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Abstract: This study aims to analyze the relationship between gut microbiota composition and health
parameters through specific biochemical markers and food consumption patterns in the Spanish
population. This research includes 60 Spanish adults aged 47.3 ± 11.2 years old. Biochemical and an-
thropometric measurements, and a self-referred dietary survey (food frequency questionnaire), were
analyzed and compared with the participant´s gut microbiota composition analyzed by 16s rDNA
sequencing. Several bacterial strains differed significantly with the biochemical markers analyzed,
suggesting an involvement in the participant´s metabolic health. Lower levels of Lactobacillaceae
and Oscillospiraceae and an increase in Pasteurellaceae, Phascolarctobacterium, and Haemophilus were
observed in individuals with higher AST levels. Higher levels of the Christensenellaceae and a
decrease in Peptococcaceae were associated with higher levels of HDL-c. High levels of Phascolarc-
tobacterium and Peptococcus and low levels of Butyricicoccus were found in individuals with higher
insulin levels. This study also identified associations between bacteria and specific food groups, such
as an increase in lactic acid bacteria with the consumption of fermented dairy products or an increase
in Verrucomicrobiaceae with the consumption of olive oil. In conclusion, this study reinforces the idea
that specific food groups can favorably modulate gut microbiota composition and have an impact on
host´s health.

Keywords: gut microbiota; dysbiosis; metabolic health; insulin resistance; diet

1. Introduction

The microbiome is defined as the collective genomes of the microorganisms inhabiting
a specific environment [1]. The intestinal microbiota comprises trillions of microbes and is
being studied over the past years due to their physiological functions and role in the host’s
health [2]. There is evidence of a bidirectional relationship between the gut microbiota and
many organs in the human body, including the brain [3].

A microbial alteration is crucial to the development of pathogenesis affecting the
host’s health. An alteration in the composition or function of the gut microbiota is known
as dysbiosis [2], which is a word that refers to a decrease in microbial diversity, a lower
amount of beneficial microorganisms, or an increase in potentially harmful microbes [4].

Several chronic disorders such as cardiovascular diseases, type 2 diabetes, inflamma-
tory bowel disease, and non-alcoholic fatty liver disease (NAFLD) have been identified
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to have specific dysbiotic patterns [5]. Many of the pathologies related to gut microbiota
dysbiosis are associated with metabolic complications related to insulin resistance, chronic
inflammation, and oxidative stress.

The implication of gut microbiota in the host’s health is attributed to the extraction
of calories from the diet, absorption of nutrients, fat deposition in adipose tissue, hep-
atic inflammation, and the ability to provide energy and nutrients for microbial growth
and proliferation [6]. The relationship between the microbial community and the host is
modulated by environmental factors such as diet and lifestyle, which may trigger changes
in gut microbiota composition. The manipulation of the microbiota through nutritional
strategies is considered a potential alternative when treating or preventing the development
of diverse metabolic disorders.

Several patterns in the microbiota have been associated with specific dietary habits,
food groups, and specific nutrients. For example, a high-fat diet with low dietary fiber
and high sugars could disrupt the intestinal eubiosis and impair gut permeability. It could
also contribute to the reduction in microbial diversity [7]. A diet rich in simple sugars
has been associated with pro-inflammatory effects, which may mediate alterations in the
epithelial integrity and impair gut microbiota composition, which can lead to the promotion
of metabolic endotoxemia, systemic inflammation and metabolic dysregulation [8].

The consumption of specific foods and macronutrients, the modulation of the micro-
biome, and the association with health and disease are closely correlated. For example,
adherence to a Mediterranean dietary pattern (MD) rich in fruit, vegetables, antioxidants,
and monounsaturated and polyunsaturated fatty acids has been demonstrated to favorably
modulate the gut microbiome, which probably contributes to the positive health effects of the
MD [9]. These effects seemed to be caused by specific food groups characteristic of this diet.

