1 0 · · · p2 − 1

)
. (30)
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Then, the codes generated by At1+1,t2
p,a,b , denoted by Ht1+1,t2

p,a,b , are ZpZp2-additive GH codes 
of type (α1, α2; t1 + 1, t2) with α1 �= 0. Moreover, the corresponding ZpZp2-linear codes 
Φ(Ht1+1,t2

p,a,b ) are permutation equivalent to Φ(Ht1+1,t2
p ).

Proof. Let At1+1,t2
p,a be the matrix obtained from At1,t2

p,a by using construction (7). Let 
Ht1+1,t2

p,a be the ZpZp2-additive GH code generated by At1+1,t2
p,a . By Theorem 4.1, we just 

need to show that Φ(Ht1+1,t2
p,a,b ) is permutation equivalent to Φ(Ht1+1,t2

p,a ).
As in the proof of Proposition 4.1 and Theorem 4.1, we can assume that the coordi-

nates of b = (b1, . . . , bp−1) are in such an order that (pb1, . . . , pbp−1) = (p, 2p, . . . , (p −
1)p). Therefore, bi = i + μip, where i ∈ N−

p and μi ∈ Np. Then, by using the same 
argument as in the proof of Theorem 4.1, we have that the ZpZp2-linear code obtained 
from At1+1,t2

p,a,b is permutation equivalent to Φ(Ht1,+1,t2
p,a ). �

Example 4.5. Let p = 2. As in Example 4.4, we have that the possible values for b1 such 
that {2b1} = {2} are 1 and 3. If b1 = 1, then At1+1,t2

2,a,b = At1+1,t2
2,a . Otherwise, if b1 = 3, 

then At1+1,t2
2,a,b is the matrix At1+1,t2

2,a after changing the sign of the columns where b1
appears in the last row of At1+1,t2

2,a,b . In this last case, the Z2Z4-additive codes Ht1+1,t2
2,a,b

and Ht1+1,t2
2,a are monomially equivalent [22], hence their corresponding Z2Z4-linear codes 

are permutation equivalent.

By following the same arguments as in the proofs of Theorems 4.1 and 4.2, we can 
construct ZpZp2-linear codes that are permutation equivalent to Φ(Ht1,t2

p ), by starting 
from A1,1

p,a, a = (a1, . . . , ap−1) ∈ Zp−1
p2 satisfying {pa1, . . . , pap−1} = pZp2 \ {0}, and by 

using constructions (6) and (30) recursively. Moreover, each time the construction (30)
is applied, the vector b can be different as long as it satisfies that {pb1, . . . , pbp−1} =
pZp2 \ {0} as shown in the following corollary.

Corollary 4.3. Let a = (a1, . . . , ap−1) ∈ Zp−1
p2 such that {pa1, . . . , pap−1} = pZp2 \ {0}. 

Let L = [b1, . . . , bt1−1] such that bi = (bi,1, . . . , bi,p−1) ∈ Zp−1
p2 and {pbi,1, . . . , pbi,p−1} =

pZp2 \ {0} for all i ∈ {1, . . . , t1 − 1}. Let At1,t2
p,a,L be the matrix obtained by using (6) and

(30), starting with A1,1
p,a given in (20) and using bi in (30) to construct Ai+1,j

p,a,L from Ai,j
p,a,L

for i ∈ {1, . . . , t1 − 1}, j ∈ {1, . . . , t2}. Then, the codes generated by At1,t2
p,a,L, denoted by 

Ht1,t2
p,a,L, are ZpZp2-additive GH codes of type (α1, α2; t1, t2) with α1 �= 0. Moreover, the 

corresponding ZpZp2-linear codes Φ(Ht1,t2
p,a,L) are permutation equivalent to Φ(Ht1,t2

p ).

Note that if a = (1, 2, . . . , p − 1), then Ht1,t2
p,a = Ht1,t2

p for all t1, t2 ≥ 1. If 
b = (1, 2, . . . , p − 1), since matrix (30) coincides with matrix (7), then Ht1,t2

p,a,b = Ht1,t2
p,a . 