In the present work we hypothesize that the diet, though specific compounds such
as fibers, pre and probiotics, and phytonutrients, can modulate the gut microbiota. This
will consequently affect the host’s health, which is evaluated by anthropometric and
biochemical markers. The general aim of this study is to analyze the relationship between
the participants’ gut microbiota composition and their health and nutrition status by
analyzing serum biochemical markers and food intake.

2. Materials and Methods
2.1. Participants

The individuals participating in the BIOTAGUT project were recruited at the Center for
Nutrition Research of the University of Navarra, Spain. The present study included 60 Spanish
adults (41 females and 19 males) aged 47.3 ± 11.2 years old. The study included participants
with a body mass index (BMI) between 19.0 and 34.9 kg/m2, without weight variations
(±3 kg), changes in pharmacological treatment or consumption of stomach protectors, and
gastrointestinal problems during the last three months. Subjects had to understand and be will-
ing to sign the informed consent form and comply with all the procedures and requirements
of the study. Primary exclusion criteria included a history of hypertension, cardiovascular
disease, and diabetes mellitus, patients diagnosed with primary hyperlipidemia or current use
of lipid-lowering drugs, and lactation or pregnancy. The study followed the ethical principles
of the 2013 Helsinki Declaration [10]. The Ethical Committee in Research of the University of
Navarra approved the study protocol (reference 2021.074).

2.2. Anthropometric and Biochemical Measurements

Anthropometric measurements, including body weight (kg) and height (cm), were collected
by trained nutritionists using conventional validated methods. The SECA 216 stadiometer
(SECA gmnh &co. kg, Hamburg, Germany) and the TANITA SC-330 body composition monitor
(Tanita Corp, Tokyo, Japan) were used. BMI was calculated as the ratio between body weight
and squared height (kg/m2) and was classified following the World Health Organization (WHO)
standards [11].



Nutrients 2022, 14, 4966 3 of 13

Blood samples were drawn by venipuncture after an overnight fasting period in a
clinical setting. Two tubes with EDTA and two tubes without anticoagulants were collected
from each volunteer. Tubes were centrifuged for 15 min at 4500 rpm, aliquoted, and stored
at −80 ◦C. Serum samples were used for analyzing glucose, total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-c), triglycerides, alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and insulin. These markers were analyzed with a Pentra
C200 clinical chemistry analyzer (HORIBA Medical, Madrid, Spain) and suitable kits
provided by the company. Serum insulin was quantified using a specific enzyme-linked
immunosorbent assay (Mercodia, Uppsala, Sweden) and read with an automated analyzer
system (Triturus, Grifols, Barcelona, Spain).

2.3. Dietary Estimation

A validated food frequency questionnaire (FFQ) that included 137 food items with
corresponding portion sizes was used to estimate the habitual dietary intake [12]. Par-
ticipants indicated the number of times they had consumed each food group or specific
food during the previous month according to frequency categories, including daily, weekly,
or monthly. Macronutrient (%) and total energy intake (kcal) were estimated with ad
hoc software and the information available from valid Spanish food composition tables.
Specific food groups include vegetables, fruit, legumes, cereals, whole grains, dairy intake,
yogurt intake, fermented dairy products, meat, cold meat (embutidos), olive oil, soda, and
light soda. A specific analysis of the fat consumption included total cholesterol, trans fat,
monounsaturated (MUFA), polyunsaturated (PUFA), and saturated fat intake.

2.4. Fecal Sample Collection, DNA Extraction, and Metagenomic Data

The fecal samples were self-collected by the volunteers using OMNIgene.GUT kits
from DNA Genotek (Ottawa, ON, Canada), according to the instructions provided by the
company. The DNA extraction from fecal samples was performed with a QIAamp® DNA
kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol.

Bacterial DNA sequencing was performed by the Servei de Genòmica from the Uni-
versitat Autònoma de Barcelona (Bellaterra, Cerdanyola del Vallés, Spain). We analyzed
the variable regions V3–V4 of the prokaryotic 16S rRNA (ribosomal Ribonucleic Acid) gene
sequences, which gives 460 bp amplicons in a two-round PCR protocol. Initially, PCR is used
to amplify a template out of a DNA sample using specific primers with overhang adapters
attached that flank regions of interest. The full-length primer sequences were: Forward
Primer: 5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG
and Reverse Primer: 5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHV
GGGTATCTAATCC.

PCR was performed in a thermal cycler using the following conditions: 95 ◦C for
3 min, 25 cycles of (95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s), and 72 ◦C for 5 min. To
verify that the specific primers had been correctly attached to the samples, 1 µL of the PCR
product was checked on a Bioanalyzer DNA 1000 chip (Agilent Technologies, Santa Clara,
CA, USA). The expected size on a Bioanalyzer was ≈550 bp.

Following this procedure, using a limited-cycle PCR, sequencing adapters, and dual
indices barcodes, Nextera® XT DNA Index Kit, FC-131-1002 (Illumina, San Diego, CA, USA),
were added to the amplicon, which allows up to 96 libraries for sequencing on the MiSeq
sequencer with the MiSeq® Reagent Kit v3 (600 cycles) MS-102-3003 to be pooled together.

The libraries were quantified using a fluorometric method and dilution of the samples
before pooling all samples. Finally, paired-end sequencing was performed on a MiSeq
platform (Illumina) with a 600 cycles Miseq run, a 20 pM sample, and a minimum of 20%
PhiX. The mean reads obtained was 164,387. Samples with more than 40,000 reads were
used for further analysis. The authors deposited all the sequencing data in SRA (Sequence
Read Archive), and the accession key has been included in the text (PRJNA623853).

The 16S rRNA gene sequences obtained were filtered following the quality criteria
of the OTUs (operational taxonomic units) processing pipeline LotuS (release 1.58). This
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pipeline includes UPARSE (Highly accurate OTU sequences from microbial amplicon reads),
de novo sequence clustering, and removal of chimeric sequences and phix contaminants
for identifying OTUs and their abundance matrix generation. Taxonomy was assigned
using HITdb (Highly scalable Relational Database). OTUs with a similarity of 97% or more
were referred to as species. The abundance matrix of species, genera, families, class, order
and phyla was normalized using the centered log-ratio (CLR) transformation using the R
packages “compositions” and “zCompositions” [13].

2.5. Statistical Analysis

Microbiome Analyst [14,15] was used to analyze the participants’ microbiome compo-
sition comparing the different anthropometric measures, biochemical markers, and dietary
estimation. For each variable, the population was divided into two groups (high and low
levels) according to the median. To analyze the statistical differences in microbiota profiles
between groups, a Zero-inflated Gaussian approach of Metagenome-Seq using the cumula-
tive sum scaling (CSS) normalization and Student’s t-test through a CLR normalization,
followed by FDR correction, were performed.

3. Results
3.1. Characteristics of the Study Population

Characteristics of the population that participated in this study, including age, an-
thropometric measures, and biochemical data, are shown in Table 1. Data for the whole
population, and for the high and low groups according to the median, are shown.

Table 1. Characteristics of the participants.

Variables All Participants
(n = 60)

High Group
(n = 30)

Low Group
(n = 30)

Age (y) 47.3 ± 11.2 55.8 ± 5.8 38.3 ± 9.3
Weight (kg) 69.9 ± 14.1 79.8 ± 11.6 59.0 ± 5.0

BMI (kg/cm2) 24.6 ± 3.9 27.5 ± 2.8 21.4 ± 1.6
Glucose (mg/dL) 94.5 ± 11.3 101.3 ± 11.1 86.3 ± 3.9

Total cholesterol (mg/dL) 219.4 ± 35.4 247.5 ± 21.7 192.8 ± 21.0
HDL (mg/dL) 64.3 ± 15.6 78.0 ± 11.9 52.7 ± 6.8

Triglycerides (mg/dL) 79.0 ± 36.6 102.2 ± 36.1 53.1 ± 9.0
Insulin (µIU/mL) 8.4 ± 4.3 11.4 ± 3.7 5.2 ± 1.6

AST (µ/L) 22.0 ± 14.3 27.3 ± 17.7 16.2 ± 2.4
ALT (µ/L) 22.0 ± 20.6 30.2 ± 25.1 12.8 ± 2.4

Data are expressed as mean ± standard deviation.