Similarly, if L = [b, . . . , b], where b = (1, 2, . . . , p − 1), then Ht1,t2
p,a,L = Ht1,t2

p,a .

Example 4.6. Let S be the set given in Example 4.3. By Theorem 4.2, from each one of 
the possible starting matrices A1,1

3,a, described in Example 4.3, we can construct different 
Z3Z9-linear GH codes of type (α1, α2; 2, 1), which are all permutation equivalent to each 
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other. Specifically, for any a = (a1, a2) ∈ S and b1 = (b1,1, b1,2) ∈ S, the Z3Z9-linear 
codes corresponding to the Z3Z9-additive codes generated by

A2,1
3,a,b1 =

⎛
⎜⎝ 111 111 111 333 333 3 3 · · · 3 3

012 012 012 036 036 a1a2 · · · a1a2
000 111 222 b1,1 b1,2 0 0 · · · 8 8

⎞
⎟⎠ , (31)

where b1,1 = (b1,1, b1,1, b1,1) and b1,2 = (b1,2, b1,2, b1,2), are all permutation equivalent to 
each other. Similarly, by Corollary 4.3, for any a, b1, b2 ∈ S, b2 = (b2,1, b2,2), L = [b1, b2]
and A2,1

3,a,b1 = (A1 | A2) as in (31), the Z3Z9-linear GH codes obtained from the following 
matrix

A3,1
3,a,L =

(
A1 A1 A1 3A1 3A1 A2 A2 · · · A2
0 1 2 b2,1 b2,2 0 1 · · · 8

)
,

where b2,1 = (b2,1, . . . , b2,1), b2,2 = (b2,2, . . . , b2,2) ∈ Z9
9, are all permutation equivalent 

to each other.

Remark 4.3. Let t1, t2 ≥ 1, a ∈ Zp−1
p2 and L = [b1, . . . , bt1−1], where bi ∈ Zp−1

p2 for all 
i ∈ {1, . . . , t1−1}. From Theorem 4.1 and Corollary 4.3, we have that if a and bi ∈ Zp−1

p2

satisfy the condition given in these results for all i ∈ {1, . . . , t1−1}, then the ZpZp2-linear 
codes obtained from matrices At1,t2

p,a and At1,t2
p,a,L are GH codes, and they are permutation 

equivalent to the codes obtained from At1,t2
p . It is easy to prove that if a or bi, for some 

i ∈ {1, . . . , t1 − 1}, do not satisfy that property, then the ZpZp2-linear codes obtained 
from At1,t2

p,a and At1,t2
p,a,L are not GH codes. Indeed, Φ(u) − Φ(0) would not contain every 

element of Zp the same number of times, if u was a multiple of the row containing a or 
bi.

5. Conclusions and further research

In this paper, we have seen that there are many different ways to construct ZpZp2-
linear GH codes of type (α1, α2; t1, t2) with t1, t2 ≥ 1, α1 �= 0, and p prime. However, 
we have proved that for all of them we obtain permutation equivalent codes. Thus, to 
study these codes, we can always focus on the construction given in Section 3. This 
construction generalizes the known recursive construction of Z2Z4-additive Hadamard 
codes with α1 �= 0 given in [19].

Two structural properties of codes over Zp are the rank and dimension of the kernel. 
The rank of a code C over Zp is simply the dimension of the linear span, 〈C〉, of C. 
The kernel of a code C over Zp is defined as K(C) = {x ∈ Zn

p : x + C = C} [23,24]. If 
the all-zero vector belongs to C, then K(C) is a linear subcode of C. Note also that if 
C is linear, then K(C) = C = 〈C〉. We denote the rank of C as r and the dimension of 
the kernel as k. The parameters (r, k) can be used to distinguish between non-equivalent 
codes, since equivalent ones have the same value of rank and dimension of the kernel.
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Table 1
Type and parameters (r, k) of Z9-linear and Z3Z9-linear GH 
codes.

p t Z9-linear GH codes Z3Z9-linear GH codes
(0, α2; t1, t2) (r, k) (α1, α2; t1, t2) (r, k)