3.2. Dietary Intake Characteristics

A FFQ evaluated the dietary intake characteristics of the population participating in
this study. Table 2 shows the main characteristics of the dietary intake from the self-reflected
questionnaire. Data for the whole population, and for the high and low groups according
to the median, are shown.

Table 2. Nutritional characteristics of the population.

Variables All (n = 60) High Group
(n = 30)

Low Group
(n = 30) Variables All (n = 60) High Group

(n = 30)
Low Group

(n = 30)

Energy intake
(kcal/day) 2381 ± 796 3118 ± 801 1819 ± 299 Yogurt (g/day) 75.4 ± 78.2 129.9 ± 72.4 18.0 ± 21.8

Carbohydrate
intake (%) 38.2 ± 7.7 43.8 ± 4.2 31.9 ± 5.3 Fermented

dairy (g/day) 93.0 ± 79.8 149.6 ± 72.2 34.3 ± 22.7

Protein intake (%) 18.3 ± 3.4 21.1 ± 3.0 15.9 ± 2.0 Meat (g/day) 169.4 ± 75.6 263.8 ± 166.0 115.1 ± 34.6
Fat intake (%) 41.3 ± 6.8 46.8 ± 5.1 36.3 ± 3.2 Cold meat (g/day) 7.5 ± 9.2 12.8 ± 10.1 1.7 ± 1.7

Fiber intake (g/day) 28.9 ± 11.8 39.9 ± 9.6 20.1 ± 4.7 Olive oil (g/day) 27.6 ± 27.2 45.8 ± 30.5 12.6 ± 5.6
Vegetables (g/day) 432.6 ± 206.8 632.5 ± 194.1 281.3 ± 90.6 Soda (g/day) 13.2 ± 29.5 26.5 ± 36.5 0.0 ± 0.0
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Table 2. Cont.

Variables All (n = 60) High Group
(n = 30)

Low Group
(n = 30) Variables All (n = 60) High Group

(n = 30)
Low Group

(n = 30)

Fruit (g/day) 301.8 ± 204.7 527.6 ± 343.2 156.6 ± 65.3 Soda light (g/day) 20.3 ± 42.2 45.9 ± 59.2 0.0 ± 0.0

Legumes (g/day) 23.8 ± 12.6 32.2 ± 12.0 14.9 ± 4.7 Total cholesterol
(mg/day) 526.5 ± 210.7 727.4 ± 237.0 379.5 ± 88.0

Cereals (g/day) 166.3 ± 98.5 241.0 ± 83.4 97.1 ± 36.9 Trans fat (g/day) 0.8 ± 0.5 1.1 ± 0.4 0.4 ± 0.1

Whole grains (g/day) 35.8 ± 39.9 64.8 ± 36.8 5.8 ± 8.5 Monounsaturated
fat (g/day) 48.8 ± 22.0 69.2 ± 22.7 33.4 ± 7.6

Dairy intake (g/day) 301.3 ± 187.5 442.3 ± 142.3 154.8 ± 80.1 Polyunsaturated
fat (g/day) 16.8 ± 6.5 24.3 ± 7.6 11.6 ± 2.7

Saturated fat (g/day) 30.4 ± 11.9 41.3 ± 8.7 21.4 ± 5.8

Data are expressed as mean ± standard deviation.

3.3. Microbiota Composition: Biochemical Markers

The population was divided into two groups (low and high levels) according to the me-
dian of the circulating levels of the biochemical parameter, as shown in Table 1. Significant
relations (FDR < 0.05) were observed between some of the biochemical markers analyzed
and specific families or genera (Figure 1). No statistical differences were found at the levels
of phylum, class, order and species. The biochemical markers that were significantly related
to changes in the gut microbiota composition were AST, HDL cholesterol, and insulin levels.
The following data are expressed as box plots in Figure 1.

Several beneficial bacteria, such as Oscillospiraceae, Lactobacillaceae, Rikenellaceae,
and Porphyromonadaceae, were less abundant in the participants with higher AST levels.
However, Pasteurellaceae, Phascolarctobacterium, and Haemophilus were more abundant in
the same group.

Higher levels of the Christensenellaceae and lower levels of Peptococcaceae were
found in the individuals with higher HDL-cholesterol. In addition, higher levels of Phasco-
larctobacterium and Peptococcus and a lower abundance of Butyricicoccus was detected in
individuals with higher insulinemia. The whole summary of these results at Family and
Genus levels are presented as Supplementary Material in Figure S1.

The different diversity and richness indexes (i.e., Shannon, Chao-1 or Simpson) were
not associated with any of the biochemical markers in the studied population.
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Figure 1. Bacterial taxa differing significantly in abundance when comparing the groups of individ-
uals with high and low levels of biochemical biomarkers (FDR < 0.05): AST, HDL-cholesterol and
insulin. Red boxes represent participants with lower levels, and blue boxes represent participants
with higher levels of the specified biochemical marker.
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3.4. Microbiota Composition: Nutritional Markers

As shown in Table 2, the population was divided into two groups (low and high intake
levels) according to the median of the intake of the different nutritional data. The bacteria
whose levels were significantly different (FDR < 0.05) when comparing both groups, high
and low intake of each parameter, are shown in Figures 2–4. These figures represent the
interface between the dietary factors presented in Table 2 and the gut bacterial composition
at the different taxonomic levels. No statistical differences were found at the levels of
phylum, class, order and species.
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Figure 2. Bacterial taxa differing significantly in relation to total energy, carbohydrate, protein, and
fiber intake (A), as well as different types of fat: monounsaturated, polyunsaturated, saturated, and
trans (B) (FDR < 0.05). Red boxes represent participants with lower consumption, and blue boxes
represent participants with higher consumption of the specified food group compared to the median.

Total energy, carbohydrate, and protein intake were associated with higher abundance of
Paraprevotella, Enterobacteriaceae, and Unclassified Clostridium, respectively. Lower levels of
Melainabacteriaceae were found in individuals with higher fiber intake. There were significant
differences when comparing the bacterial abundance of the individuals with higher and
lower consumptions of different types of fats, including monounsaturated, polyunsaturated,
saturated, and trans. For example, higher levels of Phascolarctobacterium and Butyricicoccus
were found in the groups with higher intake of monounsaturated and polyunsaturated
fats, respectively. Higher consumption of saturated fat was associated with an increase in
Acidaminococcaceae and Phascolarctobacterium, and a decrease in Erysipelaclostridium. A higher
intake of trans fat was related with higher levels of Phascolarctobacterium.



Nutrients 2022, 14, 4966 8 of 13
Nutrients 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 3. Bacterial taxa differing significantly when comparing individuals with higher and lower 
consumption of yogurt and fermented dairy (A), fruit and whole grains (B), and olive oil (C) (FDR 
< 0.05). Red boxes represent participants with lower consumption, and blue boxes represent partic-
ipants with higher consumption of the specified food group. 