3 2 (0, 3; 1, 1) (3, 3) (9, 0; 0, 3) (3, 3)
(3, 2; 1, 1) (4, 2)

3 (0, 9; 1, 2) (4, 4) (27, 0; 0, 4) (4, 4)
(0, 9; 2, 0) (5, 2) (9, 6; 1, 2) (5, 3)

4 (0, 27; 1, 3) (5, 5) (81, 0; 0, 5) (5, 5)
(0, 27; 2, 1) (6, 3) (27, 18; 1, 3) (6, 4)

(9, 24; 2, 1) (10, 3)

5 (0, 81; 1, 4) (6, 6) (243, 0; 0, 6) (6, 6)
(0, 81; 2, 2) (7, 4) (81, 54; 1, 4) (7, 5)
(0, 81; 3, 0) (11, 3) (27, 72; 2, 2) (11, 4)

6 (0, 243; 1, 5) (7, 7) (729, 0; 0, 7) (7, 7)
(0, 243; 2, 3) (8, 5) (243, 162; 1, 5) (8, 6)
(0, 243; 3, 1) (12, 4) (81, 216; 2, 3) (12, 5)

(27, 234; 3, 1) (20, 4)

7 (0, 729; 1, 6) (8, 8) (2187, 0; 0, 8) (8, 8)
(0, 729; 2, 4) (9, 6) (729, 486; 1, 6) (9, 7)
(0, 729; 3, 2) (13, 5) (243, 648; 2, 4) (13, 6)
(0, 729; 4, 0) (21, 4) (81, 702; 3, 2) (21, 5)

8 (0, 2187; 1, 7) (9, 9) (6561, 0; 0, 9) (9, 9)
(0, 2187; 2, 5) (10, 7) (2187, 1458; 1, 7) (10, 8)
(0, 2187; 3, 3) (14, 6) (729, 1944; 2, 5) (14, 7)
(0, 2187; 4, 1) (22, 5) (243, 2106; 3, 3) (22, 6)

(81, 2160; 4, 1) (35, 5)

In [13,14], the rank and dimension of the kernel are used to classify Z2Z4-linear 
Hadamard codes with α1 = 0 and α1 �= 0, respectively. Moreover, it is also known that 
the family of Z2Z4-linear Hadamard codes with α1 �= 0 includes the family of Z2Z4-linear 
Hadamard codes with α1 = 0 [15], since each Z2Z4-linear Hadamard code with α1 = 0
is equivalent to a Z2Z4-linear Hadamard code with α1 �= 0. The rank and dimension of 
the kernel have also been used to classify Zps-linear GH codes of length pt, with s ≥ 2
and p prime [8,16–18].

Table 1 shows the type (α1, α2; t1, t2) and parameters (r, k) for all Z3Z9-linear GH 
codes of length 3t, with α1 �= 0 and 2 ≤ t ≤ 8, considered in this paper. It also includes 
the type (0, α2; t1, t2) and parameters (r, k) for all Z9-linear GH codes of the same length 
considered in [16].

By looking at Table 1, we have that all Z3Z9-linear GH codes of length 3t, with 
α1 �= 0 and 2 ≤ t ≤ 8, are pairwise non-equivalent since all of them have a different 
value of the kernel. This means that there are at least �t/2	 +1 such codes for 2 ≤ t ≤ 8. 
Moreover, we can see that these non-linear codes are also non-equivalent to any Z9-linear 
GH code of the same length. Similar results can be obtained computationally for p = 5
and p = 7. This means that, unlike for p = 2, in general, for p ≥ 3 prime, the Zp2-linear 
GH codes are not included in the family of ZpZp2-linear GH codes with α1 �= 0. More 
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generally, we can also observe that the Z3Z9-linear GH codes of length 3t, with α1 �= 0
and 2 ≤ t ≤ 8, are not equivalent to any Z3s-linear GH code of the same length with 
s ≥ 2, by comparing the values of (r, k) given in Table 1 with the ones given in [16, 
Tables 4 and 5]. Further research on this topic would be to prove these results for any 
t ≥ 2 and p ≥ 3 prime.
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