The results in Figure 3 show higher levels of Enterobacteriaceae, Eubacteriaceae, and 
Streptoccaceae were observed in individuals with higher fruit consumption. Lower levels 
of Melainabacteriaceae were found in the group of individuals with higher consumption 
of whole grains. The results also show higher levels of the Lactobacillaceae family in indi-
viduals with higher consumption of yogurt and fermented dairy products. A high con-
sumption of olive oil was related to lower amounts of Desulfovibrio but higher levels of 
Phascolarctobacterium and Verrucomicrobiaceae (very close taxonomically to the genus Ak-
kermansia). 

Figure 3. Bacterial taxa differing significantly when comparing individuals with higher and lower con-
sumption of yogurt and fermented dairy (A), fruit and whole grains (B), and olive oil (C) (FDR < 0.05).
Red boxes represent participants with lower consumption, and blue boxes represent participants
with higher consumption of the specified food group.

The results in Figure 3 show higher levels of Enterobacteriaceae, Eubacteriaceae, and
Streptoccaceae were observed in individuals with higher fruit consumption. Lower levels
of Melainabacteriaceae were found in the group of individuals with higher consumption of
whole grains. The results also show higher levels of the Lactobacillaceae family in individuals
with higher consumption of yogurt and fermented dairy products. A high consumption of
olive oil was related to lower amounts of Desulfovibrio but higher levels of Phascolarctobacterium
and Verrucomicrobiaceae (very close taxonomically to the genus Akkermansia).

Individuals with higher consumption of light soda had lower abundance of the families
Clostridiaceae, Methanobacteriaceae, and Dehalobacteriaceae and lower levels of the genera
Ruminococcus and Eggerthella. A higher consumption of meat was related with higher levels
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of Phascolarctobacterium but a decrease in Oscillospira. Butyricicoccus, a butyrate-producing
genus, was less abundant in individuals with lower consumption of cold meat (embutidos).
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Figure 4. Bacterial taxa differing significantly in relation to the consumption of light soda (A) and
meat and cold meat intake (embutidos) (B) (FDR < 0.05). Red boxes represent participants with lower
consumption, and blue boxes represent participants with higher consumption of the specified food
group compared to the median.

The whole summary of the relationship between nutritional markers and microbiota
composition at Family and Genus levels are presented as Supplementary Material in
Figures S2 and S3, respectively. In the studied population, the different alpha-diversity
indexes were not associated with any of the nutritional markers evaluated.

4. Discussion
4.1. Analysis of Microbiota with Metabolic and Hepatic Health

In the analysis between the gut microbiota and health status, we identified biochemical
markers of metabolic and hepatic health that presented strong associations with specific
bacteria in the microbiome. Metabolic pathologies related to obesity, insulin resistance,
inflammatory conditions and metabolic endotoxemia are highly associated with dietary and
lifestyle factors, which have a crucial role in the modulation of the microbiome [16]. Some
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specific bacteria have been related to metabolic benefits, and others have been related to a
worse metabolic state [17]. Some metabolic diseases, particularly those related to insulin
resistance and low-grade inflammation, have been associated with lower microbial diversity
and dysbiosis. On the contrary, metabolic health and leanness have been associated with
higher gut microbial diversity and richness [17].

Gut microbiota dysbiosis has been also implicated in the pathogenesis of liver diseases
such as alcoholic and non-alcoholic fatty liver disease [18]. Concerning hepatic health,
a decrease in Oscillospiraceae and Lactobacillaceae and an increase in Pasteurellaceae,
Phascolarctobacterium and Haemophilus has been described in individuals with altered liver
function through the analysis of AST and ALT [16–22]. Elevated levels of AST have been
associated with hepatic dysfunction and higher levels of inflammation [19]. In our results,
higher AST levels were related to lower abundance of Oscillospira and Lactobacillus, which
are two genera that have been previously associated with health benefits in humans.

Different studies have described that metabolic pathologies are usually accompanied
by gut barrier dysfunction, which may cause increased gut permeability, translocation of
bacteria, and a pro-inflammatory state in the body. This state of gut dysbiosis can contribute
to an increased absorption of lipopolysaccharides and metabolic endotoxemia, which has
also been related to an increased risk of insulin resistance [6,17].

Our results show that some SCFA-producing bacteria, such as Butyricicoccus, are more
abundant in participants with lower insulin resistance. This suggests that butyrate might
benefit insulin metabolism. In our results, there was also an increase in the Phascolarctobac-
terium genus in individuals with higher levels of AST, as well as a significant correlation
between Phascolarctobacterium, insulin levels and trans-fat intake. Previous evidence stated
that an increase in the Phascolarctobacterium was associated with a decrease in bacterial
diversity in patients with NAFLD, type 2 diabetes, and hepatitis B infection [23].

Critical cardiometabolic parameters and dyslipidemia (i.e., low HDL-c) have been
negatively associated with higher BMI and abdominal obesity. These parameters can be
modulated by dietary and lifestyle factors that contribute to changes in gut microbiota
composition [7,24]. In our results, individuals with higher levels of HDL-c presented a
higher abundance of Christensenellaceae, suggesting a possible relation between Chris-
tensenellaceae and lower cardiometabolic risk [25].

On the other hand, some bacteria may contribute to impair the cardiometabolic state.
For example, low levels of Peptococcaceae have been associated with higher levels of HDL-c,
whereas higher levels of Peptococcaceae have been positively correlated with insulin re-
sistance [26]. Insulin resistance is associated with worse metabolic health and several car-
diometabolic risk factors, such as low HDL-c [27]. Therefore, lower levels of Peptococcaceae
and higher HDL-c seem to be associated with better metabolic health [28]. In our study, we
have observed that Peptococcaceae was negatively associated with HDL-cholesterol.

4.2. Analysis of Microbiota and Dietary Intake

Diet and lifestyle are the most important modulators of gut microbiota composition.
There are complex interactions between gut microbiota, dietary factors and the genetic
background that are crucial for the development of metabolic syndrome features [29]. In this
research, the consumption of specific food groups, such as fermented dairy products, meat,
fat, and olive oil, was significantly associated with specific bacteria in the gut microbiome.
For example, we found that a high caloric intake was associated with an increase in
Paraprevotella genus and Enterobacteria. These results contribute to previous evidence
stating that an elevated consumption of simple sugars and carbohydrates is associated
with a worse metabolic state due to the impairment in epithelial integrity and increased
inflammation [30].

The association between the consumption of fermented dairy products and an increase
in Lactobacilli has been previously reported. Different strains from this bacterial group are
used as probiotics and contribute to the prevention of obesity and other metabolic patholo-
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gies [26,31]. In this context, we have also observed that there were higher Lactobacillus
levels in the individuals with higher consumption of fermented dairy products and yogurt.

High consumption of meat has been associated with an increase in inflammatory
markers and adiposity [32]. Our results show a decrease in the levels of Oscillospira, a
putative beneficial genus, in the individuals with higher meat consumption, suggesting a
negative correlation between Oscillospira and meat intake.

Extra virgin olive oil has been extensively associated with anti-inflammatory ef-
fects [33]. Our results show that olive oil consumption is associated with an increase
in the abundance of Verrucomicrobiaceae, which is very close taxonomically to the genus
Akkermansia. Akkermansia muciniphila has been negatively associated with overweight,
obesity, hypertension, and type 2 diabetes [34].

On the contrary, a high-fat diet rich in saturated and trans fats has been associated
with a pro-inflammatory state characterized by a reduction in microbial diversity, increased
intestinal permeability, and lipopolysaccharide translocation [35]. In our study, individuals
with higher consumption of saturated and trans fat had higher amounts of Phascolarcto-
bacterium, which is a lipolytic genus that secretes extracellular esterase to break down
triglycerides and its hydrolyzates [36].

5. Conclusions

This study suggests associations between gut microbiota composition, hepatic health,
and insulin resistance status, where the consumption of specific foods related with inflam-
mation features plays an important modulatory role.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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